8d9254fc8a
From-SVN: r279813
1854 lines
59 KiB
C++
1854 lines
59 KiB
C++
// Random number extensions -*- C++ -*-
|
|
|
|
// Copyright (C) 2012-2020 Free Software Foundation, Inc.
|
|
//
|
|
// This file is part of the GNU ISO C++ Library. This library is free
|
|
// software; you can redistribute it and/or modify it under the
|
|
// terms of the GNU General Public License as published by the
|
|
// Free Software Foundation; either version 3, or (at your option)
|
|
// any later version.
|
|
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
|
|
// Under Section 7 of GPL version 3, you are granted additional
|
|
// permissions described in the GCC Runtime Library Exception, version
|
|
// 3.1, as published by the Free Software Foundation.
|
|
|
|
// You should have received a copy of the GNU General Public License and
|
|
// a copy of the GCC Runtime Library Exception along with this program;
|
|
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
|
// <http://www.gnu.org/licenses/>.
|
|
|
|
/** @file ext/random.tcc
|
|
* This is an internal header file, included by other library headers.
|
|
* Do not attempt to use it directly. @headername{ext/random}
|
|
*/
|
|
|
|
#ifndef _EXT_RANDOM_TCC
|
|
#define _EXT_RANDOM_TCC 1
|
|
|
|
#pragma GCC system_header
|
|
|
|
namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)
|
|
{
|
|
_GLIBCXX_BEGIN_NAMESPACE_VERSION
|
|
|
|
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
|
|
|
|
template<typename _UIntType, size_t __m,
|
|
size_t __pos1, size_t __sl1, size_t __sl2,
|
|
size_t __sr1, size_t __sr2,
|
|
uint32_t __msk1, uint32_t __msk2,
|
|
uint32_t __msk3, uint32_t __msk4,
|
|
uint32_t __parity1, uint32_t __parity2,
|
|
uint32_t __parity3, uint32_t __parity4>
|
|
void simd_fast_mersenne_twister_engine<_UIntType, __m,
|
|
__pos1, __sl1, __sl2, __sr1, __sr2,
|
|
__msk1, __msk2, __msk3, __msk4,
|
|
__parity1, __parity2, __parity3,
|
|
__parity4>::
|
|
seed(_UIntType __seed)
|
|
{
|
|
_M_state32[0] = static_cast<uint32_t>(__seed);
|
|
for (size_t __i = 1; __i < _M_nstate32; ++__i)
|
|
_M_state32[__i] = (1812433253UL
|
|
* (_M_state32[__i - 1] ^ (_M_state32[__i - 1] >> 30))
|
|
+ __i);
|
|
_M_pos = state_size;
|
|
_M_period_certification();
|
|
}
|
|
|
|
|
|
namespace {
|
|
|
|
inline uint32_t _Func1(uint32_t __x)
|
|
{
|
|
return (__x ^ (__x >> 27)) * UINT32_C(1664525);
|
|
}
|
|
|
|
inline uint32_t _Func2(uint32_t __x)
|
|
{
|
|
return (__x ^ (__x >> 27)) * UINT32_C(1566083941);
|
|
}
|
|
|
|
}
|
|
|
|
|
|
template<typename _UIntType, size_t __m,
|
|
size_t __pos1, size_t __sl1, size_t __sl2,
|
|
size_t __sr1, size_t __sr2,
|
|
uint32_t __msk1, uint32_t __msk2,
|
|
uint32_t __msk3, uint32_t __msk4,
|
|
uint32_t __parity1, uint32_t __parity2,
|
|
uint32_t __parity3, uint32_t __parity4>
|
|
template<typename _Sseq>
|
|
auto
|
|
simd_fast_mersenne_twister_engine<_UIntType, __m,
|
|
__pos1, __sl1, __sl2, __sr1, __sr2,
|
|
__msk1, __msk2, __msk3, __msk4,
|
|
__parity1, __parity2, __parity3,
|
|
__parity4>::
|
|
seed(_Sseq& __q)
|
|
-> _If_seed_seq<_Sseq>
|
|
{
|
|
size_t __lag;
|
|
|
|
if (_M_nstate32 >= 623)
|
|
__lag = 11;
|
|
else if (_M_nstate32 >= 68)
|
|
__lag = 7;
|
|
else if (_M_nstate32 >= 39)
|
|
__lag = 5;
|
|
else
|
|
__lag = 3;
|
|
const size_t __mid = (_M_nstate32 - __lag) / 2;
|
|
|
|
std::fill(_M_state32, _M_state32 + _M_nstate32, UINT32_C(0x8b8b8b8b));
|
|
uint32_t __arr[_M_nstate32];
|
|
__q.generate(__arr + 0, __arr + _M_nstate32);
|
|
|
|
uint32_t __r = _Func1(_M_state32[0] ^ _M_state32[__mid]
|
|
^ _M_state32[_M_nstate32 - 1]);
|
|
_M_state32[__mid] += __r;
|
|
__r += _M_nstate32;
|
|
_M_state32[__mid + __lag] += __r;
|
|
_M_state32[0] = __r;
|
|
|
|
for (size_t __i = 1, __j = 0; __j < _M_nstate32; ++__j)
|
|
{
|
|
__r = _Func1(_M_state32[__i]
|
|
^ _M_state32[(__i + __mid) % _M_nstate32]
|
|
^ _M_state32[(__i + _M_nstate32 - 1) % _M_nstate32]);
|
|
_M_state32[(__i + __mid) % _M_nstate32] += __r;
|
|
__r += __arr[__j] + __i;
|
|
_M_state32[(__i + __mid + __lag) % _M_nstate32] += __r;
|
|
_M_state32[__i] = __r;
|
|
__i = (__i + 1) % _M_nstate32;
|
|
}
|
|
for (size_t __j = 0; __j < _M_nstate32; ++__j)
|
|
{
|
|
const size_t __i = (__j + 1) % _M_nstate32;
|
|
__r = _Func2(_M_state32[__i]
|
|
+ _M_state32[(__i + __mid) % _M_nstate32]
|
|
+ _M_state32[(__i + _M_nstate32 - 1) % _M_nstate32]);
|
|
_M_state32[(__i + __mid) % _M_nstate32] ^= __r;
|
|
__r -= __i;
|
|
_M_state32[(__i + __mid + __lag) % _M_nstate32] ^= __r;
|
|
_M_state32[__i] = __r;
|
|
}
|
|
|
|
_M_pos = state_size;
|
|
_M_period_certification();
|
|
}
|
|
|
|
|
|
template<typename _UIntType, size_t __m,
|
|
size_t __pos1, size_t __sl1, size_t __sl2,
|
|
size_t __sr1, size_t __sr2,
|
|
uint32_t __msk1, uint32_t __msk2,
|
|
uint32_t __msk3, uint32_t __msk4,
|
|
uint32_t __parity1, uint32_t __parity2,
|
|
uint32_t __parity3, uint32_t __parity4>
|
|
void simd_fast_mersenne_twister_engine<_UIntType, __m,
|
|
__pos1, __sl1, __sl2, __sr1, __sr2,
|
|
__msk1, __msk2, __msk3, __msk4,
|
|
__parity1, __parity2, __parity3,
|
|
__parity4>::
|
|
_M_period_certification(void)
|
|
{
|
|
static const uint32_t __parity[4] = { __parity1, __parity2,
|
|
__parity3, __parity4 };
|
|
uint32_t __inner = 0;
|
|
for (size_t __i = 0; __i < 4; ++__i)
|
|
if (__parity[__i] != 0)
|
|
__inner ^= _M_state32[__i] & __parity[__i];
|
|
|
|
if (__builtin_parity(__inner) & 1)
|
|
return;
|
|
for (size_t __i = 0; __i < 4; ++__i)
|
|
if (__parity[__i] != 0)
|
|
{
|
|
_M_state32[__i] ^= 1 << (__builtin_ffs(__parity[__i]) - 1);
|
|
return;
|
|
}
|
|
__builtin_unreachable();
|
|
}
|
|
|
|
|
|
template<typename _UIntType, size_t __m,
|
|
size_t __pos1, size_t __sl1, size_t __sl2,
|
|
size_t __sr1, size_t __sr2,
|
|
uint32_t __msk1, uint32_t __msk2,
|
|
uint32_t __msk3, uint32_t __msk4,
|
|
uint32_t __parity1, uint32_t __parity2,
|
|
uint32_t __parity3, uint32_t __parity4>
|
|
void simd_fast_mersenne_twister_engine<_UIntType, __m,
|
|
__pos1, __sl1, __sl2, __sr1, __sr2,
|
|
__msk1, __msk2, __msk3, __msk4,
|
|
__parity1, __parity2, __parity3,
|
|
__parity4>::
|
|
discard(unsigned long long __z)
|
|
{
|
|
while (__z > state_size - _M_pos)
|
|
{
|
|
__z -= state_size - _M_pos;
|
|
|
|
_M_gen_rand();
|
|
}
|
|
|
|
_M_pos += __z;
|
|
}
|
|
|
|
|
|
#ifndef _GLIBCXX_OPT_HAVE_RANDOM_SFMT_GEN_READ
|
|
|
|
namespace {
|
|
|
|
template<size_t __shift>
|
|
inline void __rshift(uint32_t *__out, const uint32_t *__in)
|
|
{
|
|
uint64_t __th = ((static_cast<uint64_t>(__in[3]) << 32)
|
|
| static_cast<uint64_t>(__in[2]));
|
|
uint64_t __tl = ((static_cast<uint64_t>(__in[1]) << 32)
|
|
| static_cast<uint64_t>(__in[0]));
