2127637945
Imported GNU Classpath 0.20 * Makefile.am (AM_CPPFLAGS): Add classpath/include. * java/nio/charset/spi/CharsetProvider.java: New override file. * java/security/Security.java: Likewise. * sources.am: Regenerated. * Makefile.in: Likewise. From-SVN: r109831
618 lines
20 KiB
Java
618 lines
20 KiB
Java
/* Double.java -- object wrapper for double
|
|
Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2005
|
|
Free Software Foundation, Inc.
|
|
|
|
This file is part of GNU Classpath.
|
|
|
|
GNU Classpath is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2, or (at your option)
|
|
any later version.
|
|
|
|
GNU Classpath is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GNU Classpath; see the file COPYING. If not, write to the
|
|
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
|
02110-1301 USA.
|
|
|
|
Linking this library statically or dynamically with other modules is
|
|
making a combined work based on this library. Thus, the terms and
|
|
conditions of the GNU General Public License cover the whole
|
|
combination.
|
|
|
|
As a special exception, the copyright holders of this library give you
|
|
permission to link this library with independent modules to produce an
|
|
executable, regardless of the license terms of these independent
|
|
modules, and to copy and distribute the resulting executable under
|
|
terms of your choice, provided that you also meet, for each linked
|
|
independent module, the terms and conditions of the license of that
|
|
module. An independent module is a module which is not derived from
|
|
or based on this library. If you modify this library, you may extend
|
|
this exception to your version of the library, but you are not
|
|
obligated to do so. If you do not wish to do so, delete this
|
|
exception statement from your version. */
|
|
|
|
package java.lang;
|
|
|
|
|
|
/**
|
|
* Instances of class <code>Double</code> represent primitive
|
|
* <code>double</code> values.
|
|
*
|
|
* Additionally, this class provides various helper functions and variables
|
|
* related to doubles.
|
|
*
|
|
* @author Paul Fisher
|
|
* @author Andrew Haley (aph@cygnus.com)
|
|
* @author Eric Blake (ebb9@email.byu.edu)
|
|
* @since 1.0
|
|
* @status updated to 1.4
|
|
*/
|
|
public final class Double extends Number implements Comparable
|
|
{
|
|
/**
|
|
* Compatible with JDK 1.0+.
|
|
*/
|
|
private static final long serialVersionUID = -9172774392245257468L;
|
|
|
|
/**
|
|
* The maximum positive value a <code>double</code> may represent
|
|
* is 1.7976931348623157e+308.
|
|
*/
|
|
public static final double MAX_VALUE = 1.7976931348623157e+308;
|
|
|
|
/**
|
|
* The minimum positive value a <code>double</code> may represent
|
|
* is 5e-324.
|
|
*/
|
|
public static final double MIN_VALUE = 5e-324;
|
|
|
|
/**
|
|
* The value of a double representation -1.0/0.0, negative
|
|
* infinity.
|
|
*/
|
|
public static final double NEGATIVE_INFINITY = -1.0 / 0.0;
|
|
|
|
/**
|
|
* The value of a double representing 1.0/0.0, positive infinity.
|
|
*/
|
|
public static final double POSITIVE_INFINITY = 1.0 / 0.0;
|
|
|
|
/**
|
|
* All IEEE 754 values of NaN have the same value in Java.
|
|
*/
|
|
public static final double NaN = 0.0 / 0.0;
|
|
|
|
/**
|
|
* The number of bits needed to represent a <code>double</code>.
|
|
* @since 1.5
|
|
*/
|
|
public static final int SIZE = 64;
|
|
|
|
/**
|
|
* The primitive type <code>double</code> is represented by this
|
|
* <code>Class</code> object.
|
|
* @since 1.1
|
|
*/
|
|
public static final Class TYPE = VMClassLoader.getPrimitiveClass('D');
|
|
|
|
/**
|
|
* The immutable value of this Double.
|
|
*
|
|
* @serial the wrapped double
|
|
*/
|
|
private final double value;
|
|
|
|
/**
|
|
* Create a <code>Double</code> from the primitive <code>double</code>
|
|
* specified.
