gcc/libstdc++-v3/include/ext/mt_allocator.h
Benjamin Kosnik 8bfd0a46ea re PR libstdc++/16614 (Excessive resource usage in __mt_alloc)
2004-09-01  Benjamin Kosnik  <bkoz@redhat.com>

	PR libstdc++/16614
	* include/ext/mt_allocator.h (__mt_base): Not type dependent,
	split into..
	(__pool): New, specialize.
	(__common_pool): New, static bits here.
	(__per_type_pool): New, and here.
	(__mt_alloc_base): New.
	(__mt_alloc): Add template parameter, inherit from it.
	* src/allocator.cc: Split this...
	* src/allocator-inst.cc: And this...
	* src/pool_allocator.cc: ...into this.
	* src/mt_allocator.cc: ... and this. Add definitions for
	__mt_base.
	* src/Makefile.am (sources): Split allocator.cc to
	pool_allocator.cc and mt_allocator.cc.
	* src/Makefile.in: Regenerate.
	* config/linker-map.gnu: Add symbols.
	* docs/html/ext/mt_allocator.html: Document new design.
	* testsuite/ext/mt_allocator/tune-1.cc: New.
	* testsuite/ext/mt_allocator/tune-2.cc: New.
	* testsuite/ext/mt_allocator/tune-3.cc: New.
	* testsuite/ext/mt_allocator/tune-4.cc: New.

	* testsuite/testsuite_allocator.h (__gnu_test::check_new): New.
	* testsuite/ext/allocators.cc: Use check_new, split into...
	* testsuite/ext/mt_allocator/check_new.cc: this.
	* testsuite/ext/pool_allocator/check_new.cc: this.
	* testsuite/ext/malloc_allocator/check_new.cc: this.
	* testsuite/ext/debug_allocator/check_new.cc: this.
	* testsuite/ext/mt_allocator/instantiate.cc: this.
	* testsuite/ext/pool_allocator/instantiate.cc: this.
	* testsuite/ext/malloc_allocator/instantiate.cc: this.
	* testsuite/ext/debug_allocator/instantiate.cc: this.

From-SVN: r86936
2004-09-01 22:17:00 +00:00

686 lines
20 KiB
C++

// MT-optimized allocator -*- C++ -*-
// Copyright (C) 2003, 2004 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
/** @file ext/mt_allocator.h
* This file is a GNU extension to the Standard C++ Library.
* You should only include this header if you are using GCC 3 or later.
*/
#ifndef _MT_ALLOCATOR_H
#define _MT_ALLOCATOR_H 1
#include <new>
#include <cstdlib>
#include <bits/functexcept.h>
#include <bits/gthr.h>
#include <bits/atomicity.h>
namespace __gnu_cxx
{
/**
* This is a fixed size (power of 2) allocator which - when
* compiled with thread support - will maintain one freelist per
* size per thread plus a "global" one. Steps are taken to limit
* the per thread freelist sizes (by returning excess back to
* "global").
*
* Further details:
* http://gcc.gnu.org/onlinedocs/libstdc++/ext/mt_allocator.html
*/
typedef void (*__destroy_handler)(void*);
typedef void (*__create_handler)(void);
class __pool_base
{
public:
// Variables used to configure the behavior of the allocator,
// assigned and explained in detail below.
struct _Tune
{
// Alignment needed.
// NB: In any case must be >= sizeof(_Block_record), that
// is 4 on 32 bit machines and 8 on 64 bit machines.
size_t _M_align;
// Allocation requests (after round-up to power of 2) below
// this value will be handled by the allocator. A raw new/
// call will be used for requests larger than this value.
size_t _M_max_bytes;
// Size in bytes of the smallest bin.
// NB: Must be a power of 2 and >= _M_align.
size_t _M_min_bin;
// In order to avoid fragmenting and minimize the number of
// new() calls we always request new memory using this
// value. Based on previous discussions on the libstdc++
// mailing list we have choosen the value below.
