1146 lines
34 KiB
C++
1146 lines
34 KiB
C++
//===-- sanitizer_win.cpp -------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is shared between AddressSanitizer and ThreadSanitizer
|
|
// run-time libraries and implements windows-specific functions from
|
|
// sanitizer_libc.h.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "sanitizer_platform.h"
|
|
#if SANITIZER_WINDOWS
|
|
|
|
#define WIN32_LEAN_AND_MEAN
|
|
#define NOGDI
|
|
#include <windows.h>
|
|
#include <io.h>
|
|
#include <psapi.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "sanitizer_common.h"
|
|
#include "sanitizer_file.h"
|
|
#include "sanitizer_libc.h"
|
|
#include "sanitizer_mutex.h"
|
|
#include "sanitizer_placement_new.h"
|
|
#include "sanitizer_win_defs.h"
|
|
|
|
#if defined(PSAPI_VERSION) && PSAPI_VERSION == 1
|
|
#pragma comment(lib, "psapi")
|
|
#endif
|
|
#if SANITIZER_WIN_TRACE
|
|
#include <traceloggingprovider.h>
|
|
// Windows trace logging provider init
|
|
#pragma comment(lib, "advapi32.lib")
|
|
TRACELOGGING_DECLARE_PROVIDER(g_asan_provider);
|
|
// GUID must be the same in utils/AddressSanitizerLoggingProvider.wprp
|
|
TRACELOGGING_DEFINE_PROVIDER(g_asan_provider, "AddressSanitizerLoggingProvider",
|
|
(0x6c6c766d, 0x3846, 0x4e6a, 0xa4, 0xfb, 0x5b,
|
|
0x53, 0x0b, 0xd0, 0xf3, 0xfa));
|
|
#else
|
|
#define TraceLoggingUnregister(x)
|
|
#endif
|
|
|
|
// A macro to tell the compiler that this part of the code cannot be reached,
|
|
// if the compiler supports this feature. Since we're using this in
|
|
// code that is called when terminating the process, the expansion of the
|
|
// macro should not terminate the process to avoid infinite recursion.
|
|
#if defined(__clang__)
|
|
# define BUILTIN_UNREACHABLE() __builtin_unreachable()
|
|
#elif defined(__GNUC__) && \
|
|
(__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5))
|
|
# define BUILTIN_UNREACHABLE() __builtin_unreachable()
|
|
#elif defined(_MSC_VER)
|
|
# define BUILTIN_UNREACHABLE() __assume(0)
|
|
#else
|
|
# define BUILTIN_UNREACHABLE()
|
|
#endif
|
|
|
|
namespace __sanitizer {
|
|
|
|
#include "sanitizer_syscall_generic.inc"
|
|
|
|
// --------------------- sanitizer_common.h
|
|
uptr GetPageSize() {
|
|
SYSTEM_INFO si;
|
|
GetSystemInfo(&si);
|
|
return si.dwPageSize;
|
|
}
|
|
|
|
uptr GetMmapGranularity() {
|
|
SYSTEM_INFO si;
|
|
GetSystemInfo(&si);
|
|
return si.dwAllocationGranularity;
|
|
}
|
|
|
|
uptr GetMaxUserVirtualAddress() {
|
|
SYSTEM_INFO si;
|
|
GetSystemInfo(&si);
|
|
return (uptr)si.lpMaximumApplicationAddress;
|
|
}
|
|
|
|
uptr GetMaxVirtualAddress() {
|
|
return GetMaxUserVirtualAddress();
|
|
}
|
|
|
|
bool FileExists(const char *filename) {
|
|
return ::GetFileAttributesA(filename) != INVALID_FILE_ATTRIBUTES;
|
|
}
|
|
|
|
uptr internal_getpid() {
|
|
return GetProcessId(GetCurrentProcess());
|
|
}
|
|
|
|
int internal_dlinfo(void *handle, int request, void *p) {
|
|
UNIMPLEMENTED();
|
|
}
|
|
|
|
// In contrast to POSIX, on Windows GetCurrentThreadId()
|
|
// returns a system-unique identifier.
|
|
tid_t GetTid() {
|
|
return GetCurrentThreadId();
|
|
}
|
|
|
|
uptr GetThreadSelf() {
|
|
return GetTid();
|
|
}
|
|
|
|
#if !SANITIZER_GO
|
|
void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
|
|
uptr *stack_bottom) {
|
|
CHECK(stack_top);
|
|
CHECK(stack_bottom);
|
|
MEMORY_BASIC_INFORMATION mbi;
|
|
CHECK_NE(VirtualQuery(&mbi /* on stack */, &mbi, sizeof(mbi)), 0);
|
|
// FIXME: is it possible for the stack to not be a single allocation?
|
|
// Are these values what ASan expects to get (reserved, not committed;
|
|
// including stack guard page) ?
|
|
*stack_top = (uptr)mbi.BaseAddress + mbi.RegionSize;
|
|
*stack_bottom = (uptr)mbi.AllocationBase;
|
|
}
|
|
#endif // #if !SANITIZER_GO
|
|
|
|
void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
|
|
void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
|
|
if (rv == 0)
|
|
ReportMmapFailureAndDie(size, mem_type, "allocate",
|
|
GetLastError(), raw_report);
|
|
return rv;
|
|
}
|
|
|
|
void UnmapOrDie(void *addr, uptr size) {
|
|
if (!size || !addr)
|
|
return;
|
|
|
|
MEMORY_BASIC_INFORMATION mbi;
|
|
CHECK(VirtualQuery(addr, &mbi, sizeof(mbi)));
|
|
|
|
// MEM_RELEASE can only be used to unmap whole regions previously mapped with
|
|
// VirtualAlloc. So we first try MEM_RELEASE since it is better, and if that
|
|
// fails try MEM_DECOMMIT.
