929 lines
20 KiB
Go
929 lines
20 KiB
Go
// Copyright 2011 The Go Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package runtime_test
|
||
|
||
import (
|
||
"fmt"
|
||
"math/rand"
|
||
"os"
|
||
"reflect"
|
||
"runtime"
|
||
"runtime/debug"
|
||
"sort"
|
||
"strings"
|
||
"sync"
|
||
"sync/atomic"
|
||
"testing"
|
||
"time"
|
||
"unsafe"
|
||
)
|
||
|
||
func TestGcSys(t *testing.T) {
|
||
t.Skip("does not test anything; https://golang.org/issue/23343")
|
||
if os.Getenv("GOGC") == "off" {
|
||
t.Skip("skipping test; GOGC=off in environment")
|
||
}
|
||
got := runTestProg(t, "testprog", "GCSys")
|
||
want := "OK\n"
|
||
if got != want {
|
||
t.Fatalf("expected %q, but got %q", want, got)
|
||
}
|
||
}
|
||
|
||
func TestGcDeepNesting(t *testing.T) {
|
||
type T [2][2][2][2][2][2][2][2][2][2]*int
|
||
a := new(T)
|
||
|
||
// Prevent the compiler from applying escape analysis.
|
||
// This makes sure new(T) is allocated on heap, not on the stack.
|
||
t.Logf("%p", a)
|
||
|
||
a[0][0][0][0][0][0][0][0][0][0] = new(int)
|
||
*a[0][0][0][0][0][0][0][0][0][0] = 13
|
||
runtime.GC()
|
||
if *a[0][0][0][0][0][0][0][0][0][0] != 13 {
|
||
t.Fail()
|
||
}
|
||
}
|
||
|
||
func TestGcMapIndirection(t *testing.T) {
|
||
defer debug.SetGCPercent(debug.SetGCPercent(1))
|
||
runtime.GC()
|
||
type T struct {
|
||
a [256]int
|
||
}
|
||
m := make(map[T]T)
|
||
for i := 0; i < 2000; i++ {
|
||
var a T
|
||
a.a[0] = i
|
||
m[a] = T{}
|
||
}
|
||
}
|
||
|
||
func TestGcArraySlice(t *testing.T) {
|
||
type X struct {
|
||
buf [1]byte
|
||
nextbuf []byte
|
||
next *X
|
||
}
|
||
var head *X
|
||
for i := 0; i < 10; i++ {
|
||
p := &X{}
|
||
p.buf[0] = 42
|
||
p.next = head
|
||
if head != nil {
|
||
p.nextbuf = head.buf[:]
|
||
}
|
||
head = p
|
||
runtime.GC()
|
||
}
|
||
for p := head; p != nil; p = p.next {
|
||
if p.buf[0] != 42 {
|
||
t.Fatal("corrupted heap")
|
||
}
|
||
}
|
||
}
|
||
|
||
func TestGcRescan(t *testing.T) {
|
||
type X struct {
|
||
c chan error
|
||
nextx *X
|
||
}
|
||
type Y struct {
|
||
X
|
||
nexty *Y
|
||
p *int
|
||
}
|
||
var head *Y
|
||
for i := 0; i < 10; i++ {
|
||
p := &Y{}
|
||
p.c = make(chan error)
|
||
if head != nil {
|
||
p.nextx = &head.X
|
||
}
|
||
p.nexty = head
|
||
p.p = new(int)
|
||
*p.p = 42
|
||
head = p
|
||
runtime.GC()
|
||
}
|
||
for p := head; p != nil; p = p.nexty {
|
||
if *p.p != 42 {
|
||
t.Fatal("corrupted heap")
|
||
}
|
||
}
|
||
}
|
||
|
||
func TestGcLastTime(t *testing.T) {
|
||
ms := new(runtime.MemStats)
|
||
t0 := time.Now().UnixNano()
|
||
runtime.GC()
|
||
t1 := time.Now().UnixNano()
|
||
runtime.ReadMemStats(ms)
|
||
last := int64(ms.LastGC)
|
||
if t0 > last || last > t1 {
|
||
t.Fatalf("bad last GC time: got %v, want [%v, %v]", last, t0, t1)
|
||
}
|
||
pause := ms.PauseNs[(ms.NumGC+255)%256]
|
||
// Due to timer granularity, pause can actually be 0 on windows
|
||
// or on virtualized environments.