// See http://gcc.gnu.org/ml/libstdc++/2001-07/msg00077.html
size_t _M_chunk_size;
// The maximum number of supported threads. For
// single-threaded operation, use one. Maximum values will
// vary depending on details of the underlying system. (For
// instance, Linux 2.4.18 reports 4070 in
// /proc/sys/kernel/threads-max, while Linux 2.6.6 reports
// 65534)
size_t _M_max_threads;
// Each time a deallocation occurs in a threaded application
// we make sure that there are no more than
// _M_freelist_headroom % of used memory on the freelist. If
// the number of additional records is more than
// _M_freelist_headroom % of the freelist, we move these
// records back to the global pool.
size_t _M_freelist_headroom;
// Set to true forces all allocations to use new().
bool _M_force_new;
explicit
_Tune()
: _M_align(8), _M_max_bytes(128), _M_min_bin(8),
_M_chunk_size(4096 - 4 * sizeof(void*)),
_M_max_threads(4096), _M_freelist_headroom(10),
_M_force_new(getenv("GLIBCXX_FORCE_NEW") ? true : false)
{ }
explicit
_Tune(size_t __align, size_t __maxb, size_t __minbin, size_t __chunk,
size_t __maxthreads, size_t __headroom, bool __force)
: _M_align(__align), _M_max_bytes(__maxb), _M_min_bin(__minbin),
_M_chunk_size(__chunk), _M_max_threads(__maxthreads),
_M_freelist_headroom(__headroom), _M_force_new(__force)
{ }
};
const _Tune&
_M_get_options() const
{ return _M_options; }
void
_M_set_options(_Tune __t)
{
if (!_M_init)
_M_options = __t;
}
bool
_M_check_threshold(size_t __bytes)
{ return __bytes > _M_options._M_max_bytes || _M_options._M_force_new; }
size_t
_M_get_binmap(size_t __bytes)
{ return _M_binmap[__bytes]; }
explicit __pool_base()
: _M_init(false), _M_options(_Tune()), _M_binmap(NULL) { }
protected:
// We need to create the initial lists and set up some variables
// before we can answer to the first request for memory.
bool _M_init;
// Configuration options.
_Tune _M_options;
// Using short int as type for the binmap implies we are never
// caching blocks larger than 65535 with this allocator.
typedef unsigned short int _Binmap_type;
_Binmap_type* _M_binmap;
};
// Data describing the underlying memory pool, parameterized on
// threading support.
template<bool _Thread>
class __pool;
template<>
class __pool<true>;
template<>
class __pool<false>;
#ifdef __GTHREADS
// Specialization for thread enabled, via gthreads.h.
template<>
class __pool<true> : public __pool_base
{
public:
// Each requesting thread is assigned an id ranging from 1 to
// _S_max_threads. Thread id 0 is used as a global memory pool.
// In order to get constant performance on the thread assignment
// routine, we keep a list of free ids. When a thread first
// requests memory we remove the first record in this list and
// stores the address in a __gthread_key. When initializing the
// __gthread_key we specify a destructor. When this destructor
// (i.e. the thread dies) is called, we return the thread id to
// the front of this list.
struct _Thread_record
{
// Points to next free thread id record. NULL if last record in list.
_Thread_record* volatile _M_next;
// Thread id ranging from 1 to _S_max_threads.
size_t _M_id;
};
union _Block_record
{
// Points to the block_record of the next free block.
_Block_record* volatile _M_next;
// The thread id of the thread which has requested this block.
size_t _M_thread_id;
};
struct _Bin_record
{
// An "array" of pointers to the first free block for each
// thread id. Memory to this "array" is allocated in _S_initialize()
// for _S_max_threads + global pool 0.
_Block_record** volatile _M_first;
// An "array" of counters used to keep track of the amount of
// blocks that are on the freelist/used for each thread id.
// Memory to these "arrays" is allocated in _S_initialize() for
// _S_max_threads + global pool 0.
size_t* volatile _M_free;
size_t* volatile _M_used;
// Each bin has its own mutex which is used to ensure data
// integrity while changing "ownership" on a block. The mutex
// is initialized in _S_initialize().
