1420 lines
38 KiB
Go
1420 lines
38 KiB
Go
// Copyright 2010 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Package json implements encoding and decoding of JSON as defined in
|
|
// RFC 7159. The mapping between JSON and Go values is described
|
|
// in the documentation for the Marshal and Unmarshal functions.
|
|
//
|
|
// See "JSON and Go" for an introduction to this package:
|
|
// https://golang.org/doc/articles/json_and_go.html
|
|
package json
|
|
|
|
import (
|
|
"bytes"
|
|
"encoding"
|
|
"encoding/base64"
|
|
"fmt"
|
|
"math"
|
|
"reflect"
|
|
"sort"
|
|
"strconv"
|
|
"strings"
|
|
"sync"
|
|
"unicode"
|
|
"unicode/utf8"
|
|
)
|
|
|
|
// Marshal returns the JSON encoding of v.
|
|
//
|
|
// Marshal traverses the value v recursively.
|
|
// If an encountered value implements the Marshaler interface
|
|
// and is not a nil pointer, Marshal calls its MarshalJSON method
|
|
// to produce JSON. If no MarshalJSON method is present but the
|
|
// value implements encoding.TextMarshaler instead, Marshal calls
|
|
// its MarshalText method and encodes the result as a JSON string.
|
|
// The nil pointer exception is not strictly necessary
|
|
// but mimics a similar, necessary exception in the behavior of
|
|
// UnmarshalJSON.
|
|
//
|
|
// Otherwise, Marshal uses the following type-dependent default encodings:
|
|
//
|
|
// Boolean values encode as JSON booleans.
|
|
//
|
|
// Floating point, integer, and Number values encode as JSON numbers.
|
|
//
|
|
// String values encode as JSON strings coerced to valid UTF-8,
|
|
// replacing invalid bytes with the Unicode replacement rune.
|
|
// So that the JSON will be safe to embed inside HTML <script> tags,
|
|
// the string is encoded using HTMLEscape,
|
|
// which replaces "<", ">", "&", U+2028, and U+2029 are escaped
|
|
// to "\u003c","\u003e", "\u0026", "\u2028", and "\u2029".
|
|
// This replacement can be disabled when using an Encoder,
|
|
// by calling SetEscapeHTML(false).
|
|
//
|
|
// Array and slice values encode as JSON arrays, except that
|
|
// []byte encodes as a base64-encoded string, and a nil slice
|
|
// encodes as the null JSON value.
|
|
//
|
|
// Struct values encode as JSON objects.
|
|
// Each exported struct field becomes a member of the object, using the
|
|
// field name as the object key, unless the field is omitted for one of the
|
|
// reasons given below.
|
|
//
|
|
// The encoding of each struct field can be customized by the format string
|
|
// stored under the "json" key in the struct field's tag.
|
|
// The format string gives the name of the field, possibly followed by a
|
|
// comma-separated list of options. The name may be empty in order to
|
|
// specify options without overriding the default field name.
|
|
//
|
|
// The "omitempty" option specifies that the field should be omitted
|
|
// from the encoding if the field has an empty value, defined as
|
|
// false, 0, a nil pointer, a nil interface value, and any empty array,
|
|
// slice, map, or string.
|
|
//
|
|
// As a special case, if the field tag is "-", the field is always omitted.
|
|
// Note that a field with name "-" can still be generated using the tag "-,".
|
|
//
|
|
// Examples of struct field tags and their meanings:
|
|
//
|
|
// // Field appears in JSON as key "myName".
|
|
// Field int `json:"myName"`
|
|
//
|
|
// // Field appears in JSON as key "myName" and
|
|
// // the field is omitted from the object if its value is empty,
|
|
// // as defined above.
|
|
// Field int `json:"myName,omitempty"`
|
|
//
|
|
// // Field appears in JSON as key "Field" (the default), but
|
|
// // the field is skipped if empty.
|
|
// // Note the leading comma.
|
|
// Field int `json:",omitempty"`
|
|
//
|
|
// // Field is ignored by this package.
|
|
// Field int `json:"-"`
|
|
//
|
|
// // Field appears in JSON as key "-".
|
|
// Field int `json:"-,"`
|
|
//
|
|
// The "string" option signals that a field is stored as JSON inside a
|
|
// JSON-encoded string. It applies only to fields of string, floating point,
|
|
// integer, or boolean types. This extra level of encoding is sometimes used
|
|
// when communicating with JavaScript programs:
|
|
//
|
|
// Int64String int64 `json:",string"`
|
|
//
|
|
// The key name will be used if it's a non-empty string consisting of
|
|
// only Unicode letters, digits, and ASCII punctuation except quotation
|
|
// marks, backslash, and comma.
|
|
//
|
|
// Anonymous struct fields are usually marshaled as if their inner exported fields
|
|
// were fields in the outer struct, subject to the usual Go visibility rules amended
|
|
// as described in the next paragraph.
|
|
// An anonymous struct field with a name given in its JSON tag is treated as
|
|
// having that name, rather than being anonymous.
|
|
// An anonymous struct field of interface type is treated the same as having
|
|
// that type as its name, rather than being anonymous.
|
|
//
|
|
// The Go visibility rules for struct fields are amended for JSON when
|
|
// deciding which field to marshal or unmarshal. If there are
|
|
// multiple fields at the same level, and that level is the least
|
|
// nested (and would therefore be the nesting level selected by the
|
|
// usual Go rules), the following extra rules apply:
|
|
//
|
|
// 1) Of those fields, if any are JSON-tagged, only tagged fields are considered,
|
|
// even if there are multiple untagged fields that would otherwise conflict.
|
|
//
|
|
// 2) If there is exactly one field (tagged or not according to the first rule), that is selected.
|
|
//
|
|
// 3) Otherwise there are multiple fields, and all are ignored; no error occurs.
|
|
//
|
|
// Handling of anonymous struct fields is new in Go 1.1.
|
|
// Prior to Go 1.1, anonymous struct fields were ignored. To force ignoring of
|
|
// an anonymous struct field in both current and earlier versions, give the field
|
|
// a JSON tag of "-".
|
|
//
|
|
// Map values encode as JSON objects. The map's key type must either be a
|
|
// string, an integer type, or implement encoding.TextMarshaler. The map keys
|
|
// are sorted and used as JSON object keys by applying the following rules,
|
|
// subject to the UTF-8 coercion described for string values above:
|
|
// - keys of any string type are used directly
|
|
// - encoding.TextMarshalers are marshaled
|
|
// - integer keys are converted to strings
|
|
//
|
|
// Pointer values encode as the value pointed to.
|
|
// A nil pointer encodes as the null JSON value.
|
|
//
|
|
// Interface values encode as the value contained in the interface.
|
|
// A nil interface value encodes as the null JSON value.