|
||
if pause == 0 {
|
||
t.Logf("last GC pause was 0")
|
||
} else if pause > 10e9 {
|
||
t.Logf("bad last GC pause: got %v, want [0, 10e9]", pause)
|
||
}
|
||
}
|
||
|
||
var hugeSink interface{}
|
||
|
||
func TestHugeGCInfo(t *testing.T) {
|
||
// The test ensures that compiler can chew these huge types even on weakest machines.
|
||
// The types are not allocated at runtime.
|
||
if hugeSink != nil {
|
||
// 400MB on 32 bots, 4TB on 64-bits.
|
||
const n = (400 << 20) + (unsafe.Sizeof(uintptr(0))-4)<<40
|
||
hugeSink = new([n]*byte)
|
||
hugeSink = new([n]uintptr)
|
||
hugeSink = new(struct {
|
||
x float64
|
||
y [n]*byte
|
||
z []string
|
||
})
|
||
hugeSink = new(struct {
|
||
x float64
|
||
y [n]uintptr
|
||
z []string
|
||
})
|
||
}
|
||
}
|
||
|
||
/*
|
||
func TestPeriodicGC(t *testing.T) {
|
||
if runtime.GOARCH == "wasm" {
|
||
t.Skip("no sysmon on wasm yet")
|
||
}
|
||
|
||
// Make sure we're not in the middle of a GC.
|
||
runtime.GC()
|
||
|
||
var ms1, ms2 runtime.MemStats
|
||
runtime.ReadMemStats(&ms1)
|
||
|
||
// Make periodic GC run continuously.
|
||
orig := *runtime.ForceGCPeriod
|
||
*runtime.ForceGCPeriod = 0
|
||
|
||
// Let some periodic GCs happen. In a heavily loaded system,
|
||
// it's possible these will be delayed, so this is designed to
|
||
// succeed quickly if things are working, but to give it some
|
||
// slack if things are slow.
|
||
var numGCs uint32
|
||
const want = 2
|
||
for i := 0; i < 200 && numGCs < want; i++ {
|
||
time.Sleep(5 * time.Millisecond)
|
||
|
||
// Test that periodic GC actually happened.
|
||
runtime.ReadMemStats(&ms2)
|
||
numGCs = ms2.NumGC - ms1.NumGC
|
||
}
|
||
*runtime.ForceGCPeriod = orig
|
||
|
||
if numGCs < want {
|
||
t.Fatalf("no periodic GC: got %v GCs, want >= 2", numGCs)
|
||
}
|
||
}
|
||
*/
|
||
|
||
func TestGcZombieReporting(t *testing.T) {
|
||
if runtime.Compiler == "gccgo" {
|
||
t.Skip("gccgo uses partially conservative GC")
|
||
}
|
||
// This test is somewhat sensitive to how the allocator works.
|
||
got := runTestProg(t, "testprog", "GCZombie")
|
||
want := "found pointer to free object"
|
||
if !strings.Contains(got, want) {
|
||
t.Fatalf("expected %q in output, but got %q", want, got)
|
||
}
|
||
}
|
||
|
||
/*
|
||
|
||
func TestGCTestMoveStackOnNextCall(t *testing.T) {
|
||
t.Parallel()
|
||
var onStack int
|
||
// GCTestMoveStackOnNextCall can fail in rare cases if there's
|
||
// a preemption. This won't happen many times in quick
|
||
// succession, so just retry a few times.
|
||
for retry := 0; retry < 5; retry++ {
|
||
runtime.GCTestMoveStackOnNextCall()
|
||
if moveStackCheck(t, &onStack, uintptr(unsafe.Pointer(&onStack))) {
|
||
// Passed.
|
||
return
|
||
}
|
||
}
|
||
t.Fatal("stack did not move")
|
||
}
|
||
|
||
// This must not be inlined because the point is to force a stack
|
||
// growth check and move the stack.
|
||
//
|
||
//go:noinline
|
||
func moveStackCheck(t *testing.T, new *int, old uintptr) bool {
|
||
// new should have been updated by the stack move;
|
||
// old should not have.