__gthread_mutex_t* _M_mutex;
};
void
_M_initialize(__destroy_handler __d);
void
_M_initialize_once(__create_handler __c)
{
// Although the test in __gthread_once() would suffice, we
// wrap test of the once condition in our own unlocked
// check. This saves one function call to pthread_once()
// (which itself only tests for the once value unlocked anyway
// and immediately returns if set)
if (__builtin_expect(_M_init == false, false))
{
if (__gthread_active_p())
__gthread_once(&_M_once, __c);
if (!_M_init)
__c();
}
}
char*
_M_reserve_memory(size_t __bytes, const size_t __thread_id);
void
_M_reclaim_memory(char* __p, size_t __bytes);
const _Bin_record&
_M_get_bin(size_t __which)
{ return _M_bin[__which]; }
void
_M_adjust_freelist(const _Bin_record& __bin, _Block_record* __block,
size_t __thread_id)
{
if (__gthread_active_p())
{
__block->_M_thread_id = __thread_id;
--__bin._M_free[__thread_id];
++__bin._M_used[__thread_id];
}
}
void
_M_destroy_thread_key(void* __freelist_pos);
size_t
_M_get_thread_id();
explicit __pool()
: _M_bin(NULL), _M_bin_size(1), _M_thread_freelist(NULL)
{
// On some platforms, __gthread_once_t is an aggregate.
__gthread_once_t __tmp = __GTHREAD_ONCE_INIT;
_M_once = __tmp;
}
private:
// An "array" of bin_records each of which represents a specific
// power of 2 size. Memory to this "array" is allocated in
// _M_initialize().
_Bin_record* volatile _M_bin;
// Actual value calculated in _M_initialize().
size_t _M_bin_size;
__gthread_once_t _M_once;
_Thread_record* _M_thread_freelist;
};
#endif
// Specialization for single thread.
template<>
class __pool<false> : public __pool_base
{
public:
union _Block_record
{
// Points to the block_record of the next free block.
_Block_record* volatile _M_next;
};
struct _Bin_record
{
// An "array" of pointers to the first free block for each
// thread id. Memory to this "array" is allocated in _S_initialize()
// for _S_max_threads + global pool 0.
_Block_record** volatile _M_first;
};
void
_M_initialize_once()
{
if (__builtin_expect(_M_init == false, false))
_M_initialize();
}
char*
_M_reserve_memory(size_t __bytes, const size_t __thread_id);
void
_M_reclaim_memory(char* __p, size_t __bytes);
size_t
_M_get_thread_id() { return 0; }
const _Bin_record&
_M_get_bin(size_t __which)
{ return _M_bin[__which]; }
void
_M_adjust_freelist(const _Bin_record&, _Block_record*, size_t)
{ }
explicit __pool()
: _M_bin(NULL), _M_bin_size(1) { }
private:
// An "array" of bin_records each of which represents a specific
// power of 2 size. Memory to this "array" is allocated in
// _M_initialize().
_Bin_record* volatile _M_bin;
// Actual value calculated in _M_initialize().