|
|
|
|
uint64_t __oh = __th >> (__shift * 8);
|
|
uint64_t __ol = __tl >> (__shift * 8);
|
|
__ol |= __th << (64 - __shift * 8);
|
|
__out[1] = static_cast<uint32_t>(__ol >> 32);
|
|
__out[0] = static_cast<uint32_t>(__ol);
|
|
__out[3] = static_cast<uint32_t>(__oh >> 32);
|
|
__out[2] = static_cast<uint32_t>(__oh);
|
|
}
|
|
|
|
|
|
template<size_t __shift>
|
|
inline void __lshift(uint32_t *__out, const uint32_t *__in)
|
|
{
|
|
uint64_t __th = ((static_cast<uint64_t>(__in[3]) << 32)
|
|
| static_cast<uint64_t>(__in[2]));
|
|
uint64_t __tl = ((static_cast<uint64_t>(__in[1]) << 32)
|
|
| static_cast<uint64_t>(__in[0]));
|
|
|
|
uint64_t __oh = __th << (__shift * 8);
|
|
uint64_t __ol = __tl << (__shift * 8);
|
|
__oh |= __tl >> (64 - __shift * 8);
|
|
__out[1] = static_cast<uint32_t>(__ol >> 32);
|
|
__out[0] = static_cast<uint32_t>(__ol);
|
|
__out[3] = static_cast<uint32_t>(__oh >> 32);
|
|
__out[2] = static_cast<uint32_t>(__oh);
|
|
}
|
|
|
|
|
|
template<size_t __sl1, size_t __sl2, size_t __sr1, size_t __sr2,
|
|
uint32_t __msk1, uint32_t __msk2, uint32_t __msk3, uint32_t __msk4>
|
|
inline void __recursion(uint32_t *__r,
|
|
const uint32_t *__a, const uint32_t *__b,
|
|
const uint32_t *__c, const uint32_t *__d)
|
|
{
|
|
uint32_t __x[4];
|
|
uint32_t __y[4];
|
|
|
|
__lshift<__sl2>(__x, __a);
|
|
__rshift<__sr2>(__y, __c);
|
|
__r[0] = (__a[0] ^ __x[0] ^ ((__b[0] >> __sr1) & __msk1)
|
|
^ __y[0] ^ (__d[0] << __sl1));
|
|
__r[1] = (__a[1] ^ __x[1] ^ ((__b[1] >> __sr1) & __msk2)
|
|
^ __y[1] ^ (__d[1] << __sl1));
|
|
__r[2] = (__a[2] ^ __x[2] ^ ((__b[2] >> __sr1) & __msk3)
|
|
^ __y[2] ^ (__d[2] << __sl1));
|
|
__r[3] = (__a[3] ^ __x[3] ^ ((__b[3] >> __sr1) & __msk4)
|
|
^ __y[3] ^ (__d[3] << __sl1));
|
|
}
|
|
|
|
}
|
|
|
|
|
|
template<typename _UIntType, size_t __m,
|
|
size_t __pos1, size_t __sl1, size_t __sl2,
|
|
size_t __sr1, size_t __sr2,
|
|
uint32_t __msk1, uint32_t __msk2,
|
|
uint32_t __msk3, uint32_t __msk4,
|
|
uint32_t __parity1, uint32_t __parity2,
|
|
uint32_t __parity3, uint32_t __parity4>
|
|
void simd_fast_mersenne_twister_engine<_UIntType, __m,
|
|
__pos1, __sl1, __sl2, __sr1, __sr2,
|
|
__msk1, __msk2, __msk3, __msk4,
|
|
__parity1, __parity2, __parity3,
|
|
__parity4>::
|
|
_M_gen_rand(void)
|
|
{
|
|
const uint32_t *__r1 = &_M_state32[_M_nstate32 - 8];
|
|
const uint32_t *__r2 = &_M_state32[_M_nstate32 - 4];
|
|
static constexpr size_t __pos1_32 = __pos1 * 4;
|
|
|
|
size_t __i;
|
|
for (__i = 0; __i < _M_nstate32 - __pos1_32; __i += 4)
|
|
{
|
|
__recursion<__sl1, __sl2, __sr1, __sr2,
|
|
__msk1, __msk2, __msk3, __msk4>
|
|
(&_M_state32[__i], &_M_state32[__i],
|
|
&_M_state32[__i + __pos1_32], __r1, __r2);
|
|
__r1 = __r2;
|
|
__r2 = &_M_state32[__i];
|
|
}
|
|
|
|
for (; __i < _M_nstate32; __i += 4)
|
|
{
|
|
__recursion<__sl1, __sl2, __sr1, __sr2,
|
|
__msk1, __msk2, __msk3, __msk4>
|
|
(&_M_state32[__i], &_M_state32[__i],
|
|
&_M_state32[__i + __pos1_32 - _M_nstate32], __r1, __r2);
|
|
__r1 = __r2;
|
|
__r2 = &_M_state32[__i];
|
|
}
|
|
|
|
_M_pos = 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifndef _GLIBCXX_OPT_HAVE_RANDOM_SFMT_OPERATOREQUAL
|
|
template<typename _UIntType, size_t __m,
|
|
size_t __pos1, size_t __sl1, size_t __sl2,
|
|
size_t __sr1, size_t __sr2,
|
|
uint32_t __msk1, uint32_t __msk2,
|
|
uint32_t __msk3, uint32_t __msk4,
|
|
uint32_t __parity1, uint32_t __parity2,
|
|
uint32_t __parity3, uint32_t __parity4>
|
|
bool
|
|
operator==(const __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,
|
|
__m, __pos1, __sl1, __sl2, __sr1, __sr2,
|
|
__msk1, __msk2, __msk3, __msk4,
|
|
__parity1, __parity2, __parity3, __parity4>& __lhs,
|
|
const __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,
|
|
__m, __pos1, __sl1, __sl2, __sr1, __sr2,
|
|
__msk1, __msk2, __msk3, __msk4,
|
|
__parity1, __parity2, __parity3, __parity4>& __rhs)
|
|
{
|
|
typedef __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,
|
|
__m, __pos1, __sl1, __sl2, __sr1, __sr2,
|
|
__msk1, __msk2, __msk3, __msk4,
|
|
__parity1, __parity2, __parity3, __parity4> __engine;
|
|
return (std::equal(__lhs._M_stateT,
|
|
__lhs._M_stateT + __engine::state_size,
|
|
__rhs._M_stateT)
|
|
&& __lhs._M_pos == __rhs._M_pos);
|
|
}
|
|
#endif
|
|
|
|
template<typename _UIntType, size_t __m,
|
|
size_t __pos1, size_t __sl1, size_t __sl2,
|
|
size_t __sr1, size_t __sr2,
|
|
uint32_t __msk1, uint32_t __msk2,
|
|
uint32_t __msk3, uint32_t __msk4,
|
|
uint32_t __parity1, uint32_t __parity2,
|
|
uint32_t __parity3, uint32_t __parity4,
|
|
typename _CharT, typename _Traits>
|
|
std::basic_ostream<_CharT, _Traits>&
|
|
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
|
const __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,
|
|
__m, __pos1, __sl1, __sl2, __sr1, __sr2,
|
|
__msk1, __msk2, __msk3, __msk4,
|
|
__parity1, __parity2, __parity3, __parity4>& __x)
|
|
{
|
|
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
|
|
typedef typename __ostream_type::ios_base __ios_base;
|
|
|
|
const typename __ios_base::fmtflags __flags = __os.flags();
|
|
const _CharT __fill = __os.fill();
|
|
const _CharT __space = __os.widen(' ');
|
|
__os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
|
|
__os.fill(__space);
|
|
|
|
for (size_t __i = 0; __i < __x._M_nstate32; ++__i)
|
|
__os << __x._M_state32[__i] << __space;
|
|
__os << __x._M_pos;
|
|
|
|
__os.flags(__flags);
|
|
__os.fill(__fill);
|
|
return __os;
|
|
}
|
|
|
|
|
|
template<typename _UIntType, size_t __m,
|
|
size_t __pos1, size_t __sl1, size_t __sl2,
|
|
size_t __sr1, size_t __sr2,
|
|
uint32_t __msk1, uint32_t __msk2,
|
|
uint32_t __msk3, uint32_t __msk4,
|
|
uint32_t __parity1, uint32_t __parity2,
|
|
uint32_t __parity3, uint32_t __parity4,
|
|
typename _CharT, typename _Traits>
|
|
std::basic_istream<_CharT, _Traits>&
|
|
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
|
__gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,
|
|
__m, __pos1, __sl1, __sl2, __sr1, __sr2,
|
|
__msk1, __msk2, __msk3, __msk4,
|
|
__parity1, __parity2, __parity3, __parity4>& __x)
|
|
{
|
|
typedef std::basic_istream<_CharT, _Traits> __istream_type;
|
|
typedef typename __istream_type::ios_base __ios_base;
|
|
|
|
const typename __ios_base::fmtflags __flags = __is.flags();
|
|
__is.flags(__ios_base::dec | __ios_base::skipws);
|
|
|
|
for (size_t __i = 0; __i < __x._M_nstate32; ++__i)
|
|
__is >> __x._M_state32[__i];
|
|
__is >> __x._M_pos;
|
|
|
|
__is.flags(__flags);
|
|
return __is;
|
|
}
|
|
|
|
#endif // __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
|
|
|
|
/**
|
|
* Iteration method due to M.D. J<o:>hnk.