|
|
if (VirtualFree(addr, 0, MEM_RELEASE) == 0) {
|
|
if (VirtualFree(addr, size, MEM_DECOMMIT) == 0) {
|
|
Report("ERROR: %s failed to "
|
|
"deallocate 0x%zx (%zd) bytes at address %p (error code: %d)\n",
|
|
SanitizerToolName, size, size, addr, GetLastError());
|
|
CHECK("unable to unmap" && 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void *ReturnNullptrOnOOMOrDie(uptr size, const char *mem_type,
|
|
const char *mmap_type) {
|
|
error_t last_error = GetLastError();
|
|
if (last_error == ERROR_NOT_ENOUGH_MEMORY)
|
|
return nullptr;
|
|
ReportMmapFailureAndDie(size, mem_type, mmap_type, last_error);
|
|
}
|
|
|
|
void *MmapOrDieOnFatalError(uptr size, const char *mem_type) {
|
|
void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
|
|
if (rv == 0)
|
|
return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
|
|
return rv;
|
|
}
|
|
|
|
// We want to map a chunk of address space aligned to 'alignment'.
|
|
void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
|
|
const char *mem_type) {
|
|
CHECK(IsPowerOfTwo(size));
|
|
CHECK(IsPowerOfTwo(alignment));
|
|
|
|
// Windows will align our allocations to at least 64K.
|
|
alignment = Max(alignment, GetMmapGranularity());
|
|
|
|
uptr mapped_addr =
|
|
(uptr)VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
|
|
if (!mapped_addr)
|
|
return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
|
|
|
|
// If we got it right on the first try, return. Otherwise, unmap it and go to
|
|
// the slow path.
|
|
if (IsAligned(mapped_addr, alignment))
|
|
return (void*)mapped_addr;
|
|
if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
|
|
ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
|
|
|
|
// If we didn't get an aligned address, overallocate, find an aligned address,
|
|
// unmap, and try to allocate at that aligned address.
|
|
int retries = 0;
|
|
const int kMaxRetries = 10;
|
|
for (; retries < kMaxRetries &&
|
|
(mapped_addr == 0 || !IsAligned(mapped_addr, alignment));
|
|
retries++) {
|
|
// Overallocate size + alignment bytes.
|
|
mapped_addr =
|
|
(uptr)VirtualAlloc(0, size + alignment, MEM_RESERVE, PAGE_NOACCESS);
|
|
if (!mapped_addr)
|
|
return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
|
|
|
|
// Find the aligned address.
|
|
uptr aligned_addr = RoundUpTo(mapped_addr, alignment);
|
|
|
|
// Free the overallocation.
|
|
if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
|
|
ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
|
|
|
|
// Attempt to allocate exactly the number of bytes we need at the aligned
|
|
// address. This may fail for a number of reasons, in which case we continue
|
|
// the loop.
|
|
mapped_addr = (uptr)VirtualAlloc((void *)aligned_addr, size,
|
|
MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
|
|
}
|
|
|
|
// Fail if we can't make this work quickly.
|
|
if (retries == kMaxRetries && mapped_addr == 0)
|
|
return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
|
|
|
|
return (void *)mapped_addr;
|
|
}
|
|
|
|
bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name) {
|
|
// FIXME: is this really "NoReserve"? On Win32 this does not matter much,
|
|
// but on Win64 it does.
|
|
(void)name; // unsupported
|
|
#if !SANITIZER_GO && SANITIZER_WINDOWS64
|
|
// On asan/Windows64, use MEM_COMMIT would result in error
|
|
// 1455:ERROR_COMMITMENT_LIMIT.
|
|
// Asan uses exception handler to commit page on demand.
|
|
void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE, PAGE_READWRITE);
|
|
#else
|
|
void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE | MEM_COMMIT,
|
|
PAGE_READWRITE);
|
|
#endif
|
|
if (p == 0) {
|
|
Report("ERROR: %s failed to "
|
|
"allocate %p (%zd) bytes at %p (error code: %d)\n",
|
|
SanitizerToolName, size, size, fixed_addr, GetLastError());
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool MmapFixedSuperNoReserve(uptr fixed_addr, uptr size, const char *name) {
|
|
// FIXME: Windows support large pages too. Might be worth checking
|
|
return MmapFixedNoReserve(fixed_addr, size, name);
|
|
}
|
|
|
|
// Memory space mapped by 'MmapFixedOrDie' must have been reserved by
|
|
// 'MmapFixedNoAccess'.
|
|
void *MmapFixedOrDie(uptr fixed_addr, uptr size, const char *name) {
|
|
void *p = VirtualAlloc((LPVOID)fixed_addr, size,
|
|
MEM_COMMIT, PAGE_READWRITE);
|
|
if (p == 0) {
|
|
char mem_type[30];
|
|
internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
|
|
fixed_addr);
|
|
ReportMmapFailureAndDie(size, mem_type, "allocate", GetLastError());
|
|
}
|
|
return p;
|
|
}
|
|
|
|
// Uses fixed_addr for now.
|
|
// Will use offset instead once we've implemented this function for real.
|
|
uptr ReservedAddressRange::Map(uptr fixed_addr, uptr size, const char *name) {
|
|
return reinterpret_cast<uptr>(MmapFixedOrDieOnFatalError(fixed_addr, size));
|
|
}
|
|
|
|
uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr size,
|
|
const char *name) {
|
|
return reinterpret_cast<uptr>(MmapFixedOrDie(fixed_addr, size));
|
|
}
|
|
|
|
void ReservedAddressRange::Unmap(uptr addr, uptr size) {
|
|
// Only unmap if it covers the entire range.
|
|
CHECK((addr == reinterpret_cast<uptr>(base_)) && (size == size_));
|
|
// We unmap the whole range, just null out the base.
|
|
base_ = nullptr;
|
|
size_ = 0;
|
|
UnmapOrDie(reinterpret_cast<void*>(addr), size);
|
|
}
|
|
|
|
void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size, const char *name) {
|
|
void *p = VirtualAlloc((LPVOID)fixed_addr, size,
|
|
MEM_COMMIT, PAGE_READWRITE);
|
|
if (p == 0) {
|
|
char mem_type[30];
|
|
internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
|
|
fixed_addr);
|
|
return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
|
|
}
|
|
return p;
|
|
}
|
|
|
|
void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
|
|
// FIXME: make this really NoReserve?