|
|
*
|
|
* @param value the <code>double</code> argument
|
|
*/
|
|
public Double(double value)
|
|
{
|
|
this.value = value;
|
|
}
|
|
|
|
/**
|
|
* Create a <code>Double</code> from the specified <code>String</code>.
|
|
* This method calls <code>Double.parseDouble()</code>.
|
|
*
|
|
* @param s the <code>String</code> to convert
|
|
* @throws NumberFormatException if <code>s</code> cannot be parsed as a
|
|
* <code>double</code>
|
|
* @throws NullPointerException if <code>s</code> is null
|
|
* @see #parseDouble(String)
|
|
*/
|
|
public Double(String s)
|
|
{
|
|
value = parseDouble(s);
|
|
}
|
|
|
|
/**
|
|
* Convert the <code>double</code> to a <code>String</code>.
|
|
* Floating-point string representation is fairly complex: here is a
|
|
* rundown of the possible values. "<code>[-]</code>" indicates that a
|
|
* negative sign will be printed if the value (or exponent) is negative.
|
|
* "<code><number></code>" means a string of digits ('0' to '9').
|
|
* "<code><digit></code>" means a single digit ('0' to '9').<br>
|
|
*
|
|
* <table border=1>
|
|
* <tr><th>Value of Double</th><th>String Representation</th></tr>
|
|
* <tr><td>[+-] 0</td> <td><code>[-]0.0</code></td></tr>
|
|
* <tr><td>Between [+-] 10<sup>-3</sup> and 10<sup>7</sup>, exclusive</td>
|
|
* <td><code>[-]number.number</code></td></tr>
|
|
* <tr><td>Other numeric value</td>
|
|
* <td><code>[-]<digit>.<number>
|
|
* E[-]<number></code></td></tr>
|
|
* <tr><td>[+-] infinity</td> <td><code>[-]Infinity</code></td></tr>
|
|
* <tr><td>NaN</td> <td><code>NaN</code></td></tr>
|
|
* </table>
|
|
*
|
|
* Yes, negative zero <em>is</em> a possible value. Note that there is
|
|
* <em>always</em> a <code>.</code> and at least one digit printed after
|
|
* it: even if the number is 3, it will be printed as <code>3.0</code>.
|
|
* After the ".", all digits will be printed except trailing zeros. The
|
|
* result is rounded to the shortest decimal number which will parse back
|
|
* to the same double.
|
|
*
|
|
* <p>To create other output formats, use {@link java.text.NumberFormat}.
|
|
*
|
|
* @XXX specify where we are not in accord with the spec.
|
|
*
|
|
* @param d the <code>double</code> to convert
|
|
* @return the <code>String</code> representing the <code>double</code>
|
|
*/
|
|
public static String toString(double d)
|
|
{
|
|
return VMDouble.toString(d, false);
|
|
}
|
|
|
|
/**
|
|
* Convert a double value to a hexadecimal string. This converts as
|
|
* follows:
|
|
* <ul>
|
|
* <li> A NaN value is converted to the string "NaN".
|
|
* <li> Positive infinity is converted to the string "Infinity".
|
|
* <li> Negative infinity is converted to the string "-Infinity".
|
|
* <li> For all other values, the first character of the result is '-'
|
|
* if the value is negative. This is followed by '0x1.' if the
|
|
* value is normal, and '0x0.' if the value is denormal. This is
|
|
* then followed by a (lower-case) hexadecimal representation of the
|
|
* mantissa, with leading zeros as required for denormal values.
|
|
* The next character is a 'p', and this is followed by a decimal
|
|
* representation of the unbiased exponent.