|
|
*
|
|
* M.D. J<o:>hnk, Erzeugung von betaverteilten und gammaverteilten
|
|
* Zufallszahlen, Metrika, Volume 8, 1964
|
|
*/
|
|
template<typename _RealType>
|
|
template<typename _UniformRandomNumberGenerator>
|
|
typename beta_distribution<_RealType>::result_type
|
|
beta_distribution<_RealType>::
|
|
operator()(_UniformRandomNumberGenerator& __urng,
|
|
const param_type& __param)
|
|
{
|
|
std::__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
|
|
__aurng(__urng);
|
|
|
|
result_type __x, __y;
|
|
do
|
|
{
|
|
__x = std::exp(std::log(__aurng()) / __param.alpha());
|
|
__y = std::exp(std::log(__aurng()) / __param.beta());
|
|
}
|
|
while (__x + __y > result_type(1));
|
|
|
|
return __x / (__x + __y);
|
|
}
|
|
|
|
template<typename _RealType>
|
|
template<typename _OutputIterator,
|
|
typename _UniformRandomNumberGenerator>
|
|
void
|
|
beta_distribution<_RealType>::
|
|
__generate_impl(_OutputIterator __f, _OutputIterator __t,
|
|
_UniformRandomNumberGenerator& __urng,
|
|
const param_type& __param)
|
|
{
|
|
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
|
|
result_type>)
|
|
|
|
std::__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
|
|
__aurng(__urng);
|
|
|
|
while (__f != __t)
|
|
{
|
|
result_type __x, __y;
|
|
do
|
|
{
|
|
__x = std::exp(std::log(__aurng()) / __param.alpha());
|
|
__y = std::exp(std::log(__aurng()) / __param.beta());
|
|
}
|
|
while (__x + __y > result_type(1));
|
|
|
|
*__f++ = __x / (__x + __y);
|
|
}
|
|
}
|
|
|
|
template<typename _RealType, typename _CharT, typename _Traits>
|
|
std::basic_ostream<_CharT, _Traits>&
|
|
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
|
const __gnu_cxx::beta_distribution<_RealType>& __x)
|
|
{
|
|
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
|
|
typedef typename __ostream_type::ios_base __ios_base;
|
|
|
|
const typename __ios_base::fmtflags __flags = __os.flags();
|
|
const _CharT __fill = __os.fill();
|
|
const std::streamsize __precision = __os.precision();
|
|
const _CharT __space = __os.widen(' ');
|
|
__os.flags(__ios_base::scientific | __ios_base::left);
|
|
__os.fill(__space);
|
|
__os.precision(std::numeric_limits<_RealType>::max_digits10);
|
|
|
|
__os << __x.alpha() << __space << __x.beta();
|
|
|
|
__os.flags(__flags);
|
|
__os.fill(__fill);
|
|
__os.precision(__precision);
|
|
return __os;
|
|
}
|
|
|
|
template<typename _RealType, typename _CharT, typename _Traits>
|
|
std::basic_istream<_CharT, _Traits>&
|
|
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
|
__gnu_cxx::beta_distribution<_RealType>& __x)
|
|
{
|
|
typedef std::basic_istream<_CharT, _Traits> __istream_type;
|
|
typedef typename __istream_type::ios_base __ios_base;
|
|
|
|
const typename __ios_base::fmtflags __flags = __is.flags();
|
|
__is.flags(__ios_base::dec | __ios_base::skipws);
|
|
|
|
_RealType __alpha_val, __beta_val;
|
|
__is >> __alpha_val >> __beta_val;
|
|
__x.param(typename __gnu_cxx::beta_distribution<_RealType>::
|
|
param_type(__alpha_val, __beta_val));
|
|
|
|
__is.flags(__flags);
|
|
return __is;
|
|
}
|
|
|
|
|
|
template<std::size_t _Dimen, typename _RealType>
|
|
template<typename _InputIterator1, typename _InputIterator2>
|
|
void
|
|
normal_mv_distribution<_Dimen, _RealType>::param_type::
|
|
_M_init_full(_InputIterator1 __meanbegin, _InputIterator1 __meanend,
|
|
_InputIterator2 __varcovbegin, _InputIterator2 __varcovend)
|
|
{
|
|
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
|
|
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
|
|
std::fill(std::copy(__meanbegin, __meanend, _M_mean.begin()),
|
|
_M_mean.end(), _RealType(0));
|
|
|
|
// Perform the Cholesky decomposition
|
|
auto __w = _M_t.begin();
|
|
for (size_t __j = 0; __j < _Dimen; ++__j)
|
|
{
|
|
_RealType __sum = _RealType(0);
|
|
|
|
auto __slitbegin = __w;
|
|
auto __cit = _M_t.begin();
|
|
for (size_t __i = 0; __i < __j; ++__i)
|
|
{
|
|
auto __slit = __slitbegin;
|
|
_RealType __s = *__varcovbegin++;
|
|
for (size_t __k = 0; __k < __i; ++__k)
|
|
__s -= *__slit++ * *__cit++;
|
|
|
|
*__w++ = __s /= *__cit++;
|
|
__sum += __s * __s;
|
|
}
|
|
|
|
__sum = *__varcovbegin - __sum;
|
|
if (__builtin_expect(__sum <= _RealType(0), 0))
|
|
std::__throw_runtime_error(__N("normal_mv_distribution::"
|
|
"param_type::_M_init_full"));
|
|
*__w++ = std::sqrt(__sum);
|
|
|
|
std::advance(__varcovbegin, _Dimen - __j);
|
|
}
|
|
}
|
|
|
|
template<std::size_t _Dimen, typename _RealType>
|
|
template<typename _InputIterator1, typename _InputIterator2>
|
|
void
|
|
normal_mv_distribution<_Dimen, _RealType>::param_type::
|
|
_M_init_lower(_InputIterator1 __meanbegin, _InputIterator1 __meanend,
|
|
_InputIterator2 __varcovbegin, _InputIterator2 __varcovend)
|
|
{
|
|
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
|
|
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
|
|
std::fill(std::copy(__meanbegin, __meanend, _M_mean.begin()),
|
|
_M_mean.end(), _RealType(0));
|
|
|
|
// Perform the Cholesky decomposition
|
|
auto __w = _M_t.begin();
|
|
for (size_t __j = 0; __j < _Dimen; ++__j)
|
|
{
|
|
_RealType __sum = _RealType(0);
|
|
|
|
auto __slitbegin = __w;
|
|
auto __cit = _M_t.begin();
|
|
for (size_t __i = 0; __i < __j; ++__i)
|
|
{
|
|
auto __slit = __slitbegin;
|
|
_RealType __s = *__varcovbegin++;
|
|
for (size_t __k = 0; __k < __i; ++__k)
|
|
__s -= *__slit++ * *__cit++;
|
|
|
|
*__w++ = __s /= *__cit++;
|
|
__sum += __s * __s;
|
|
}
|
|
|
|
__sum = *__varcovbegin++ - __sum;
|
|
if (__builtin_expect(__sum <= _RealType(0), 0))
|
|
std::__throw_runtime_error(__N("normal_mv_distribution::"
|
|
"param_type::_M_init_lower"));
|
|
*__w++ = std::sqrt(__sum);
|
|
}
|
|
}
|
|
|
|
template<std::size_t _Dimen, typename _RealType>
|
|
template<typename _InputIterator1, typename _InputIterator2>
|
|
void
|
|
normal_mv_distribution<_Dimen, _RealType>::param_type::
|
|
_M_init_diagonal(_InputIterator1 __meanbegin, _InputIterator1 __meanend,
|
|
_InputIterator2 __varbegin, _InputIterator2 __varend)
|
|
{
|
|
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
|
|
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
|
|
std::fill(std::copy(__meanbegin, __meanend, _M_mean.begin()),
|
|
_M_mean.end(), _RealType(0));
|
|
|
|
auto __w = _M_t.begin();
|
|
size_t __step = 0;
|
|
while (__varbegin != __varend)
|
|
{
|
|
std::fill_n(__w, __step, _RealType(0));
|
|
__w += __step++;
|
|
if (__builtin_expect(*__varbegin < _RealType(0), 0))
|
|
std::__throw_runtime_error(__N("normal_mv_distribution::"
|
|
"param_type::_M_init_diagonal"));
|
|
*__w++ = std::sqrt(*__varbegin++);
|
|
}
|
|
}
|
|
|
|
template<std::size_t _Dimen, typename _RealType>
|
|
template<typename _UniformRandomNumberGenerator>
|
|
typename normal_mv_distribution<_Dimen, _RealType>::result_type
|
|
normal_mv_distribution<_Dimen, _RealType>::
|
|
operator()(_UniformRandomNumberGenerator& __urng,
|
|
const param_type& __param)
|
|
{
|
|
result_type __ret;
|
|
|
|
_M_nd.__generate(__ret.begin(), __ret.end(), __urng);
|
|
|
|
auto __t_it = __param._M_t.crbegin();
|
|
for (size_t __i = _Dimen; __i > 0; --__i)
|
|
{
|
|
_RealType __sum = _RealType(0);
|
|
for (size_t __j = __i; __j > 0; --__j)
|
|
__sum += __ret[__j - 1] * *__t_it++;
|
|
__ret[__i - 1] = __sum;
|
|
}
|
|
|
|
return __ret;
|
|
}
|
|
|
|
template<std::size_t _Dimen, typename _RealType>
|
|
template<typename _ForwardIterator, typename _UniformRandomNumberGenerator>
|
|
void
|
|
normal_mv_distribution<_Dimen, _RealType>::
|
|
__generate_impl(_ForwardIterator __f, _ForwardIterator __t,
|
|
_UniformRandomNumberGenerator& __urng,
|
|
const param_type& __param)
|
|
{
|
|
__glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
|
|
_ForwardIterator>)
|
|
while (__f != __t)
|
|
*__f++ = this->operator()(__urng, __param);
|
|
}
|
|
|
|
template<size_t _Dimen, typename _RealType>
|
|
bool
|
|
operator==(const __gnu_cxx::normal_mv_distribution<_Dimen, _RealType>&
|
|
__d1,
|
|
