Benjamin Kosnik ad68e9fce0 user.cfg.in: Add complex, ratio, intializer_list.
2008-07-15  Benjamin Kosnik  <bkoz@redhat.com>

	* doc/doxygen/user.cfg.in: Add complex, ratio,
	intializer_list.
	(PREDEFINED): Add _GLIBCXX_USE_C99_STDINT_TR1.
	* doc/doxygen/doxygroups.cc: Add std::chrono.
	* include/bits/unique_ptr.h (default_delete, unique_ptr): Add markup.
	* libsupc++/initializer_list (initializer_list): Same.
	* include/std/ratio: Same.
	* include/std/chrono: Same.
	* include/std/complex: Disambiguate file markup.

From-SVN: r137868
2008-07-16 07:01:23 +00:00

368 lines
8.1 KiB
C++

// <mutex> -*- C++ -*-
// Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008
// Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this library; see the file COPYING. If not, write to
// the Free Software Foundation, 51 Franklin Street, Fifth Floor,
// Boston, MA 02110-1301, USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
/** @file mutex
* This is a Standard C++ Library header.
*/
#ifndef _GLIBCXX_MUTEX
#define _GLIBCXX_MUTEX 1
#pragma GCC system_header
#ifndef __GXX_EXPERIMENTAL_CXX0X__
# include <c++0x_warning.h>
#else
#include <exception>
#include <cstddef>
#include <bits/functexcept.h>
#include <bits/gthr.h>
namespace std
{
// XXX
class system_time;
/// mutex
class mutex
{
public:
typedef __gthread_mutex_t native_handle_type;
mutex()
{
// XXX EAGAIN, ENOMEM, EPERM, EBUSY(may), EINVAL(may)
#if defined __GTHREAD_MUTEX_INIT
native_handle_type __tmp = __GTHREAD_MUTEX_INIT;
_M_mutex = __tmp;
#else
__GTHREAD_MUTEX_INIT_FUNCTION(&_M_mutex);
#endif
}
void
lock()
{
int __e = __gthread_mutex_lock(&_M_mutex);
// EINVAL, EAGAIN, EBUSY, EINVAL, EDEADLK(may)
if (__e)
__throw_system_error(__e);
}
bool
try_lock()
{
// XXX EINVAL, EAGAIN, EBUSY
return !__gthread_mutex_trylock(&_M_mutex);
}
void
unlock()
{
// XXX EINVAL, EAGAIN, EPERM
__gthread_mutex_unlock(&_M_mutex);
}
native_handle_type
native_handle()
{ return _M_mutex; }
private:
native_handle_type _M_mutex;
mutex(const mutex&);
mutex& operator=(const mutex&);
};
/// recursive_mutex
class recursive_mutex
{
public:
typedef __gthread_recursive_mutex_t native_handle_type;
recursive_mutex()
{
// XXX EAGAIN, ENOMEM, EPERM, EBUSY(may), EINVAL(may)
#if defined __GTHREAD_RECURSIVE_MUTEX_INIT
native_handle_type __tmp = __GTHREAD_RECURSIVE_MUTEX_INIT;
_M_mutex = __tmp;
#else
__GTHREAD_RECURSIVE_MUTEX_INIT_FUNCTION(&_M_mutex);
#endif
}
void
lock()
{
int __e = __gthread_recursive_mutex_lock(&_M_mutex);
// EINVAL, EAGAIN, EBUSY, EINVAL, EDEADLK(may)
if (__e)
__throw_system_error(__e);
}
bool
try_lock()
{
// XXX EINVAL, EAGAIN, EBUSY
return !__gthread_recursive_mutex_trylock(&_M_mutex);
}
void
unlock()
{
// XXX EINVAL, EAGAIN, EBUSY
__gthread_recursive_mutex_unlock(&_M_mutex);
}
native_handle_type
native_handle() { return _M_mutex; }
private:
native_handle_type _M_mutex;
recursive_mutex(const recursive_mutex&);
recursive_mutex& operator=(const recursive_mutex&);
};
// class timed_mutex;
// class recursive_timed_mutex;
/// Do not acquire ownership of the mutex.
struct defer_lock_t { };
/// Try to acquire ownership of the mutex without blocking.
struct try_to_lock_t { };
/// Assume the calling thread has already obtained mutex ownership
/// and manage it.
struct adopt_lock_t { };
extern const defer_lock_t defer_lock;
extern const try_to_lock_t try_to_lock;
extern const adopt_lock_t adopt_lock;
