ddc9995b13
2017-11-22 Thomas Koenig <tkoenig@gcc.gnu.org> PR fortran/36313 * Makefile.am: Add i_maxloc0s_c, i_maxloc1s_c, i_maxloc2s_c, i_minloc0s_c, i_minloc1s_c and i_minloc2s_c. * Makefile.in: Regenerated. * generated/maxloc0_16_s1.c: New file. * generated/maxloc0_16_s4.c: New file. * generated/maxloc0_4_s1.c: New file. * generated/maxloc0_4_s4.c: New file. * generated/maxloc0_8_s1.c: New file. * generated/maxloc0_8_s4.c: New file. * generated/maxloc1_16_s1.c: New file. * generated/maxloc1_16_s4.c: New file. * generated/maxloc1_4_s1.c: New file. * generated/maxloc1_4_s4.c: New file. * generated/maxloc1_8_s1.c: New file. * generated/maxloc1_8_s4.c: New file. * generated/maxloc2_16_s1.c: New file. * generated/maxloc2_16_s4.c: New file. * generated/maxloc2_4_s1.c: New file. * generated/maxloc2_4_s4.c: New file. * generated/maxloc2_8_s1.c: New file. * generated/maxloc2_8_s4.c: New file. * generated/minloc0_16_s1.c: New file. * generated/minloc0_16_s4.c: New file. * generated/minloc0_4_s1.c: New file. * generated/minloc0_4_s4.c: New file. * generated/minloc0_8_s1.c: New file. * generated/minloc0_8_s4.c: New file. * generated/minloc1_16_s1.c: New file. * generated/minloc1_16_s4.c: New file. * generated/minloc1_4_s1.c: New file. * generated/minloc1_4_s4.c: New file. * generated/minloc1_8_s1.c: New file. * generated/minloc1_8_s4.c: New file. * generated/minloc2_16_s1.c: New file. * generated/minloc2_16_s4.c: New file. * generated/minloc2_4_s1.c: New file. * generated/minloc2_4_s4.c: New file. * generated/minloc2_8_s1.c: New file. * generated/minloc2_8_s4.c: New file. * m4/iforeach-s.m4: New file. * m4/ifunction-s.m4: New file. * m4/maxloc0s.m4: New file. * m4/maxloc1s.m4: New file. * m4/maxloc2s.m4: New file. * m4/minloc0s.m4: New file. * m4/minloc1s.m4: New file. * m4/minloc2s.m4: New file. * gfortran.map: Add new functions. * libgfortran.h: Add gfc_array_s1 and gfc_array_s4. 2017-11-22 Thomas Koenig <tkoenig@gcc.gnu.org> PR fortran/36313 * check.c (int_or_real_or_char_check_f2003): New function. * iresolve.c (gfc_resolve_maxloc): Add number "2" for character arguments and rank-zero return value. (gfc_resolve_minloc): Likewise. * trans-intrinsic.c (gfc_conv_intrinsic_minmaxloc): Handle case of character arguments and rank-zero return value by removing unneeded arguments and calling the library function. 2017-11-22 Thomas Koenig <tkoenig@gcc.gnu.org> PR fortran/36313 * gfortran.dg/maxloc_string_1.f90: New test. * gfortran.dg/minloc_string_1.f90: New test. From-SVN: r255070
328 lines
8.1 KiB
C
328 lines
8.1 KiB
C
/* Implementation of the MINLOC intrinsic
|
|
Copyright 2017 Free Software Foundation, Inc.
|
|
Contributed by Thomas Koenig
|
|
|
|
This file is part of the GNU Fortran runtime library (libgfortran).
|
|
|
|
Libgfortran is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 3 of the License, or (at your option) any later version.
|
|
|
|
Libgfortran is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
Under Section 7 of GPL version 3, you are granted additional
|
|
permissions described in the GCC Runtime Library Exception, version
|
|
3.1, as published by the Free Software Foundation.