const __gnu_cxx::normal_mv_distribution<_Dimen, _RealType>&
|
|
__d2)
|
|
{
|
|
return __d1._M_param == __d2._M_param && __d1._M_nd == __d2._M_nd;
|
|
}
|
|
|
|
template<size_t _Dimen, typename _RealType, typename _CharT, typename _Traits>
|
|
std::basic_ostream<_CharT, _Traits>&
|
|
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
|
const __gnu_cxx::normal_mv_distribution<_Dimen, _RealType>& __x)
|
|
{
|
|
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
|
|
typedef typename __ostream_type::ios_base __ios_base;
|
|
|
|
const typename __ios_base::fmtflags __flags = __os.flags();
|
|
const _CharT __fill = __os.fill();
|
|
const std::streamsize __precision = __os.precision();
|
|
const _CharT __space = __os.widen(' ');
|
|
__os.flags(__ios_base::scientific | __ios_base::left);
|
|
__os.fill(__space);
|
|
__os.precision(std::numeric_limits<_RealType>::max_digits10);
|
|
|
|
auto __mean = __x._M_param.mean();
|
|
for (auto __it : __mean)
|
|
__os << __it << __space;
|
|
auto __t = __x._M_param.varcov();
|
|
for (auto __it : __t)
|
|
__os << __it << __space;
|
|
|
|
__os << __x._M_nd;
|
|
|
|
__os.flags(__flags);
|
|
__os.fill(__fill);
|
|
__os.precision(__precision);
|
|
return __os;
|
|
}
|
|
|
|
template<size_t _Dimen, typename _RealType, typename _CharT, typename _Traits>
|
|
std::basic_istream<_CharT, _Traits>&
|
|
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
|
__gnu_cxx::normal_mv_distribution<_Dimen, _RealType>& __x)
|
|
{
|
|
typedef std::basic_istream<_CharT, _Traits> __istream_type;
|
|
typedef typename __istream_type::ios_base __ios_base;
|
|
|
|
const typename __ios_base::fmtflags __flags = __is.flags();
|
|
__is.flags(__ios_base::dec | __ios_base::skipws);
|
|
|
|
std::array<_RealType, _Dimen> __mean;
|
|
for (auto& __it : __mean)
|
|
__is >> __it;
|
|
std::array<_RealType, _Dimen * (_Dimen + 1) / 2> __varcov;
|
|
for (auto& __it : __varcov)
|
|
__is >> __it;
|
|
|
|
__is >> __x._M_nd;
|
|
|
|
// The param_type temporary is built with a private constructor,
|
|
// to skip the Cholesky decomposition that would be performed
|
|
// otherwise.
|
|
__x.param(typename normal_mv_distribution<_Dimen, _RealType>::
|
|
param_type(__mean, __varcov));
|
|
|
|
__is.flags(__flags);
|
|
return __is;
|
|
}
|
|
|
|
|
|
template<typename _RealType>
|
|
template<typename _OutputIterator,
|
|
typename _UniformRandomNumberGenerator>
|
|
void
|
|
rice_distribution<_RealType>::
|
|
__generate_impl(_OutputIterator __f, _OutputIterator __t,
|
|
_UniformRandomNumberGenerator& __urng,
|
|
const param_type& __p)
|
|
{
|
|
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
|
|
result_type>)
|
|
|
|
while (__f != __t)
|
|
{
|
|
typename std::normal_distribution<result_type>::param_type
|
|
__px(__p.nu(), __p.sigma()), __py(result_type(0), __p.sigma());
|
|
result_type __x = this->_M_ndx(__px, __urng);
|
|
result_type __y = this->_M_ndy(__py, __urng);
|
|
#if _GLIBCXX_USE_C99_MATH_TR1
|
|
*__f++ = std::hypot(__x, __y);
|
|
#else
|
|
*__f++ = std::sqrt(__x * __x + __y * __y);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
template<typename _RealType, typename _CharT, typename _Traits>
|
|
std::basic_ostream<_CharT, _Traits>&
|
|
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
|
const rice_distribution<_RealType>& __x)
|
|
{
|
|
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
|
|
typedef typename __ostream_type::ios_base __ios_base;
|
|
|
|
const typename __ios_base::fmtflags __flags = __os.flags();
|
|
const _CharT __fill = __os.fill();
|
|
const std::streamsize __precision = __os.precision();
|
|
const _CharT __space = __os.widen(' ');
|
|
__os.flags(__ios_base::scientific | __ios_base::left);
|
|
__os.fill(__space);
|
|
__os.precision(std::numeric_limits<_RealType>::max_digits10);
|
|
|
|
__os << __x.nu() << __space << __x.sigma();
|
|
__os << __space << __x._M_ndx;
|
|
__os << __space << __x._M_ndy;
|
|
|
|
__os.flags(__flags);
|
|
__os.fill(__fill);
|
|
__os.precision(__precision);
|
|
return __os;
|
|
}
|
|
|
|
template<typename _RealType, typename _CharT, typename _Traits>
|
|
std::basic_istream<_CharT, _Traits>&
|
|
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
|
rice_distribution<_RealType>& __x)
|
|
{
|
|
typedef std::basic_istream<_CharT, _Traits> __istream_type;
|
|
typedef typename __istream_type::ios_base __ios_base;
|
|
|
|
const typename __ios_base::fmtflags __flags = __is.flags();
|
|
__is.flags(__ios_base::dec | __ios_base::skipws);
|
|
|
|
_RealType __nu_val, __sigma_val;
|
|
__is >> __nu_val >> __sigma_val;
|
|
__is >> __x._M_ndx;
|
|
__is >> __x._M_ndy;
|
|
__x.param(typename rice_distribution<_RealType>::
|
|
param_type(__nu_val, __sigma_val));
|
|
|
|
__is.flags(__flags);
|
|
return __is;
|
|
}
|
|
|
|
|
|
template<typename _RealType>
|
|
template<typename _OutputIterator,
|
|
typename _UniformRandomNumberGenerator>
|
|
void
|
|
nakagami_distribution<_RealType>::
|
|
__generate_impl(_OutputIterator __f, _OutputIterator __t,
|
|
_UniformRandomNumberGenerator& __urng,
|
|
const param_type& __p)
|
|
{
|
|
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
|
|
result_type>)
|
|
|
|
typename std::gamma_distribution<result_type>::param_type
|
|
__pg(__p.mu(), __p.omega() / __p.mu());
|
|
while (__f != __t)
|
|
*__f++ = std::sqrt(this->_M_gd(__pg, __urng));
|
|
}
|
|
|
|
template<typename _RealType, typename _CharT, typename _Traits>
|
|
std::basic_ostream<_CharT, _Traits>&
|
|
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
|
const nakagami_distribution<_RealType>& __x)
|
|
{
|
|
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
|
|
typedef typename __ostream_type::ios_base __ios_base;
|
|
|
|
const typename __ios_base::fmtflags __flags = __os.flags();
|
|
const _CharT __fill = __os.fill();
|
|
const std::streamsize __precision = __os.precision();
|
|
const _CharT __space = __os.widen(' ');
|
|
__os.flags(__ios_base::scientific | __ios_base::left);
|
|
__os.fill(__space);
|
|
__os.precision(std::numeric_limits<_RealType>::max_digits10);
|
|
|
|
__os << __x.mu() << __space << __x.omega();
|
|
__os << __space << __x._M_gd;
|
|
|
|
__os.flags(__flags);
|
|
__os.fill(__fill);
|
|
__os.precision(__precision);
|
|
return __os;
|
|
}
|
|
|
|
template<typename _RealType, typename _CharT, typename _Traits>
|
|
std::basic_istream<_CharT, _Traits>&
|
|
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
|
nakagami_distribution<_RealType>& __x)
|
|
{
|
|
typedef std::basic_istream<_CharT, _Traits> __istream_type;
|
|
typedef typename __istream_type::ios_base __ios_base;
|
|
|
|
const typename __ios_base::fmtflags __flags = __is.flags();
|
|
__is.flags(__ios_base::dec | __ios_base::skipws);
|
|
|
|
_RealType __mu_val, __omega_val;
|
|
__is >> __mu_val >> __omega_val;
|
|
__is >> __x._M_gd;
|
|
__x.param(typename nakagami_distribution<_RealType>::
|
|
param_type(__mu_val, __omega_val));
|
|
|
|
__is.flags(__flags);
|
|
return __is;
|
|
}
|
|
|
|
|
|
template<typename _RealType>
|
|
template<typename _OutputIterator,
|
|
typename _UniformRandomNumberGenerator>
|
|
void
|
|
pareto_distribution<_RealType>::
|
|
__generate_impl(_OutputIterator __f, _OutputIterator __t,
|
|
_UniformRandomNumberGenerator& __urng,
|
|
const param_type& __p)
|
|
{
|
|
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
|
|
result_type>)
|
|
|
|
result_type __mu_val = __p.mu();
|
|
result_type __malphinv = -result_type(1) / __p.alpha();
|
|
while (__f != __t)
|
|
*__f++ = __mu_val * std::pow(this->_M_ud(__urng), __malphinv);
|
|
}
|
|
|
|
template<typename _RealType, typename _CharT, typename _Traits>
|
|
std::basic_ostream<_CharT, _Traits>&
|
|
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
|
const pareto_distribution<_RealType>& __x)
|
|
{
|
|
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
|
|
typedef typename __ostream_type::ios_base __ios_base;
|
|
|
|
const typename __ios_base::fmtflags __flags = __os.flags();
|
|
const _CharT __fill = __os.fill();
