gcc/gcc/graphite-dependences.c
Sebastian Pop 211694b6da graphite-dependences.c (graphite_legal_transform_bb): Call pbb_remove_duplicate_pdrs.
2009-08-28  Sebastian Pop  <sebastian.pop@amd.com>

	* graphite-dependences.c (graphite_legal_transform_bb): Call
	pbb_remove_duplicate_pdrs.
	* graphite-poly.c (can_collapse_pdr): Removed.
	(pdr_find_duplicate): Removed.
	(can_collapse_pdrs): New.
	(pbb_remove_duplicate_pdrs): New.
	(new_poly_dr): Do not look for duplicates.
	* graphite-poly.h (struct poly_bb): New field pdr_duplicates_removed.
	(PBB_PDR_DUPLICATES_REMOVED): New.
	(pbb_remove_duplicate_pdrs): Declared.

From-SVN: r151192
2009-08-28 20:41:53 +00:00

803 lines
24 KiB
C

/* Data dependence analysis for Graphite.
Copyright (C) 2009 Free Software Foundation, Inc.
Contributed by Sebastian Pop <sebastian.pop@amd.com> and
Konrad Trifunovic <konrad.trifunovic@inria.fr>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "tree.h"
#include "rtl.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "toplev.h"
#include "tree-dump.h"
#include "timevar.h"
#include "cfgloop.h"
#include "tree-chrec.h"
#include "tree-data-ref.h"
#include "tree-scalar-evolution.h"
#include "tree-pass.h"
#include "domwalk.h"
#include "pointer-set.h"
#include "gimple.h"
#ifdef HAVE_cloog
#include "cloog/cloog.h"
#include "ppl_c.h"
#include "sese.h"
#include "graphite-ppl.h"
#include "graphite.h"
#include "graphite-poly.h"
#include "graphite-dependences.h"
/* Returns a new polyhedral Data Dependence Relation (DDR). SOURCE is
the source data reference, SINK is the sink data reference. SOURCE
and SINK define an edge in the Data Dependence Graph (DDG). */
static poly_ddr_p
new_poly_ddr (poly_dr_p source, poly_dr_p sink,
ppl_Pointset_Powerset_C_Polyhedron_t ddp)
{
poly_ddr_p pddr;
pddr = XNEW (struct poly_ddr);
PDDR_SOURCE (pddr) = source;
PDDR_SINK (pddr) = sink;
PDDR_DDP (pddr) = ddp;
PDDR_KIND (pddr) = unknown_dependence;
return pddr;
}
/* Free the poly_ddr_p P. */
void
free_poly_ddr (void *p)
{
poly_ddr_p pddr = (poly_ddr_p) p;
ppl_delete_Pointset_Powerset_C_Polyhedron (PDDR_DDP (pddr));
free (pddr);
}
/* Comparison function for poly_ddr hash table. */
int
eq_poly_ddr_p (const void *pddr1, const void *pddr2)
{
const struct poly_ddr *p1 = (const struct poly_ddr *) pddr1;
const struct poly_ddr *p2 = (const struct poly_ddr *) pddr2;
return (PDDR_SOURCE (p1) == PDDR_SOURCE (p2)
&& PDDR_SINK (p1) == PDDR_SINK (p2));
}
/* Hash function for poly_ddr hashtable. */
hashval_t
hash_poly_ddr_p (const void *pddr)
{
const struct poly_ddr *p = (const struct poly_ddr *) pddr;
return (hashval_t) ((long) PDDR_SOURCE (p) + (long) PDDR_SINK (p));
}
/* Returns true when PDDR has no dependence. */
static bool
pddr_is_empty (poly_ddr_p pddr)
{
if (PDDR_KIND (pddr) != unknown_dependence)
return PDDR_KIND (pddr) == no_dependence ? true : false;
if (ppl_Pointset_Powerset_C_Polyhedron_is_empty (PDDR_DDP (pddr)))
{
PDDR_KIND (pddr) = no_dependence;
return true;
}
PDDR_KIND (pddr) = has_dependence;
return false;
}
/* Returns a polyhedron of dimension DIM.