|
|
//
|
|
// Channel, complex, and function values cannot be encoded in JSON.
|
|
// Attempting to encode such a value causes Marshal to return
|
|
// an UnsupportedTypeError.
|
|
//
|
|
// JSON cannot represent cyclic data structures and Marshal does not
|
|
// handle them. Passing cyclic structures to Marshal will result in
|
|
// an error.
|
|
//
|
|
func Marshal(v interface{}) ([]byte, error) {
|
|
e := newEncodeState()
|
|
|
|
err := e.marshal(v, encOpts{escapeHTML: true})
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
buf := append([]byte(nil), e.Bytes()...)
|
|
|
|
encodeStatePool.Put(e)
|
|
|
|
return buf, nil
|
|
}
|
|
|
|
// MarshalIndent is like Marshal but applies Indent to format the output.
|
|
// Each JSON element in the output will begin on a new line beginning with prefix
|
|
// followed by one or more copies of indent according to the indentation nesting.
|
|
func MarshalIndent(v interface{}, prefix, indent string) ([]byte, error) {
|
|
b, err := Marshal(v)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
var buf bytes.Buffer
|
|
err = Indent(&buf, b, prefix, indent)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return buf.Bytes(), nil
|
|
}
|
|
|
|
// HTMLEscape appends to dst the JSON-encoded src with <, >, &, U+2028 and U+2029
|
|
// characters inside string literals changed to \u003c, \u003e, \u0026, \u2028, \u2029
|
|
// so that the JSON will be safe to embed inside HTML <script> tags.
|
|
// For historical reasons, web browsers don't honor standard HTML
|
|
// escaping within <script> tags, so an alternative JSON encoding must
|
|
// be used.
|
|
func HTMLEscape(dst *bytes.Buffer, src []byte) {
|
|
// The characters can only appear in string literals,
|
|
// so just scan the string one byte at a time.
|
|
start := 0
|
|
for i, c := range src {
|
|
if c == '<' || c == '>' || c == '&' {
|
|
if start < i {
|
|
dst.Write(src[start:i])
|
|
}
|
|
dst.WriteString(`\u00`)
|
|
dst.WriteByte(hex[c>>4])
|
|
dst.WriteByte(hex[c&0xF])
|
|
start = i + 1
|
|
}
|
|
// Convert U+2028 and U+2029 (E2 80 A8 and E2 80 A9).
|
|
if c == 0xE2 && i+2 < len(src) && src[i+1] == 0x80 && src[i+2]&^1 == 0xA8 {
|
|
if start < i {
|
|
dst.Write(src[start:i])
|
|
}
|
|
dst.WriteString(`\u202`)
|
|
dst.WriteByte(hex[src[i+2]&0xF])
|
|
start = i + 3
|
|
}
|
|
}
|
|
if start < len(src) {
|
|
dst.Write(src[start:])
|
|
}
|
|
}
|
|
|
|
// Marshaler is the interface implemented by types that
|
|
// can marshal themselves into valid JSON.
|
|
type Marshaler interface {
|
|
MarshalJSON() ([]byte, error)
|
|
}
|
|
|
|
// An UnsupportedTypeError is returned by Marshal when attempting
|
|
// to encode an unsupported value type.
|
|
type UnsupportedTypeError struct {
|
|
Type reflect.Type
|
|
}
|
|
|
|
func (e *UnsupportedTypeError) Error() string {
|
|
return "json: unsupported type: " + e.Type.String()
|
|
}
|
|
|
|
// An UnsupportedValueError is returned by Marshal when attempting
|
|
// to encode an unsupported value.
|
|
type UnsupportedValueError struct {
|
|
Value reflect.Value
|
|
Str string
|
|
}
|
|
|
|
func (e *UnsupportedValueError) Error() string {
|
|
return "json: unsupported value: " + e.Str
|
|
}
|
|
|
|
// Before Go 1.2, an InvalidUTF8Error was returned by Marshal when
|
|
// attempting to encode a string value with invalid UTF-8 sequences.
|
|
// As of Go 1.2, Marshal instead coerces the string to valid UTF-8 by
|
|
// replacing invalid bytes with the Unicode replacement rune U+FFFD.
|
|
//
|
|
// Deprecated: No longer used; kept for compatibility.
|
|
type InvalidUTF8Error struct {
|
|
S string // the whole string value that caused the error
|
|
}
|
|
|
|
func (e *InvalidUTF8Error) Error() string {
|
|
return "json: invalid UTF-8 in string: " + strconv.Quote(e.S)
|
|
}
|
|
|
|
// A MarshalerError represents an error from calling a MarshalJSON or MarshalText method.
|
|
type MarshalerError struct {
|
|
Type reflect.Type
|
|
Err error
|
|
sourceFunc string
|
|
}
|
|
|
|
func (e *MarshalerError) Error() string {
|
|
srcFunc := e.sourceFunc
|
|
if srcFunc == "" {
|
|
srcFunc = "MarshalJSON"
|
|
}
|
|
return "json: error calling " + srcFunc +
|
|
" for type " + e.Type.String() +
|
|
": " + e.Err.Error()
|
|
}
|
|
|
|
// Unwrap returns the underlying error.
|
|
func (e *MarshalerError) Unwrap() error { return e.Err }
|
|
|
|
var hex = "0123456789abcdef"
|
|
|
|
// An encodeState encodes JSON into a bytes.Buffer.
|
|
type encodeState struct {
|
|
bytes.Buffer // accumulated output
|
|
scratch [64]byte
|
|
|
|
// Keep track of what pointers we've seen in the current recursive call
|
|
// path, to avoid cycles that could lead to a stack overflow. Only do
|
|
// the relatively expensive map operations if ptrLevel is larger than
|
|
// startDetectingCyclesAfter, so that we skip the work if we're within a
|
|
// reasonable amount of nested pointers deep.
|
|
ptrLevel uint
|
|
ptrSeen map[interface{}]struct{}
|
|
}
|
|
|
|
const startDetectingCyclesAfter = 1000
|
|
|
|
var encodeStatePool sync.Pool
|
|
|
|
func newEncodeState() *encodeState {
|
|
if v := encodeStatePool.Get(); v != nil {
|
|
e := v.(*encodeState)
|
|
e.Reset()
|
|
if len(e.ptrSeen) > 0 {
|
|
panic("ptrEncoder.encode should have emptied ptrSeen via defers")
|
|
}
|
|
e.ptrLevel = 0
|
|
return e
|
|
}
|
|
return &encodeState{ptrSeen: make(map[interface{}]struct{})}
|
|
}
|
|
|
|
// jsonError is an error wrapper type for internal use only.
|
|
// Panics with errors are wrapped in jsonError so that the top-level recover
|
|
// can distinguish intentional panics from this package.