|
|
const std::streamsize __precision = __os.precision();
|
|
const _CharT __space = __os.widen(' ');
|
|
__os.flags(__ios_base::scientific | __ios_base::left);
|
|
__os.fill(__space);
|
|
__os.precision(std::numeric_limits<_RealType>::max_digits10);
|
|
|
|
__os << __x.alpha() << __space << __x.mu();
|
|
__os << __space << __x._M_ud;
|
|
|
|
__os.flags(__flags);
|
|
__os.fill(__fill);
|
|
__os.precision(__precision);
|
|
return __os;
|
|
}
|
|
|
|
template<typename _RealType, typename _CharT, typename _Traits>
|
|
std::basic_istream<_CharT, _Traits>&
|
|
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
|
pareto_distribution<_RealType>& __x)
|
|
{
|
|
typedef std::basic_istream<_CharT, _Traits> __istream_type;
|
|
typedef typename __istream_type::ios_base __ios_base;
|
|
|
|
const typename __ios_base::fmtflags __flags = __is.flags();
|
|
__is.flags(__ios_base::dec | __ios_base::skipws);
|
|
|
|
_RealType __alpha_val, __mu_val;
|
|
__is >> __alpha_val >> __mu_val;
|
|
__is >> __x._M_ud;
|
|
__x.param(typename pareto_distribution<_RealType>::
|
|
param_type(__alpha_val, __mu_val));
|
|
|
|
__is.flags(__flags);
|
|
return __is;
|
|
}
|
|
|
|
|
|
template<typename _RealType>
|
|
template<typename _UniformRandomNumberGenerator>
|
|
typename k_distribution<_RealType>::result_type
|
|
k_distribution<_RealType>::
|
|
operator()(_UniformRandomNumberGenerator& __urng)
|
|
{
|
|
result_type __x = this->_M_gd1(__urng);
|
|
result_type __y = this->_M_gd2(__urng);
|
|
return std::sqrt(__x * __y);
|
|
}
|
|
|
|
template<typename _RealType>
|
|
template<typename _UniformRandomNumberGenerator>
|
|
typename k_distribution<_RealType>::result_type
|
|
k_distribution<_RealType>::
|
|
operator()(_UniformRandomNumberGenerator& __urng,
|
|
const param_type& __p)
|
|
{
|
|
typename std::gamma_distribution<result_type>::param_type
|
|
__p1(__p.lambda(), result_type(1) / __p.lambda()),
|
|
__p2(__p.nu(), __p.mu() / __p.nu());
|
|
result_type __x = this->_M_gd1(__p1, __urng);
|
|
result_type __y = this->_M_gd2(__p2, __urng);
|
|
return std::sqrt(__x * __y);
|
|
}
|
|
|
|
template<typename _RealType>
|
|
template<typename _OutputIterator,
|
|
typename _UniformRandomNumberGenerator>
|
|
void
|
|
k_distribution<_RealType>::
|
|
__generate_impl(_OutputIterator __f, _OutputIterator __t,
|
|
_UniformRandomNumberGenerator& __urng,
|
|
const param_type& __p)
|
|
{
|
|
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
|
|
result_type>)
|
|
|
|
typename std::gamma_distribution<result_type>::param_type
|
|
__p1(__p.lambda(), result_type(1) / __p.lambda()),
|
|
__p2(__p.nu(), __p.mu() / __p.nu());
|
|
while (__f != __t)
|
|
{
|
|
result_type __x = this->_M_gd1(__p1, __urng);
|
|
result_type __y = this->_M_gd2(__p2, __urng);
|
|
*__f++ = std::sqrt(__x * __y);
|
|
}
|
|
}
|
|
|
|
template<typename _RealType, typename _CharT, typename _Traits>
|
|
std::basic_ostream<_CharT, _Traits>&
|
|
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
|
const k_distribution<_RealType>& __x)
|
|
{
|
|
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
|
|
typedef typename __ostream_type::ios_base __ios_base;
|
|
|
|
const typename __ios_base::fmtflags __flags = __os.flags();
|
|
const _CharT __fill = __os.fill();
|
|
const std::streamsize __precision = __os.precision();
|
|
const _CharT __space = __os.widen(' ');
|
|
__os.flags(__ios_base::scientific | __ios_base::left);
|
|
__os.fill(__space);
|
|
__os.precision(std::numeric_limits<_RealType>::max_digits10);
|
|
|
|
__os << __x.lambda() << __space << __x.mu() << __space << __x.nu();
|
|
__os << __space << __x._M_gd1;
|
|
__os << __space << __x._M_gd2;
|
|
|
|
__os.flags(__flags);
|
|
__os.fill(__fill);
|
|
__os.precision(__precision);
|
|
return __os;
|
|
}
|
|
|
|
template<typename _RealType, typename _CharT, typename _Traits>
|
|
std::basic_istream<_CharT, _Traits>&
|
|
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
|
k_distribution<_RealType>& __x)
|
|
{
|
|
typedef std::basic_istream<_CharT, _Traits> __istream_type;
|
|
typedef typename __istream_type::ios_base __ios_base;
|
|
|
|
const typename __ios_base::fmtflags __flags = __is.flags();
|
|
__is.flags(__ios_base::dec | __ios_base::skipws);
|
|
|
|
_RealType __lambda_val, __mu_val, __nu_val;
|
|
__is >> __lambda_val >> __mu_val >> __nu_val;
|
|
__is >> __x._M_gd1;
|
|
__is >> __x._M_gd2;
|
|
__x.param(typename k_distribution<_RealType>::
|
|
param_type(__lambda_val, __mu_val, __nu_val));
|
|
|
|
__is.flags(__flags);
|
|
return __is;
|
|
}
|
|
|
|
|
|
template<typename _RealType>
|
|
template<typename _OutputIterator,
|
|
typename _UniformRandomNumberGenerator>
|
|
void
|
|
arcsine_distribution<_RealType>::
|
|
__generate_impl(_OutputIterator __f, _OutputIterator __t,
|
|
_UniformRandomNumberGenerator& __urng,
|
|
const param_type& __p)
|
|
{
|
|
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
|
|
result_type>)
|
|
|
|
result_type __dif = __p.b() - __p.a();
|
|
result_type __sum = __p.a() + __p.b();
|
|
while (__f != __t)
|
|
{
|
|
result_type __x = std::sin(this->_M_ud(__urng));
|
|
*__f++ = (__x * __dif + __sum) / result_type(2);
|
|
}
|
|
}
|
|
|
|
template<typename _RealType, typename _CharT, typename _Traits>
|
|
std::basic_ostream<_CharT, _Traits>&
|
|
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
|
const arcsine_distribution<_RealType>& __x)
|
|
{
|
|
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
|
|
typedef typename __ostream_type::ios_base __ios_base;
|
|
|
|
const typename __ios_base::fmtflags __flags = __os.flags();
|
|
const _CharT __fill = __os.fill();
|
|
const std::streamsize __precision = __os.precision();
|
|
const _CharT __space = __os.widen(' ');
|
|
__os.flags(__ios_base::scientific | __ios_base::left);
|
|
__os.fill(__space);
|
|
__os.precision(std::numeric_limits<_RealType>::max_digits10);
|
|
|
|
__os << __x.a() << __space << __x.b();
|
|
__os << __space << __x._M_ud;
|
|
|
|
__os.flags(__flags);
|
|
__os.fill(__fill);
|
|
__os.precision(__precision);
|
|
return __os;
|
|
}
|
|
|
|
template<typename _RealType, typename _CharT, typename _Traits>
|
|
std::basic_istream<_CharT, _Traits>&
|
|
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
|
arcsine_distribution<_RealType>& __x)
|
|
{
|
|
typedef std::basic_istream<_CharT, _Traits> __istream_type;
|
|
typedef typename __istream_type::ios_base __ios_base;
|
|
|
|
const typename __ios_base::fmtflags __flags = __is.flags();
|
|
__is.flags(__ios_base::dec | __ios_base::skipws);
|
|
|
|
_RealType __a, __b;
|
|
__is >> __a >> __b;
|
|
__is >> __x._M_ud;
|
|
__x.param(typename arcsine_distribution<_RealType>::
|
|
param_type(__a, __b));
|
|
|
|
__is.flags(__flags);
|
|
return __is;
|
|
}
|
|
|
|
|
|
template<typename _RealType>
|
|
template<typename _UniformRandomNumberGenerator>
|
|
typename hoyt_distribution<_RealType>::result_type
|
|
hoyt_distribution<_RealType>::
|
|
operator()(_UniformRandomNumberGenerator& __urng)
|
|
{
|
|
result_type __x = this->_M_ad(__urng);
|
|
result_type __y = this->_M_ed(__urng);
|
|
return (result_type(2) * this->q()
|
|
/ (result_type(1) + this->q() * this->q()))
|
|
* std::sqrt(this->omega() * __x * __y);
|
|
}
|
|
|
|
template<typename _RealType>
|
|
template<typename _UniformRandomNumberGenerator>
|
|
typename hoyt_distribution<_RealType>::result_type
|
|
hoyt_distribution<_RealType>::
|
|
operator()(_UniformRandomNumberGenerator& __urng,
|
|
const param_type& __p)
|
|
{
|
|
result_type __q2 = __p.q() * __p.q();
|
|
result_type __num = result_type(0.5L) * (result_type(1) + __q2);
|
|
typename __gnu_cxx::arcsine_distribution<result_type>::param_type
|
|
__pa(__num, __num / __q2);
|
|
result_type __x = this->_M_ad(__pa, __urng);
|
|
result_type __y = this->_M_ed(__urng);
|
|
return (result_type(2) * __p.q() / (result_type(1) + __q2))
|
|
* std::sqrt(__p.omega() * __x * __y);
|
|
}
|
|
|
|
template<typename _RealType>
|
|
template<typename _OutputIterator,
|
|