Maps the dimensions [0, ..., cut - 1] of polyhedron P to OFFSET0
and the dimensions [cut, ..., nb_dim] to DIM - GDIM. */
static ppl_Pointset_Powerset_C_Polyhedron_t
map_into_dep_poly (graphite_dim_t dim, graphite_dim_t gdim,
ppl_Pointset_Powerset_C_Polyhedron_t p,
graphite_dim_t cut,
graphite_dim_t offset)
{
ppl_Pointset_Powerset_C_Polyhedron_t res;
ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
(&res, p);
ppl_insert_dimensions_pointset (res, 0, offset);
ppl_insert_dimensions_pointset (res, offset + cut,
dim - offset - cut - gdim);
return res;
}
/* Swap [cut0, ..., cut1] to the end of DR: "a CUT0 b CUT1 c" is
transformed into "a CUT0 c CUT1' b"
Add NB0 zeros before "a": "00...0 a CUT0 c CUT1' b"
Add NB1 zeros between "a" and "c": "00...0 a 00...0 c CUT1' b"
Add DIM - NB0 - NB1 - PDIM zeros between "c" and "b":
"00...0 a 00...0 c 00...0 b". */
static ppl_Pointset_Powerset_C_Polyhedron_t
map_dr_into_dep_poly (graphite_dim_t dim,
ppl_Pointset_Powerset_C_Polyhedron_t dr,
graphite_dim_t cut0, graphite_dim_t cut1,
graphite_dim_t nb0, graphite_dim_t nb1)
{
ppl_dimension_type pdim;
ppl_dimension_type *map;
ppl_Pointset_Powerset_C_Polyhedron_t res;
ppl_dimension_type i;
ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
(&res, dr);
ppl_Pointset_Powerset_C_Polyhedron_space_dimension (res, &pdim);
map = (ppl_dimension_type *) XNEWVEC (ppl_dimension_type, pdim);
/* First mapping: move 'g' vector to right position. */
for (i = 0; i < cut0; i++)
map[i] = i;
for (i = cut0; i < cut1; i++)
map[i] = pdim - cut1 + i;
for (i = cut1; i < pdim; i++)
map[i] = cut0 + i - cut1;
ppl_Pointset_Powerset_C_Polyhedron_map_space_dimensions (res, map, pdim);
free (map);
/* After swapping 's' and 'g' vectors, we have to update a new cut. */
cut1 = pdim - cut1 + cut0;
ppl_insert_dimensions_pointset (res, 0, nb0);
ppl_insert_dimensions_pointset (res, nb0 + cut0, nb1);
ppl_insert_dimensions_pointset (res, nb0 + nb1 + cut1,
dim - nb0 - nb1 - pdim);
return res;
}
/* Builds a constraints of the form "POS1 - POS2 CSTR_TYPE C" */
static ppl_Constraint_t
build_pairwise_constraint (graphite_dim_t dim,
graphite_dim_t pos1, graphite_dim_t pos2,
int c, enum ppl_enum_Constraint_Type cstr_type)
{
ppl_Linear_Expression_t expr;
ppl_Constraint_t cstr;
ppl_Coefficient_t coef;
Value v, v_op, v_c;
value_init (v);
value_init (v_op);
value_init (v_c);
value_set_si (v, 1);
value_set_si (v_op, -1);
value_set_si (v_c, c);
ppl_new_Coefficient (&coef);
ppl_new_Linear_Expression_with_dimension (&expr, dim);
ppl_assign_Coefficient_from_mpz_t (coef, v);
ppl_Linear_Expression_add_to_coefficient (expr, pos1, coef);
ppl_assign_Coefficient_from_mpz_t (coef, v_op);
ppl_Linear_Expression_add_to_coefficient (expr, pos2, coef);
ppl_assign_Coefficient_from_mpz_t (coef, v_c);
ppl_Linear_Expression_add_to_inhomogeneous (expr, coef);
ppl_new_Constraint (&cstr, expr, cstr_type);
ppl_delete_Linear_Expression (expr);
ppl_delete_Coefficient (coef);
value_clear (v);
value_clear (v_op);
value_clear (v_c);
return cstr;
}
/* Builds subscript equality constraints. */
static ppl_Pointset_Powerset_C_Polyhedron_t
dr_equality_constraints (graphite_dim_t dim,
graphite_dim_t pos, graphite_dim_t nb_subscripts)
{
ppl_Polyhedron_t subscript_equalities;
ppl_Pointset_Powerset_C_Polyhedron_t res;
Value v, v_op;
graphite_dim_t i;
value_init (v);
value_init (v_op);
value_set_si (v, 1);
value_set_si (v_op, -1);
ppl_new_C_Polyhedron_from_space_dimension (&subscript_equalities, dim, 0);
for (i = 0; i < nb_subscripts; i++)
{
ppl_Linear_Expression_t expr;
ppl_Constraint_t cstr;
ppl_Coefficient_t coef;
ppl_new_Coefficient (&coef);
ppl_new_Linear_Expression_with_dimension (&expr, dim);
ppl_assign_Coefficient_from_mpz_t (coef, v);
ppl_Linear_Expression_add_to_coefficient (expr, pos + i, coef);
ppl_assign_Coefficient_from_mpz_t (coef, v_op);
ppl_Linear_Expression_add_to_coefficient (expr, pos + i + nb_subscripts,
