gcc/libgfortran/intrinsics/spread_generic.c
2009-04-09 17:00:19 +02:00

618 lines
16 KiB
C

/* Generic implementation of the SPREAD intrinsic
Copyright 2002, 2005, 2006, 2007, 2009 Free Software Foundation, Inc.
Contributed by Paul Brook <paul@nowt.org>
This file is part of the GNU Fortran 95 runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
Ligbfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include "libgfortran.h"
#include <stdlib.h>
#include <assert.h>
#include <string.h>
static void
spread_internal (gfc_array_char *ret, const gfc_array_char *source,
const index_type *along, const index_type *pncopies,
index_type size)
{
/* r.* indicates the return array. */
index_type rstride[GFC_MAX_DIMENSIONS];
index_type rstride0;
index_type rdelta = 0;
index_type rrank;
index_type rs;
char *rptr;
char *dest;
/* s.* indicates the source array. */
index_type sstride[GFC_MAX_DIMENSIONS];
index_type sstride0;
index_type srank;
const char *sptr;
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type n;
index_type dim;
index_type ncopies;
srank = GFC_DESCRIPTOR_RANK(source);
rrank = srank + 1;
if (rrank > GFC_MAX_DIMENSIONS)
runtime_error ("return rank too large in spread()");
if (*along > rrank)
runtime_error ("dim outside of rank in spread()");
ncopies = *pncopies;
if (ret->data == NULL)
{
/* The front end has signalled that we need to populate the
return array descriptor. */
ret->dtype = (source->dtype & ~GFC_DTYPE_RANK_MASK) | rrank;
dim = 0;
rs = 1;
for (n = 0; n < rrank; n++)
{
ret->dim[n].stride = rs;
ret->dim[n].lbound = 0;
if (n == *along - 1)
{
ret->dim[n].ubound = ncopies - 1;
rdelta = rs * size;
rs *= ncopies;
}
else
{
count[dim] = 0;
extent[dim] = source->dim[dim].ubound + 1
- source->dim[dim].lbound;
sstride[dim] = source->dim[dim].stride * size;
rstride[dim] = rs * size;
ret->dim[n].ubound = extent[dim]-1;
rs *= extent[dim];
dim++;
}
}
ret->offset = 0;
if (rs > 0)
ret->data = internal_malloc_size (rs * size);
else
{
ret->data = internal_malloc_size (1);
return;
}
}
else
{
int zero_sized;
zero_sized = 0;
dim = 0;
if (GFC_DESCRIPTOR_RANK(ret) != rrank)
runtime_error ("rank mismatch in spread()");
if (compile_options.bounds_check)
{
for (n = 0; n < rrank; n++)
{
index_type ret_extent;
ret_extent = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
if (n == *along - 1)
{
rdelta = ret->dim[n].stride * size;
if (ret_extent != ncopies)
runtime_error("Incorrect extent in return value of SPREAD"
" intrinsic in dimension %ld: is %ld,"
" should be %ld", (long int) n+1,
(long int) ret_extent, (long int) ncopies);
}
else
{
count[dim] = 0;
extent[dim] = source->dim[dim].ubound + 1
- source->dim[dim].lbound;
if (ret_extent != extent[dim])
runtime_error("Incorrect extent in return value of SPREAD"
" intrinsic in dimension %ld: is %ld,"
" should be %ld", (long int) n+1,
(long int) ret_extent,
(long int) extent[dim]);
if (extent[dim] <= 0)
zero_sized = 1;
sstride[dim] = source->dim[dim].stride * size;
rstride[dim] = ret->dim[n].stride * size;
dim++;
}
}
}
else
{
for (n = 0; n < rrank; n++)
{
if (n == *along - 1)
{
rdelta = ret->dim[n].stride * size;
}
else
{
count[dim] = 0;
extent[dim] = source->dim[dim].ubound + 1
- source->dim[dim].lbound;
if (extent[dim] <= 0)
zero_sized = 1;
sstride[dim] = source->dim[dim].stride * size;
rstride[dim] = ret->dim[n].stride * size;
dim++;
}
}
}
if (zero_sized)
return;
if (sstride[0] == 0)
sstride[0] = size;
}
sstride0 = sstride[0];