typename _UniformRandomNumberGenerator>
|
|
void
|
|
hoyt_distribution<_RealType>::
|
|
__generate_impl(_OutputIterator __f, _OutputIterator __t,
|
|
_UniformRandomNumberGenerator& __urng,
|
|
const param_type& __p)
|
|
{
|
|
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
|
|
result_type>)
|
|
|
|
result_type __2q = result_type(2) * __p.q();
|
|
result_type __q2 = __p.q() * __p.q();
|
|
result_type __q2p1 = result_type(1) + __q2;
|
|
result_type __num = result_type(0.5L) * __q2p1;
|
|
result_type __omega = __p.omega();
|
|
typename __gnu_cxx::arcsine_distribution<result_type>::param_type
|
|
__pa(__num, __num / __q2);
|
|
while (__f != __t)
|
|
{
|
|
result_type __x = this->_M_ad(__pa, __urng);
|
|
result_type __y = this->_M_ed(__urng);
|
|
*__f++ = (__2q / __q2p1) * std::sqrt(__omega * __x * __y);
|
|
}
|
|
}
|
|
|
|
template<typename _RealType, typename _CharT, typename _Traits>
|
|
std::basic_ostream<_CharT, _Traits>&
|
|
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
|
const hoyt_distribution<_RealType>& __x)
|
|
{
|
|
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
|
|
typedef typename __ostream_type::ios_base __ios_base;
|
|
|
|
const typename __ios_base::fmtflags __flags = __os.flags();
|
|
const _CharT __fill = __os.fill();
|
|
const std::streamsize __precision = __os.precision();
|
|
const _CharT __space = __os.widen(' ');
|
|
__os.flags(__ios_base::scientific | __ios_base::left);
|
|
__os.fill(__space);
|
|
__os.precision(std::numeric_limits<_RealType>::max_digits10);
|
|
|
|
__os << __x.q() << __space << __x.omega();
|
|
__os << __space << __x._M_ad;
|
|
__os << __space << __x._M_ed;
|
|
|
|
__os.flags(__flags);
|
|
__os.fill(__fill);
|
|
__os.precision(__precision);
|
|
return __os;
|
|
}
|
|
|
|
template<typename _RealType, typename _CharT, typename _Traits>
|
|
std::basic_istream<_CharT, _Traits>&
|
|
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
|
hoyt_distribution<_RealType>& __x)
|
|
{
|
|
typedef std::basic_istream<_CharT, _Traits> __istream_type;
|
|
typedef typename __istream_type::ios_base __ios_base;
|
|
|
|
const typename __ios_base::fmtflags __flags = __is.flags();
|
|
__is.flags(__ios_base::dec | __ios_base::skipws);
|
|
|
|
_RealType __q, __omega;
|
|
__is >> __q >> __omega;
|
|
__is >> __x._M_ad;
|
|
__is >> __x._M_ed;
|
|
__x.param(typename hoyt_distribution<_RealType>::
|
|
param_type(__q, __omega));
|
|
|
|
__is.flags(__flags);
|
|
return __is;
|
|
}
|
|
|
|
|
|
template<typename _RealType>
|
|
template<typename _OutputIterator,
|
|
typename _UniformRandomNumberGenerator>
|
|
void
|
|
triangular_distribution<_RealType>::
|
|
__generate_impl(_OutputIterator __f, _OutputIterator __t,
|
|
_UniformRandomNumberGenerator& __urng,
|
|
const param_type& __param)
|
|
{
|
|
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
|
|
result_type>)
|
|
|
|
while (__f != __t)
|
|
*__f++ = this->operator()(__urng, __param);
|
|
}
|
|
|
|
template<typename _RealType, typename _CharT, typename _Traits>
|
|
std::basic_ostream<_CharT, _Traits>&
|
|
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
|
const __gnu_cxx::triangular_distribution<_RealType>& __x)
|
|
{
|
|
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
|
|
typedef typename __ostream_type::ios_base __ios_base;
|
|
|
|
const typename __ios_base::fmtflags __flags = __os.flags();
|
|
const _CharT __fill = __os.fill();
|
|
const std::streamsize __precision = __os.precision();
|
|
const _CharT __space = __os.widen(' ');
|
|
__os.flags(__ios_base::scientific | __ios_base::left);
|
|
__os.fill(__space);
|
|
__os.precision(std::numeric_limits<_RealType>::max_digits10);
|
|
|
|
__os << __x.a() << __space << __x.b() << __space << __x.c();
|
|
|
|
__os.flags(__flags);
|
|
__os.fill(__fill);
|
|
__os.precision(__precision);
|
|
return __os;
|
|
}
|
|
|
|
template<typename _RealType, typename _CharT, typename _Traits>
|
|
std::basic_istream<_CharT, _Traits>&
|
|
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
|
__gnu_cxx::triangular_distribution<_RealType>& __x)
|
|
{
|
|
typedef std::basic_istream<_CharT, _Traits> __istream_type;
|
|
typedef typename __istream_type::ios_base __ios_base;
|
|
|
|
const typename __ios_base::fmtflags __flags = __is.flags();
|
|
__is.flags(__ios_base::dec | __ios_base::skipws);
|
|
|
|
_RealType __a, __b, __c;
|
|
__is >> __a >> __b >> __c;
|
|
__x.param(typename __gnu_cxx::triangular_distribution<_RealType>::
|
|
param_type(__a, __b, __c));
|
|
|
|
__is.flags(__flags);
|
|
return __is;
|
|
}
|
|
|
|
|
|
template<typename _RealType>
|
|
template<typename _UniformRandomNumberGenerator>
|
|
typename von_mises_distribution<_RealType>::result_type
|
|
von_mises_distribution<_RealType>::
|
|
operator()(_UniformRandomNumberGenerator& __urng,
|
|
const param_type& __p)
|
|
{
|
|
const result_type __pi
|
|
= __gnu_cxx::__math_constants<result_type>::__pi;
|
|
std::__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
|
|
__aurng(__urng);
|
|
|
|
result_type __f;
|
|
while (1)
|
|
{
|
|
result_type __rnd = std::cos(__pi * __aurng());
|
|
__f = (result_type(1) + __p._M_r * __rnd) / (__p._M_r + __rnd);
|
|
result_type __c = __p._M_kappa * (__p._M_r - __f);
|
|
|
|
result_type __rnd2 = __aurng();
|
|
if (__c * (result_type(2) - __c) > __rnd2)
|
|
break;
|
|
if (std::log(__c / __rnd2) >= __c - result_type(1))
|
|
break;
|
|
}
|
|
|
|
result_type __res = std::acos(__f);
|
|
#if _GLIBCXX_USE_C99_MATH_TR1
|
|
__res = std::copysign(__res, __aurng() - result_type(0.5));
|
|
#else
|
|
if (__aurng() < result_type(0.5))
|
|
__res = -__res;
|
|
#endif
|
|
__res += __p._M_mu;
|
|
if (__res > __pi)
|
|
__res -= result_type(2) * __pi;
|
|
else if (__res < -__pi)
|
|
__res += result_type(2) * __pi;
|
|
return __res;
|
|
}
|
|
|
|
template<typename _RealType>
|
|
template<typename _OutputIterator,
|
|
typename _UniformRandomNumberGenerator>
|
|
void
|
|
von_mises_distribution<_RealType>::
|
|
__generate_impl(_OutputIterator __f, _OutputIterator __t,
|
|
_UniformRandomNumberGenerator& __urng,
|
|
const param_type& __param)
|
|
{
|
|
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
|
|
result_type>)
|
|
|
|
while (__f != __t)
|
|
*__f++ = this->operator()(__urng, __param);
|
|
}
|
|
|
|
template<typename _RealType, typename _CharT, typename _Traits>
|
|
std::basic_ostream<_CharT, _Traits>&
|
|
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
|
const __gnu_cxx::von_mises_distribution<_RealType>& __x)
|
|
{
|
|
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
|
|
typedef typename __ostream_type::ios_base __ios_base;
|
|
|
|
const typename __ios_base::fmtflags __flags = __os.flags();
|
|
const _CharT __fill = __os.fill();
|
|
const std::streamsize __precision = __os.precision();
|
|
const _CharT __space = __os.widen(' ');
|
|
__os.flags(__ios_base::scientific | __ios_base::left);
|
|
__os.fill(__space);
|
|
__os.precision(std::numeric_limits<_RealType>::max_digits10);
|
|
|
|
__os << __x.mu() << __space << __x.kappa();
|
|
|
|
__os.flags(__flags);
|
|
__os.fill(__fill);
|
|
__os.precision(__precision);
|
|
return __os;
|
|
}
|
|
|
|
template<typename _RealType, typename _CharT, typename _Traits>
|
|
std::basic_istream<_CharT, _Traits>&
|
|
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
|
__gnu_cxx::von_mises_distribution<_RealType>& __x)
|
|
{
|
|
typedef std::basic_istream<_CharT, _Traits> __istream_type;
|
|
typedef typename __istream_type::ios_base __ios_base;
|
|
|
|
const typename __ios_base::fmtflags __flags = __is.flags();
|
|
__is.flags(__ios_base::dec | __ios_base::skipws);
|
|
|
|
_RealType __mu, __kappa;
|
|
__is >> __mu >> __kappa;
|
|
__x.param(typename __gnu_cxx::von_mises_distribution<_RealType>::
|
|
param_type(__mu, __kappa));
|
|
|
|
__is.flags(__flags);
|
|
return __is;
|
|
}
|
|
|
|
|
|
template<typename _UIntType>
|
|
template<typename _UniformRandomNumberGenerator>
|
|
typename hypergeometric_distribution<_UIntType>::result_type
|
|