coef);
ppl_new_Constraint (&cstr, expr, PPL_CONSTRAINT_TYPE_EQUAL);
ppl_Polyhedron_add_constraint (subscript_equalities, cstr);
ppl_delete_Linear_Expression (expr);
ppl_delete_Constraint (cstr);
ppl_delete_Coefficient (coef);
}
ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
(&res, subscript_equalities);
value_clear (v);
value_clear (v_op);
ppl_delete_Polyhedron (subscript_equalities);
return res;
}
/* Builds scheduling equality constraints. */
static ppl_Pointset_Powerset_C_Polyhedron_t
build_pairwise_scheduling_equality (graphite_dim_t dim,
graphite_dim_t pos, graphite_dim_t offset)
{
ppl_Pointset_Powerset_C_Polyhedron_t res;
ppl_Polyhedron_t equalities;
ppl_Constraint_t cstr;
ppl_new_C_Polyhedron_from_space_dimension (&equalities, dim, 0);
cstr = build_pairwise_constraint (dim, pos, pos + offset, 0,
PPL_CONSTRAINT_TYPE_EQUAL);
ppl_Polyhedron_add_constraint (equalities, cstr);
ppl_delete_Constraint (cstr);
ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron (&res, equalities);
ppl_delete_Polyhedron (equalities);
return res;
}
/* Builds scheduling inequality constraints. */
static ppl_Pointset_Powerset_C_Polyhedron_t
build_pairwise_scheduling_inequality (graphite_dim_t dim,
graphite_dim_t pos,
graphite_dim_t offset,
bool direction)
{
ppl_Pointset_Powerset_C_Polyhedron_t res;
ppl_Polyhedron_t equalities;
ppl_Constraint_t cstr;
ppl_new_C_Polyhedron_from_space_dimension (&equalities, dim, 0);
if (direction)
cstr = build_pairwise_constraint (dim, pos, pos + offset, -1,
PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
else
cstr = build_pairwise_constraint (dim, pos, pos + offset, 1,
PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL);
ppl_Polyhedron_add_constraint (equalities, cstr);
ppl_delete_Constraint (cstr);
ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron (&res, equalities);
ppl_delete_Polyhedron (equalities);
return res;
}
/* Returns true when adding the lexicographical constraints at level I
to the RES dependence polyhedron returns an empty polyhedron. */
static bool
lexicographically_gt_p (ppl_Pointset_Powerset_C_Polyhedron_t res,
graphite_dim_t dim,
graphite_dim_t offset,
bool direction, graphite_dim_t i)
{
ppl_Pointset_Powerset_C_Polyhedron_t ineq;
bool empty_p;
ineq = build_pairwise_scheduling_inequality (dim, i, offset,
direction);
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (ineq, res);
empty_p = ppl_Pointset_Powerset_C_Polyhedron_is_empty (ineq);
if (!empty_p)
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, ineq);
ppl_delete_Pointset_Powerset_C_Polyhedron (ineq);
return !empty_p;
}
/* Build the precedence constraints for the lexicographical comparison
of time vectors RES following the lexicographical order. */
static void
build_lexicographically_gt_constraint (ppl_Pointset_Powerset_C_Polyhedron_t *res,
graphite_dim_t dim,
graphite_dim_t tdim1,
graphite_dim_t offset,
bool direction)
{
graphite_dim_t i;
if (lexicographically_gt_p (*res, dim, offset, direction, 0))
return;
for (i = 0; i < tdim1 - 1; i++)
{
ppl_Pointset_Powerset_C_Polyhedron_t sceq;
sceq = build_pairwise_scheduling_equality (dim, i, offset);
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (*res, sceq);
ppl_delete_Pointset_Powerset_C_Polyhedron (sceq);
if (lexicographically_gt_p (*res, dim, offset, direction, i + 1))
return;
}
if (i == tdim1 - 1)
{
ppl_delete_Pointset_Powerset_C_Polyhedron (*res);
ppl_new_Pointset_Powerset_C_Polyhedron_from_space_dimension (res, dim, 1);
}
}
/* Build the dependence polyhedron for data references PDR1 and PDR2. */
static poly_ddr_p
dependence_polyhedron_1 (poly_bb_p pbb1, poly_bb_p pbb2,
ppl_Pointset_Powerset_C_Polyhedron_t d1,
ppl_Pointset_Powerset_C_Polyhedron_t d2,
poly_dr_p pdr1, poly_dr_p pdr2,
ppl_Polyhedron_t s1, ppl_Polyhedron_t s2,
bool direction,
bool original_scattering_p)
{
scop_p scop = PBB_SCOP (pbb1);
graphite_dim_t tdim1 = original_scattering_p ?