|
|
type jsonError struct{ error }
|
|
|
|
func (e *encodeState) marshal(v interface{}, opts encOpts) (err error) {
|
|
defer func() {
|
|
if r := recover(); r != nil {
|
|
if je, ok := r.(jsonError); ok {
|
|
err = je.error
|
|
} else {
|
|
panic(r)
|
|
}
|
|
}
|
|
}()
|
|
e.reflectValue(reflect.ValueOf(v), opts)
|
|
return nil
|
|
}
|
|
|
|
// error aborts the encoding by panicking with err wrapped in jsonError.
|
|
func (e *encodeState) error(err error) {
|
|
panic(jsonError{err})
|
|
}
|
|
|
|
func isEmptyValue(v reflect.Value) bool {
|
|
switch v.Kind() {
|
|
case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
|
|
return v.Len() == 0
|
|
case reflect.Bool:
|
|
return !v.Bool()
|
|
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
|
|
return v.Int() == 0
|
|
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
|
|
return v.Uint() == 0
|
|
case reflect.Float32, reflect.Float64:
|
|
return v.Float() == 0
|
|
case reflect.Interface, reflect.Ptr:
|
|
return v.IsNil()
|
|
}
|
|
return false
|
|
}
|
|
|
|
func (e *encodeState) reflectValue(v reflect.Value, opts encOpts) {
|
|
valueEncoder(v)(e, v, opts)
|
|
}
|
|
|
|
type encOpts struct {
|
|
// quoted causes primitive fields to be encoded inside JSON strings.
|
|
quoted bool
|
|
// escapeHTML causes '<', '>', and '&' to be escaped in JSON strings.
|
|
escapeHTML bool
|
|
}
|
|
|
|
type encoderFunc func(e *encodeState, v reflect.Value, opts encOpts)
|
|
|
|
var encoderCache sync.Map // map[reflect.Type]encoderFunc
|
|
|
|
func valueEncoder(v reflect.Value) encoderFunc {
|
|
if !v.IsValid() {
|
|
return invalidValueEncoder
|
|
}
|
|
return typeEncoder(v.Type())
|
|
}
|
|
|
|
func typeEncoder(t reflect.Type) encoderFunc {
|
|
if fi, ok := encoderCache.Load(t); ok {
|
|
return fi.(encoderFunc)
|
|
}
|
|
|
|
// To deal with recursive types, populate the map with an
|
|
// indirect func before we build it. This type waits on the
|
|
// real func (f) to be ready and then calls it. This indirect
|
|
// func is only used for recursive types.
|
|
var (
|
|
wg sync.WaitGroup
|
|
f encoderFunc
|
|
)
|
|
wg.Add(1)
|
|
fi, loaded := encoderCache.LoadOrStore(t, encoderFunc(func(e *encodeState, v reflect.Value, opts encOpts) {
|
|
wg.Wait()
|
|
f(e, v, opts)
|
|
}))
|
|
if loaded {
|
|
return fi.(encoderFunc)
|
|
}
|
|
|
|
// Compute the real encoder and replace the indirect func with it.
|
|
f = newTypeEncoder(t, true)
|
|
wg.Done()
|
|
encoderCache.Store(t, f)
|
|
return f
|
|
}
|
|
|
|
var (
|
|
marshalerType = reflect.TypeOf((*Marshaler)(nil)).Elem()
|
|
textMarshalerType = reflect.TypeOf((*encoding.TextMarshaler)(nil)).Elem()
|
|
)
|
|
|
|
// newTypeEncoder constructs an encoderFunc for a type.
|
|
// The returned encoder only checks CanAddr when allowAddr is true.
|
|
func newTypeEncoder(t reflect.Type, allowAddr bool) encoderFunc {
|
|
// If we have a non-pointer value whose type implements
|
|
// Marshaler with a value receiver, then we're better off taking
|
|
// the address of the value - otherwise we end up with an
|
|
// allocation as we cast the value to an interface.
|
|
if t.Kind() != reflect.Ptr && allowAddr && reflect.PtrTo(t).Implements(marshalerType) {
|
|
return newCondAddrEncoder(addrMarshalerEncoder, newTypeEncoder(t, false))
|
|
}
|
|
if t.Implements(marshalerType) {
|
|
return marshalerEncoder
|
|
}
|
|
if t.Kind() != reflect.Ptr && allowAddr && reflect.PtrTo(t).Implements(textMarshalerType) {
|
|
return newCondAddrEncoder(addrTextMarshalerEncoder, newTypeEncoder(t, false))
|
|
}
|
|
if t.Implements(textMarshalerType) {
|
|
return textMarshalerEncoder
|
|
}
|
|
|
|
switch t.Kind() {
|
|
case reflect.Bool:
|
|
return boolEncoder
|
|
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
|
|
return intEncoder
|
|
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
|
|
return uintEncoder
|
|
case reflect.Float32:
|
|
return float32Encoder
|
|
case reflect.Float64:
|
|
return float64Encoder
|
|
case reflect.String:
|
|
return stringEncoder
|
|
case reflect.Interface:
|
|
return interfaceEncoder
|
|
case reflect.Struct:
|
|
return newStructEncoder(t)
|
|
case reflect.Map:
|
|
return newMapEncoder(t)
|
|
case reflect.Slice:
|
|
return newSliceEncoder(t)
|
|
case reflect.Array:
|
|
return newArrayEncoder(t)
|
|
case reflect.Ptr:
|
|
return newPtrEncoder(t)
|
|
default:
|
|
return unsupportedTypeEncoder
|
|
}
|
|
}
|
|
|
|
func invalidValueEncoder(e *encodeState, v reflect.Value, _ encOpts) {
|
|
e.WriteString("null")
|
|
}
|
|
|
|
func marshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
|
|
if v.Kind() == reflect.Ptr && v.IsNil() {
|
|
e.WriteString("null")
|
|
return
|
|
}
|
|
m, ok := v.Interface().(Marshaler)
|
|
if !ok {
|
|
e.WriteString("null")
|
|
return
|
|
}
|
|
b, err := m.MarshalJSON()
|
|
if err == nil {
|
|
// copy JSON into buffer, checking validity.
|
|
err = compact(&e.Buffer, b, opts.escapeHTML)
|
|
}
|
|
if err != nil {
|
|
e.error(&MarshalerError{v.Type(), err, "MarshalJSON"})
|
|
}
|
|
}
|
|
|
|
func addrMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
|
|
va := v.Addr()
|
|
if va.IsNil() {
|
|
e.WriteString("null")
|
|
return
|
|
}
|
|
m := va.Interface().(Marshaler)
|
|
b, err := m.MarshalJSON()
|
|
if err == nil {
|
|
// copy JSON into buffer, checking validity.