|
||
|
||
// Capture new's value before doing anything that could
|
||
// further move the stack.
|
||
new2 := uintptr(unsafe.Pointer(new))
|
||
|
||
t.Logf("old stack pointer %x, new stack pointer %x", old, new2)
|
||
if new2 == old {
|
||
// Check that we didn't screw up the test's escape analysis.
|
||
if cls := runtime.GCTestPointerClass(unsafe.Pointer(new)); cls != "stack" {
|
||
t.Fatalf("test bug: new (%#x) should be a stack pointer, not %s", new2, cls)
|
||
}
|
||
// This was a real failure.
|
||
return false
|
||
}
|
||
return true
|
||
}
|
||
|
||
func TestGCTestMoveStackRepeatedly(t *testing.T) {
|
||
// Move the stack repeatedly to make sure we're not doubling
|
||
// it each time.
|
||
for i := 0; i < 100; i++ {
|
||
runtime.GCTestMoveStackOnNextCall()
|
||
moveStack1(false)
|
||
}
|
||
}
|
||
|
||
//go:noinline
|
||
func moveStack1(x bool) {
|
||
// Make sure this function doesn't get auto-nosplit.
|
||
if x {
|
||
println("x")
|
||
}
|
||
}
|
||
|
||
*/
|
||
|
||
func TestGCTestIsReachable(t *testing.T) {
|
||
var all, half []unsafe.Pointer
|
||
var want uint64
|
||
for i := 0; i < 16; i++ {
|
||
// The tiny allocator muddies things, so we use a
|
||
// scannable type.
|
||
p := unsafe.Pointer(new(*int))
|
||
all = append(all, p)
|
||
if i%2 == 0 {
|
||
half = append(half, p)
|
||
want |= 1 << i
|
||
}
|
||
}
|
||
|
||
got := runtime.GCTestIsReachable(all...)
|
||
if want != got {
|
||
// gccgo's conservative GC means that we sometimes
|
||
// keep data we shouldn't.
|
||
if runtime.Compiler == "gccgo" {
|
||
if ((got ^ want) & want) != 0 {
|
||
t.Fatalf("some expected bits not set: want %b, got %b", want, got)
|
||
}
|
||
} else {
|
||
t.Fatalf("did not get expected reachable set; want %b, got %b", want, got)
|
||
}
|
||
}
|
||
runtime.KeepAlive(half)
|
||
}
|
||
|
||
var pointerClassSink *int
|
||
var pointerClassData = 42
|
||
|
||
func TestGCTestPointerClass(t *testing.T) {
|
||
if runtime.Compiler == "gccgo" {
|
||
// gofrontend escape analysis doesn't handle passing
|
||
// &onStack through a closure.
|
||
t.Skip("skipping for gofrontend")
|
||
}
|
||
|
||
t.Parallel()
|
||
check := func(p unsafe.Pointer, want string) {
|
||
t.Helper()
|
||
got := runtime.GCTestPointerClass(p)
|
||
if got != want {
|
||
// Convert the pointer to a uintptr to avoid
|
||
// escaping it.