pbb_nb_scattering_orig (pbb1) : pbb_nb_scattering_transform (pbb1);
graphite_dim_t tdim2 = original_scattering_p ?
pbb_nb_scattering_orig (pbb2) : pbb_nb_scattering_transform (pbb2);
graphite_dim_t ddim1 = pbb_dim_iter_domain (pbb1);
graphite_dim_t ddim2 = pbb_dim_iter_domain (pbb2);
graphite_dim_t sdim1 = PDR_NB_SUBSCRIPTS (pdr1) + 1;
graphite_dim_t gdim = scop_nb_params (scop);
graphite_dim_t dim1 = pdr_dim (pdr1);
graphite_dim_t dim2 = pdr_dim (pdr2);
graphite_dim_t dim = tdim1 + tdim2 + dim1 + dim2;
ppl_Pointset_Powerset_C_Polyhedron_t res;
ppl_Pointset_Powerset_C_Polyhedron_t id1, id2, isc1, isc2, idr1, idr2;
ppl_Pointset_Powerset_C_Polyhedron_t sc1, sc2, dreq;
gcc_assert (PBB_SCOP (pbb1) == PBB_SCOP (pbb2));
ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron (&sc1, s1);
ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron (&sc2, s2);
id1 = map_into_dep_poly (dim, gdim, d1, ddim1, tdim1);
id2 = map_into_dep_poly (dim, gdim, d2, ddim2, tdim1 + ddim1 + tdim2);
isc1 = map_into_dep_poly (dim, gdim, sc1, ddim1 + tdim1, 0);
isc2 = map_into_dep_poly (dim, gdim, sc2, ddim2 + tdim2, tdim1 + ddim1);
idr1 = map_dr_into_dep_poly (dim, PDR_ACCESSES (pdr1), ddim1, ddim1 + gdim,
tdim1, tdim2 + ddim2);
idr2 = map_dr_into_dep_poly (dim, PDR_ACCESSES (pdr2), ddim2, ddim2 + gdim,
tdim1 + ddim1 + tdim2, sdim1);
/* Now add the subscript equalities. */
dreq = dr_equality_constraints (dim, tdim1 + ddim1 + tdim2 + ddim2, sdim1);
ppl_new_Pointset_Powerset_C_Polyhedron_from_space_dimension (&res, dim, 0);
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, id1);
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, id2);
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, isc1);
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, isc2);
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, idr1);
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, idr2);
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, dreq);
ppl_delete_Pointset_Powerset_C_Polyhedron (id1);
ppl_delete_Pointset_Powerset_C_Polyhedron (id2);
ppl_delete_Pointset_Powerset_C_Polyhedron (sc1);
ppl_delete_Pointset_Powerset_C_Polyhedron (sc2);
ppl_delete_Pointset_Powerset_C_Polyhedron (isc1);
ppl_delete_Pointset_Powerset_C_Polyhedron (isc2);
ppl_delete_Pointset_Powerset_C_Polyhedron (idr1);
ppl_delete_Pointset_Powerset_C_Polyhedron (idr2);
ppl_delete_Pointset_Powerset_C_Polyhedron (dreq);
if (!ppl_Pointset_Powerset_C_Polyhedron_is_empty (res))
build_lexicographically_gt_constraint (&res, dim, MIN (tdim1, tdim2),
tdim1 + ddim1, direction);
return new_poly_ddr (pdr1, pdr2, res);
}
/* Build the dependence polyhedron for data references PDR1 and PDR2.