|
|
return MmapOrDie(size, mem_type);
|
|
}
|
|
|
|
uptr ReservedAddressRange::Init(uptr size, const char *name, uptr fixed_addr) {
|
|
base_ = fixed_addr ? MmapFixedNoAccess(fixed_addr, size) : MmapNoAccess(size);
|
|
size_ = size;
|
|
name_ = name;
|
|
(void)os_handle_; // unsupported
|
|
return reinterpret_cast<uptr>(base_);
|
|
}
|
|
|
|
|
|
void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
|
|
(void)name; // unsupported
|
|
void *res = VirtualAlloc((LPVOID)fixed_addr, size,
|
|
MEM_RESERVE, PAGE_NOACCESS);
|
|
if (res == 0)
|
|
Report("WARNING: %s failed to "
|
|
"mprotect %p (%zd) bytes at %p (error code: %d)\n",
|
|
SanitizerToolName, size, size, fixed_addr, GetLastError());
|
|
return res;
|
|
}
|
|
|
|
void *MmapNoAccess(uptr size) {
|
|
void *res = VirtualAlloc(nullptr, size, MEM_RESERVE, PAGE_NOACCESS);
|
|
if (res == 0)
|
|
Report("WARNING: %s failed to "
|
|
"mprotect %p (%zd) bytes (error code: %d)\n",
|
|
SanitizerToolName, size, size, GetLastError());
|
|
return res;
|
|
}
|
|
|
|
bool MprotectNoAccess(uptr addr, uptr size) {
|
|
DWORD old_protection;
|
|
return VirtualProtect((LPVOID)addr, size, PAGE_NOACCESS, &old_protection);
|
|
}
|
|
|
|
void ReleaseMemoryPagesToOS(uptr beg, uptr end) {
|
|
// This is almost useless on 32-bits.
|
|
// FIXME: add madvise-analog when we move to 64-bits.
|
|
}
|
|
|
|
void SetShadowRegionHugePageMode(uptr addr, uptr size) {
|
|
// FIXME: probably similar to ReleaseMemoryToOS.
|
|
}
|
|
|
|
bool DontDumpShadowMemory(uptr addr, uptr length) {
|
|
// This is almost useless on 32-bits.
|
|
// FIXME: add madvise-analog when we move to 64-bits.
|
|
return true;
|
|
}
|
|
|
|
uptr MapDynamicShadow(uptr shadow_size_bytes, uptr shadow_scale,
|
|
uptr min_shadow_base_alignment,
|
|
UNUSED uptr &high_mem_end) {
|
|
const uptr granularity = GetMmapGranularity();
|
|
const uptr alignment =
|
|
Max<uptr>(granularity << shadow_scale, 1ULL << min_shadow_base_alignment);
|
|
const uptr left_padding =
|
|
Max<uptr>(granularity, 1ULL << min_shadow_base_alignment);
|
|
uptr space_size = shadow_size_bytes + left_padding;
|
|
uptr shadow_start = FindAvailableMemoryRange(space_size, alignment,
|
|
granularity, nullptr, nullptr);
|
|
CHECK_NE((uptr)0, shadow_start);
|
|
CHECK(IsAligned(shadow_start, alignment));
|
|
return shadow_start;
|
|
}
|
|
|
|
uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding,
|
|
uptr *largest_gap_found,
|
|
uptr *max_occupied_addr) {
|
|
uptr address = 0;
|
|
while (true) {
|
|
MEMORY_BASIC_INFORMATION info;
|
|
if (!::VirtualQuery((void*)address, &info, sizeof(info)))
|
|
return 0;
|
|
|
|
if (info.State == MEM_FREE) {
|
|
uptr shadow_address = RoundUpTo((uptr)info.BaseAddress + left_padding,
|
|
alignment);
|
|
if (shadow_address + size < (uptr)info.BaseAddress + info.RegionSize)
|
|
return shadow_address;
|
|
}
|
|
|
|
// Move to the next region.
|
|
address = (uptr)info.BaseAddress + info.RegionSize;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
bool MemoryRangeIsAvailable(uptr range_start, uptr range_end) {
|
|
MEMORY_BASIC_INFORMATION mbi;
|
|
CHECK(VirtualQuery((void *)range_start, &mbi, sizeof(mbi)));
|
|
return mbi.Protect == PAGE_NOACCESS &&
|
|
(uptr)mbi.BaseAddress + mbi.RegionSize >= range_end;
|
|
}
|
|
|
|
void *MapFileToMemory(const char *file_name, uptr *buff_size) {
|
|
UNIMPLEMENTED();
|
|
}
|
|
|
|
void *MapWritableFileToMemory(void *addr, uptr size, fd_t fd, OFF_T offset) {
|
|
UNIMPLEMENTED();
|
|
}
|
|
|
|
static const int kMaxEnvNameLength = 128;
|
|
static const DWORD kMaxEnvValueLength = 32767;
|
|
|
|
namespace {
|
|
|
|
struct EnvVariable {
|
|
char name[kMaxEnvNameLength];
|
|
char value[kMaxEnvValueLength];
|
|
};
|
|
|
|
} // namespace
|
|
|
|
static const int kEnvVariables = 5;
|
|
static EnvVariable env_vars[kEnvVariables];
|
|
static int num_env_vars;
|
|
|
|
const char *GetEnv(const char *name) {
|
|
// Note: this implementation caches the values of the environment variables
|
|
// and limits their quantity.