rstride0 = rstride[0];
rptr = ret->data;
sptr = source->data;
while (sptr)
{
/* Spread this element. */
dest = rptr;
for (n = 0; n < ncopies; n++)
{
memcpy (dest, sptr, size);
dest += rdelta;
}
/* Advance to the next element. */
sptr += sstride0;
rptr += rstride0;
count[0]++;
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
sptr -= sstride[n] * extent[n];
rptr -= rstride[n] * extent[n];
n++;
if (n >= srank)
{
/* Break out of the loop. */
sptr = NULL;
break;
}
else
{
count[n]++;
sptr += sstride[n];
rptr += rstride[n];
}
}
}
}
/* This version of spread_internal treats the special case of a scalar
source. This is much simpler than the more general case above. */
static void
spread_internal_scalar (gfc_array_char *ret, const char *source,
const index_type *along, const index_type *pncopies,
index_type size)
{
int n;
int ncopies = *pncopies;
char * dest;
if (GFC_DESCRIPTOR_RANK (ret) != 1)
runtime_error ("incorrect destination rank in spread()");
if (*along > 1)
runtime_error ("dim outside of rank in spread()");
if (ret->data == NULL)
{
ret->data = internal_malloc_size (ncopies * size);
ret->offset = 0;
ret->dim[0].stride = 1;
ret->dim[0].lbound = 0;
ret->dim[0].ubound = ncopies - 1;
}
else
{
if (ncopies - 1 > (ret->dim[0].ubound - ret->dim[0].lbound)
/ ret->dim[0].stride)
runtime_error ("dim too large in spread()");
}
for (n = 0; n < ncopies; n++)
{
dest = (char*)(ret->data + n*size*ret->dim[0].stride);
memcpy (dest , source, size);
}
}
extern void spread (gfc_array_char *, const gfc_array_char *,
const index_type *, const index_type *);
export_proto(spread);
void
spread (gfc_array_char *ret, const gfc_array_char *source,
const index_type *along, const index_type *pncopies)
{
index_type type_size;
type_size = GFC_DTYPE_TYPE_SIZE(ret);
switch(type_size)
{
case GFC_DTYPE_DERIVED_1:
case GFC_DTYPE_LOGICAL_1:
case GFC_DTYPE_INTEGER_1:
spread_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) source,
*along, *pncopies);
return;
case GFC_DTYPE_LOGICAL_2:
case GFC_DTYPE_INTEGER_2:
spread_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) source,
*along, *pncopies);
return;
case GFC_DTYPE_LOGICAL_4:
case GFC_DTYPE_INTEGER_4:
spread_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) source,
*along, *pncopies);
return;
case GFC_DTYPE_LOGICAL_8:
case GFC_DTYPE_INTEGER_8:
spread_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) source,
*along, *pncopies);
return;
#ifdef HAVE_GFC_INTEGER_16
case GFC_DTYPE_LOGICAL_16:
case GFC_DTYPE_INTEGER_16:
spread_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) source,
*along, *pncopies);
return;
#endif
case GFC_DTYPE_REAL_4:
spread_r4 ((gfc_array_r4 *) ret, (gfc_array_r4 *) source,
*along, *pncopies);
return;
case GFC_DTYPE_REAL_8:
spread_r8 ((gfc_array_r8 *) ret, (gfc_array_r8 *) source,
*along, *pncopies);
return;
#ifdef GFC_HAVE_REAL_10
case GFC_DTYPE_REAL_10:
spread_r10 ((gfc_array_r10 *) ret, (gfc_array_r10 *) source,
*along, *pncopies);
return;
#endif
#ifdef GFC_HAVE_REAL_16
case GFC_DTYPE_REAL_16:
spread_r16 ((gfc_array_r16 *) ret, (gfc_array_r16 *) source,
*along, *pncopies);
return;
#endif
case GFC_DTYPE_COMPLEX_4:
spread_c4 ((gfc_array_c4 *) ret, (gfc_array_c4 *) source,
*along, *pncopies);
return;
case GFC_DTYPE_COMPLEX_8:
spread_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) source,
*along, *pncopies);
return;
#ifdef GFC_HAVE_COMPLEX_10
case GFC_DTYPE_COMPLEX_10:
spread_c10 ((gfc_array_c10 *) ret, (gfc_array_c10 *) source,