|
|
|
|
You should have received a copy of the GNU General Public License and
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "libgfortran.h"
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <limits.h>
|
|
|
|
|
|
#if defined (HAVE_GFC_INTEGER_1) && defined (HAVE_GFC_INTEGER_8)
|
|
|
|
static inline int
|
|
compare_fcn (const GFC_INTEGER_1 *a, const GFC_INTEGER_1 *b, gfc_charlen_type n)
|
|
{
|
|
if (sizeof (GFC_INTEGER_1) == 1)
|
|
return memcmp (a, b, n);
|
|
else
|
|
return memcmp_char4 (a, b, n);
|
|
|
|
}
|
|
|
|
extern void minloc0_8_s1 (gfc_array_i8 * const restrict retarray,
|
|
gfc_array_s1 * const restrict array, gfc_charlen_type len);
|
|
export_proto(minloc0_8_s1);
|
|
|
|
void
|
|
minloc0_8_s1 (gfc_array_i8 * const restrict retarray,
|
|
gfc_array_s1 * const restrict array, gfc_charlen_type len)
|
|
{
|
|
index_type count[GFC_MAX_DIMENSIONS];
|
|
index_type extent[GFC_MAX_DIMENSIONS];
|
|
index_type sstride[GFC_MAX_DIMENSIONS];
|
|
index_type dstride;
|
|
const GFC_INTEGER_1 *base;
|
|
GFC_INTEGER_8 * restrict dest;
|
|
index_type rank;
|
|
index_type n;
|
|
|
|
rank = GFC_DESCRIPTOR_RANK (array);
|
|
if (rank <= 0)
|
|
runtime_error ("Rank of array needs to be > 0");
|
|
|
|
if (retarray->base_addr == NULL)
|
|
{
|
|
GFC_DIMENSION_SET(retarray->dim[0], 0, rank-1, 1);
|
|
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
|
retarray->offset = 0;
|
|
retarray->base_addr = xmallocarray (rank, sizeof (GFC_INTEGER_8));
|
|
}
|
|
else
|
|
{
|
|
if (unlikely (compile_options.bounds_check))
|
|
bounds_iforeach_return ((array_t *) retarray, (array_t *) array,
|
|
"MINLOC");
|
|
}
|
|
|
|
dstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
|
|
dest = retarray->base_addr;
|
|
for (n = 0; n < rank; n++)
|
|
{
|
|
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n) * len;
|
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
|
|
count[n] = 0;
|
|
if (extent[n] <= 0)
|
|
{
|
|
/* Set the return value. */
|
|
for (n = 0; n < rank; n++)
|
|
dest[n * dstride] = 0;
|
|
return;
|
|
}
|
|
}
|
|
|
|
base = array->base_addr;
|
|
|
|
/* Initialize the return value. */
|
|
for (n = 0; n < rank; n++)
|
|
dest[n * dstride] = 1;
|
|
{
|
|
|
|
const GFC_INTEGER_1 *minval;
|
|
minval = base;
|
|
|
|
while (base)
|
|
{
|
|
do
|
|
{
|
|
/* Implementation start. */
|
|
|
|
if (compare_fcn (base, minval, len) < 0)
|
|
{
|
|
minval = base;
|
|
for (n = 0; n < rank; n++)
|
|
dest[n * dstride] = count[n] + 1;
|
|
}
|
|
/* Implementation end. */
|
|
/* Advance to the next element. */
|
|
base += sstride[0];
|
|
}
|
|
while (++count[0] != extent[0]);
|
|
n = 0;
|
|
do
|
|
{
|
|
/* When we get to the end of a dimension, reset it and increment
|
|
the next dimension. */
|
|
count[n] = 0;
|
|
/* We could precalculate these products, but this is a less
|
|
frequently used path so probably not worth it. */
|
|
base -= sstride[n] * extent[n];
|
|
n++;
|
|
if (n >= rank)
|
|
{
|
|
/* Break out of the loop. */
|
|
base = NULL;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
count[n]++;
|
|
base += sstride[n];
|
|
}
|
|
}
|
|
while (count[n] == extent[n]);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
extern void mminloc0_8_s1 (gfc_array_i8 * const restrict,
|
|
gfc_array_s1 * const restrict, gfc_array_l1 * const restrict, gfc_charlen_type len);
|
|
export_proto(mminloc0_8_s1);
|
|
|
|
void
|
|
mminloc0_8_s1 (gfc_array_i8 * const restrict retarray,
|
|
gfc_array_s1 * const restrict array,
|
|
gfc_array_l1 * const restrict mask, gfc_charlen_type len)
|
|
{
|
|
index_type count[GFC_MAX_DIMENSIONS];
|
|
index_type extent[GFC_MAX_DIMENSIONS];
|
|
index_type sstride[GFC_MAX_DIMENSIONS];
|
|
index_type mstride[GFC_MAX_DIMENSIONS];
|
|
index_type dstride;
|
|
GFC_INTEGER_8 *dest;
|
|
const GFC_INTEGER_1 *base;
|
|
GFC_LOGICAL_1 *mbase;
|
|
int rank;
|
|
index_type n;
|
|
int mask_kind;
|
|
|
|
rank = GFC_DESCRIPTOR_RANK (array);