|
|
for (int i = 0; i < num_env_vars; i++) {
|
|
if (0 == internal_strcmp(name, env_vars[i].name))
|
|
return env_vars[i].value;
|
|
}
|
|
CHECK_LT(num_env_vars, kEnvVariables);
|
|
DWORD rv = GetEnvironmentVariableA(name, env_vars[num_env_vars].value,
|
|
kMaxEnvValueLength);
|
|
if (rv > 0 && rv < kMaxEnvValueLength) {
|
|
CHECK_LT(internal_strlen(name), kMaxEnvNameLength);
|
|
internal_strncpy(env_vars[num_env_vars].name, name, kMaxEnvNameLength);
|
|
num_env_vars++;
|
|
return env_vars[num_env_vars - 1].value;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
const char *GetPwd() {
|
|
UNIMPLEMENTED();
|
|
}
|
|
|
|
u32 GetUid() {
|
|
UNIMPLEMENTED();
|
|
}
|
|
|
|
namespace {
|
|
struct ModuleInfo {
|
|
const char *filepath;
|
|
uptr base_address;
|
|
uptr end_address;
|
|
};
|
|
|
|
#if !SANITIZER_GO
|
|
int CompareModulesBase(const void *pl, const void *pr) {
|
|
const ModuleInfo *l = (const ModuleInfo *)pl, *r = (const ModuleInfo *)pr;
|
|
if (l->base_address < r->base_address)
|
|
return -1;
|
|
return l->base_address > r->base_address;
|
|
}
|
|
#endif
|
|
} // namespace
|
|
|
|
#if !SANITIZER_GO
|
|
void DumpProcessMap() {
|
|
Report("Dumping process modules:\n");
|
|
ListOfModules modules;
|
|
modules.init();
|
|
uptr num_modules = modules.size();
|
|
|
|
InternalMmapVector<ModuleInfo> module_infos(num_modules);
|
|
for (size_t i = 0; i < num_modules; ++i) {
|
|
module_infos[i].filepath = modules[i].full_name();
|
|
module_infos[i].base_address = modules[i].ranges().front()->beg;
|
|
module_infos[i].end_address = modules[i].ranges().back()->end;
|
|
}
|
|
qsort(module_infos.data(), num_modules, sizeof(ModuleInfo),
|
|
CompareModulesBase);
|
|
|
|
for (size_t i = 0; i < num_modules; ++i) {
|
|
const ModuleInfo &mi = module_infos[i];
|
|
if (mi.end_address != 0) {
|
|
Printf("\t%p-%p %s\n", mi.base_address, mi.end_address,
|
|
mi.filepath[0] ? mi.filepath : "[no name]");
|
|
} else if (mi.filepath[0]) {
|
|
Printf("\t??\?-??? %s\n", mi.filepath);
|
|
} else {
|
|
Printf("\t???\n");
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void DisableCoreDumperIfNecessary() {
|
|
// Do nothing.
|
|
}
|
|
|
|
void ReExec() {
|
|
UNIMPLEMENTED();
|
|
}
|
|
|
|
void PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments *args) {}
|
|
|
|
bool StackSizeIsUnlimited() {
|
|
UNIMPLEMENTED();
|
|
}
|
|
|
|
void SetStackSizeLimitInBytes(uptr limit) {
|
|
UNIMPLEMENTED();
|
|
}
|
|
|
|
bool AddressSpaceIsUnlimited() {
|
|
UNIMPLEMENTED();
|
|
}
|
|
|
|
void SetAddressSpaceUnlimited() {
|
|
UNIMPLEMENTED();
|
|
}
|
|
|
|
bool IsPathSeparator(const char c) {
|
|
return c == '\\' || c == '/';
|
|
}
|
|
|
|
static bool IsAlpha(char c) {
|
|
c = ToLower(c);
|
|
return c >= 'a' && c <= 'z';
|
|
}
|
|
|
|
bool IsAbsolutePath(const char *path) {
|
|
return path != nullptr && IsAlpha(path[0]) && path[1] == ':' &&
|
|
IsPathSeparator(path[2]);
|
|
}
|
|
|
|
void SleepForSeconds(int seconds) {
|
|
Sleep(seconds * 1000);
|
|
}
|
|
|
|
void SleepForMillis(int millis) {
|
|
Sleep(millis);
|
|
}
|
|
|
|
u64 NanoTime() {
|
|
static LARGE_INTEGER frequency = {};
|
|
LARGE_INTEGER counter;
|
|
if (UNLIKELY(frequency.QuadPart == 0)) {
|
|
QueryPerformanceFrequency(&frequency);
|
|
CHECK_NE(frequency.QuadPart, 0);
|
|
}
|
|
QueryPerformanceCounter(&counter);
|
|
counter.QuadPart *= 1000ULL * 1000000ULL;
|
|
counter.QuadPart /= frequency.QuadPart;
|
|
return counter.QuadPart;
|
|
}
|
|
|
|
u64 MonotonicNanoTime() { return NanoTime(); }
|
|
|
|
void Abort() {
|
|
internal__exit(3);
|
|
}
|
|
|
|
#if !SANITIZER_GO
|
|
// Read the file to extract the ImageBase field from the PE header. If ASLR is
|
|
// disabled and this virtual address is available, the loader will typically
|
|
// load the image at this address. Therefore, we call it the preferred base. Any
|
|
// addresses in the DWARF typically assume that the object has been loaded at
|
|
// this address.
|
|
static uptr GetPreferredBase(const char *modname) {
|
|
fd_t fd = OpenFile(modname, RdOnly, nullptr);
|
|
if (fd == kInvalidFd)
|
|
return 0;
|
|
FileCloser closer(fd);
|
|
|
|
// Read just the DOS header.
|
|
IMAGE_DOS_HEADER dos_header;
|
|
uptr bytes_read;
|
|
if (!ReadFromFile(fd, &dos_header, sizeof(dos_header), &bytes_read) ||
|
|
bytes_read != sizeof(dos_header))
|
|
return 0;
|
|
|
|
// The file should start with the right signature.
|
|
if (dos_header.e_magic != IMAGE_DOS_SIGNATURE)
|
|
return 0;
|
|
|
|
// The layout at e_lfanew is:
|
|
// "PE\0\0"
|
|
// IMAGE_FILE_HEADER
|
|
// IMAGE_OPTIONAL_HEADER
|
|
// Seek to e_lfanew and read all that data.