|
||
t.Errorf("for %#x, want class %s, got %s", uintptr(p), want, got)
|
||
}
|
||
}
|
||
var onStack int
|
||
var notOnStack int
|
||
pointerClassSink = ¬OnStack
|
||
check(unsafe.Pointer(&onStack), "stack")
|
||
check(unsafe.Pointer(¬OnStack), "heap")
|
||
check(unsafe.Pointer(&pointerClassSink), "bss")
|
||
check(unsafe.Pointer(&pointerClassData), "data")
|
||
check(nil, "other")
|
||
}
|
||
|
||
func BenchmarkSetTypePtr(b *testing.B) {
|
||
benchSetType(b, new(*byte))
|
||
}
|
||
|
||
func BenchmarkSetTypePtr8(b *testing.B) {
|
||
benchSetType(b, new([8]*byte))
|
||
}
|
||
|
||
func BenchmarkSetTypePtr16(b *testing.B) {
|
||
benchSetType(b, new([16]*byte))
|
||
}
|
||
|
||
func BenchmarkSetTypePtr32(b *testing.B) {
|
||
benchSetType(b, new([32]*byte))
|
||
}
|
||
|
||
func BenchmarkSetTypePtr64(b *testing.B) {
|
||
benchSetType(b, new([64]*byte))
|
||
}
|
||
|
||
func BenchmarkSetTypePtr126(b *testing.B) {
|
||
benchSetType(b, new([126]*byte))
|
||
}
|
||
|
||
func BenchmarkSetTypePtr128(b *testing.B) {
|
||
benchSetType(b, new([128]*byte))
|
||
}
|
||
|
||
func BenchmarkSetTypePtrSlice(b *testing.B) {
|
||
benchSetType(b, make([]*byte, 1<<10))
|
||
}
|
||
|
||
type Node1 struct {
|
||
Value [1]uintptr
|
||
Left, Right *byte
|
||
}
|
||
|
||
func BenchmarkSetTypeNode1(b *testing.B) {
|
||
benchSetType(b, new(Node1))
|
||
}
|
||
|
||
func BenchmarkSetTypeNode1Slice(b *testing.B) {
|
||
benchSetType(b, make([]Node1, 32))
|
||
}
|
||
|
||
type Node8 struct {
|
||
Value [8]uintptr
|
||
Left, Right *byte
|
||
}
|
||
|
||
func BenchmarkSetTypeNode8(b *testing.B) {
|
||
benchSetType(b, new(Node8))
|
||
}
|
||
|
||
func BenchmarkSetTypeNode8Slice(b *testing.B) {
|
||
benchSetType(b, make([]Node8, 32))
|
||
}
|
||
|
||
type Node64 struct {
|
||
Value [64]uintptr
|
||
Left, Right *byte
|
||
}
|
||
|
||
func BenchmarkSetTypeNode64(b *testing.B) {
|
||
benchSetType(b, new(Node64))
|
||
}
|
||
|
||
func BenchmarkSetTypeNode64Slice(b *testing.B) {
|
||
benchSetType(b, make([]Node64, 32))
|
||
}
|
||
|
||
type Node64Dead struct {
|
||
Left, Right *byte
|
||
Value [64]uintptr
|
||
}
|
||
|
||
func BenchmarkSetTypeNode64Dead(b *testing.B) {
|
||
benchSetType(b, new(Node64Dead))
|
||
}
|
||
|
||
func BenchmarkSetTypeNode64DeadSlice(b *testing.B) {
|
||
benchSetType(b, make([]Node64Dead, 32))
|
||
}
|
||
|
||
type Node124 struct {
|
||
Value [124]uintptr
|
||
Left, Right *byte
|
||
}
|
||
|
||
func BenchmarkSetTypeNode124(b *testing.B) {
|
||
benchSetType(b, new(Node124))
|
||
}
|
||
|
||
func BenchmarkSetTypeNode124Slice(b *testing.B) {
|
||
benchSetType(b, make([]Node124, 32))
|
||
}
|
||
|
||
type Node126 struct {
|
||
Value [126]uintptr
|
||
Left, Right *byte
|
||
}
|
||
|
||
func BenchmarkSetTypeNode126(b *testing.B) {
|
||
benchSetType(b, new(Node126))
|
||
}
|
||
|
||
func BenchmarkSetTypeNode126Slice(b *testing.B) {
|
||
benchSetType(b, make([]Node126, 32))
|
||
}
|
||
|
||
type Node128 struct {
|
||
Value [128]uintptr
|
||
Left, Right *byte
|
||
}
|
||
|
||
func BenchmarkSetTypeNode128(b *testing.B) {
|
||