|
|
err = compact(&e.Buffer, b, opts.escapeHTML)
|
|
}
|
|
if err != nil {
|
|
e.error(&MarshalerError{v.Type(), err, "MarshalJSON"})
|
|
}
|
|
}
|
|
|
|
func textMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
|
|
if v.Kind() == reflect.Ptr && v.IsNil() {
|
|
e.WriteString("null")
|
|
return
|
|
}
|
|
m, ok := v.Interface().(encoding.TextMarshaler)
|
|
if !ok {
|
|
e.WriteString("null")
|
|
return
|
|
}
|
|
b, err := m.MarshalText()
|
|
if err != nil {
|
|
e.error(&MarshalerError{v.Type(), err, "MarshalText"})
|
|
}
|
|
e.stringBytes(b, opts.escapeHTML)
|
|
}
|
|
|
|
func addrTextMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
|
|
va := v.Addr()
|
|
if va.IsNil() {
|
|
e.WriteString("null")
|
|
return
|
|
}
|
|
m := va.Interface().(encoding.TextMarshaler)
|
|
b, err := m.MarshalText()
|
|
if err != nil {
|
|
e.error(&MarshalerError{v.Type(), err, "MarshalText"})
|
|
}
|
|
e.stringBytes(b, opts.escapeHTML)
|
|
}
|
|
|
|
func boolEncoder(e *encodeState, v reflect.Value, opts encOpts) {
|
|
if opts.quoted {
|
|
e.WriteByte('"')
|
|
}
|
|
if v.Bool() {
|
|
e.WriteString("true")
|
|
} else {
|
|
e.WriteString("false")
|
|
}
|
|
if opts.quoted {
|
|
e.WriteByte('"')
|
|
}
|
|
}
|
|
|
|
func intEncoder(e *encodeState, v reflect.Value, opts encOpts) {
|
|
b := strconv.AppendInt(e.scratch[:0], v.Int(), 10)
|
|
if opts.quoted {
|
|
e.WriteByte('"')
|
|
}
|
|
e.Write(b)
|
|
if opts.quoted {
|
|
e.WriteByte('"')
|
|
}
|
|
}
|
|
|
|
func uintEncoder(e *encodeState, v reflect.Value, opts encOpts) {
|
|
b := strconv.AppendUint(e.scratch[:0], v.Uint(), 10)
|
|
if opts.quoted {
|
|
e.WriteByte('"')
|
|
}
|
|
e.Write(b)
|
|
if opts.quoted {
|
|
e.WriteByte('"')
|
|
}
|
|
}
|
|
|
|
type floatEncoder int // number of bits
|
|
|
|
func (bits floatEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
|
|
f := v.Float()
|
|
if math.IsInf(f, 0) || math.IsNaN(f) {
|
|
e.error(&UnsupportedValueError{v, strconv.FormatFloat(f, 'g', -1, int(bits))})
|
|
}
|
|
|
|
// Convert as if by ES6 number to string conversion.
|
|
// This matches most other JSON generators.
|
|
// See golang.org/issue/6384 and golang.org/issue/14135.
|
|
// Like fmt %g, but the exponent cutoffs are different
|
|
// and exponents themselves are not padded to two digits.
|
|
b := e.scratch[:0]
|
|
abs := math.Abs(f)
|
|
fmt := byte('f')
|
|
// Note: Must use float32 comparisons for underlying float32 value to get precise cutoffs right.
|
|
if abs != 0 {
|
|
if bits == 64 && (abs < 1e-6 || abs >= 1e21) || bits == 32 && (float32(abs) < 1e-6 || float32(abs) >= 1e21) {
|
|
fmt = 'e'
|
|
}
|
|
}
|
|
b = strconv.AppendFloat(b, f, fmt, -1, int(bits))
|
|
if fmt == 'e' {
|
|
// clean up e-09 to e-9
|
|
n := len(b)
|
|
if n >= 4 && b[n-4] == 'e' && b[n-3] == '-' && b[n-2] == '0' {
|
|
b[n-2] = b[n-1]
|
|
b = b[:n-1]
|
|
}
|
|
}
|
|
|
|
if opts.quoted {
|
|
e.WriteByte('"')
|
|
}
|
|
e.Write(b)
|
|
if opts.quoted {
|
|
e.WriteByte('"')
|
|
}
|
|
}
|
|
|
|
var (
|
|
float32Encoder = (floatEncoder(32)).encode
|
|
float64Encoder = (floatEncoder(64)).encode
|
|
)
|
|
|
|
func stringEncoder(e *encodeState, v reflect.Value, opts encOpts) {
|
|
if v.Type() == numberType {
|
|
numStr := v.String()
|
|
// In Go1.5 the empty string encodes to "0", while this is not a valid number literal
|
|
// we keep compatibility so check validity after this.
|
|
if numStr == "" {
|
|
numStr = "0" // Number's zero-val
|
|
}
|
|
if !isValidNumber(numStr) {
|
|
e.error(fmt.Errorf("json: invalid number literal %q", numStr))
|
|
}
|
|
if opts.quoted {
|
|
e.WriteByte('"')
|
|
}
|
|
e.WriteString(numStr)
|
|
if opts.quoted {
|
|
e.WriteByte('"')
|
|
}
|
|
return
|
|
}
|
|
if opts.quoted {
|
|
e2 := newEncodeState()
|
|
// Since we encode the string twice, we only need to escape HTML
|
|
// the first time.
|
|
e2.string(v.String(), opts.escapeHTML)
|
|
e.stringBytes(e2.Bytes(), false)
|
|
encodeStatePool.Put(e2)
|
|
} else {
|
|
e.string(v.String(), opts.escapeHTML)
|
|
}
|
|
}
|
|
|
|
// isValidNumber reports whether s is a valid JSON number literal.
|
|
func isValidNumber(s string) bool {
|
|
// This function implements the JSON numbers grammar.
|
|
// See https://tools.ietf.org/html/rfc7159#section-6
|
|
// and https://www.json.org/img/number.png
|
|
|
|
if s == "" {
|
|
return false
|
|
}
|
|
|
|
// Optional -
|
|
if s[0] == '-' {
|
|
s = s[1:]
|
|
if s == "" {
|
|
return false
|
|
}
|
|
}
|
|
|
|
// Digits
|
|
switch {
|
|
default:
|
|
return false
|
|
|
|
case s[0] == '0':
|
|
s = s[1:]
|
|
|
|
case '1' <= s[0] && s[0] <= '9':
|
|
s = s[1:]
|
|
for len(s) > 0 && '0' <= s[0] && s[0] <= '9' {
|
|
s = s[1:]
|
|
}
|
|
}
|
|
|
|
// . followed by 1 or more digits.
