gcc/libgo/syscalls/exec.go

249 lines
6.1 KiB
Go

// exec.go -- fork/exec syscall support.
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Fork, exec, wait, etc.
package syscall
import "unsafe"
func libc_fcntl(fd int, cmd int, arg int) int __asm__ ("fcntl")
func libc_fork() Pid_t __asm__ ("fork")
func libc_chdir(name *byte) int __asm__ ("chdir");
func libc_dup2(int, int) int __asm__ ("dup2")
func libc_execve(*byte, **byte, **byte) int __asm__ ("execve")
func libc_sysexit(int) __asm__ ("_exit")
func libc_wait4(Pid_t, *int, int, *Rusage) Pid_t __asm__ ("wait4")
// Fork, dup fd onto 0..len(fd), and exec(argv0, argvv, envv) in child.
// If a dup or exec fails, write the errno int to pipe.
// (Pipe is close-on-exec so if exec succeeds, it will be closed.)
// In the child, this function must not acquire any locks, because
// they might have been locked at the time of the fork. This means
// no rescheduling, no malloc calls, and no new stack segments.
func forkAndExecInChild(argv0 *byte, argv []*byte, envv []*byte, traceme bool, dir *byte, fd []int, pipe int) (pid int, err int) {
// Declare all variables at top in case any
// declarations require heap allocation (e.g., err1).
var r1, r2, err1 uintptr;
var nextfd int;
var i int;
darwin := OS == "darwin";
// About to call fork.
// No more allocation or calls of non-assembly functions.
child := libc_fork();
if child == -1 {
return 0, GetErrno();
}
if child != 0 {
// parent; return PID
return int(child), 0
}
// Fork succeeded, now in child.
// Enable tracing if requested.
if traceme {
if libc_ptrace(_PTRACE_TRACEME, 0, 0, nil) < 0 {
goto childerror;
}
}
// Chdir
if dir != nil {
r := libc_chdir(dir);
if r < 0 {
goto childerror;
}
}
// Pass 1: look for fd[i] < i and move those up above len(fd)
// so that pass 2 won't stomp on an fd it needs later.
nextfd = int(len(fd));
if pipe < nextfd {
r := libc_dup2(pipe, nextfd);
if r == -1 {
goto childerror;
}
libc_fcntl(nextfd, F_SETFD, FD_CLOEXEC);
pipe = nextfd;
nextfd++;
}
for i = 0; i < len(fd); i++ {
if fd[i] >= 0 && fd[i] < int(i) {
r := libc_dup2(fd[i], nextfd);
if r == -1 {
goto childerror;
}
libc_fcntl(nextfd, F_SETFD, FD_CLOEXEC);
fd[i] = nextfd;
nextfd++;
if nextfd == pipe { // don't stomp on pipe
nextfd++;
}
}
}
// Pass 2: dup fd[i] down onto i.
for i = 0; i < len(fd); i++ {
if fd[i] == -1 {
libc_close(i);
continue;
}
if fd[i] == int(i) {
// dup2(i, i) won't clear close-on-exec flag on Linux,
// probably not elsewhere either.
r := libc_fcntl(fd[i], F_SETFD, 0);
if r != 0 {
goto childerror;
}
continue;
}
// The new fd is created NOT close-on-exec,
// which is exactly what we want.
r := libc_dup2(fd[i], i);
if r == -1 {
goto childerror;
}
}
// By convention, we don't close-on-exec the fds we are
// started with, so if len(fd) < 3, close 0, 1, 2 as needed.
// Programs that know they inherit fds >= 3 will need
// to set them close-on-exec.
for i = len(fd); i < 3; i++ {
libc_close(i);
}
// Time to exec.
libc_execve(argv0, &argv[0], &envv[0]);
childerror:
// send error code on pipe
var e uintptr = uintptr(GetErrno());
libc_write(pipe, (*byte)(unsafe.Pointer(&e)),
Size_t(unsafe.Sizeof(err1)));
for {
libc_sysexit(253)
}
// Calling panic is not actually safe,
// but the for loop above won't break
// and this shuts up the compiler.
panic("unreached");
}
func forkExec(argv0 string, argv []string, envv []string, traceme bool, dir string, fd []int) (pid int, err int) {
var p [2]int;
var r1 int;
var err1 uintptr;
var wstatus WaitStatus;
p[0] = -1;
p[1] = -1;
// Convert args to C form.
argv0p := StringBytePtr(argv0);
argvp := StringArrayPtr(argv);
envvp := StringArrayPtr(envv);
var dirp *byte;
if len(dir) > 0 {
dirp = StringBytePtr(dir);
}
// Acquire the fork lock so that no other threads
// create new fds that are not yet close-on-exec
// before we fork.
ForkLock.Lock();
// Allocate child status pipe close on exec.
if err = Pipe(p[0:]); err != 0 {
goto error;
}
var val int;
if val, err = fcntl(p[0], F_SETFD, FD_CLOEXEC); err != 0 {
goto error;
}
if val, err = fcntl(p[1], F_SETFD, FD_CLOEXEC); err != 0 {
goto error;
}
// Kick off child.
pid, err = forkAndExecInChild(argv0p, argvp, envvp, traceme, dirp, fd, p[1]);
if err != 0 {
error:
if p[0] >= 0 {
Close(p[0]);
Close(p[1]);
}
ForkLock.Unlock();
return 0, err
}
ForkLock.Unlock();
// Read child error status from pipe.
Close(p[1]);
n := libc_read(p[0], (*byte)(unsafe.Pointer(&err1)),
Size_t(unsafe.Sizeof(err1)));
err = 0;
if n < 0 {
err = GetErrno();
}
Close(p[0]);
if err != 0 || n != 0 {
if int(n) == unsafe.Sizeof(err1) {
err = int(err1);
}
if err == 0 {
err = EPIPE;
}
// Child failed; wait for it to exit, to make sure
// the zombies don't accumulate.
pid1, err1 := Wait4(pid, &wstatus, 0, nil);
for err1 == EINTR {
pid1, err1 = Wait4(pid, &wstatus, 0, nil);
}
return 0, err
}
// Read got EOF, so pipe closed on exec, so exec succeeded.
return pid, 0
}
// Combination of fork and exec, careful to be thread safe.
func ForkExec(argv0 string, argv []string, envv []string, dir string, fd []int) (pid int, err int) {
return forkExec(argv0, argv, envv, false, dir, fd);
}
// PtraceForkExec is like ForkExec, but starts the child in a traced state.
func PtraceForkExec(argv0 string, argv []string, envv []string, dir string, fd []int) (pid int, err int) {
return forkExec(argv0, argv, envv, true, dir, fd);
}
// Ordinary exec.
func Exec(argv0 string, argv []string, envv []string) (err int) {
argv_arg := StringArrayPtr(argv);
envv_arg := StringArrayPtr(envv);
libc_execve(StringBytePtr(argv0), &argv_arg[0], &envv_arg[0]);
return GetErrno();
}
func Wait4(pid int, wstatus *WaitStatus, options int, rusage *Rusage) (wpid int, errno int) {
var status int;
r := libc_wait4(Pid_t(pid), &status, options, rusage);
wpid = int(r);
if r < 0 {
errno = GetErrno();
}
if wstatus != nil {
*wstatus = WaitStatus(status);
}
return;
}