|
|
char buf[4 + sizeof(IMAGE_FILE_HEADER) + sizeof(IMAGE_OPTIONAL_HEADER)];
|
|
if (::SetFilePointer(fd, dos_header.e_lfanew, nullptr, FILE_BEGIN) ==
|
|
INVALID_SET_FILE_POINTER)
|
|
return 0;
|
|
if (!ReadFromFile(fd, &buf[0], sizeof(buf), &bytes_read) ||
|
|
bytes_read != sizeof(buf))
|
|
return 0;
|
|
|
|
// Check for "PE\0\0" before the PE header.
|
|
char *pe_sig = &buf[0];
|
|
if (internal_memcmp(pe_sig, "PE\0\0", 4) != 0)
|
|
return 0;
|
|
|
|
// Skip over IMAGE_FILE_HEADER. We could do more validation here if we wanted.
|
|
IMAGE_OPTIONAL_HEADER *pe_header =
|
|
(IMAGE_OPTIONAL_HEADER *)(pe_sig + 4 + sizeof(IMAGE_FILE_HEADER));
|
|
|
|
// Check for more magic in the PE header.
|
|
if (pe_header->Magic != IMAGE_NT_OPTIONAL_HDR_MAGIC)
|
|
return 0;
|
|
|
|
// Finally, return the ImageBase.
|
|
return (uptr)pe_header->ImageBase;
|
|
}
|
|
|
|
void ListOfModules::init() {
|
|
clearOrInit();
|
|
HANDLE cur_process = GetCurrentProcess();
|
|
|
|
// Query the list of modules. Start by assuming there are no more than 256
|
|
// modules and retry if that's not sufficient.
|
|
HMODULE *hmodules = 0;
|
|
uptr modules_buffer_size = sizeof(HMODULE) * 256;
|
|
DWORD bytes_required;
|
|
while (!hmodules) {
|
|
hmodules = (HMODULE *)MmapOrDie(modules_buffer_size, __FUNCTION__);
|
|
CHECK(EnumProcessModules(cur_process, hmodules, modules_buffer_size,
|
|
&bytes_required));
|
|
if (bytes_required > modules_buffer_size) {
|
|
// Either there turned out to be more than 256 hmodules, or new hmodules
|
|
// could have loaded since the last try. Retry.
|
|
UnmapOrDie(hmodules, modules_buffer_size);
|
|
hmodules = 0;
|
|
modules_buffer_size = bytes_required;
|
|
}
|
|
}
|
|
|
|
// |num_modules| is the number of modules actually present,
|
|
size_t num_modules = bytes_required / sizeof(HMODULE);
|
|
for (size_t i = 0; i < num_modules; ++i) {
|
|
HMODULE handle = hmodules[i];
|
|
MODULEINFO mi;
|
|
if (!GetModuleInformation(cur_process, handle, &mi, sizeof(mi)))
|
|
continue;
|
|
|
|
// Get the UTF-16 path and convert to UTF-8.
|
|
wchar_t modname_utf16[kMaxPathLength];
|
|
int modname_utf16_len =
|
|
GetModuleFileNameW(handle, modname_utf16, kMaxPathLength);
|
|
if (modname_utf16_len == 0)
|
|
modname_utf16[0] = '\0';
|
|
char module_name[kMaxPathLength];
|
|
int module_name_len =
|
|
::WideCharToMultiByte(CP_UTF8, 0, modname_utf16, modname_utf16_len + 1,
|
|
&module_name[0], kMaxPathLength, NULL, NULL);
|
|
module_name[module_name_len] = '\0';
|
|
|
|
uptr base_address = (uptr)mi.lpBaseOfDll;
|
|
uptr end_address = (uptr)mi.lpBaseOfDll + mi.SizeOfImage;
|
|
|
|
// Adjust the base address of the module so that we get a VA instead of an
|
|
// RVA when computing the module offset. This helps llvm-symbolizer find the
|
|
// right DWARF CU. In the common case that the image is loaded at it's
|
|
// preferred address, we will now print normal virtual addresses.
|
|
uptr preferred_base = GetPreferredBase(&module_name[0]);
|
|
uptr adjusted_base = base_address - preferred_base;
|
|
|
|
LoadedModule cur_module;
|
|
cur_module.set(module_name, adjusted_base);
|
|
// We add the whole module as one single address range.
|
|
cur_module.addAddressRange(base_address, end_address, /*executable*/ true,
|
|
/*writable*/ true);
|
|
modules_.push_back(cur_module);
|
|
}
|
|
UnmapOrDie(hmodules, modules_buffer_size);
|
|
}
|
|
|
|
void ListOfModules::fallbackInit() { clear(); }
|
|
|
|
// We can't use atexit() directly at __asan_init time as the CRT is not fully
|
|
// initialized at this point. Place the functions into a vector and use
|
|
// atexit() as soon as it is ready for use (i.e. after .CRT$XIC initializers).
|
|
InternalMmapVectorNoCtor<void (*)(void)> atexit_functions;
|
|
|
|
int Atexit(void (*function)(void)) {
|
|
atexit_functions.push_back(function);
|
|
return 0;
|
|
}
|
|
|
|
static int RunAtexit() {
|
|
TraceLoggingUnregister(g_asan_provider);
|
|
int ret = 0;
|
|
for (uptr i = 0; i < atexit_functions.size(); ++i) {
|
|
ret |= atexit(atexit_functions[i]);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#pragma section(".CRT$XID", long, read)
|
|
__declspec(allocate(".CRT$XID")) int (*__run_atexit)() = RunAtexit;
|
|
#endif
|
|
|
|
// ------------------ sanitizer_libc.h
|
|
fd_t OpenFile(const char *filename, FileAccessMode mode, error_t *last_error) {
|
|
// FIXME: Use the wide variants to handle Unicode filenames.