|
|
* </ul>
|
|
* @param d the double value
|
|
* @return the hexadecimal string representation
|
|
* @since 1.5
|
|
*/
|
|
public static String toHexString(double d)
|
|
{
|
|
if (isNaN(d))
|
|
return "NaN";
|
|
if (isInfinite(d))
|
|
return d < 0 ? "-Infinity" : "Infinity";
|
|
|
|
long bits = doubleToLongBits(d);
|
|
StringBuilder result = new StringBuilder();
|
|
|
|
if (bits < 0)
|
|
result.append('-');
|
|
result.append("0x");
|
|
|
|
final int mantissaBits = 52;
|
|
final int exponentBits = 11;
|
|
long mantMask = (1L << mantissaBits) - 1;
|
|
long mantissa = bits & mantMask;
|
|
long expMask = (1L << exponentBits) - 1;
|
|
long exponent = (bits >>> mantissaBits) & expMask;
|
|
|
|
result.append(exponent == 0 ? '0' : '1');
|
|
result.append('.');
|
|
result.append(Long.toHexString(mantissa));
|
|
if (exponent == 0 && mantissa != 0)
|
|
{
|
|
// Treat denormal specially by inserting '0's to make
|
|
// the length come out right. The constants here are
|
|
// to account for things like the '0x'.
|
|
int offset = 4 + ((bits < 0) ? 1 : 0);
|
|
// The silly +3 is here to keep the code the same between
|
|
// the Float and Double cases. In Float the value is
|
|
// not a multiple of 4.
|
|
int desiredLength = offset + (mantissaBits + 3) / 4;
|
|
while (result.length() < desiredLength)
|
|
result.insert(offset, '0');
|
|
}
|
|
result.append('p');
|
|
if (exponent == 0 && mantissa == 0)
|
|
{
|
|
// Zero, so do nothing special.
|
|
}
|
|
else
|
|
{
|
|
// Apply bias.
|
|
boolean denormal = exponent == 0;
|
|
exponent -= (1 << (exponentBits - 1)) - 1;
|
|
// Handle denormal.
|
|
if (denormal)
|
|
++exponent;
|
|
}
|
|
|
|
result.append(Long.toString(exponent));
|
|
return result.toString();
|
|
}
|
|
|
|
/**
|
|
* Returns a <code>Double</code> object wrapping the value.
|
|
* In contrast to the <code>Double</code> constructor, this method
|
|
* may cache some values. It is used by boxing conversion.
|
|
*
|
|
* @param val the value to wrap
|
|
* @return the <code>Double</code>
|
|
*
|
|
* @since 1.5
|
|
*/
|
|
public static Double valueOf(double val)
|
|
{
|
|
// We don't actually cache, but we could.
|
|
return new Double(val);
|
|
}
|
|
|
|
/**
|
|
* Create a new <code>Double</code> object using the <code>String</code>.
|
|
*
|
|
* @param s the <code>String</code> to convert
|
|
* @return the new <code>Double</code>
|
|
* @throws NumberFormatException if <code>s</code> cannot be parsed as a
|
|
* <code>double</code>
|
|
* @throws NullPointerException if <code>s</code> is null.
|
|
* @see #parseDouble(String)
|
|
*/
|
|
public static Double valueOf(String s)
|
|
{
|
|
return new Double(parseDouble(s));
|
|
}
|
|
|
|
/**
|
|
* Parse the specified <code>String</code> as a <code>double</code>. The
|
|
* extended BNF grammar is as follows:<br>
|
|
* <pre>
|
|
* <em>DecodableString</em>:
|
|
* ( [ <code>-</code> | <code>+</code> ] <code>NaN</code> )
|
|
* | ( [ <code>-</code> | <code>+</code> ] <code>Infinity</code> )
|
|
* | ( [ <code>-</code> | <code>+</code> ] <em>FloatingPoint</em>
|
|
* [ <code>f</code> | <code>F</code> | <code>d</code>
|
|
* | <code>D</code>] )
|
|
* <em>FloatingPoint</em>:
|
|
* ( { <em>Digit</em> }+ [ <code>.</code> { <em>Digit</em> } ]
|
|
* [ <em>Exponent</em> ] )
|
|
* | ( <code>.</code> { <em>Digit</em> }+ [ <em>Exponent</em> ] )
|
|
* <em>Exponent</em>:
|
|
* ( ( <code>e</code> | <code>E</code> )
|
|
* [ <code>-</code> | <code>+</code> ] { <em>Digit</em> }+ )
|
|
* <em>Digit</em>: <em><code>'0'</code> through <code>'9'</code></em>
|
|
* </pre>
|
|
*
|
|
* <p>NaN and infinity are special cases, to allow parsing of the output
|
|
* of toString. Otherwise, the result is determined by calculating
|
|
* <em>n * 10<sup>exponent</sup></em> to infinite precision, then rounding
|
|
* to the nearest double. Remember that many numbers cannot be precisely
|
|
* represented in floating point. In case of overflow, infinity is used,
|
|
* and in case of underflow, signed zero is used. Unlike Integer.parseInt,
|
|
* this does not accept Unicode digits outside the ASCII range.