If possible use already cached information. */
static poly_ddr_p
dependence_polyhedron (poly_bb_p pbb1, poly_bb_p pbb2,
ppl_Pointset_Powerset_C_Polyhedron_t d1,
ppl_Pointset_Powerset_C_Polyhedron_t d2,
poly_dr_p pdr1, poly_dr_p pdr2,
ppl_Polyhedron_t s1, ppl_Polyhedron_t s2,
bool direction,
bool original_scattering_p)
{
PTR *x = NULL;
poly_ddr_p res;
if (original_scattering_p)
{
struct poly_ddr tmp;
tmp.source = pdr1;
tmp.sink = pdr2;
x = htab_find_slot (SCOP_ORIGINAL_PDDRS (PBB_SCOP (pbb1)),
&tmp, INSERT);
if (x && *x)
return (poly_ddr_p) *x;
}
res = dependence_polyhedron_1 (pbb1, pbb2, d1, d2, pdr1, pdr2,
s1, s2, direction, original_scattering_p);
if (original_scattering_p)
*x = res;
return res;
}
/* Returns the PDDR corresponding to the original schedule, or NULL if
the dependence relation is empty. */
static poly_ddr_p
pddr_original_scattering (poly_bb_p pbb1, poly_bb_p pbb2,
poly_dr_p pdr1, poly_dr_p pdr2)
{
poly_ddr_p pddr;
ppl_Pointset_Powerset_C_Polyhedron_t d1 = PBB_DOMAIN (pbb1);
ppl_Pointset_Powerset_C_Polyhedron_t d2 = PBB_DOMAIN (pbb2);
ppl_Polyhedron_t so1 = PBB_ORIGINAL_SCATTERING (pbb1);
ppl_Polyhedron_t so2 = PBB_ORIGINAL_SCATTERING (pbb2);
if (PDR_NB_SUBSCRIPTS (pdr1) != PDR_NB_SUBSCRIPTS (pdr2)
|| (pdr_read_p (pdr1) && pdr_read_p (pdr2)))
return NULL;
pddr = dependence_polyhedron (pbb1, pbb2, d1, d2, pdr1, pdr2, so1, so2,
true, true);
if (pddr_is_empty (pddr))
return NULL;
return pddr;
}
/* Returns true when the PBB_TRANSFORMED_SCATTERING functions of PBB1
and PBB2 respect the data dependences of PBB_ORIGINAL_SCATTERING
functions. */
static bool
graphite_legal_transform_dr (poly_bb_p pbb1, poly_bb_p pbb2,
poly_dr_p pdr1, poly_dr_p pdr2)
{
ppl_Polyhedron_t st1, st2;
ppl_Pointset_Powerset_C_Polyhedron_t po, pt;
graphite_dim_t ddim1, otdim1, otdim2, ttdim1, ttdim2;
ppl_Pointset_Powerset_C_Polyhedron_t temp;
ppl_dimension_type pdim;
bool is_empty_p;
poly_ddr_p pddr;
ppl_Pointset_Powerset_C_Polyhedron_t d1 = PBB_DOMAIN (pbb1);
ppl_Pointset_Powerset_C_Polyhedron_t d2 = PBB_DOMAIN (pbb2);
pddr = pddr_original_scattering (pbb1, pbb2, pdr1, pdr2);
if (!pddr)
return true;
po = PDDR_DDP (pddr);
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "\nloop carries dependency.\n");
st1 = PBB_TRANSFORMED_SCATTERING (pbb1);
st2 = PBB_TRANSFORMED_SCATTERING (pbb2);
ddim1 = pbb_dim_iter_domain (pbb1);
otdim1 = pbb_nb_scattering_orig (pbb1);
otdim2 = pbb_nb_scattering_orig (pbb2);
ttdim1 = pbb_nb_scattering_transform (pbb1);
ttdim2 = pbb_nb_scattering_transform (pbb2);
/* Copy the PO polyhedron into the TEMP, so it is not destroyed.