|
|
if (rank <= 0)
|
|
runtime_error ("Rank of array needs to be > 0");
|
|
|
|
if (retarray->base_addr == NULL)
|
|
{
|
|
GFC_DIMENSION_SET(retarray->dim[0], 0, rank - 1, 1);
|
|
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
|
retarray->offset = 0;
|
|
retarray->base_addr = xmallocarray (rank, sizeof (GFC_INTEGER_8));
|
|
}
|
|
else
|
|
{
|
|
if (unlikely (compile_options.bounds_check))
|
|
{
|
|
|
|
bounds_iforeach_return ((array_t *) retarray, (array_t *) array,
|
|
"MINLOC");
|
|
bounds_equal_extents ((array_t *) mask, (array_t *) array,
|
|
"MASK argument", "MINLOC");
|
|
}
|
|
}
|
|
|
|
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
|
|
|
mbase = mask->base_addr;
|
|
|
|
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
|
#ifdef HAVE_GFC_LOGICAL_16
|
|
|| mask_kind == 16
|
|
#endif
|
|
)
|
|
mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
|
|
else
|
|
runtime_error ("Funny sized logical array");
|
|
|
|
dstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
|
|
dest = retarray->base_addr;
|
|
for (n = 0; n < rank; n++)
|
|
{
|
|
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n) * len;
|
|
mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
|
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
|
|
count[n] = 0;
|
|
if (extent[n] <= 0)
|
|
{
|
|
/* Set the return value. */
|
|
for (n = 0; n < rank; n++)
|
|
dest[n * dstride] = 0;
|
|
return;
|
|
}
|
|
}
|
|
|
|
base = array->base_addr;
|
|
|
|
/* Initialize the return value. */
|
|
for (n = 0; n < rank; n++)
|
|
dest[n * dstride] = 0;
|
|
{
|
|
|
|
const GFC_INTEGER_1 *minval;
|
|
|
|
minval = NULL;
|
|
|
|
while (base)
|
|
{
|
|
do
|
|
{
|
|
/* Implementation start. */
|
|
|
|
if (*mbase && (minval == NULL || compare_fcn (base, minval, len) < 0))
|
|
{
|
|
minval = base;
|
|
for (n = 0; n < rank; n++)
|
|
dest[n * dstride] = count[n] + 1;
|
|
}
|
|
/* Implementation end. */
|
|
/* Advance to the next element. */
|
|
base += sstride[0];
|
|
mbase += mstride[0];
|
|
}
|
|
while (++count[0] != extent[0]);
|
|
n = 0;
|
|
do
|
|
{
|
|
/* When we get to the end of a dimension, reset it and increment
|
|
the next dimension. */
|
|
count[n] = 0;
|
|
/* We could precalculate these products, but this is a less
|
|
frequently used path so probably not worth it. */
|
|
base -= sstride[n] * extent[n];
|
|
mbase -= mstride[n] * extent[n];
|
|
n++;
|
|
if (n >= rank)
|
|
{
|
|
/* Break out of the loop. */
|
|
base = NULL;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
count[n]++;
|
|
base += sstride[n];
|
|
mbase += mstride[n];
|
|
}
|
|
}
|
|
while (count[n] == extent[n]);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
extern void sminloc0_8_s1 (gfc_array_i8 * const restrict,
|
|
gfc_array_s1 * const restrict, GFC_LOGICAL_4 *, gfc_charlen_type len);
|
|
export_proto(sminloc0_8_s1);
|
|
|
|
void
|
|
sminloc0_8_s1 (gfc_array_i8 * const restrict retarray,
|
|
gfc_array_s1 * const restrict array,
|
|
GFC_LOGICAL_4 * mask, gfc_charlen_type len)
|
|
{
|
|
index_type rank;
|
|
index_type dstride;
|
|
index_type n;
|
|
GFC_INTEGER_8 *dest;
|
|
|
|
if (*mask)
|
|
{
|
|
minloc0_8_s1 (retarray, array, len);
|
|
return;
|
|
}
|
|
|
|
rank = GFC_DESCRIPTOR_RANK (array);
|
|
|
|
if (rank <= 0)
|
|
runtime_error ("Rank of array needs to be > 0");
|
|
|
|
if (retarray->base_addr == NULL)
|
|
{
|
|
GFC_DIMENSION_SET(retarray->dim[0], 0, rank-1, 1);
|
|
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
|
retarray->offset = 0;
|
|
retarray->base_addr = xmallocarray (rank, sizeof (GFC_INTEGER_8));
|
|
}
|
|
else if (unlikely (compile_options.bounds_check))
|
|
{
|
|
bounds_iforeach_return ((array_t *) retarray, (array_t *) array,
|
|
"MINLOC");
|
|
}
|
|
|
|
dstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
|
|
dest = retarray->base_addr;
|
|
for (n = 0; n<rank; n++)
|
|
dest[n * dstride] = 0 ;
|
|
}
|
|
#endif
|