|
|
*
|
|
* <p>If an unexpected character is found in the <code>String</code>, a
|
|
* <code>NumberFormatException</code> will be thrown. Leading and trailing
|
|
* 'whitespace' is ignored via <code>String.trim()</code>, but spaces
|
|
* internal to the actual number are not allowed.
|
|
*
|
|
* <p>To parse numbers according to another format, consider using
|
|
* {@link java.text.NumberFormat}.
|
|
*
|
|
* @XXX specify where/how we are not in accord with the spec.
|
|
*
|
|
* @param str the <code>String</code> to convert
|
|
* @return the <code>double</code> value of <code>s</code>
|
|
* @throws NumberFormatException if <code>s</code> cannot be parsed as a
|
|
* <code>double</code>
|
|
* @throws NullPointerException if <code>s</code> is null
|
|
* @see #MIN_VALUE
|
|
* @see #MAX_VALUE
|
|
* @see #POSITIVE_INFINITY
|
|
* @see #NEGATIVE_INFINITY
|
|
* @since 1.2
|
|
*/
|
|
public static double parseDouble(String str)
|
|
{
|
|
return VMDouble.parseDouble(str);
|
|
}
|
|
|
|
/**
|
|
* Return <code>true</code> if the <code>double</code> has the same
|
|
* value as <code>NaN</code>, otherwise return <code>false</code>.
|
|
*
|
|
* @param v the <code>double</code> to compare
|
|
* @return whether the argument is <code>NaN</code>.
|
|
*/
|
|
public static boolean isNaN(double v)
|
|
{
|
|
// This works since NaN != NaN is the only reflexive inequality
|
|
// comparison which returns true.
|
|
return v != v;
|
|
}
|
|
|
|
/**
|
|
* Return <code>true</code> if the <code>double</code> has a value
|
|
* equal to either <code>NEGATIVE_INFINITY</code> or
|
|
* <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>.
|
|
*
|
|
* @param v the <code>double</code> to compare
|
|
* @return whether the argument is (-/+) infinity.
|
|
*/
|
|
public static boolean isInfinite(double v)
|
|
{
|
|
return v == POSITIVE_INFINITY || v == NEGATIVE_INFINITY;
|
|
}
|
|
|
|
/**
|
|
* Return <code>true</code> if the value of this <code>Double</code>
|
|
* is the same as <code>NaN</code>, otherwise return <code>false</code>.
|
|
*
|
|
* @return whether this <code>Double</code> is <code>NaN</code>
|
|
*/
|
|
public boolean isNaN()
|
|
{
|
|
return isNaN(value);
|
|
}
|
|
|
|
/**
|
|
* Return <code>true</code> if the value of this <code>Double</code>
|
|
* is the same as <code>NEGATIVE_INFINITY</code> or
|
|
* <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>.
|
|
*
|
|
* @return whether this <code>Double</code> is (-/+) infinity
|
|
*/
|
|
public boolean isInfinite()
|
|
{
|
|
return isInfinite(value);
|
|
}
|
|
|
|
/**
|
|
* Convert the <code>double</code> value of this <code>Double</code>
|
|
* to a <code>String</code>. This method calls
|
|
* <code>Double.toString(double)</code> to do its dirty work.
|
|
*
|
|
* @return the <code>String</code> representation
|
|
* @see #toString(double)
|
|
*/
|
|
public String toString()
|
|
{
|
|
return toString(value);
|
|
}
|
|
|
|
/**
|
|
* Return the value of this <code>Double</code> as a <code>byte</code>.