Keep in mind, that PO polyhedron might be restored from the cache
and should not be modified! */
ppl_Pointset_Powerset_C_Polyhedron_space_dimension (po, &pdim);
ppl_new_Pointset_Powerset_C_Polyhedron_from_space_dimension (&temp, pdim, 0);
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (temp, po);
pddr = dependence_polyhedron (pbb1, pbb2, d1, d2, pdr1, pdr2, st1, st2,
false, false);
pt = PDDR_DDP (pddr);
/* Extend PO and PT to have the same dimensions. */
ppl_insert_dimensions_pointset (temp, otdim1, ttdim1);
ppl_insert_dimensions_pointset (temp, otdim1 + ttdim1 + ddim1 + otdim2, ttdim2);
ppl_insert_dimensions_pointset (pt, 0, otdim1);
ppl_insert_dimensions_pointset (pt, otdim1 + ttdim1 + ddim1, otdim2);
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (temp, pt);
is_empty_p = ppl_Pointset_Powerset_C_Polyhedron_is_empty (temp);
ppl_delete_Pointset_Powerset_C_Polyhedron (temp);
free_poly_ddr (pddr);
return is_empty_p;
}
/* Iterates over the data references of PBB1 and PBB2 and detect
whether the transformed schedule is correct. */
static bool
graphite_legal_transform_bb (poly_bb_p pbb1, poly_bb_p pbb2)
{
int i, j;
poly_dr_p pdr1, pdr2;
if (!PBB_PDR_DUPLICATES_REMOVED (pbb1))
pbb_remove_duplicate_pdrs (pbb1);
if (!PBB_PDR_DUPLICATES_REMOVED (pbb2))
pbb_remove_duplicate_pdrs (pbb2);
for (i = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb1), i, pdr1); i++)
for (j = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb2), j, pdr2); j++)
if (!graphite_legal_transform_dr (pbb1, pbb2, pdr1, pdr2))
return false;
return true;
}
/* Iterates over the SCOP and detect whether the transformed schedule
is correct. */
bool
graphite_legal_transform (scop_p scop)
{
int i, j;
poly_bb_p pbb1, pbb2;
timevar_push (TV_GRAPHITE_DATA_DEPS);
for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb1); i++)
for (j = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), j, pbb2); j++)
if (!graphite_legal_transform_bb (pbb1, pbb2))
{
timevar_pop (TV_GRAPHITE_DATA_DEPS);
return false;
}
timevar_pop (TV_GRAPHITE_DATA_DEPS);
return true;
}
/* Remove all the dimensions except alias information at dimension
ALIAS_DIM. */
static void
build_alias_set_powerset (ppl_Pointset_Powerset_C_Polyhedron_t alias_powerset,
ppl_dimension_type alias_dim)
{
ppl_dimension_type *ds;
ppl_dimension_type access_dim;
unsigned i, pos = 0;
ppl_Pointset_Powerset_C_Polyhedron_space_dimension (alias_powerset,
&access_dim);
ds = XNEWVEC (ppl_dimension_type, access_dim-1);
for (i = 0; i < access_dim; i++)
{
if (i == alias_dim)
continue;
ds[pos] = i;
pos++;
}
ppl_Pointset_Powerset_C_Polyhedron_remove_space_dimensions (alias_powerset,
ds,
access_dim - 1);
free (ds);
}
/* Return true when PDR1 and PDR2 may alias. */
static bool
poly_drs_may_alias_p (poly_dr_p pdr1, poly_dr_p pdr2)
{
ppl_Pointset_Powerset_C_Polyhedron_t alias_powerset1, alias_powerset2;
ppl_Pointset_Powerset_C_Polyhedron_t accesses1 = PDR_ACCESSES (pdr1);
ppl_Pointset_Powerset_C_Polyhedron_t accesses2 = PDR_ACCESSES (pdr2);
ppl_dimension_type alias_dim1 = pdr_alias_set_dim (pdr1);
ppl_dimension_type alias_dim2 = pdr_alias_set_dim (pdr2);
int empty_p;
ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
(&alias_powerset1, accesses1);
ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
(&alias_powerset2, accesses2);
build_alias_set_powerset (alias_powerset1, alias_dim1);
build_alias_set_powerset (alias_powerset2, alias_dim2);