|
|
if len(s) >= 2 && s[0] == '.' && '0' <= s[1] && s[1] <= '9' {
|
|
s = s[2:]
|
|
for len(s) > 0 && '0' <= s[0] && s[0] <= '9' {
|
|
s = s[1:]
|
|
}
|
|
}
|
|
|
|
// e or E followed by an optional - or + and
|
|
// 1 or more digits.
|
|
if len(s) >= 2 && (s[0] == 'e' || s[0] == 'E') {
|
|
s = s[1:]
|
|
if s[0] == '+' || s[0] == '-' {
|
|
s = s[1:]
|
|
if s == "" {
|
|
return false
|
|
}
|
|
}
|
|
for len(s) > 0 && '0' <= s[0] && s[0] <= '9' {
|
|
s = s[1:]
|
|
}
|
|
}
|
|
|
|
// Make sure we are at the end.
|
|
return s == ""
|
|
}
|
|
|
|
func interfaceEncoder(e *encodeState, v reflect.Value, opts encOpts) {
|
|
if v.IsNil() {
|
|
e.WriteString("null")
|
|
return
|
|
}
|
|
e.reflectValue(v.Elem(), opts)
|
|
}
|
|
|
|
func unsupportedTypeEncoder(e *encodeState, v reflect.Value, _ encOpts) {
|
|
e.error(&UnsupportedTypeError{v.Type()})
|
|
}
|
|
|
|
type structEncoder struct {
|
|
fields structFields
|
|
}
|
|
|
|
type structFields struct {
|
|
list []field
|
|
nameIndex map[string]int
|
|
}
|
|
|
|
func (se structEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
|
|
next := byte('{')
|
|
FieldLoop:
|
|
for i := range se.fields.list {
|
|
f := &se.fields.list[i]
|
|
|
|
// Find the nested struct field by following f.index.
|
|
fv := v
|
|
for _, i := range f.index {
|
|
if fv.Kind() == reflect.Ptr {
|
|
if fv.IsNil() {
|
|
continue FieldLoop
|
|
}
|
|
fv = fv.Elem()
|
|
}
|
|
fv = fv.Field(i)
|
|
}
|
|
|
|
if f.omitEmpty && isEmptyValue(fv) {
|
|
continue
|
|
}
|
|
e.WriteByte(next)
|
|
next = ','
|
|
if opts.escapeHTML {
|
|
e.WriteString(f.nameEscHTML)
|
|
} else {
|
|
e.WriteString(f.nameNonEsc)
|
|
}
|
|
opts.quoted = f.quoted
|
|
f.encoder(e, fv, opts)
|
|
}
|
|
if next == '{' {
|
|
e.WriteString("{}")
|
|
} else {
|
|
e.WriteByte('}')
|
|
}
|
|
}
|
|
|
|
func newStructEncoder(t reflect.Type) encoderFunc {
|
|
se := structEncoder{fields: cachedTypeFields(t)}
|
|
return se.encode
|
|
}
|
|
|
|
type mapEncoder struct {
|
|
elemEnc encoderFunc
|
|
}
|
|
|
|
func (me mapEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
|
|
if v.IsNil() {
|
|
e.WriteString("null")
|
|
return
|
|
}
|
|
if e.ptrLevel++; e.ptrLevel > startDetectingCyclesAfter {
|
|
// We're a large number of nested ptrEncoder.encode calls deep;
|
|
// start checking if we've run into a pointer cycle.
|
|
ptr := v.Pointer()
|
|
if _, ok := e.ptrSeen[ptr]; ok {
|
|
e.error(&UnsupportedValueError{v, fmt.Sprintf("encountered a cycle via %s", v.Type())})
|
|
}
|
|
e.ptrSeen[ptr] = struct{}{}
|
|
defer delete(e.ptrSeen, ptr)
|
|
}
|
|
e.WriteByte('{')
|
|
|
|
// Extract and sort the keys.
|
|
sv := make([]reflectWithString, v.Len())
|
|
mi := v.MapRange()
|
|
for i := 0; mi.Next(); i++ {
|
|
sv[i].k = mi.Key()
|
|
sv[i].v = mi.Value()
|
|
if err := sv[i].resolve(); err != nil {
|
|
e.error(fmt.Errorf("json: encoding error for type %q: %q", v.Type().String(), err.Error()))
|
|
}
|
|
}
|
|
sort.Slice(sv, func(i, j int) bool { return sv[i].ks < sv[j].ks })
|
|
|
|
for i, kv := range sv {
|
|
if i > 0 {
|
|
e.WriteByte(',')
|
|
}
|
|
e.string(kv.ks, opts.escapeHTML)
|
|
e.WriteByte(':')
|
|
me.elemEnc(e, kv.v, opts)
|
|
}
|
|
e.WriteByte('}')
|
|
e.ptrLevel--
|
|
}
|
|
|
|
func newMapEncoder(t reflect.Type) encoderFunc {
|
|
switch t.Key().Kind() {
|
|
case reflect.String,
|
|
reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
|
|
reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
|
|
default:
|
|
if !t.Key().Implements(textMarshalerType) {
|
|
return unsupportedTypeEncoder
|
|
}
|
|
}
|
|
me := mapEncoder{typeEncoder(t.Elem())}
|
|
return me.encode
|
|
}
|
|
|
|
func encodeByteSlice(e *encodeState, v reflect.Value, _ encOpts) {
|
|
if v.IsNil() {
|
|
e.WriteString("null")
|
|
return
|
|
}
|
|
s := v.Bytes()
|
|
e.WriteByte('"')
|
|
encodedLen := base64.StdEncoding.EncodedLen(len(s))
|
|
if encodedLen <= len(e.scratch) {
|
|
// If the encoded bytes fit in e.scratch, avoid an extra
|
|
// allocation and use the cheaper Encoding.Encode.
|
|
dst := e.scratch[:encodedLen]
|
|
base64.StdEncoding.Encode(dst, s)
|
|
e.Write(dst)
|
|
} else if encodedLen <= 1024 {
|
|
// The encoded bytes are short enough to allocate for, and
|
|
// Encoding.Encode is still cheaper.
|
|
dst := make([]byte, encodedLen)
|
|
base64.StdEncoding.Encode(dst, s)
|
|
e.Write(dst)
|
|
} else {
|
|
// The encoded bytes are too long to cheaply allocate, and
|
|
// Encoding.Encode is no longer noticeably cheaper.
|
|
enc := base64.NewEncoder(base64.StdEncoding, e)
|
|
enc.Write(s)
|
|
enc.Close()
|
|
}
|
|
e.WriteByte('"')
|
|
}
|
|
|
|
// sliceEncoder just wraps an arrayEncoder, checking to make sure the value isn't nil.
