223 lines
5.2 KiB
C++
223 lines
5.2 KiB
C++
/* Copyright (C) 2009-2022 Free Software Foundation, Inc.
|
|
Contributed by Richard Henderson <rth@redhat.com>.
|
|
|
|
This file is part of the GNU Transactional Memory Library (libitm).
|
|
|
|
Libitm is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Libitm is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
more details.
|
|
|
|
Under Section 7 of GPL version 3, you are granted additional
|
|
permissions described in the GCC Runtime Library Exception, version
|
|
3.1, as published by the Free Software Foundation.
|
|
|
|
You should have received a copy of the GNU General Public License and
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
// Implements an AA tree (http://en.wikipedia.org/wiki/AA_tree) with an
|
|
// integer key, and data attached to the node via flexible array member.
|
|
|
|
#include "libitm_i.h"
|
|
|
|
namespace GTM HIDDEN {
|
|
|
|
// The code for rebalancing the tree is greatly simplified by never
|
|
// having to check for null pointers. Instead, leaf node links point
|
|
// to this node, NIL, which points to itself.
|
|
const aa_node_base aa_node_base::s_nil(0);
|
|
|
|
|
|
// Remove left horizontal links. Swap the pointers of horizontal left links.
|
|
|
|
aa_node_base *
|
|
aa_node_base::skew ()
|
|
{
|
|
aa_node_base *l = this->link(L);
|
|
if (this->m_level != 0 && l->m_level == this->m_level)
|
|
{
|
|
this->set_link(L, l->link(R));
|
|
l->set_link(R, this);
|
|
return l;
|
|
}
|
|
return this;
|
|
}
|
|
|
|
|
|
// Remove consecutive horizontal links. Take the middle node,
|
|
// elevate it, and return it.
|
|
|
|
aa_node_base *
|
|
aa_node_base::split ()
|
|
{
|
|
aa_node_base *r = this->link(R);
|
|
if (this->m_level != 0 && r->link(R)->m_level == this->m_level)
|
|
{
|
|
this->set_link(R, r->link(L));
|
|
r->set_link(L, this);
|
|
r->m_level += 1;
|
|
return r;
|
|
}
|
|
return this;
|
|
}
|
|
|
|
// Decrease the level of THIS to be one more than the level of its children.
|
|
|
|
void
|
|
aa_node_base::decrease_level ()
|
|
{
|
|
aa_node_base *l = this->link(L);
|
|
aa_node_base *r = this->link(R);
|
|
level_type llev = l->m_level;
|
|
level_type rlev = r->m_level;
|
|
level_type should_be = (llev < rlev ? llev : rlev) + 1;
|
|
|
|
if (should_be < this->m_level)
|
|
{
|
|
this->m_level = should_be;
|
|
if (should_be < rlev)
|
|
r->m_level = should_be;
|
|
}
|
|
}
|
|
|
|
// Find and return the node in the tree with key K.
|
|
|
|
template<typename KEY>
|
|
typename aa_tree_key<KEY>::node_ptr
|
|
aa_tree_key<KEY>::find(KEY k) const
|
|
{
|
|
node_ptr t = m_tree;
|
|
if (t != 0)
|
|
do
|
|
{
|
|
if (t->key == k)
|
|
return t;
|
|
t = t->link(k > t->key);
|
|
}
|
|
while (!t->is_nil());
|
|
return 0;
|
|
}
|
|
|
|
// Insert N into T and rebalance. Return the new balanced tree.
|
|
|
|
template<typename KEY>
|
|
typename aa_tree_key<KEY>::node_ptr
|
|
aa_tree_key<KEY>::insert_1 (node_ptr t, node_ptr n)
|
|
{
|
|
bool dir = n->key > t->key;
|
|
node_ptr c = t->link(dir);
|
|
|
|
// Insert the node, recursively.
|
|
if (c->is_nil())
|
|
c = n;
|
|
else
|
|
c = insert_1 (c, n);
|
|
t->set_link(dir, c);
|
|
|
|
// Rebalance the tree, as needed.
|
|
t = t->skew();
|
|
t = t->split();
|
|
|
|
return t;
|
|
}
|
|
|
|
template<typename KEY>
|
|
void
|
|
aa_tree_key<KEY>::insert(node_ptr n)
|
|
{
|
|
if (m_tree == 0)
|
|
m_tree = n;
|
|
else
|
|
m_tree = insert_1 (m_tree, n);
|
|
}
|
|
|
|
// Delete K from T and rebalance. Return the new balanced tree.
|
|
|
|
template<typename KEY>
|
|
typename aa_tree_key<KEY>::node_ptr
|
|
aa_tree_key<KEY>::erase_1 (node_ptr t, KEY k, node_ptr *pfree)
|
|
{
|
|
node_ptr r;
|
|
bool dir;
|
|
|
|
// If this is the node we're looking for, delete it. Else recurse.
|
|
if (k == t->key)
|
|
{
|
|
node_ptr l, sub, end;
|
|
|
|
l = t->link(node::L);
|
|
r = t->link(node::R);
|
|
|
|
if (pfree)
|
|
*pfree = t;
|
|
|
|
// If this is a leaf node, simply remove the node. Otherwise,
|
|
// we have to find either a predecessor or a successor node to
|
|
// replace this one.
|
|
if (l->is_nil())
|
|
{
|
|
if (r->is_nil())
|
|
return r;
|
|
sub = r, dir = node::L;
|
|
}
|
|
else
|
|
sub = l, dir = node::R;
|
|
|
|
// Find the successor or predecessor.
|
|
for (end = sub; !end->link(dir)->is_nil(); end = end->link(dir))
|
|
continue;
|
|
|
|
// Remove it (but don't free) from the subtree.
|
|
sub = erase_1 (sub, end->key, 0);
|
|
|
|
// Replace T with the successor we just extracted.
|
|
end->set_link(!dir, sub);
|
|
t = end;
|
|
}
|
|
else
|
|
{
|
|
dir = k > t->key;
|
|
t->set_link(dir, erase_1 (t->link(dir), k, pfree));
|
|
}
|
|
|
|
// Rebalance the tree.
|
|
t->decrease_level();
|
|
t = t->skew();
|
|
r = t->link(node::R)->skew();
|
|
t->set_link(node::R, r);
|
|
r->set_link(node::R, r->link(node::R)->skew());
|
|
t = t->split ();
|
|
t->set_link(node::R, t->link(node::R)->split());
|
|
|
|
return t;
|
|
}
|
|
|
|
template<typename KEY>
|
|
typename aa_tree_key<KEY>::node_ptr
|
|
aa_tree_key<KEY>::erase (KEY k)
|
|
{
|
|
node_ptr t = m_tree;
|
|
if (t == 0)
|
|
return 0;
|
|
|
|
node_ptr do_free = 0;
|
|
t = erase_1 (t, k, &do_free);
|
|
if (t->is_nil())
|
|
t = 0;
|
|
m_tree = t;
|
|
return do_free;
|
|
}
|
|
|
|
// Instantiate key classes.
|
|
|
|
template class aa_tree_key<uintptr_t>;
|
|
|
|
} // namespace GTM
|