|
|
fd_t res;
|
|
if (mode == RdOnly) {
|
|
res = CreateFileA(filename, GENERIC_READ,
|
|
FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
|
|
nullptr, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr);
|
|
} else if (mode == WrOnly) {
|
|
res = CreateFileA(filename, GENERIC_WRITE, 0, nullptr, CREATE_ALWAYS,
|
|
FILE_ATTRIBUTE_NORMAL, nullptr);
|
|
} else {
|
|
UNIMPLEMENTED();
|
|
}
|
|
CHECK(res != kStdoutFd || kStdoutFd == kInvalidFd);
|
|
CHECK(res != kStderrFd || kStderrFd == kInvalidFd);
|
|
if (res == kInvalidFd && last_error)
|
|
*last_error = GetLastError();
|
|
return res;
|
|
}
|
|
|
|
void CloseFile(fd_t fd) {
|
|
CloseHandle(fd);
|
|
}
|
|
|
|
bool ReadFromFile(fd_t fd, void *buff, uptr buff_size, uptr *bytes_read,
|
|
error_t *error_p) {
|
|
CHECK(fd != kInvalidFd);
|
|
|
|
// bytes_read can't be passed directly to ReadFile:
|
|
// uptr is unsigned long long on 64-bit Windows.
|
|
unsigned long num_read_long;
|
|
|
|
bool success = ::ReadFile(fd, buff, buff_size, &num_read_long, nullptr);
|
|
if (!success && error_p)
|
|
*error_p = GetLastError();
|
|
if (bytes_read)
|
|
*bytes_read = num_read_long;
|
|
return success;
|
|
}
|
|
|
|
bool SupportsColoredOutput(fd_t fd) {
|
|
// FIXME: support colored output.
|
|
return false;
|
|
}
|
|
|
|
bool WriteToFile(fd_t fd, const void *buff, uptr buff_size, uptr *bytes_written,
|
|
error_t *error_p) {
|
|
CHECK(fd != kInvalidFd);
|
|
|
|
// Handle null optional parameters.
|
|
error_t dummy_error;
|
|
error_p = error_p ? error_p : &dummy_error;
|
|
uptr dummy_bytes_written;
|
|
bytes_written = bytes_written ? bytes_written : &dummy_bytes_written;
|
|
|
|
// Initialize output parameters in case we fail.
|
|
*error_p = 0;
|
|
*bytes_written = 0;
|
|
|
|
// Map the conventional Unix fds 1 and 2 to Windows handles. They might be
|
|
// closed, in which case this will fail.
|
|
if (fd == kStdoutFd || fd == kStderrFd) {
|
|
fd = GetStdHandle(fd == kStdoutFd ? STD_OUTPUT_HANDLE : STD_ERROR_HANDLE);
|
|
if (fd == 0) {
|
|
*error_p = ERROR_INVALID_HANDLE;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
DWORD bytes_written_32;
|
|
if (!WriteFile(fd, buff, buff_size, &bytes_written_32, 0)) {
|
|
*error_p = GetLastError();
|
|
return false;
|
|
} else {
|
|
*bytes_written = bytes_written_32;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
uptr internal_sched_yield() {
|
|
Sleep(0);
|
|
return 0;
|
|
}
|
|
|
|
void internal__exit(int exitcode) {
|
|
TraceLoggingUnregister(g_asan_provider);
|
|
// ExitProcess runs some finalizers, so use TerminateProcess to avoid that.
|
|
// The debugger doesn't stop on TerminateProcess like it does on ExitProcess,
|
|
// so add our own breakpoint here.
|
|
if (::IsDebuggerPresent())
|
|
__debugbreak();
|
|
TerminateProcess(GetCurrentProcess(), exitcode);
|
|
BUILTIN_UNREACHABLE();
|
|
}
|
|
|
|
uptr internal_ftruncate(fd_t fd, uptr size) {
|
|
UNIMPLEMENTED();
|
|
}
|
|
|
|
uptr GetRSS() {
|
|
PROCESS_MEMORY_COUNTERS counters;
|
|
if (!GetProcessMemoryInfo(GetCurrentProcess(), &counters, sizeof(counters)))
|
|
return 0;
|
|
return counters.WorkingSetSize;
|
|
}
|
|
|
|
void *internal_start_thread(void *(*func)(void *arg), void *arg) { return 0; }
|
|
void internal_join_thread(void *th) { }
|
|
|
|
// ---------------------- BlockingMutex ---------------- {{{1
|
|
|
|
BlockingMutex::BlockingMutex() {
|
|
CHECK(sizeof(SRWLOCK) <= sizeof(opaque_storage_));
|
|
internal_memset(this, 0, sizeof(*this));
|
|
}
|
|
|
|
void BlockingMutex::Lock() {
|
|
AcquireSRWLockExclusive((PSRWLOCK)opaque_storage_);
|
|
CHECK_EQ(owner_, 0);
|
|
owner_ = GetThreadSelf();
|
|
}
|
|
|
|
void BlockingMutex::Unlock() {
|
|
CheckLocked();
|
|
owner_ = 0;
|
|
ReleaseSRWLockExclusive((PSRWLOCK)opaque_storage_);
|
|
}
|
|
|
|
void BlockingMutex::CheckLocked() {
|
|
CHECK_EQ(owner_, GetThreadSelf());
|
|
}
|
|
|
|
uptr GetTlsSize() {
|
|
return 0;
|
|
}
|
|
|
|
void InitTlsSize() {
|
|
}
|
|
|
|
void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
|
|
uptr *tls_addr, uptr *tls_size) {
|
|
#if SANITIZER_GO
|
|
*stk_addr = 0;
|
|
*stk_size = 0;
|
|
*tls_addr = 0;
|
|
*tls_size = 0;
|
|
#else
|
|
uptr stack_top, stack_bottom;
|
|
GetThreadStackTopAndBottom(main, &stack_top, &stack_bottom);
|
|
*stk_addr = stack_bottom;
|
|
*stk_size = stack_top - stack_bottom;
|
|
*tls_addr = 0;
|
|
*tls_size = 0;
|
|
#endif
|
|
}
|
|
|
|
void ReportFile::Write(const char *buffer, uptr length) {
|
|
SpinMutexLock l(mu);
|
|
ReopenIfNecessary();
|
|
if (!WriteToFile(fd, buffer, length)) {
|
|
// stderr may be closed, but we may be able to print to the debugger
|
|
// instead. This is the case when launching a program from Visual Studio,
|
|
// and the following routine should write to its console.