|
|
type sliceEncoder struct {
|
|
arrayEnc encoderFunc
|
|
}
|
|
|
|
func (se sliceEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
|
|
if v.IsNil() {
|
|
e.WriteString("null")
|
|
return
|
|
}
|
|
if e.ptrLevel++; e.ptrLevel > startDetectingCyclesAfter {
|
|
// We're a large number of nested ptrEncoder.encode calls deep;
|
|
// start checking if we've run into a pointer cycle.
|
|
// Here we use a struct to memorize the pointer to the first element of the slice
|
|
// and its length.
|
|
ptr := struct {
|
|
ptr uintptr
|
|
len int
|
|
}{v.Pointer(), v.Len()}
|
|
if _, ok := e.ptrSeen[ptr]; ok {
|
|
e.error(&UnsupportedValueError{v, fmt.Sprintf("encountered a cycle via %s", v.Type())})
|
|
}
|
|
e.ptrSeen[ptr] = struct{}{}
|
|
defer delete(e.ptrSeen, ptr)
|
|
}
|
|
se.arrayEnc(e, v, opts)
|
|
e.ptrLevel--
|
|
}
|
|
|
|
func newSliceEncoder(t reflect.Type) encoderFunc {
|
|
// Byte slices get special treatment; arrays don't.
|
|
if t.Elem().Kind() == reflect.Uint8 {
|
|
p := reflect.PtrTo(t.Elem())
|
|
if !p.Implements(marshalerType) && !p.Implements(textMarshalerType) {
|
|
return encodeByteSlice
|
|
}
|
|
}
|
|
enc := sliceEncoder{newArrayEncoder(t)}
|
|
return enc.encode
|
|
}
|
|
|
|
type arrayEncoder struct {
|
|
elemEnc encoderFunc
|
|
}
|
|
|
|
func (ae arrayEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
|
|
e.WriteByte('[')
|
|
n := v.Len()
|
|
for i := 0; i < n; i++ {
|
|
if i > 0 {
|
|
e.WriteByte(',')
|
|
}
|
|
ae.elemEnc(e, v.Index(i), opts)
|
|
}
|
|
e.WriteByte(']')
|
|
}
|
|
|
|
func newArrayEncoder(t reflect.Type) encoderFunc {
|
|
enc := arrayEncoder{typeEncoder(t.Elem())}
|
|
return enc.encode
|
|
}
|
|
|
|
type ptrEncoder struct {
|
|
elemEnc encoderFunc
|
|
}
|
|
|
|
func (pe ptrEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
|
|
if v.IsNil() {
|
|
e.WriteString("null")
|
|
return
|
|
}
|
|
if e.ptrLevel++; e.ptrLevel > startDetectingCyclesAfter {
|
|
// We're a large number of nested ptrEncoder.encode calls deep;
|
|
// start checking if we've run into a pointer cycle.
|
|
ptr := v.Interface()
|
|
if _, ok := e.ptrSeen[ptr]; ok {
|
|
e.error(&UnsupportedValueError{v, fmt.Sprintf("encountered a cycle via %s", v.Type())})
|
|
}
|
|
e.ptrSeen[ptr] = struct{}{}
|
|
defer delete(e.ptrSeen, ptr)
|
|
}
|
|
pe.elemEnc(e, v.Elem(), opts)
|
|
e.ptrLevel--
|
|
}
|
|
|
|
func newPtrEncoder(t reflect.Type) encoderFunc {
|
|
enc := ptrEncoder{typeEncoder(t.Elem())}
|
|
return enc.encode
|
|
}
|
|
|
|
type condAddrEncoder struct {
|
|
canAddrEnc, elseEnc encoderFunc
|
|
}
|
|
|
|
func (ce condAddrEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
|
|
if v.CanAddr() {
|
|
ce.canAddrEnc(e, v, opts)
|
|
} else {
|
|
ce.elseEnc(e, v, opts)
|
|
}
|
|
}
|
|
|
|
// newCondAddrEncoder returns an encoder that checks whether its value
|
|
// CanAddr and delegates to canAddrEnc if so, else to elseEnc.
|
|
func newCondAddrEncoder(canAddrEnc, elseEnc encoderFunc) encoderFunc {
|
|
enc := condAddrEncoder{canAddrEnc: canAddrEnc, elseEnc: elseEnc}
|
|
return enc.encode
|
|
}
|
|
|
|
func isValidTag(s string) bool {
|
|
if s == "" {
|
|
return false
|
|
}
|
|
for _, c := range s {
|
|
switch {
|
|
case strings.ContainsRune("!#$%&()*+-./:;<=>?@[]^_{|}~ ", c):
|
|
// Backslash and quote chars are reserved, but
|
|
// otherwise any punctuation chars are allowed
|
|
// in a tag name.
|
|
case !unicode.IsLetter(c) && !unicode.IsDigit(c):
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
func typeByIndex(t reflect.Type, index []int) reflect.Type {
|
|
for _, i := range index {
|
|
if t.Kind() == reflect.Ptr {
|
|
t = t.Elem()
|
|
}
|
|
t = t.Field(i).Type
|
|
}
|
|
return t
|
|
}
|
|
|
|
type reflectWithString struct {
|
|
k reflect.Value
|
|
v reflect.Value
|
|
ks string
|
|
}
|
|
|
|
func (w *reflectWithString) resolve() error {
|
|
if w.k.Kind() == reflect.String {
|
|
w.ks = w.k.String()
|
|
return nil
|
|
}
|
|
if tm, ok := w.k.Interface().(encoding.TextMarshaler); ok {
|
|
if w.k.Kind() == reflect.Ptr && w.k.IsNil() {
|
|
return nil
|
|
}
|
|
buf, err := tm.MarshalText()
|
|
w.ks = string(buf)
|
|
return err
|
|
}
|
|
switch w.k.Kind() {
|
|
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
|
|
w.ks = strconv.FormatInt(w.k.Int(), 10)
|
|
return nil
|
|
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
|
|
w.ks = strconv.FormatUint(w.k.Uint(), 10)
|
|
return nil
|
|
}
|
|
panic("unexpected map key type")
|
|
}
|
|
|
|
// NOTE: keep in sync with stringBytes below.
|
|
func (e *encodeState) string(s string, escapeHTML bool) {
|
|
e.WriteByte('"')
|
|
start := 0
|
|
for i := 0; i < len(s); {
|
|
if b := s[i]; b < utf8.RuneSelf {
|
|
if htmlSafeSet[b] || (!escapeHTML && safeSet[b]) {
|
|
i++
|
|
continue
|
|
}
|
|
if start < i {
|
|
e.WriteString(s[start:i])
|
|
}
|
|
e.WriteByte('\\')
|
|
switch b {
|
|
case '\\', '"':
|
|
e.WriteByte(b)
|
|
case '\n':
|
|
e.WriteByte('n')
|
|
case '\r':
|
|
e.WriteByte('r')
|
|
case '\t':
|
|
e.WriteByte('t')
|
|
default:
|
|
// This encodes bytes < 0x20 except for \t, \n and \r.