benchSetType(b, new(Node128))
|
||
}
|
||
|
||
func BenchmarkSetTypeNode128Slice(b *testing.B) {
|
||
benchSetType(b, make([]Node128, 32))
|
||
}
|
||
|
||
type Node130 struct {
|
||
Value [130]uintptr
|
||
Left, Right *byte
|
||
}
|
||
|
||
func BenchmarkSetTypeNode130(b *testing.B) {
|
||
benchSetType(b, new(Node130))
|
||
}
|
||
|
||
func BenchmarkSetTypeNode130Slice(b *testing.B) {
|
||
benchSetType(b, make([]Node130, 32))
|
||
}
|
||
|
||
type Node1024 struct {
|
||
Value [1024]uintptr
|
||
Left, Right *byte
|
||
}
|
||
|
||
func BenchmarkSetTypeNode1024(b *testing.B) {
|
||
benchSetType(b, new(Node1024))
|
||
}
|
||
|
||
func BenchmarkSetTypeNode1024Slice(b *testing.B) {
|
||
benchSetType(b, make([]Node1024, 32))
|
||
}
|
||
|
||
func benchSetType(b *testing.B, x interface{}) {
|
||
v := reflect.ValueOf(x)
|
||
t := v.Type()
|
||
switch t.Kind() {
|
||
case reflect.Ptr:
|
||
b.SetBytes(int64(t.Elem().Size()))
|
||
case reflect.Slice:
|
||
b.SetBytes(int64(t.Elem().Size()) * int64(v.Len()))
|
||
}
|
||
b.ResetTimer()
|
||
//runtime.BenchSetType(b.N, x)
|
||
}
|
||
|
||
func BenchmarkAllocation(b *testing.B) {
|
||
type T struct {
|
||
x, y *byte
|
||
}
|
||
ngo := runtime.GOMAXPROCS(0)
|
||
work := make(chan bool, b.N+ngo)
|
||
result := make(chan *T)
|
||
for i := 0; i < b.N; i++ {
|
||
work <- true
|
||
}
|
||
for i := 0; i < ngo; i++ {
|
||
work <- false
|
||
}
|
||
for i := 0; i < ngo; i++ {
|
||
go func() {
|
||
var x *T
|
||
for <-work {
|
||
for i := 0; i < 1000; i++ {
|
||
x = &T{}
|
||
}
|
||
}
|
||
result <- x
|
||
}()
|
||
}
|
||
for i := 0; i < ngo; i++ {
|
||
<-result
|
||
}
|
||
}
|
||
|
||
func TestPrintGC(t *testing.T) {
|
||
if testing.Short() {
|
||
t.Skip("Skipping in short mode")
|
||
}
|
||
defer runtime.GOMAXPROCS(runtime.GOMAXPROCS(2))
|
||
done := make(chan bool)
|
||
go func() {
|
||
for {
|
||
select {
|
||
case <-done:
|
||
return
|
||
default:
|
||
runtime.GC()
|
||
}
|
||
}
|
||
}()
|
||
for i := 0; i < 1e4; i++ {
|
||
func() {
|
||
defer print("")
|
||
}()
|
||
}
|
||
close(done)
|
||
}
|
||
|
||
func testTypeSwitch(x interface{}) error {
|
||
switch y := x.(type) {
|
||
case nil:
|
||
// ok
|
||
case error:
|
||
return y
|
||
}
|
||
return nil
|
||
}
|
||
|
||
func testAssert(x interface{}) error {
|
||
if y, ok := x.(error); ok {
|
||
return y
|
||
}
|
||
return nil
|
||
}
|
||
|
||
func testAssertVar(x interface{}) error {
|
||
var y, ok = x.(error)
|
||
if ok {
|
||
return y
|
||
}
|
||
return nil
|
||
}
|
||
|
||
var a bool
|
||
|
||
//go:noinline
|
||
func testIfaceEqual(x interface{}) {
|
||
if x == "abc" {
|
||
a = true
|
||
}
|
||
}
|
||
|
||
func TestPageAccounting(t *testing.T) {
|
||
// Grow the heap in small increments. This used to drop the
|
||
// pages-in-use count below zero because of a rounding
|
||
// mismatch (golang.org/issue/15022).
|
||
const blockSize = 64 << 10
|
||
blocks := make([]*[blockSize]byte, (64<<20)/blockSize)
|
||
for i := range blocks {
|
||
blocks[i] = new([blockSize]byte)
|
||
}
|
||
|
||
// Check that the running page count matches reality.
