gcc/libgfortran/intrinsics/spread_generic.c
Francois-Xavier Coudert 3571925eb5 select.c: Moved content to select_inc.c.
* runtime/select.c: Moved content to select_inc.c. Include it. 
        Add macros for different character types.
        * runtime/select_inc.c: New file.
        * runtime/convert_char.c: New file.
        * intrinsics/pack_generic.c (pack_char4, pack_s_char4): New
        functions.
        * intrinsics/transpose_generic.c (transpose_char4): New function.
        * intrinsics/spread_generic.c (spread_char4, spread_char4_scalar):
        New functions.
        * intrinsics/unpack_generic.c (unpack1_char4, unpack0_char4): 
        New functions.
        * intrinsics/reshape_generic.c (reshape_char): Use
        gfc_charlen_type as type for length variables.
        (reshape_char4): New function.
        * gfortran.map (GFORTRAN_1.1): Add _gfortran_select_string_char4,
        _gfortran_convert_char1_to_char4, _gfortran_convert_char4_to_char1,
        _gfortran_transpose_char4, _gfortran_spread_char4,
        _gfortran_spread_char4_scalar, _gfortran_reshape_char4,
        _gfortran_pack_char4, _gfortran_pack_s_char4,
        _gfortran_unpack0_char4 and _gfortran_unpack1_char4.
        * Makefile.am: Add runtime/convert_char.c.
        * Makefile.in: Regenerate.

From-SVN: r135496
2008-05-18 12:00:20 +00:00

623 lines
16 KiB
C

/* Generic implementation of the SPREAD intrinsic
Copyright 2002, 2005, 2006, 2007 Free Software Foundation, Inc.
Contributed by Paul Brook <paul@nowt.org>
This file is part of the GNU Fortran 95 runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file. (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)
Ligbfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public
License along with libgfortran; see the file COPYING. If not,
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "libgfortran.h"
#include <stdlib.h>
#include <assert.h>
#include <string.h>
static void
spread_internal (gfc_array_char *ret, const gfc_array_char *source,
const index_type *along, const index_type *pncopies,
index_type size)
{
/* r.* indicates the return array. */
index_type rstride[GFC_MAX_DIMENSIONS];
index_type rstride0;
index_type rdelta = 0;
index_type rrank;
index_type rs;
char *rptr;
char *dest;
/* s.* indicates the source array. */
index_type sstride[GFC_MAX_DIMENSIONS];
index_type sstride0;
index_type srank;
const char *sptr;
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type n;
index_type dim;
index_type ncopies;
srank = GFC_DESCRIPTOR_RANK(source);
rrank = srank + 1;
if (rrank > GFC_MAX_DIMENSIONS)
runtime_error ("return rank too large in spread()");
if (*along > rrank)
runtime_error ("dim outside of rank in spread()");
ncopies = *pncopies;
if (ret->data == NULL)
{
/* The front end has signalled that we need to populate the
return array descriptor. */
ret->dtype = (source->dtype & ~GFC_DTYPE_RANK_MASK) | rrank;
dim = 0;
rs = 1;
for (n = 0; n < rrank; n++)
{
ret->dim[n].stride = rs;
ret->dim[n].lbound = 0;
if (n == *along - 1)
{
ret->dim[n].ubound = ncopies - 1;
rdelta = rs * size;
rs *= ncopies;
}
else
{
count[dim] = 0;
extent[dim] = source->dim[dim].ubound + 1
- source->dim[dim].lbound;
sstride[dim] = source->dim[dim].stride * size;
rstride[dim] = rs * size;
ret->dim[n].ubound = extent[dim]-1;
rs *= extent[dim];
dim++;
}
}
ret->offset = 0;
if (rs > 0)
ret->data = internal_malloc_size (rs * size);
else
{
ret->data = internal_malloc_size (1);
return;
}
}
else
{
int zero_sized;
zero_sized = 0;
dim = 0;
if (GFC_DESCRIPTOR_RANK(ret) != rrank)
runtime_error ("rank mismatch in spread()");
if (compile_options.bounds_check)
{
for (n = 0; n < rrank; n++)
{
index_type ret_extent;