|
|
// If escapeHTML is set, it also escapes <, >, and &
|
|
// because they can lead to security holes when
|
|
// user-controlled strings are rendered into JSON
|
|
// and served to some browsers.
|
|
e.WriteString(`u00`)
|
|
e.WriteByte(hex[b>>4])
|
|
e.WriteByte(hex[b&0xF])
|
|
}
|
|
i++
|
|
start = i
|
|
continue
|
|
}
|
|
c, size := utf8.DecodeRuneInString(s[i:])
|
|
if c == utf8.RuneError && size == 1 {
|
|
if start < i {
|
|
e.WriteString(s[start:i])
|
|
}
|
|
e.WriteString(`\ufffd`)
|
|
i += size
|
|
start = i
|
|
continue
|
|
}
|
|
// U+2028 is LINE SEPARATOR.
|
|
// U+2029 is PARAGRAPH SEPARATOR.
|
|
// They are both technically valid characters in JSON strings,
|
|
// but don't work in JSONP, which has to be evaluated as JavaScript,
|
|
// and can lead to security holes there. It is valid JSON to
|
|
// escape them, so we do so unconditionally.
|
|
// See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion.
|
|
if c == '\u2028' || c == '\u2029' {
|
|
if start < i {
|
|
e.WriteString(s[start:i])
|
|
}
|
|
e.WriteString(`\u202`)
|
|
e.WriteByte(hex[c&0xF])
|
|
i += size
|
|
start = i
|
|
continue
|
|
}
|
|
i += size
|
|
}
|
|
if start < len(s) {
|
|
e.WriteString(s[start:])
|
|
}
|
|
e.WriteByte('"')
|
|
}
|
|
|
|
// NOTE: keep in sync with string above.
|
|
func (e *encodeState) stringBytes(s []byte, escapeHTML bool) {
|
|
e.WriteByte('"')
|
|
start := 0
|
|
for i := 0; i < len(s); {
|
|
if b := s[i]; b < utf8.RuneSelf {
|
|
if htmlSafeSet[b] || (!escapeHTML && safeSet[b]) {
|
|
i++
|
|
continue
|
|
}
|
|
if start < i {
|
|
e.Write(s[start:i])
|
|
}
|
|
e.WriteByte('\\')
|
|
switch b {
|
|
case '\\', '"':
|
|
e.WriteByte(b)
|
|
case '\n':
|
|
e.WriteByte('n')
|
|
case '\r':
|
|
e.WriteByte('r')
|
|
case '\t':
|
|
e.WriteByte('t')
|
|
default:
|
|
// This encodes bytes < 0x20 except for \t, \n and \r.
|
|
// If escapeHTML is set, it also escapes <, >, and &
|
|
// because they can lead to security holes when
|
|
// user-controlled strings are rendered into JSON
|
|
// and served to some browsers.
|
|
e.WriteString(`u00`)
|
|
e.WriteByte(hex[b>>4])
|
|
e.WriteByte(hex[b&0xF])
|
|
}
|
|
i++
|
|
start = i
|
|
continue
|
|
}
|
|
c, size := utf8.DecodeRune(s[i:])
|
|
if c == utf8.RuneError && size == 1 {
|
|
if start < i {
|
|
e.Write(s[start:i])
|
|
}
|
|
e.WriteString(`\ufffd`)
|
|
i += size
|
|
start = i
|
|
continue
|
|
}
|
|
// U+2028 is LINE SEPARATOR.
|
|
// U+2029 is PARAGRAPH SEPARATOR.
|
|
// They are both technically valid characters in JSON strings,
|
|
// but don't work in JSONP, which has to be evaluated as JavaScript,
|
|
// and can lead to security holes there. It is valid JSON to
|
|
// escape them, so we do so unconditionally.
|
|
// See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion.
|
|
if c == '\u2028' || c == '\u2029' {
|
|
if start < i {
|
|
e.Write(s[start:i])
|
|
}
|
|
e.WriteString(`\u202`)
|
|
e.WriteByte(hex[c&0xF])
|
|
i += size
|
|
start = i
|
|
continue
|
|
}
|
|
i += size
|
|
}
|
|
if start < len(s) {
|
|
e.Write(s[start:])
|
|
}
|
|
e.WriteByte('"')
|
|
}
|
|
|
|
// A field represents a single field found in a struct.
|
|
type field struct {
|
|
name string
|
|
nameBytes []byte // []byte(name)
|
|
equalFold func(s, t []byte) bool // bytes.EqualFold or equivalent
|
|
|
|
nameNonEsc string // `"` + name + `":`
|
|
nameEscHTML string // `"` + HTMLEscape(name) + `":`
|
|
|
|
tag bool
|
|
index []int
|
|
typ reflect.Type
|
|
omitEmpty bool
|
|
quoted bool
|
|
|
|
encoder encoderFunc
|
|
}
|
|
|
|
// byIndex sorts field by index sequence.
|
|
type byIndex []field
|
|
|
|
func (x byIndex) Len() int { return len(x) }
|
|
|
|
func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
|
|
|
|
func (x byIndex) Less(i, j int) bool {
|
|
for k, xik := range x[i].index {
|
|
if k >= len(x[j].index) {
|
|
return false
|
|
}
|
|
if xik != x[j].index[k] {
|
|
return xik < x[j].index[k]
|
|
}
|
|
}
|
|
return len(x[i].index) < len(x[j].index)
|
|
}
|
|
|
|
// typeFields returns a list of fields that JSON should recognize for the given type.
|
|
// The algorithm is breadth-first search over the set of structs to include - the top struct
|
|
// and then any reachable anonymous structs.
|
|
func typeFields(t reflect.Type) structFields {
|
|
// Anonymous fields to explore at the current level and the next.
|
|
current := []field{}
|
|
next := []field{{typ: t}}
|
|
|
|
// Count of queued names for current level and the next.
|
|
var count, nextCount map[reflect.Type]int
|
|
|
|
// Types already visited at an earlier level.
|
|
visited := map[reflect.Type]bool{}
|
|
|
|
// Fields found.
|
|
var fields []field
|
|
|
|
// Buffer to run HTMLEscape on field names.
|
|
var nameEscBuf bytes.Buffer
|
|
|
|
for len(next) > 0 {
|
|
current, next = next, current[:0]
|
|
count, nextCount = nextCount, map[reflect.Type]int{}
|
|
|
|
for _, f := range current {
|
|
if visited[f.typ] {
|
|
continue
|
|
}
|
|
visited[f.typ] = true
|
|
|
|
// Scan f.typ for fields to include.