|
||
pagesInUse, counted := runtime.CountPagesInUse()
|
||
if pagesInUse != counted {
|
||
t.Fatalf("mheap_.pagesInUse is %d, but direct count is %d", pagesInUse, counted)
|
||
}
|
||
}
|
||
|
||
func TestReadMemStats(t *testing.T) {
|
||
base, slow := runtime.ReadMemStatsSlow()
|
||
if base != slow {
|
||
logDiff(t, "MemStats", reflect.ValueOf(base), reflect.ValueOf(slow))
|
||
t.Fatal("memstats mismatch")
|
||
}
|
||
}
|
||
|
||
func logDiff(t *testing.T, prefix string, got, want reflect.Value) {
|
||
typ := got.Type()
|
||
switch typ.Kind() {
|
||
case reflect.Array, reflect.Slice:
|
||
if got.Len() != want.Len() {
|
||
t.Logf("len(%s): got %v, want %v", prefix, got, want)
|
||
return
|
||
}
|
||
for i := 0; i < got.Len(); i++ {
|
||
logDiff(t, fmt.Sprintf("%s[%d]", prefix, i), got.Index(i), want.Index(i))
|
||
}
|
||
case reflect.Struct:
|
||
for i := 0; i < typ.NumField(); i++ {
|
||
gf, wf := got.Field(i), want.Field(i)
|
||
logDiff(t, prefix+"."+typ.Field(i).Name, gf, wf)
|
||
}
|
||
case reflect.Map:
|
||
t.Fatal("not implemented: logDiff for map")
|
||
default:
|
||
if got.Interface() != want.Interface() {
|
||
t.Logf("%s: got %v, want %v", prefix, got, want)
|
||
}
|
||
}
|
||
}
|
||
|
||
func BenchmarkReadMemStats(b *testing.B) {
|
||
var ms runtime.MemStats
|
||
const heapSize = 100 << 20
|
||
x := make([]*[1024]byte, heapSize/1024)
|
||
for i := range x {
|
||
x[i] = new([1024]byte)
|
||
}
|
||
hugeSink = x
|
||
|
||
b.ResetTimer()
|
||
for i := 0; i < b.N; i++ {
|
||
runtime.ReadMemStats(&ms)
|
||
}
|
||
|
||
hugeSink = nil
|
||
}
|
||
|
||
func applyGCLoad(b *testing.B) func() {
|
||
// We’ll apply load to the runtime with maxProcs-1 goroutines
|
||
// and use one more to actually benchmark. It doesn't make sense
|
||
// to try to run this test with only 1 P (that's what
|
||
// BenchmarkReadMemStats is for).
|
||
maxProcs := runtime.GOMAXPROCS(-1)
|
||
if maxProcs == 1 {
|
||
b.Skip("This benchmark can only be run with GOMAXPROCS > 1")
|
||
}
|
||
|
||
// Code to build a big tree with lots of pointers.
|
||
type node struct {
|
||
children [16]*node
|
||
}
|
||
var buildTree func(depth int) *node
|
||
buildTree = func(depth int) *node {
|
||
tree := new(node)
|
||
if depth != 0 {
|
||
for i := range tree.children {
|
||
tree.children[i] = buildTree(depth - 1)
|
||
}
|
||
}
|
||
return tree
|
||
}
|
||
|
||
// Keep the GC busy by continuously generating large trees.
|
||
done := make(chan struct{})
|
||
var wg sync.WaitGroup
|
||
for i := 0; i < maxProcs-1; i++ {
|
||
wg.Add(1)
|
||
go func() {
|
||
defer wg.Done()
|
||
var hold *node
|
||
loop:
|
||
for {
|
||
hold = buildTree(5)
|
||
select {
|
||
case <-done:
|
||
break loop
|
||
default:
|
||
}
|
||
}
|
||
runtime.KeepAlive(hold)
|
||
}()
|
||
}
|
||
return func() {
|
||
close(done)
|
||
wg.Wait()
|
||
}
|
||
}
|
||
|
||
func BenchmarkReadMemStatsLatency(b *testing.B) {
|
||
stop := applyGCLoad(b)
|
||
|
||
// Spend this much time measuring latencies.
|
||
latencies := make([]time.Duration, 0, 1024)
|
||
|
||
// Run for timeToBench hitting ReadMemStats continuously
|
||
// and measuring the latency.
|
||
b.ResetTimer()
|
||
var ms runtime.MemStats
|
||
for i := 0; i < b.N; i++ {
|
||
// Sleep for a bit, otherwise we're just going to keep
|
||
// stopping the world and no one will get to do anything.