|
|
*
|
|
* @return the byte value
|
|
* @since 1.1
|
|
*/
|
|
public byte byteValue()
|
|
{
|
|
return (byte) value;
|
|
}
|
|
|
|
/**
|
|
* Return the value of this <code>Double</code> as a <code>short</code>.
|
|
*
|
|
* @return the short value
|
|
* @since 1.1
|
|
*/
|
|
public short shortValue()
|
|
{
|
|
return (short) value;
|
|
}
|
|
|
|
/**
|
|
* Return the value of this <code>Double</code> as an <code>int</code>.
|
|
*
|
|
* @return the int value
|
|
*/
|
|
public int intValue()
|
|
{
|
|
return (int) value;
|
|
}
|
|
|
|
/**
|
|
* Return the value of this <code>Double</code> as a <code>long</code>.
|
|
*
|
|
* @return the long value
|
|
*/
|
|
public long longValue()
|
|
{
|
|
return (long) value;
|
|
}
|
|
|
|
/**
|
|
* Return the value of this <code>Double</code> as a <code>float</code>.
|
|
*
|
|
* @return the float value
|
|
*/
|
|
public float floatValue()
|
|
{
|
|
return (float) value;
|
|
}
|
|
|
|
/**
|
|
* Return the value of this <code>Double</code>.
|
|
*
|
|
* @return the double value
|
|
*/
|
|
public double doubleValue()
|
|
{
|
|
return value;
|
|
}
|
|
|
|
/**
|
|
* Return a hashcode representing this Object. <code>Double</code>'s hash
|
|
* code is calculated by:<br>
|
|
* <code>long v = Double.doubleToLongBits(doubleValue());<br>
|
|
* int hash = (int)(v^(v>>32))</code>.
|
|
*
|
|
* @return this Object's hash code
|
|
* @see #doubleToLongBits(double)
|
|
*/
|
|
public int hashCode()
|
|
{
|
|
long v = doubleToLongBits(value);
|
|
return (int) (v ^ (v >>> 32));
|
|
}
|
|
|
|
/**
|
|
* Returns <code>true</code> if <code>obj</code> is an instance of
|
|
* <code>Double</code> and represents the same double value. Unlike comparing
|
|
* two doubles with <code>==</code>, this treats two instances of
|
|
* <code>Double.NaN</code> as equal, but treats <code>0.0</code> and
|
|
* <code>-0.0</code> as unequal.
|
|
*
|
|
* <p>Note that <code>d1.equals(d2)</code> is identical to
|
|
* <code>doubleToLongBits(d1.doubleValue()) ==
|
|
* doubleToLongBits(d2.doubleValue())</code>.
|
|
*
|
|
* @param obj the object to compare
|
|
* @return whether the objects are semantically equal
|
|
*/
|
|
public boolean equals(Object obj)
|
|
{
|
|
if (! (obj instanceof Double))
|
|
return false;
|
|
|
|
double d = ((Double) obj).value;
|
|
|
|
// Avoid call to native method. However, some implementations, like gcj,
|
|
// are better off using floatToIntBits(value) == floatToIntBits(f).
|
|
// Check common case first, then check NaN and 0.
|
|
if (value == d)
|
|
return (value != 0) || (1 / value == 1 / d);
|
|
return isNaN(value) && isNaN(d);
|
|
}
|
|
|
|
/**
|
|
* Convert the double to the IEEE 754 floating-point "double format" bit
|
|
* layout. Bit 63 (the most significant) is the sign bit, bits 62-52
|
|
* (masked by 0x7ff0000000000000L) represent the exponent, and bits 51-0
|
|
* (masked by 0x000fffffffffffffL) are the mantissa. This function
|
|
* collapses all versions of NaN to 0x7ff8000000000000L. The result of this
|
|
* function can be used as the argument to
|
|
* <code>Double.longBitsToDouble(long)</code> to obtain the original
|
|
* <code>double</code> value.