|
|
OutputDebugStringA(buffer);
|
|
}
|
|
}
|
|
|
|
void SetAlternateSignalStack() {
|
|
// FIXME: Decide what to do on Windows.
|
|
}
|
|
|
|
void UnsetAlternateSignalStack() {
|
|
// FIXME: Decide what to do on Windows.
|
|
}
|
|
|
|
void InstallDeadlySignalHandlers(SignalHandlerType handler) {
|
|
(void)handler;
|
|
// FIXME: Decide what to do on Windows.
|
|
}
|
|
|
|
HandleSignalMode GetHandleSignalMode(int signum) {
|
|
// FIXME: Decide what to do on Windows.
|
|
return kHandleSignalNo;
|
|
}
|
|
|
|
// Check based on flags if we should handle this exception.
|
|
bool IsHandledDeadlyException(DWORD exceptionCode) {
|
|
switch (exceptionCode) {
|
|
case EXCEPTION_ACCESS_VIOLATION:
|
|
case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
|
|
case EXCEPTION_STACK_OVERFLOW:
|
|
case EXCEPTION_DATATYPE_MISALIGNMENT:
|
|
case EXCEPTION_IN_PAGE_ERROR:
|
|
return common_flags()->handle_segv;
|
|
case EXCEPTION_ILLEGAL_INSTRUCTION:
|
|
case EXCEPTION_PRIV_INSTRUCTION:
|
|
case EXCEPTION_BREAKPOINT:
|
|
return common_flags()->handle_sigill;
|
|
case EXCEPTION_FLT_DENORMAL_OPERAND:
|
|
case EXCEPTION_FLT_DIVIDE_BY_ZERO:
|
|
case EXCEPTION_FLT_INEXACT_RESULT:
|
|
case EXCEPTION_FLT_INVALID_OPERATION:
|
|
case EXCEPTION_FLT_OVERFLOW:
|
|
case EXCEPTION_FLT_STACK_CHECK:
|
|
case EXCEPTION_FLT_UNDERFLOW:
|
|
case EXCEPTION_INT_DIVIDE_BY_ZERO:
|
|
case EXCEPTION_INT_OVERFLOW:
|
|
return common_flags()->handle_sigfpe;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool IsAccessibleMemoryRange(uptr beg, uptr size) {
|
|
SYSTEM_INFO si;
|
|
GetNativeSystemInfo(&si);
|
|
uptr page_size = si.dwPageSize;
|
|
uptr page_mask = ~(page_size - 1);
|
|
|
|
for (uptr page = beg & page_mask, end = (beg + size - 1) & page_mask;
|
|
page <= end;) {
|
|
MEMORY_BASIC_INFORMATION info;
|
|
if (VirtualQuery((LPCVOID)page, &info, sizeof(info)) != sizeof(info))
|
|
return false;
|
|
|
|
if (info.Protect == 0 || info.Protect == PAGE_NOACCESS ||
|
|
info.Protect == PAGE_EXECUTE)
|
|
return false;
|
|
|
|
if (info.RegionSize == 0)
|
|
return false;
|
|
|
|
page += info.RegionSize;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool SignalContext::IsStackOverflow() const {
|
|
return (DWORD)GetType() == EXCEPTION_STACK_OVERFLOW;
|
|
}
|
|
|
|
void SignalContext::InitPcSpBp() {
|
|
EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
|
|
CONTEXT *context_record = (CONTEXT *)context;
|
|
|
|
pc = (uptr)exception_record->ExceptionAddress;
|
|
#ifdef _WIN64
|
|
bp = (uptr)context_record->Rbp;
|
|
sp = (uptr)context_record->Rsp;
|
|
#else
|
|
bp = (uptr)context_record->Ebp;
|
|
sp = (uptr)context_record->Esp;
|
|
#endif
|
|
}
|
|
|
|
uptr SignalContext::GetAddress() const {
|
|
EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
|
|
return exception_record->ExceptionInformation[1];
|
|
}
|
|
|
|
bool SignalContext::IsMemoryAccess() const {
|
|
return GetWriteFlag() != SignalContext::UNKNOWN;
|
|
}
|
|
|
|
bool SignalContext::IsTrueFaultingAddress() const {
|
|
// FIXME: Provide real implementation for this. See Linux and Mac variants.
|
|
return IsMemoryAccess();
|
|
}
|
|
|
|
SignalContext::WriteFlag SignalContext::GetWriteFlag() const {
|
|
EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
|
|
// The contents of this array are documented at
|
|
// https://msdn.microsoft.com/en-us/library/windows/desktop/aa363082(v=vs.85).aspx
|
|
// The first element indicates read as 0, write as 1, or execute as 8. The
|
|
// second element is the faulting address.
|
|
switch (exception_record->ExceptionInformation[0]) {
|
|
case 0:
|
|
return SignalContext::READ;
|
|
case 1:
|
|
return SignalContext::WRITE;
|
|
case 8:
|
|
return SignalContext::UNKNOWN;
|
|
}
|
|
return SignalContext::UNKNOWN;
|
|
}
|
|
|
|
void SignalContext::DumpAllRegisters(void *context) {
|
|
// FIXME: Implement this.
|
|
}
|
|
|
|
int SignalContext::GetType() const {
|
|
return static_cast<const EXCEPTION_RECORD *>(siginfo)->ExceptionCode;
|
|
}
|
|
|
|
const char *SignalContext::Describe() const {
|
|
unsigned code = GetType();
|
|
// Get the string description of the exception if this is a known deadly
|
|
// exception.