hypergeometric_distribution<_UIntType>::
|
|
operator()(_UniformRandomNumberGenerator& __urng,
|
|
const param_type& __param)
|
|
{
|
|
std::__detail::_Adaptor<_UniformRandomNumberGenerator, double>
|
|
__aurng(__urng);
|
|
|
|
result_type __a = __param.successful_size();
|
|
result_type __b = __param.total_size();
|
|
result_type __k = 0;
|
|
|
|
if (__param.total_draws() < __param.total_size() / 2)
|
|
{
|
|
for (result_type __i = 0; __i < __param.total_draws(); ++__i)
|
|
{
|
|
if (__b * __aurng() < __a)
|
|
{
|
|
++__k;
|
|
if (__k == __param.successful_size())
|
|
return __k;
|
|
--__a;
|
|
}
|
|
--__b;
|
|
}
|
|
return __k;
|
|
}
|
|
else
|
|
{
|
|
for (result_type __i = 0; __i < __param.unsuccessful_size(); ++__i)
|
|
{
|
|
if (__b * __aurng() < __a)
|
|
{
|
|
++__k;
|
|
if (__k == __param.successful_size())
|
|
return __param.successful_size() - __k;
|
|
--__a;
|
|
}
|
|
--__b;
|
|
}
|
|
return __param.successful_size() - __k;
|
|
}
|
|
}
|
|
|
|
template<typename _UIntType>
|
|
template<typename _OutputIterator,
|
|
typename _UniformRandomNumberGenerator>
|
|
void
|
|
hypergeometric_distribution<_UIntType>::
|
|
__generate_impl(_OutputIterator __f, _OutputIterator __t,
|
|
_UniformRandomNumberGenerator& __urng,
|
|
const param_type& __param)
|
|
{
|
|
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
|
|
result_type>)
|
|
|
|
while (__f != __t)
|
|
*__f++ = this->operator()(__urng);
|
|
}
|
|
|
|
template<typename _UIntType, typename _CharT, typename _Traits>
|
|
std::basic_ostream<_CharT, _Traits>&
|
|
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
|
const __gnu_cxx::hypergeometric_distribution<_UIntType>& __x)
|
|
{
|
|
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
|
|
typedef typename __ostream_type::ios_base __ios_base;
|
|
|
|
const typename __ios_base::fmtflags __flags = __os.flags();
|
|
const _CharT __fill = __os.fill();
|
|
const std::streamsize __precision = __os.precision();
|
|
const _CharT __space = __os.widen(' ');
|
|
__os.flags(__ios_base::scientific | __ios_base::left);
|
|
__os.fill(__space);
|
|
__os.precision(std::numeric_limits<_UIntType>::max_digits10);
|
|
|
|
__os << __x.total_size() << __space << __x.successful_size() << __space
|
|
<< __x.total_draws();
|
|
|
|
__os.flags(__flags);
|
|
__os.fill(__fill);
|
|
__os.precision(__precision);
|
|
return __os;
|
|
}
|
|
|
|
template<typename _UIntType, typename _CharT, typename _Traits>
|
|
std::basic_istream<_CharT, _Traits>&
|
|
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
|
__gnu_cxx::hypergeometric_distribution<_UIntType>& __x)
|
|
{
|
|
typedef std::basic_istream<_CharT, _Traits> __istream_type;
|
|
typedef typename __istream_type::ios_base __ios_base;
|
|
|
|
const typename __ios_base::fmtflags __flags = __is.flags();
|
|
__is.flags(__ios_base::dec | __ios_base::skipws);
|
|
|
|
_UIntType __total_size, __successful_size, __total_draws;
|
|
__is >> __total_size >> __successful_size >> __total_draws;
|
|
__x.param(typename __gnu_cxx::hypergeometric_distribution<_UIntType>::
|
|
param_type(__total_size, __successful_size, __total_draws));
|
|
|
|
__is.flags(__flags);
|
|
return __is;
|
|
}
|
|
|
|
|
|
template<typename _RealType>
|
|
template<typename _UniformRandomNumberGenerator>
|
|
typename logistic_distribution<_RealType>::result_type
|
|
logistic_distribution<_RealType>::
|
|
operator()(_UniformRandomNumberGenerator& __urng,
|
|
const param_type& __p)
|
|
{
|
|
std::__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
|
|
__aurng(__urng);
|
|
|
|
result_type __arg = result_type(1);
|
|
while (__arg == result_type(1) || __arg == result_type(0))
|
|
__arg = __aurng();
|
|
return __p.a()
|
|
+ __p.b() * std::log(__arg / (result_type(1) - __arg));
|
|
}
|
|
|
|
template<typename _RealType>
|
|
template<typename _OutputIterator,
|
|
typename _UniformRandomNumberGenerator>
|
|
void
|
|
logistic_distribution<_RealType>::
|
|
__generate_impl(_OutputIterator __f, _OutputIterator __t,
|
|
_UniformRandomNumberGenerator& __urng,
|
|
const param_type& __p)
|
|
{
|
|
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
|
|
result_type>)
|
|
|
|
std::__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
|
|
__aurng(__urng);
|
|
|
|
while (__f != __t)
|
|
{
|
|
result_type __arg = result_type(1);
|
|
while (__arg == result_type(1) || __arg == result_type(0))
|
|
__arg = __aurng();
|
|
*__f++ = __p.a()
|
|
+ __p.b() * std::log(__arg / (result_type(1) - __arg));
|
|
}
|
|
}
|
|
|
|
template<typename _RealType, typename _CharT, typename _Traits>
|
|
std::basic_ostream<_CharT, _Traits>&
|
|
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
|
const logistic_distribution<_RealType>& __x)
|
|
{
|
|
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
|
|
typedef typename __ostream_type::ios_base __ios_base;
|
|
|
|
const typename __ios_base::fmtflags __flags = __os.flags();
|
|
const _CharT __fill = __os.fill();
|
|
const std::streamsize __precision = __os.precision();
|
|
const _CharT __space = __os.widen(' ');
|
|
__os.flags(__ios_base::scientific | __ios_base::left);
|
|
__os.fill(__space);
|
|
__os.precision(std::numeric_limits<_RealType>::max_digits10);
|
|
|
|
__os << __x.a() << __space << __x.b();
|
|
|
|
__os.flags(__flags);
|
|
__os.fill(__fill);
|
|
__os.precision(__precision);
|
|
return __os;
|
|
}
|
|
|
|
template<typename _RealType, typename _CharT, typename _Traits>
|
|
std::basic_istream<_CharT, _Traits>&
|
|
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
|
logistic_distribution<_RealType>& __x)
|
|
{
|
|
typedef std::basic_istream<_CharT, _Traits> __istream_type;
|
|
typedef typename __istream_type::ios_base __ios_base;
|
|
|
|
const typename __ios_base::fmtflags __flags = __is.flags();
|
|
__is.flags(__ios_base::dec | __ios_base::skipws);
|
|
|
|
_RealType __a, __b;
|
|
__is >> __a >> __b;
|
|
__x.param(typename logistic_distribution<_RealType>::
|
|
param_type(__a, __b));
|
|
|
|
__is.flags(__flags);
|
|
return __is;
|
|
}
|
|
|
|
|
|
namespace {
|
|
|
|
// Helper class for the uniform_on_sphere_distribution generation
|
|
// function.
|
|
template<std::size_t _Dimen, typename _RealType>
|
|
class uniform_on_sphere_helper
|
|
{
|
|
typedef typename uniform_on_sphere_distribution<_Dimen, _RealType>::
|
|
result_type result_type;
|
|
|
|
public:
|
|
template<typename _NormalDistribution,
|
|
typename _UniformRandomNumberGenerator>
|
|
result_type operator()(_NormalDistribution& __nd,
|
|
_UniformRandomNumberGenerator& __urng)
|
|
{
|
|
result_type __ret;
|
|
typename result_type::value_type __norm;
|
|
|
|
do
|
|
{
|
|
auto __sum = _RealType(0);
|
|
|
|
std::generate(__ret.begin(), __ret.end(),
|
|
[&__nd, &__urng, &__sum](){
|
|
_RealType __t = __nd(__urng);
|
|
__sum += __t * __t;
|
|
return __t; });
|
|
__norm = std::sqrt(__sum);
|
|
}
|
|
while (__norm == _RealType(0) || ! __builtin_isfinite(__norm));
|
|
|
|
std::transform(__ret.begin(), __ret.end(), __ret.begin(),
|
|
[__norm](_RealType __val){ return __val / __norm; });
|
|
|
|
return __ret;
|
|
}
|
|
};
|
|
|
|
|
|
template<typename _RealType>
|
|
class uniform_on_sphere_helper<2, _RealType>
|
|
{
|
|
typedef typename uniform_on_sphere_distribution<2, _RealType>::
|
|
result_type result_type;
|
|
|
|
public:
|
|
template<typename _NormalDistribution,
|
|
typename _UniformRandomNumberGenerator>
|
|
result_type operator()(_NormalDistribution&,
|
|
_UniformRandomNumberGenerator& __urng)
|
|
{
|
|
result_type __ret;
|
|
_RealType __sq;
|
|
std::__detail::_Adaptor<_UniformRandomNumberGenerator,
|
|
_RealType> __aurng(__urng);
|
|
|
|
do
|
|
{
|
|
__ret[0] = _RealType(2) * __aurng() - _RealType(1);
|
|
__ret[1] = _RealType(2) * __aurng() - _RealType(1);
|
|
|
|
__sq = __ret[0] * __ret[0] + __ret[1] * __ret[1];
|
|
}
|
|
while (__sq == _RealType(0) || __sq > _RealType(1));
|
|
|
|
#if _GLIBCXX_USE_C99_MATH_TR1
|
|
// Yes, we do not just use sqrt(__sq) because hypot() is more
|
|
// accurate.