|
||
time.Sleep(100 * time.Millisecond)
|
||
start := time.Now()
|
||
runtime.ReadMemStats(&ms)
|
||
latencies = append(latencies, time.Now().Sub(start))
|
||
}
|
||
// Make sure to stop the timer before we wait! The load created above
|
||
// is very heavy-weight and not easy to stop, so we could end up
|
||
// confusing the benchmarking framework for small b.N.
|
||
b.StopTimer()
|
||
stop()
|
||
|
||
// Disable the default */op metrics.
|
||
// ns/op doesn't mean anything because it's an average, but we
|
||
// have a sleep in our b.N loop above which skews this significantly.
|
||
b.ReportMetric(0, "ns/op")
|
||
b.ReportMetric(0, "B/op")
|
||
b.ReportMetric(0, "allocs/op")
|
||
|
||
// Sort latencies then report percentiles.
|
||
sort.Slice(latencies, func(i, j int) bool {
|
||
return latencies[i] < latencies[j]
|
||
})
|
||
b.ReportMetric(float64(latencies[len(latencies)*50/100]), "p50-ns")
|
||
b.ReportMetric(float64(latencies[len(latencies)*90/100]), "p90-ns")
|
||
b.ReportMetric(float64(latencies[len(latencies)*99/100]), "p99-ns")
|
||
}
|
||
|
||
func TestUserForcedGC(t *testing.T) {
|
||
// Test that runtime.GC() triggers a GC even if GOGC=off.
|
||
defer debug.SetGCPercent(debug.SetGCPercent(-1))
|
||
|
||
var ms1, ms2 runtime.MemStats
|
||
runtime.ReadMemStats(&ms1)
|
||
runtime.GC()
|
||
runtime.ReadMemStats(&ms2)
|
||
if ms1.NumGC == ms2.NumGC {
|
||
t.Fatalf("runtime.GC() did not trigger GC")
|
||
}
|
||
if ms1.NumForcedGC == ms2.NumForcedGC {
|
||
t.Fatalf("runtime.GC() was not accounted in NumForcedGC")
|
||
}
|
||
}
|
||
|
||
func writeBarrierBenchmark(b *testing.B, f func()) {
|
||
runtime.GC()
|
||
var ms runtime.MemStats
|
||
runtime.ReadMemStats(&ms)
|
||
//b.Logf("heap size: %d MB", ms.HeapAlloc>>20)
|
||
|
||
// Keep GC running continuously during the benchmark, which in
|
||
// turn keeps the write barrier on continuously.
|
||
var stop uint32
|
||
done := make(chan bool)
|
||
go func() {
|
||
for atomic.LoadUint32(&stop) == 0 {
|
||
runtime.GC()
|
||
}
|
||
close(done)
|
||
}()
|
||
defer func() {
|
||
atomic.StoreUint32(&stop, 1)
|
||
<-done
|
||
}()
|
||
|
||
b.ResetTimer()
|
||
f()
|
||
b.StopTimer()
|
||
}
|
||
|
||
func BenchmarkWriteBarrier(b *testing.B) {
|
||
if runtime.GOMAXPROCS(-1) < 2 {
|
||
// We don't want GC to take our time.
|
||
b.Skip("need GOMAXPROCS >= 2")
|
||
}
|
||
|
||
// Construct a large tree both so the GC runs for a while and
|
||
// so we have a data structure to manipulate the pointers of.
|
||
type node struct {
|
||
l, r *node
|
||
}
|
||
var wbRoots []*node
|
||
var mkTree func(level int) *node
|
||
mkTree = func(level int) *node {
|
||
if level == 0 {
|
||
return nil
|
||
}
|
||
n := &node{mkTree(level - 1), mkTree(level - 1)}
|
||
if level == 10 {
|
||
// Seed GC with enough early pointers so it
|
||
// doesn't start termination barriers when it
|
||
// only has the top of the tree.
|
||
wbRoots = append(wbRoots, n)
|
||
}
|
||
return n
|
||
}
|
||
const depth = 22 // 64 MB
|
||
root := mkTree(22)
|
||
|
||
writeBarrierBenchmark(b, func() {
|
||
var stack [depth]*node
|
||
tos := -1
|
||
|
||
// There are two write barriers per iteration, so i+=2.