|
|
*
|
|
* @param value the <code>double</code> to convert
|
|
* @return the bits of the <code>double</code>
|
|
* @see #longBitsToDouble(long)
|
|
*/
|
|
public static long doubleToLongBits(double value)
|
|
{
|
|
return VMDouble.doubleToLongBits(value);
|
|
}
|
|
|
|
/**
|
|
* Convert the double to the IEEE 754 floating-point "double format" bit
|
|
* layout. Bit 63 (the most significant) is the sign bit, bits 62-52
|
|
* (masked by 0x7ff0000000000000L) represent the exponent, and bits 51-0
|
|
* (masked by 0x000fffffffffffffL) are the mantissa. This function
|
|
* leaves NaN alone, rather than collapsing to a canonical value. The
|
|
* result of this function can be used as the argument to
|
|
* <code>Double.longBitsToDouble(long)</code> to obtain the original
|
|
* <code>double</code> value.
|
|
*
|
|
* @param value the <code>double</code> to convert
|
|
* @return the bits of the <code>double</code>
|
|
* @see #longBitsToDouble(long)
|
|
*/
|
|
public static long doubleToRawLongBits(double value)
|
|
{
|
|
return VMDouble.doubleToRawLongBits(value);
|
|
}
|
|
|
|
/**
|
|
* Convert the argument in IEEE 754 floating-point "double format" bit
|
|
* layout to the corresponding float. Bit 63 (the most significant) is the
|
|
* sign bit, bits 62-52 (masked by 0x7ff0000000000000L) represent the
|
|
* exponent, and bits 51-0 (masked by 0x000fffffffffffffL) are the mantissa.
|
|
* This function leaves NaN alone, so that you can recover the bit pattern
|
|
* with <code>Double.doubleToRawLongBits(double)</code>.
|
|
*
|
|
* @param bits the bits to convert
|
|
* @return the <code>double</code> represented by the bits
|
|
* @see #doubleToLongBits(double)
|
|
* @see #doubleToRawLongBits(double)
|
|
*/
|
|
public static double longBitsToDouble(long bits)
|
|
{
|
|
return VMDouble.longBitsToDouble(bits);
|
|
}
|
|
|
|
/**
|
|
* Compare two Doubles numerically by comparing their <code>double</code>
|
|
* values. The result is positive if the first is greater, negative if the
|
|
* second is greater, and 0 if the two are equal. However, this special
|
|
* cases NaN and signed zero as follows: NaN is considered greater than
|
|
* all other doubles, including <code>POSITIVE_INFINITY</code>, and positive
|
|
* zero is considered greater than negative zero.
|
|
*
|
|
* @param d the Double to compare
|
|
* @return the comparison
|
|
* @since 1.2
|
|
*/
|
|
public int compareTo(Double d)
|
|
{
|
|
return compare(value, d.value);
|
|
}
|
|
|
|
/**
|
|
* Behaves like <code>compareTo(Double)</code> unless the Object
|
|
* is not an <code>Double</code>.
|
|
*
|
|
* @param o the object to compare
|
|
* @return the comparison
|
|
* @throws ClassCastException if the argument is not a <code>Double</code>
|
|
* @see #compareTo(Double)
|
|
* @see Comparable
|
|
* @since 1.2
|
|
*/
|
|
public int compareTo(Object o)
|
|
{
|
|
return compare(value, ((Double) o).value);
|
|
}
|
|
|
|
/**
|
|
* Behaves like <code>new Double(x).compareTo(new Double(y))</code>; in
|
|
* other words this compares two doubles, special casing NaN and zero,
|
|
* without the overhead of objects.
|
|
*
|
|
* @param x the first double to compare
|
|
* @param y the second double to compare
|
|
* @return the comparison
|
|
* @since 1.4
|
|
*/
|
|
public static int compare(double x, double y)
|
|
{
|
|
if (isNaN(x))
|
|
return isNaN(y) ? 0 : 1;
|
|
if (isNaN(y))
|
|
return -1;
|
|
// recall that 0.0 == -0.0, so we convert to infinites and try again
|
|
if (x == 0 && y == 0)
|
|
return (int) (1 / x - 1 / y);
|
|
if (x == y)
|
|
return 0;
|
|
|
|
return x > y ? 1 : -1;
|
|
}
|
|
}
|