|
|
auto __norm = std::hypot(__ret[0], __ret[1]);
|
|
#else
|
|
auto __norm = std::sqrt(__sq);
|
|
#endif
|
|
__ret[0] /= __norm;
|
|
__ret[1] /= __norm;
|
|
|
|
return __ret;
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
|
|
template<std::size_t _Dimen, typename _RealType>
|
|
template<typename _UniformRandomNumberGenerator>
|
|
typename uniform_on_sphere_distribution<_Dimen, _RealType>::result_type
|
|
uniform_on_sphere_distribution<_Dimen, _RealType>::
|
|
operator()(_UniformRandomNumberGenerator& __urng,
|
|
const param_type& __p)
|
|
{
|
|
uniform_on_sphere_helper<_Dimen, _RealType> __helper;
|
|
return __helper(_M_nd, __urng);
|
|
}
|
|
|
|
template<std::size_t _Dimen, typename _RealType>
|
|
template<typename _OutputIterator,
|
|
typename _UniformRandomNumberGenerator>
|
|
void
|
|
uniform_on_sphere_distribution<_Dimen, _RealType>::
|
|
__generate_impl(_OutputIterator __f, _OutputIterator __t,
|
|
_UniformRandomNumberGenerator& __urng,
|
|
const param_type& __param)
|
|
{
|
|
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
|
|
result_type>)
|
|
|
|
while (__f != __t)
|
|
*__f++ = this->operator()(__urng, __param);
|
|
}
|
|
|
|
template<std::size_t _Dimen, typename _RealType, typename _CharT,
|
|
typename _Traits>
|
|
std::basic_ostream<_CharT, _Traits>&
|
|
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
|
const __gnu_cxx::uniform_on_sphere_distribution<_Dimen,
|
|
_RealType>& __x)
|
|
{
|
|
return __os << __x._M_nd;
|
|
}
|
|
|
|
template<std::size_t _Dimen, typename _RealType, typename _CharT,
|
|
typename _Traits>
|
|
std::basic_istream<_CharT, _Traits>&
|
|
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
|
__gnu_cxx::uniform_on_sphere_distribution<_Dimen,
|
|
_RealType>& __x)
|
|
{
|
|
return __is >> __x._M_nd;
|
|
}
|
|
|
|
|
|
namespace {
|
|
|
|
// Helper class for the uniform_inside_sphere_distribution generation
|
|
// function.
|
|
template<std::size_t _Dimen, bool _SmallDimen, typename _RealType>
|
|
class uniform_inside_sphere_helper;
|
|
|
|
template<std::size_t _Dimen, typename _RealType>
|
|
class uniform_inside_sphere_helper<_Dimen, false, _RealType>
|
|
{
|
|
using result_type
|
|
= typename uniform_inside_sphere_distribution<_Dimen, _RealType>::
|
|
result_type;
|
|
|
|
public:
|
|
template<typename _UniformOnSphereDistribution,
|
|
typename _UniformRandomNumberGenerator>
|
|
result_type
|
|
operator()(_UniformOnSphereDistribution& __uosd,
|
|
_UniformRandomNumberGenerator& __urng,
|
|
_RealType __radius)
|
|
{
|
|
std::__detail::_Adaptor<_UniformRandomNumberGenerator,
|
|
_RealType> __aurng(__urng);
|
|
|
|
_RealType __pow = 1 / _RealType(_Dimen);
|
|
_RealType __urt = __radius * std::pow(__aurng(), __pow);
|
|
result_type __ret = __uosd(__aurng);
|
|
|
|
std::transform(__ret.begin(), __ret.end(), __ret.begin(),
|
|
[__urt](_RealType __val)
|
|
{ return __val * __urt; });
|
|
|
|
return __ret;
|
|
}
|
|
};
|
|
|
|
// Helper class for the uniform_inside_sphere_distribution generation
|
|
// function specialized for small dimensions.
|
|
template<std::size_t _Dimen, typename _RealType>
|
|
class uniform_inside_sphere_helper<_Dimen, true, _RealType>
|
|
{
|
|
using result_type
|
|
= typename uniform_inside_sphere_distribution<_Dimen, _RealType>::
|
|
result_type;
|
|
|
|
public:
|
|
template<typename _UniformOnSphereDistribution,
|
|
typename _UniformRandomNumberGenerator>
|
|
result_type
|
|
operator()(_UniformOnSphereDistribution&,
|
|
_UniformRandomNumberGenerator& __urng,
|
|
_RealType __radius)
|
|
{
|
|
result_type __ret;
|
|
_RealType __sq;
|
|
_RealType __radsq = __radius * __radius;
|
|
std::__detail::_Adaptor<_UniformRandomNumberGenerator,
|
|
_RealType> __aurng(__urng);
|
|
|
|
do
|
|
{
|
|
__sq = _RealType(0);
|
|
for (int i = 0; i < _Dimen; ++i)
|
|
{
|
|
__ret[i] = _RealType(2) * __aurng() - _RealType(1);
|
|
__sq += __ret[i] * __ret[i];
|
|
}
|
|
}
|
|
while (__sq > _RealType(1));
|
|
|
|
for (int i = 0; i < _Dimen; ++i)
|
|
__ret[i] *= __radius;
|
|
|
|
return __ret;
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
//
|
|
// Experiments have shown that rejection is more efficient than transform
|
|
// for dimensions less than 8.
|
|
//
|
|
template<std::size_t _Dimen, typename _RealType>
|
|
template<typename _UniformRandomNumberGenerator>
|
|
typename uniform_inside_sphere_distribution<_Dimen, _RealType>::result_type
|
|
uniform_inside_sphere_distribution<_Dimen, _RealType>::
|
|
operator()(_UniformRandomNumberGenerator& __urng,
|
|
const param_type& __p)
|
|
{
|
|
uniform_inside_sphere_helper<_Dimen, _Dimen < 8, _RealType> __helper;
|
|
return __helper(_M_uosd, __urng, __p.radius());
|
|
}
|
|
|
|
template<std::size_t _Dimen, typename _RealType>
|
|
template<typename _OutputIterator,
|
|
typename _UniformRandomNumberGenerator>
|
|
void
|
|
uniform_inside_sphere_distribution<_Dimen, _RealType>::
|
|
__generate_impl(_OutputIterator __f, _OutputIterator __t,
|
|
_UniformRandomNumberGenerator& __urng,
|
|
const param_type& __param)
|
|
{
|
|
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
|
|
result_type>)
|
|
|
|
while (__f != __t)
|
|
*__f++ = this->operator()(__urng, __param);
|
|
}
|
|
|
|
template<std::size_t _Dimen, typename _RealType, typename _CharT,
|
|
typename _Traits>
|
|
std::basic_ostream<_CharT, _Traits>&
|
|
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
|
const __gnu_cxx::uniform_inside_sphere_distribution<_Dimen,
|
|
_RealType>& __x)
|
|
{
|
|
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
|
|
typedef typename __ostream_type::ios_base __ios_base;
|
|
|
|
const typename __ios_base::fmtflags __flags = __os.flags();
|
|
const _CharT __fill = __os.fill();
|
|
const std::streamsize __precision = __os.precision();
|
|
const _CharT __space = __os.widen(' ');
|
|
__os.flags(__ios_base::scientific | __ios_base::left);
|
|
__os.fill(__space);
|
|
__os.precision(std::numeric_limits<_RealType>::max_digits10);
|
|
|
|
__os << __x.radius() << __space << __x._M_uosd;
|
|
|
|
__os.flags(__flags);
|
|
__os.fill(__fill);
|
|
__os.precision(__precision);
|
|
|
|
return __os;
|
|
}
|
|
|
|
template<std::size_t _Dimen, typename _RealType, typename _CharT,
|
|
typename _Traits>
|
|
std::basic_istream<_CharT, _Traits>&
|
|
operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
|
__gnu_cxx::uniform_inside_sphere_distribution<_Dimen,
|
|
_RealType>& __x)
|
|
{
|
|
typedef std::basic_istream<_CharT, _Traits> __istream_type;
|
|
typedef typename __istream_type::ios_base __ios_base;
|
|
|
|
const typename __ios_base::fmtflags __flags = __is.flags();
|
|
__is.flags(__ios_base::dec | __ios_base::skipws);
|
|
|
|
_RealType __radius_val;
|
|
__is >> __radius_val >> __x._M_uosd;
|
|
__x.param(typename uniform_inside_sphere_distribution<_Dimen, _RealType>::
|
|
param_type(__radius_val));
|
|
|
|
__is.flags(__flags);
|
|
|
|
return __is;
|
|
}
|
|
|
|
_GLIBCXX_END_NAMESPACE_VERSION
|
|
} // namespace __gnu_cxx
|
|
|
|
|
|
#endif // _EXT_RANDOM_TCC
|