|
|
switch (code) {
|
|
case EXCEPTION_ACCESS_VIOLATION:
|
|
return "access-violation";
|
|
case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
|
|
return "array-bounds-exceeded";
|
|
case EXCEPTION_STACK_OVERFLOW:
|
|
return "stack-overflow";
|
|
case EXCEPTION_DATATYPE_MISALIGNMENT:
|
|
return "datatype-misalignment";
|
|
case EXCEPTION_IN_PAGE_ERROR:
|
|
return "in-page-error";
|
|
case EXCEPTION_ILLEGAL_INSTRUCTION:
|
|
return "illegal-instruction";
|
|
case EXCEPTION_PRIV_INSTRUCTION:
|
|
return "priv-instruction";
|
|
case EXCEPTION_BREAKPOINT:
|
|
return "breakpoint";
|
|
case EXCEPTION_FLT_DENORMAL_OPERAND:
|
|
return "flt-denormal-operand";
|
|
case EXCEPTION_FLT_DIVIDE_BY_ZERO:
|
|
return "flt-divide-by-zero";
|
|
case EXCEPTION_FLT_INEXACT_RESULT:
|
|
return "flt-inexact-result";
|
|
case EXCEPTION_FLT_INVALID_OPERATION:
|
|
return "flt-invalid-operation";
|
|
case EXCEPTION_FLT_OVERFLOW:
|
|
return "flt-overflow";
|
|
case EXCEPTION_FLT_STACK_CHECK:
|
|
return "flt-stack-check";
|
|
case EXCEPTION_FLT_UNDERFLOW:
|
|
return "flt-underflow";
|
|
case EXCEPTION_INT_DIVIDE_BY_ZERO:
|
|
return "int-divide-by-zero";
|
|
case EXCEPTION_INT_OVERFLOW:
|
|
return "int-overflow";
|
|
}
|
|
return "unknown exception";
|
|
}
|
|
|
|
uptr ReadBinaryName(/*out*/char *buf, uptr buf_len) {
|
|
// FIXME: Actually implement this function.
|
|
CHECK_GT(buf_len, 0);
|
|
buf[0] = 0;
|
|
return 0;
|
|
}
|
|
|
|
uptr ReadLongProcessName(/*out*/char *buf, uptr buf_len) {
|
|
return ReadBinaryName(buf, buf_len);
|
|
}
|
|
|
|
void CheckVMASize() {
|
|
// Do nothing.
|
|
}
|
|
|
|
void InitializePlatformEarly() {
|
|
// Do nothing.
|
|
}
|
|
|
|
void MaybeReexec() {
|
|
// No need to re-exec on Windows.
|
|
}
|
|
|
|
void CheckASLR() {
|
|
// Do nothing
|
|
}
|
|
|
|
void CheckMPROTECT() {
|
|
// Do nothing
|
|
}
|
|
|
|
char **GetArgv() {
|
|
// FIXME: Actually implement this function.
|
|
return 0;
|
|
}
|
|
|
|
char **GetEnviron() {
|
|
// FIXME: Actually implement this function.
|
|
return 0;
|
|
}
|
|
|
|
pid_t StartSubprocess(const char *program, const char *const argv[],
|
|
const char *const envp[], fd_t stdin_fd, fd_t stdout_fd,
|
|
fd_t stderr_fd) {
|
|
// FIXME: implement on this platform
|
|
// Should be implemented based on
|
|
// SymbolizerProcess::StarAtSymbolizerSubprocess
|
|
// from lib/sanitizer_common/sanitizer_symbolizer_win.cpp.
|
|
return -1;
|
|
}
|
|
|
|
bool IsProcessRunning(pid_t pid) {
|
|
// FIXME: implement on this platform.
|
|
return false;
|
|
}
|
|
|
|
int WaitForProcess(pid_t pid) { return -1; }
|
|
|
|
// FIXME implement on this platform.
|
|
void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size) { }
|
|
|
|
void CheckNoDeepBind(const char *filename, int flag) {
|
|
// Do nothing.
|
|
}
|
|
|
|
// FIXME: implement on this platform.
|
|
bool GetRandom(void *buffer, uptr length, bool blocking) {
|
|
UNIMPLEMENTED();
|
|
}
|
|
|
|
u32 GetNumberOfCPUs() {
|
|
SYSTEM_INFO sysinfo = {};
|
|
GetNativeSystemInfo(&sysinfo);
|
|
return sysinfo.dwNumberOfProcessors;
|
|
}
|
|
|
|
#if SANITIZER_WIN_TRACE
|
|
// TODO(mcgov): Rename this project-wide to PlatformLogInit
|
|
void AndroidLogInit(void) {
|
|
HRESULT hr = TraceLoggingRegister(g_asan_provider);
|
|
if (!SUCCEEDED(hr))
|
|
return;
|
|
}
|
|
|
|
void SetAbortMessage(const char *) {}
|
|
|
|
void LogFullErrorReport(const char *buffer) {
|
|
if (common_flags()->log_to_syslog) {
|
|
InternalMmapVector<wchar_t> filename;
|
|
DWORD filename_length = 0;
|
|
do {
|
|
filename.resize(filename.size() + 0x100);
|
|
filename_length =
|
|
GetModuleFileNameW(NULL, filename.begin(), filename.size());
|
|
} while (filename_length >= filename.size());
|
|
TraceLoggingWrite(g_asan_provider, "AsanReportEvent",
|
|
TraceLoggingValue(filename.begin(), "ExecutableName"),
|
|
TraceLoggingValue(buffer, "AsanReportContents"));
|
|
}
|
|
}
|
|
#endif // SANITIZER_WIN_TRACE
|
|
|
|
void InitializePlatformCommonFlags(CommonFlags *cf) {}
|
|
|
|
} // namespace __sanitizer
|
|
|
|
#endif // _WIN32
|