|
|
for i := 0; i < f.typ.NumField(); i++ {
|
|
sf := f.typ.Field(i)
|
|
if sf.Anonymous {
|
|
t := sf.Type
|
|
if t.Kind() == reflect.Ptr {
|
|
t = t.Elem()
|
|
}
|
|
if !sf.IsExported() && t.Kind() != reflect.Struct {
|
|
// Ignore embedded fields of unexported non-struct types.
|
|
continue
|
|
}
|
|
// Do not ignore embedded fields of unexported struct types
|
|
// since they may have exported fields.
|
|
} else if !sf.IsExported() {
|
|
// Ignore unexported non-embedded fields.
|
|
continue
|
|
}
|
|
tag := sf.Tag.Get("json")
|
|
if tag == "-" {
|
|
continue
|
|
}
|
|
name, opts := parseTag(tag)
|
|
if !isValidTag(name) {
|
|
name = ""
|
|
}
|
|
index := make([]int, len(f.index)+1)
|
|
copy(index, f.index)
|
|
index[len(f.index)] = i
|
|
|
|
ft := sf.Type
|
|
if ft.Name() == "" && ft.Kind() == reflect.Ptr {
|
|
// Follow pointer.
|
|
ft = ft.Elem()
|
|
}
|
|
|
|
// Only strings, floats, integers, and booleans can be quoted.
|
|
quoted := false
|
|
if opts.Contains("string") {
|
|
switch ft.Kind() {
|
|
case reflect.Bool,
|
|
reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
|
|
reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr,
|
|
reflect.Float32, reflect.Float64,
|
|
reflect.String:
|
|
quoted = true
|
|
}
|
|
}
|
|
|
|
// Record found field and index sequence.
|
|
if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct {
|
|
tagged := name != ""
|
|
if name == "" {
|
|
name = sf.Name
|
|
}
|
|
field := field{
|
|
name: name,
|
|
tag: tagged,
|
|
index: index,
|
|
typ: ft,
|
|
omitEmpty: opts.Contains("omitempty"),
|
|
quoted: quoted,
|
|
}
|
|
field.nameBytes = []byte(field.name)
|
|
field.equalFold = foldFunc(field.nameBytes)
|
|
|
|
// Build nameEscHTML and nameNonEsc ahead of time.
|
|
nameEscBuf.Reset()
|
|
nameEscBuf.WriteString(`"`)
|
|
HTMLEscape(&nameEscBuf, field.nameBytes)
|
|
nameEscBuf.WriteString(`":`)
|
|
field.nameEscHTML = nameEscBuf.String()
|
|
field.nameNonEsc = `"` + field.name + `":`
|
|
|
|
fields = append(fields, field)
|
|
if count[f.typ] > 1 {
|
|
// If there were multiple instances, add a second,
|
|
// so that the annihilation code will see a duplicate.
|
|
// It only cares about the distinction between 1 or 2,
|
|
// so don't bother generating any more copies.
|
|
fields = append(fields, fields[len(fields)-1])
|
|
}
|
|
continue
|
|
}
|
|
|
|
// Record new anonymous struct to explore in next round.
|
|
nextCount[ft]++
|
|
if nextCount[ft] == 1 {
|
|
next = append(next, field{name: ft.Name(), index: index, typ: ft})
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
sort.Slice(fields, func(i, j int) bool {
|
|
x := fields
|
|
// sort field by name, breaking ties with depth, then
|
|
// breaking ties with "name came from json tag", then
|
|
// breaking ties with index sequence.
|
|
if x[i].name != x[j].name {
|
|
return x[i].name < x[j].name
|
|
}
|
|
if len(x[i].index) != len(x[j].index) {
|
|
return len(x[i].index) < len(x[j].index)
|
|
}
|
|
if x[i].tag != x[j].tag {
|
|
return x[i].tag
|
|
}
|
|
return byIndex(x).Less(i, j)
|
|
})
|
|
|
|
// Delete all fields that are hidden by the Go rules for embedded fields,
|
|
// except that fields with JSON tags are promoted.
|
|
|
|
// The fields are sorted in primary order of name, secondary order
|
|
// of field index length. Loop over names; for each name, delete
|
|
// hidden fields by choosing the one dominant field that survives.
|
|
out := fields[:0]
|
|
for advance, i := 0, 0; i < len(fields); i += advance {
|
|
// One iteration per name.
|
|
// Find the sequence of fields with the name of this first field.
|
|
fi := fields[i]
|
|
name := fi.name
|
|
for advance = 1; i+advance < len(fields); advance++ {
|
|
fj := fields[i+advance]
|
|
if fj.name != name {
|
|
break
|
|
}
|
|
}
|
|
if advance == 1 { // Only one field with this name
|
|
out = append(out, fi)
|
|
continue
|
|
}
|
|
dominant, ok := dominantField(fields[i : i+advance])
|
|
if ok {
|
|
out = append(out, dominant)
|
|
}
|
|
}
|
|
|
|
fields = out
|
|
sort.Sort(byIndex(fields))
|
|
|
|
for i := range fields {
|
|
f := &fields[i]
|
|
f.encoder = typeEncoder(typeByIndex(t, f.index))
|
|
}
|
|
nameIndex := make(map[string]int, len(fields))
|
|
for i, field := range fields {
|
|
nameIndex[field.name] = i
|
|
}
|
|
return structFields{fields, nameIndex}
|
|
}
|
|
|
|
// dominantField looks through the fields, all of which are known to
|
|
// have the same name, to find the single field that dominates the
|
|
// others using Go's embedding rules, modified by the presence of
|
|
// JSON tags. If there are multiple top-level fields, the boolean
|
|
// will be false: This condition is an error in Go and we skip all
|
|
// the fields.
|
|
func dominantField(fields []field) (field, bool) {
|
|
// The fields are sorted in increasing index-length order, then by presence of tag.
|
|
// That means that the first field is the dominant one. We need only check
|
|
// for error cases: two fields at top level, either both tagged or neither tagged.
|
|
if len(fields) > 1 && len(fields[0].index) == len(fields[1].index) && fields[0].tag == fields[1].tag {
|
|
return field{}, false
|
|
}
|
|
return fields[0], true
|
|
}
|
|
|
|
var fieldCache sync.Map // map[reflect.Type]structFields
|
|
|
|
// cachedTypeFields is like typeFields but uses a cache to avoid repeated work.
|
|
func cachedTypeFields(t reflect.Type) structFields {
|
|
if f, ok := fieldCache.Load(t); ok {
|
|
return f.(structFields)
|
|
}
|
|
f, _ := fieldCache.LoadOrStore(t, typeFields(t))
|
|
return f.(structFields)
|
|
}
|