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign
(alias_powerset1, alias_powerset2);
empty_p = ppl_Pointset_Powerset_C_Polyhedron_is_empty (alias_powerset1);
ppl_delete_Pointset_Powerset_C_Polyhedron (alias_powerset1);
ppl_delete_Pointset_Powerset_C_Polyhedron (alias_powerset2);
return !empty_p;
}
/* Returns TRUE when the dependence polyhedron between PDR1 and
PDR2 represents a loop carried dependence at level LEVEL. */
static bool
graphite_carried_dependence_level_k (poly_dr_p pdr1, poly_dr_p pdr2,
int level)
{
poly_bb_p pbb1 = PDR_PBB (pdr1);
poly_bb_p pbb2 = PDR_PBB (pdr2);
ppl_Pointset_Powerset_C_Polyhedron_t d1 = PBB_DOMAIN (pbb1);
ppl_Pointset_Powerset_C_Polyhedron_t d2 = PBB_DOMAIN (pbb2);
ppl_Polyhedron_t so1 = PBB_TRANSFORMED_SCATTERING (pbb1);
ppl_Polyhedron_t so2 = PBB_TRANSFORMED_SCATTERING (pbb2);
ppl_Pointset_Powerset_C_Polyhedron_t po;
ppl_Pointset_Powerset_C_Polyhedron_t eqpp;
graphite_dim_t tdim1 = pbb_nb_scattering_transform (pbb1);
graphite_dim_t ddim1 = pbb_dim_iter_domain (pbb1);
ppl_dimension_type dim;
bool empty_p;
poly_ddr_p pddr;
if ((PDR_TYPE (pdr1) == PDR_READ && PDR_TYPE (pdr2) == PDR_READ)
|| !poly_drs_may_alias_p (pdr1, pdr2))
return false;
if (PDR_NB_SUBSCRIPTS (pdr1) != PDR_NB_SUBSCRIPTS (pdr2))
return true;
pddr = dependence_polyhedron (pbb1, pbb2, d1, d2, pdr1, pdr2, so1, so2,
true, false);
if (pddr_is_empty (pddr))
return false;
po = PDDR_DDP (pddr);
ppl_Pointset_Powerset_C_Polyhedron_space_dimension (po, &dim);
eqpp = build_pairwise_scheduling_inequality (dim, level, tdim1 + ddim1, 1);
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (eqpp, po);
empty_p = ppl_Pointset_Powerset_C_Polyhedron_is_empty (eqpp);
ppl_delete_Pointset_Powerset_C_Polyhedron (eqpp);
return !empty_p;
}
/* Check data dependency between PBB1 and PBB2 at level LEVEL. */
bool
dependency_between_pbbs_p (poly_bb_p pbb1, poly_bb_p pbb2, int level)
{
int i, j;
poly_dr_p pdr1, pdr2;
timevar_push (TV_GRAPHITE_DATA_DEPS);
for (i = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb1), i, pdr1); i++)
for (j = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb2), j, pdr2); j++)
if (graphite_carried_dependence_level_k (pdr1, pdr2, level))
{
timevar_pop (TV_GRAPHITE_DATA_DEPS);
return true;
}
timevar_pop (TV_GRAPHITE_DATA_DEPS);
return false;
}
/* Pretty print to FILE all the data dependences of SCoP in DOT
format. */
static void
dot_deps_1 (FILE *file, scop_p scop)
{
int i, j, k, l;
poly_bb_p pbb1, pbb2;
poly_dr_p pdr1, pdr2;
fputs ("digraph all {\n", file);
for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb1); i++)
for (j = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), j, pbb2); j++)
for (k = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb1), k, pdr1); k++)
for (l = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb2), l, pdr2); l++)
if (pddr_original_scattering (pbb1, pbb2, pdr1, pdr2))
fprintf (file, "S%d_D%d -> S%d_D%d\n",
pbb_index (pbb1), PDR_ID (pdr1),
pbb_index (pbb2), PDR_ID (pdr2));
fputs ("}\n\n", file);
}
/* Display all the data dependences in SCoP using dotty. */
void
dot_deps (scop_p scop)
{
/* When debugging, enable the following code. This cannot be used
in production compilers because it calls "system". */
#if 0
int x;
FILE *stream = fopen ("/tmp/scopdeps.dot", "w");
gcc_assert (stream);
dot_deps_1 (stream, scop);
fclose (stream);
x = system ("dotty /tmp/scopdeps.dot");
#else
dot_deps_1 (stderr, scop);
#endif
}
#endif