ret_extent = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
if (n == *along - 1)
{
rdelta = ret->dim[n].stride * size;
if (ret_extent != ncopies)
runtime_error("Incorrect extent in return value of SPREAD"
" intrinsic in dimension %ld: is %ld,"
" should be %ld", (long int) n+1,
(long int) ret_extent, (long int) ncopies);
}
else
{
count[dim] = 0;
extent[dim] = source->dim[dim].ubound + 1
- source->dim[dim].lbound;
if (ret_extent != extent[dim])
runtime_error("Incorrect extent in return value of SPREAD"
" intrinsic in dimension %ld: is %ld,"
" should be %ld", (long int) n+1,
(long int) ret_extent,
(long int) extent[dim]);
if (extent[dim] <= 0)
zero_sized = 1;
sstride[dim] = source->dim[dim].stride * size;
rstride[dim] = ret->dim[n].stride * size;
dim++;
}
}
}
else
{
for (n = 0; n < rrank; n++)
{
if (n == *along - 1)
{
rdelta = ret->dim[n].stride * size;
}
else
{
count[dim] = 0;
extent[dim] = source->dim[dim].ubound + 1
- source->dim[dim].lbound;
if (extent[dim] <= 0)
zero_sized = 1;
sstride[dim] = source->dim[dim].stride * size;
rstride[dim] = ret->dim[n].stride * size;
dim++;
}
}
}
if (zero_sized)
return;
if (sstride[0] == 0)
sstride[0] = size;
}
sstride0 = sstride[0];
rstride0 = rstride[0];
rptr = ret->data;
sptr = source->data;
while (sptr)
{
/* Spread this element. */
dest = rptr;
for (n = 0; n < ncopies; n++)
{
memcpy (dest, sptr, size);
dest += rdelta;
}
/* Advance to the next element. */
sptr += sstride0;
rptr += rstride0;
count[0]++;
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
sptr -= sstride[n] * extent[n];
rptr -= rstride[n] * extent[n];
n++;
if (n >= srank)
{
/* Break out of the loop. */
sptr = NULL;
break;
}
else
{
count[n]++;
sptr += sstride[n];
rptr += rstride[n];
}
}
}
}
/* This version of spread_internal treats the special case of a scalar
source. This is much simpler than the more general case above. */
static void
spread_internal_scalar (gfc_array_char *ret, const char *source,
const index_type *along, const index_type *pncopies,
index_type size)
{
int n;
int ncopies = *pncopies;
char * dest;
if (GFC_DESCRIPTOR_RANK (ret) != 1)
runtime_error ("incorrect destination rank in spread()");
if (*along > 1)
runtime_error ("dim outside of rank in spread()");
if (ret->data == NULL)
{
ret->data = internal_malloc_size (ncopies * size);
ret->offset = 0;
ret->dim[0].stride = 1;
ret->dim[0].lbound = 0;
ret->dim[0].ubound = ncopies - 1;
}
else
{
if (ncopies - 1 > (ret->dim[0].ubound - ret->dim[0].lbound)
/ ret->dim[0].stride)
runtime_error ("dim too large in spread()");
}
for (n = 0; n < ncopies; n++)
{
dest = (char*)(ret->data + n*size*ret->dim[0].stride);
memcpy (dest , source, size);
}
}
extern void spread (gfc_array_char *, const gfc_array_char *,
const index_type *, const index_type *);
export_proto(spread);
void
spread (gfc_array_char *ret, const gfc_array_char *source,
const index_type *along, const index_type *pncopies)
{
index_type type_size;
type_size = GFC_DTYPE_TYPE_SIZE(ret);
switch(type_size)
{
case GFC_DTYPE_DERIVED_1:
case GFC_DTYPE_LOGICAL_1:
case GFC_DTYPE_INTEGER_1:
spread_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) source,
*along, *pncopies);
return;
case GFC_DTYPE_LOGICAL_2:
case GFC_DTYPE_INTEGER_2:
spread_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) source,
*along, *pncopies);
return;
case GFC_DTYPE_LOGICAL_4:
case GFC_DTYPE_INTEGER_4:
spread_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) source,
*along, *pncopies);
return;
case GFC_DTYPE_LOGICAL_8:
case GFC_DTYPE_INTEGER_8:
spread_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) source,
*along, *pncopies);
return;
#ifdef HAVE_GFC_INTEGER_16
case GFC_DTYPE_LOGICAL_16:
case GFC_DTYPE_INTEGER_16:
spread_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) source,
*along, *pncopies);
return;
#endif
case GFC_DTYPE_REAL_4:
spread_r4 ((gfc_array_r4 *) ret, (gfc_array_r4 *) source,
*along, *pncopies);
return;
case GFC_DTYPE_REAL_8:
spread_r8 ((gfc_array_r8 *) ret, (gfc_array_r8 *) source,
*along, *pncopies);
return;
#ifdef GFC_HAVE_REAL_10
case GFC_DTYPE_REAL_10:
spread_r10 ((gfc_array_r10 *) ret, (gfc_array_r10 *) source,
*along, *pncopies);
return;
#endif
#ifdef GFC_HAVE_REAL_16
case GFC_DTYPE_REAL_16:
spread_r16 ((gfc_array_r16 *) ret, (gfc_array_r16 *) source,
*along, *pncopies);
return;
#endif
case GFC_DTYPE_COMPLEX_4:
spread_c4 ((gfc_array_c4 *) ret, (gfc_array_c4 *) source,
*along, *pncopies);
return;
case GFC_DTYPE_COMPLEX_8:
spread_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) source,
*along, *pncopies);
return;
#ifdef GFC_HAVE_COMPLEX_10
case GFC_DTYPE_COMPLEX_10:
spread_c10 ((gfc_array_c10 *) ret, (gfc_array_c10 *) source,
*along, *pncopies);
return;
#endif
#ifdef GFC_HAVE_COMPLEX_16
case GFC_DTYPE_COMPLEX_16:
spread_c16 ((gfc_array_c16 *) ret, (gfc_array_c16 *) source,
*along, *pncopies);
return;
#endif
case GFC_DTYPE_DERIVED_2:
if (GFC_UNALIGNED_2(ret->data) || GFC_UNALIGNED_2(source->data))
break;
else
{
spread_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) source,
*along, *pncopies);
return;
}
case GFC_DTYPE_DERIVED_4:
if (GFC_UNALIGNED_4(ret->data) || GFC_UNALIGNED_4(source->data))
break;
else
{
spread_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) source,
*along, *pncopies);
return;
}
case GFC_DTYPE_DERIVED_8:
if (GFC_UNALIGNED_8(ret->data) || GFC_UNALIGNED_8(source->data))
break;
else
{
spread_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) source,
*along, *pncopies);
return;
}
#ifdef HAVE_GFC_INTEGER_16
case GFC_DTYPE_DERIVED_16:
if (GFC_UNALIGNED_16(ret->data) || GFC_UNALIGNED_16(source->data))
break;
else
{
spread_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) source,
*along, *pncopies);
return;
}
#endif
}
spread_internal (ret, source, along, pncopies, GFC_DESCRIPTOR_SIZE (source));
}
extern void spread_char (gfc_array_char *, GFC_INTEGER_4,
const gfc_array_char *, const index_type *,
const index_type *, GFC_INTEGER_4);
export_proto(spread_char);
void
spread_char (gfc_array_char *ret,
GFC_INTEGER_4 ret_length __attribute__((unused)),
const gfc_array_char *source, const index_type *along,
const index_type *pncopies, GFC_INTEGER_4 source_length)
{
spread_internal (ret, source, along, pncopies, source_length);
}
extern void spread_char4 (gfc_array_char *, GFC_INTEGER_4,
const gfc_array_char *, const index_type *,
const index_type *, GFC_INTEGER_4);
export_proto(spread_char4);
void
spread_char4 (gfc_array_char *ret,
GFC_INTEGER_4 ret_length __attribute__((unused)),
const gfc_array_char *source, const index_type *along,
const index_type *pncopies, GFC_INTEGER_4 source_length)
{
spread_internal (ret, source, along, pncopies,
source_length * sizeof (gfc_char4_t));
}
/* The following are the prototypes for the versions of spread with a
scalar source. */
extern void spread_scalar (gfc_array_char *, const char *,
const index_type *, const index_type *);
export_proto(spread_scalar);
void
spread_scalar (gfc_array_char *ret, const char *source,
const index_type *along, const index_type *pncopies)
{
index_type type_size;
if (!ret->dtype)
runtime_error ("return array missing descriptor in spread()");
type_size = GFC_DTYPE_TYPE_SIZE(ret);
switch(type_size)
{
case GFC_DTYPE_DERIVED_1:
case GFC_DTYPE_LOGICAL_1:
case GFC_DTYPE_INTEGER_1:
spread_scalar_i1 ((gfc_array_i1 *) ret, (GFC_INTEGER_1 *) source,
*along, *pncopies);
return;