|
||
for i := 0; i < b.N; i += 2 {
|
||
if tos == -1 {
|
||
stack[0] = root
|
||
tos = 0
|
||
}
|
||
|
||
// Perform one step of reversing the tree.
|
||
n := stack[tos]
|
||
if n.l == nil {
|
||
tos--
|
||
} else {
|
||
n.l, n.r = n.r, n.l
|
||
stack[tos] = n.l
|
||
stack[tos+1] = n.r
|
||
tos++
|
||
}
|
||
|
||
if i%(1<<12) == 0 {
|
||
// Avoid non-preemptible loops (see issue #10958).
|
||
runtime.Gosched()
|
||
}
|
||
}
|
||
})
|
||
|
||
runtime.KeepAlive(wbRoots)
|
||
}
|
||
|
||
func BenchmarkBulkWriteBarrier(b *testing.B) {
|
||
if runtime.GOMAXPROCS(-1) < 2 {
|
||
// We don't want GC to take our time.
|
||
b.Skip("need GOMAXPROCS >= 2")
|
||
}
|
||
|
||
// Construct a large set of objects we can copy around.
|
||
const heapSize = 64 << 20
|
||
type obj [16]*byte
|
||
ptrs := make([]*obj, heapSize/unsafe.Sizeof(obj{}))
|
||
for i := range ptrs {
|
||
ptrs[i] = new(obj)
|
||
}
|
||
|
||
writeBarrierBenchmark(b, func() {
|
||
const blockSize = 1024
|
||
var pos int
|
||
for i := 0; i < b.N; i += blockSize {
|
||
// Rotate block.
|
||
block := ptrs[pos : pos+blockSize]
|
||
first := block[0]
|
||
copy(block, block[1:])
|
||
block[blockSize-1] = first
|
||
|
||
pos += blockSize
|
||
if pos+blockSize > len(ptrs) {
|
||
pos = 0
|
||
}
|
||
|
||
runtime.Gosched()
|
||
}
|
||
})
|
||
|
||
runtime.KeepAlive(ptrs)
|
||
}
|
||
|
||
func BenchmarkScanStackNoLocals(b *testing.B) {
|
||
var ready sync.WaitGroup
|
||
teardown := make(chan bool)
|
||
for j := 0; j < 10; j++ {
|
||
ready.Add(1)
|
||
go func() {
|
||
x := 100000
|
||
countpwg(&x, &ready, teardown)
|
||
}()
|
||
}
|
||
ready.Wait()
|
||
b.ResetTimer()
|
||
for i := 0; i < b.N; i++ {
|
||
b.StartTimer()
|
||
runtime.GC()
|
||
runtime.GC()
|
||
b.StopTimer()
|
||
}
|
||
close(teardown)
|
||
}
|
||
|
||
func BenchmarkMSpanCountAlloc(b *testing.B) {
|
||
// Allocate one dummy mspan for the whole benchmark.
|
||
s := runtime.AllocMSpan()
|
||
defer runtime.FreeMSpan(s)
|
||
|
||
// n is the number of bytes to benchmark against.
|
||
// n must always be a multiple of 8, since gcBits is
|
||
// always rounded up 8 bytes.
|
||
for _, n := range []int{8, 16, 32, 64, 128} {
|
||
b.Run(fmt.Sprintf("bits=%d", n*8), func(b *testing.B) {
|
||
// Initialize a new byte slice with pseduo-random data.
|
||
bits := make([]byte, n)
|
||
rand.Read(bits)
|
||
|
||
b.ResetTimer()
|
||
for i := 0; i < b.N; i++ {
|
||
runtime.MSpanCountAlloc(s, bits)
|
||
}
|
||
})
|
||
}
|
||
}
|
||
|
||
func countpwg(n *int, ready *sync.WaitGroup, teardown chan bool) {
|
||
if *n == 0 {
|
||
ready.Done()
|
||
<-teardown
|
||
return
|
||
}
|
||
*n--
|
||
countpwg(n, ready, teardown)
|
||
}
|