size_t _M_bin_size;
void
_M_initialize();
};
template<bool _Thread>
struct __common_pool_policy
{
template<typename _Tp1, bool _Thread1 = _Thread>
struct _M_rebind;
template<typename _Tp1>
struct _M_rebind<_Tp1, true>
{ typedef __common_pool_policy<true> other; };
template<typename _Tp1>
struct _M_rebind<_Tp1, false>
{ typedef __common_pool_policy<false> other; };
typedef __pool<_Thread> __pool_type;
static __pool_type _S_data;
static __pool_type&
_S_get_pool();
static void
_S_initialize_once()
{
static bool __init;
if (__builtin_expect(__init == false, false))
{
_S_get_pool()._M_initialize_once();
__init = true;
}
}
};
template<>
struct __common_pool_policy<true>;
#ifdef __GTHREADS
template<>
struct __common_pool_policy<true>
{
template<typename _Tp1, bool _Thread1 = true>
struct _M_rebind;
template<typename _Tp1>
struct _M_rebind<_Tp1, true>
{ typedef __common_pool_policy<true> other; };
template<typename _Tp1>
struct _M_rebind<_Tp1, false>
{ typedef __common_pool_policy<false> other; };
typedef __pool<true> __pool_type;
static __pool_type _S_data;
static __pool_type&
_S_get_pool();
static void
_S_destroy_thread_key(void* __freelist_pos)
{ _S_get_pool()._M_destroy_thread_key(__freelist_pos); }
static void
_S_initialize()
{ _S_get_pool()._M_initialize(_S_destroy_thread_key); }
static void
_S_initialize_once()
{
static bool __init;
if (__builtin_expect(__init == false, false))
{
_S_get_pool()._M_initialize_once(_S_initialize);
__init = true;
}
}
};
#endif
template<typename _Tp, bool _Thread>
struct __per_type_pool_policy
{
template<typename _Tp1, bool _Thread1 = _Thread>
struct _M_rebind;
template<typename _Tp1>
struct _M_rebind<_Tp1, false>
{ typedef __per_type_pool_policy<_Tp1, false> other; };
template<typename _Tp1>
struct _M_rebind<_Tp1, true>
{ typedef __per_type_pool_policy<_Tp1, true> other; };
typedef __pool<_Thread> __pool_type;
static __pool_type _S_data;
static __pool_type&
_S_get_pool( ) { return _S_data; }
static void
_S_initialize_once()
{
static bool __init;
if (__builtin_expect(__init == false, false))
{
_S_get_pool()._M_initialize_once();
__init = true;
}
}
};
template<typename _Tp, bool _Thread>
__pool<_Thread>
__per_type_pool_policy<_Tp, _Thread>::_S_data;
template<typename _Tp>
struct __per_type_pool_policy<_Tp, true>;
#ifdef __GTHREADS
template<typename _Tp>
struct __per_type_pool_policy<_Tp, true>
{
template<typename _Tp1, bool _Thread1 = true>
struct _M_rebind;
template<typename _Tp1>
struct _M_rebind<_Tp1, false>
{ typedef __per_type_pool_policy<_Tp1, false> other; };
template<typename _Tp1>
struct _M_rebind<_Tp1, true>
{ typedef __per_type_pool_policy<_Tp1, true> other; };
typedef __pool<true> __pool_type;
static __pool_type _S_data;
static __pool_type&
_S_get_pool( ) { return _S_data; }
static void
_S_destroy_thread_key(void* __freelist_pos)
{ _S_get_pool()._M_destroy_thread_key(__freelist_pos); }
static void
_S_initialize()
{ _S_get_pool()._M_initialize(_S_destroy_thread_key); }
static void
_S_initialize_once()
{
static bool __init;
if (__builtin_expect(__init == false, false))
{
_S_get_pool()._M_initialize_once(_S_initialize);
__init = true;
}
}
};
template<typename _Tp>
__pool<true>
__per_type_pool_policy<_Tp, true>::_S_data;
#endif
#ifdef __GTHREADS
typedef __common_pool_policy<true> __default_policy;
#else
typedef __common_pool_policy<false> __default_policy;
#endif
template<typename _Tp>
class __mt_alloc_base
{
public:
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef _Tp* pointer;
typedef const _Tp* const_pointer;
typedef _Tp& reference;
typedef const _Tp& const_reference;
typedef _Tp value_type;
pointer
address(reference __x) const
{ return &__x; }
const_pointer
address(const_reference __x) const
{ return &__x; }
size_type
max_size() const throw()
{ return size_t(-1) / sizeof(_Tp); }
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 402. wrong new expression in [some_] allocator::construct
void
construct(pointer __p, const _Tp& __val)
{ ::new(__p) _Tp(__val); }
void
destroy(pointer __p) { __p->~_Tp(); }
};
template<typename _Tp, typename _Poolp = __default_policy>
class __mt_alloc : public __mt_alloc_base<_Tp>, _Poolp
{
public:
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef _Tp* pointer;
typedef const _Tp* const_pointer;
typedef _Tp& reference;
typedef const _Tp& const_reference;
typedef _Tp value_type;
typedef _Poolp __policy_type;
typedef typename _Poolp::__pool_type __pool_type;
template<typename _Tp1, typename _Poolp1 = _Poolp>
struct rebind
{
typedef typename _Poolp1::template _M_rebind<_Tp1>::other pol_type;
typedef __mt_alloc<_Tp1, pol_type> other;
};
__mt_alloc() throw()
{
// XXX
}
__mt_alloc(const __mt_alloc&) throw()
{
// XXX
}
template<typename _Tp1, typename _Poolp1>
__mt_alloc(const __mt_alloc<_Tp1, _Poolp1>& obj) throw()
{
// XXX
}
~__mt_alloc() throw() { }
pointer
allocate(size_type __n, const void* = 0);
void
deallocate(pointer __p, size_type __n);
const __pool_base::_Tune
_M_get_options()
{
// Return a copy, not a reference, for external consumption.