case GFC_DTYPE_LOGICAL_2:
case GFC_DTYPE_INTEGER_2:
spread_scalar_i2 ((gfc_array_i2 *) ret, (GFC_INTEGER_2 *) source,
*along, *pncopies);
return;
case GFC_DTYPE_LOGICAL_4:
case GFC_DTYPE_INTEGER_4:
spread_scalar_i4 ((gfc_array_i4 *) ret, (GFC_INTEGER_4 *) source,
*along, *pncopies);
return;
case GFC_DTYPE_LOGICAL_8:
case GFC_DTYPE_INTEGER_8:
spread_scalar_i8 ((gfc_array_i8 *) ret, (GFC_INTEGER_8 *) source,
*along, *pncopies);
return;
#ifdef HAVE_GFC_INTEGER_16
case GFC_DTYPE_LOGICAL_16:
case GFC_DTYPE_INTEGER_16:
spread_scalar_i16 ((gfc_array_i16 *) ret, (GFC_INTEGER_16 *) source,
*along, *pncopies);
return;
#endif
case GFC_DTYPE_REAL_4:
spread_scalar_r4 ((gfc_array_r4 *) ret, (GFC_REAL_4 *) source,
*along, *pncopies);
return;
case GFC_DTYPE_REAL_8:
spread_scalar_r8 ((gfc_array_r8 *) ret, (GFC_REAL_8 *) source,
*along, *pncopies);
return;
#ifdef HAVE_GFC_REAL_10
case GFC_DTYPE_REAL_10:
spread_scalar_r10 ((gfc_array_r10 *) ret, (GFC_REAL_10 *) source,
*along, *pncopies);
return;
#endif
#ifdef HAVE_GFC_REAL_16
case GFC_DTYPE_REAL_16:
spread_scalar_r16 ((gfc_array_r16 *) ret, (GFC_REAL_16 *) source,
*along, *pncopies);
return;
#endif
case GFC_DTYPE_COMPLEX_4:
spread_scalar_c4 ((gfc_array_c4 *) ret, (GFC_COMPLEX_4 *) source,
*along, *pncopies);
return;
case GFC_DTYPE_COMPLEX_8:
spread_scalar_c8 ((gfc_array_c8 *) ret, (GFC_COMPLEX_8 *) source,
*along, *pncopies);
return;
#ifdef HAVE_GFC_COMPLEX_10
case GFC_DTYPE_COMPLEX_10:
spread_scalar_c10 ((gfc_array_c10 *) ret, (GFC_COMPLEX_10 *) source,
*along, *pncopies);
return;
#endif
#ifdef HAVE_GFC_COMPLEX_16
case GFC_DTYPE_COMPLEX_16:
spread_scalar_c16 ((gfc_array_c16 *) ret, (GFC_COMPLEX_16 *) source,
*along, *pncopies);
return;
#endif
case GFC_DTYPE_DERIVED_2:
if (GFC_UNALIGNED_2(ret->data) || GFC_UNALIGNED_2(source))
break;
else
{
spread_scalar_i2 ((gfc_array_i2 *) ret, (GFC_INTEGER_2 *) source,
*along, *pncopies);
return;
}
case GFC_DTYPE_DERIVED_4:
if (GFC_UNALIGNED_4(ret->data) || GFC_UNALIGNED_4(source))
break;
else
{
spread_scalar_i4 ((gfc_array_i4 *) ret, (GFC_INTEGER_4 *) source,
*along, *pncopies);
return;
}
case GFC_DTYPE_DERIVED_8:
if (GFC_UNALIGNED_8(ret->data) || GFC_UNALIGNED_8(source))
break;
else
{
spread_scalar_i8 ((gfc_array_i8 *) ret, (GFC_INTEGER_8 *) source,
*along, *pncopies);
return;
}
#ifdef HAVE_GFC_INTEGER_16
case GFC_DTYPE_DERIVED_16:
if (GFC_UNALIGNED_16(ret->data) || GFC_UNALIGNED_16(source))
break;
else
{
spread_scalar_i16 ((gfc_array_i16 *) ret, (GFC_INTEGER_16 *) source,
*along, *pncopies);
return;
}
#endif
}
spread_internal_scalar (ret, source, along, pncopies, GFC_DESCRIPTOR_SIZE (ret));
}
extern void spread_char_scalar (gfc_array_char *, GFC_INTEGER_4,
const char *, const index_type *,
const index_type *, GFC_INTEGER_4);
export_proto(spread_char_scalar);
void
spread_char_scalar (gfc_array_char *ret,
GFC_INTEGER_4 ret_length __attribute__((unused)),
const char *source, const index_type *along,
const index_type *pncopies, GFC_INTEGER_4 source_length)
{
if (!ret->dtype)
runtime_error ("return array missing descriptor in spread()");
spread_internal_scalar (ret, source, along, pncopies, source_length);
}
extern void spread_char4_scalar (gfc_array_char *, GFC_INTEGER_4,
const char *, const index_type *,
const index_type *, GFC_INTEGER_4);
export_proto(spread_char4_scalar);
void
spread_char4_scalar (gfc_array_char *ret,
GFC_INTEGER_4 ret_length __attribute__((unused)),
const char *source, const index_type *along,
const index_type *pncopies, GFC_INTEGER_4 source_length)
{
if (!ret->dtype)
runtime_error ("return array missing descriptor in spread()");
spread_internal_scalar (ret, source, along, pncopies,
source_length * sizeof (gfc_char4_t));
}