/// Thrown to indicate errors with lock operations.
class lock_error : public exception
{
public:
virtual const char*
what() const throw();
};
/// @brief Scoped lock idiom.
// Acquire the mutex here with a constructor call, then release with
// the destructor call in accordance with RAII style.
template<typename _Mutex>
class lock_guard
{
public:
typedef _Mutex mutex_type;
explicit lock_guard(mutex_type& __m) : _M_device(__m)
{ _M_device.lock(); }
lock_guard(mutex_type& __m, adopt_lock_t __a) : _M_device(__m)
{ _M_device.lock(); }
~lock_guard()
{ _M_device.unlock(); }
private:
mutex_type& _M_device;
lock_guard(lock_guard const&);
lock_guard& operator=(lock_guard const&);
};
/// unique_lock
template<typename _Mutex>
class unique_lock
{
public:
typedef _Mutex mutex_type;
unique_lock() : _M_device(NULL), _M_owns(false) { }
explicit unique_lock(mutex_type& __m) : _M_device(&__m)
{
lock();
_M_owns = true;
}
unique_lock(mutex_type& __m, defer_lock_t)
: _M_device(&__m), _M_owns(false) { }
unique_lock(mutex_type& __m, try_to_lock_t)
: _M_device(&__m), _M_owns(_M_device->try_lock()) { }
unique_lock(mutex_type& __m, adopt_lock_t)
: _M_device(&__m), _M_owns(true)
{
// XXX calling thread owns mutex
}
unique_lock(mutex_type& __m, const system_time& abs_time);
template<typename _Duration>
unique_lock(mutex_type& __m, const _Duration& rel_time);
~unique_lock()
{
if (_M_owns)
unlock();
}
unique_lock(unique_lock&&);
unique_lock& operator=(unique_lock&&);
void
lock()
{
if (_M_device && !_M_owns)
_M_device->lock();
else
throw lock_error();
}
bool
try_lock()
{
bool __ret = false;
if (_M_device && !_M_owns)
__ret = _M_device->try_lock();
else
throw lock_error();
return __ret;
}
void
unlock()
{
if (_M_device && _M_owns)
_M_device->unlock();
else
throw lock_error();
}
template<typename _Duration>
bool timed_lock(const _Duration& rel_time);
bool
timed_lock(const system_time& abs_time);
void
swap(unique_lock&& __u);
mutex_type*
release()
{
mutex_type* __ret = _M_device;
_M_device = NULL;
_M_owns = false;
return __ret;
}
bool
owns_lock() const { return _M_owns; }
operator bool () const { return owns_lock(); }
mutex_type*
mutex() const
{ return _M_device; }
private:
unique_lock(unique_lock const&);
unique_lock& operator=(unique_lock const&);
mutex_type* _M_device;
bool _M_owns; // XXX use atomic_bool
};
template<typename _Mutex>
void
swap(unique_lock<_Mutex>& __x, unique_lock<_Mutex>& __y);
template<typename _Mutex>
void
swap(unique_lock<_Mutex>&& __x, unique_lock<_Mutex>& __y);
template<typename _Mutex>
void
swap(unique_lock<_Mutex>& __x, unique_lock<_Mutex>&& __y);
template<typename _L1, typename _L2, typename ..._L3>
int
try_lock(_L1&, _L2&, _L3&...);
template<typename _L1, typename _L2, typename ..._L3>
void
lock(_L1&, _L2&, _L3&...);
/// once_flag
struct once_flag
{
typedef __gthread_once_t __native_type;
once_flag()
{
__native_type __tmp = __GTHREAD_ONCE_INIT;
_M_once = __tmp;
}
__native_type&
_M_get() { return _M_once; }
private:
__native_type _M_once;
once_flag(const once_flag&);
once_flag& operator=(const once_flag&);
};
template<typename _Callable, typename... _Args>
void
call_once(once_flag& __once, _Callable __f, _Args&&... __args)
{
int __e = __gthread_once(&(__once._M_get()), __f(__args...));
if (__e)
__throw_system_error(__e);
}
}
#endif // __GXX_EXPERIMENTAL_CXX0X__
#endif // _GLIBCXX_MUTEX