return __pool_base::_Tune(this->_S_get_pool()._M_get_options());
}
void
_M_set_options(__pool_base::_Tune __t)
{ this->_S_get_pool()._M_set_options(__t); }
};
template<typename _Tp, typename _Poolp>
typename __mt_alloc<_Tp, _Poolp>::pointer
__mt_alloc<_Tp, _Poolp>::
allocate(size_type __n, const void*)
{
this->_S_initialize_once();
// Requests larger than _M_max_bytes are handled by new/delete
// directly.
__pool_type& __pl = this->_S_get_pool();
const size_t __bytes = __n * sizeof(_Tp);
if (__pl._M_check_threshold(__bytes))
{
void* __ret = ::operator new(__bytes);
return static_cast<_Tp*>(__ret);
}
// Round up to power of 2 and figure out which bin to use.
const size_t __which = __pl._M_get_binmap(__bytes);
const size_t __thread_id = __pl._M_get_thread_id();
// Find out if we have blocks on our freelist. If so, go ahead
// and use them directly without having to lock anything.
char* __c;
typedef typename __pool_type::_Bin_record _Bin_record;
const _Bin_record& __bin = __pl._M_get_bin(__which);
if (__bin._M_first[__thread_id])
{
// Already reserved.
typedef typename __pool_type::_Block_record _Block_record;
_Block_record* __block = __bin._M_first[__thread_id];
__bin._M_first[__thread_id] = __bin._M_first[__thread_id]->_M_next;
__pl._M_adjust_freelist(__bin, __block, __thread_id);
const __pool_base::_Tune& __options = __pl._M_get_options();
__c = reinterpret_cast<char*>(__block) + __options._M_align;
}
else
{
// Null, reserve.
__c = __pl._M_reserve_memory(__bytes, __thread_id);
}
return static_cast<_Tp*>(static_cast<void*>(__c));
}
template<typename _Tp, typename _Poolp>
void
__mt_alloc<_Tp, _Poolp>::
deallocate(pointer __p, size_type __n)
{
// Requests larger than _M_max_bytes are handled by operators
// new/delete directly.
__pool_type& __pl = this->_S_get_pool();
const size_t __bytes = __n * sizeof(_Tp);
if (__pl._M_check_threshold(__bytes))
::operator delete(__p);
else
__pl._M_reclaim_memory(reinterpret_cast<char*>(__p), __bytes);
}
template<typename _Tp, typename _Poolp>
inline bool
operator==(const __mt_alloc<_Tp, _Poolp>&, const __mt_alloc<_Tp, _Poolp>&)
{ return true; }
template<typename _Tp, typename _Poolp>
inline bool
operator!=(const __mt_alloc<_Tp, _Poolp>&, const __mt_alloc<_Tp, _Poolp>&)
{ return false; }
} // namespace __gnu_cxx
#endif