*along, *pncopies);
return;
#endif
#ifdef GFC_HAVE_COMPLEX_16
case GFC_DTYPE_COMPLEX_16:
spread_c16 ((gfc_array_c16 *) ret, (gfc_array_c16 *) source,
*along, *pncopies);
return;
#endif
case GFC_DTYPE_DERIVED_2:
if (GFC_UNALIGNED_2(ret->data) || GFC_UNALIGNED_2(source->data))
break;
else
{
spread_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) source,
*along, *pncopies);
return;
}
case GFC_DTYPE_DERIVED_4:
if (GFC_UNALIGNED_4(ret->data) || GFC_UNALIGNED_4(source->data))
break;
else
{
spread_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) source,
*along, *pncopies);
return;
}
case GFC_DTYPE_DERIVED_8:
if (GFC_UNALIGNED_8(ret->data) || GFC_UNALIGNED_8(source->data))
break;
else
{
spread_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) source,
*along, *pncopies);
return;
}
#ifdef HAVE_GFC_INTEGER_16
case GFC_DTYPE_DERIVED_16:
if (GFC_UNALIGNED_16(ret->data) || GFC_UNALIGNED_16(source->data))
break;
else
{
spread_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) source,
*along, *pncopies);
return;
}
#endif
}
spread_internal (ret, source, along, pncopies, GFC_DESCRIPTOR_SIZE (source));
}
extern void spread_char (gfc_array_char *, GFC_INTEGER_4,
const gfc_array_char *, const index_type *,
const index_type *, GFC_INTEGER_4);
export_proto(spread_char);
void
spread_char (gfc_array_char *ret,
GFC_INTEGER_4 ret_length __attribute__((unused)),
const gfc_array_char *source, const index_type *along,
const index_type *pncopies, GFC_INTEGER_4 source_length)
{
spread_internal (ret, source, along, pncopies, source_length);
}
extern void spread_char4 (gfc_array_char *, GFC_INTEGER_4,
const gfc_array_char *, const index_type *,
const index_type *, GFC_INTEGER_4);
export_proto(spread_char4);
void
spread_char4 (gfc_array_char *ret,
GFC_INTEGER_4 ret_length __attribute__((unused)),
const gfc_array_char *source, const index_type *along,
const index_type *pncopies, GFC_INTEGER_4 source_length)
{
spread_internal (ret, source, along, pncopies,
source_length * sizeof (gfc_char4_t));
}
/* The following are the prototypes for the versions of spread with a
scalar source. */
extern void spread_scalar (gfc_array_char *, const char *,
const index_type *, const index_type *);
export_proto(spread_scalar);
void
spread_scalar (gfc_array_char *ret, const char *source,
const index_type *along, const index_type *pncopies)
{
index_type type_size;
if (!ret->dtype)
runtime_error ("return array missing descriptor in spread()");
type_size = GFC_DTYPE_TYPE_SIZE(ret);
switch(type_size)
{
case GFC_DTYPE_DERIVED_1:
case GFC_DTYPE_LOGICAL_1:
case GFC_DTYPE_INTEGER_1:
spread_scalar_i1 ((gfc_array_i1 *) ret, (GFC_INTEGER_1 *) source,
*along, *pncopies);
return;
case GFC_DTYPE_LOGICAL_2:
case GFC_DTYPE_INTEGER_2:
spread_scalar_i2 ((gfc_array_i2 *) ret, (GFC_INTEGER_2 *) source,
*along, *pncopies);
return;
case GFC_DTYPE_LOGICAL_4:
case GFC_DTYPE_INTEGER_4:
spread_scalar_i4 ((gfc_array_i4 *) ret, (GFC_INTEGER_4 *) source,
*along, *pncopies);
return;
case GFC_DTYPE_LOGICAL_8:
case GFC_DTYPE_INTEGER_8:
spread_scalar_i8 ((gfc_array_i8 *) ret, (GFC_INTEGER_8 *) source,
*along, *pncopies);
return;
#ifdef HAVE_GFC_INTEGER_16
case GFC_DTYPE_LOGICAL_16:
case GFC_DTYPE_INTEGER_16:
spread_scalar_i16 ((gfc_array_i16 *) ret, (GFC_INTEGER_16 *) source,
*along, *pncopies);
return;
#endif
case GFC_DTYPE_REAL_4:
spread_scalar_r4 ((gfc_array_r4 *) ret, (GFC_REAL_4 *) source,
*along, *pncopies);
return;
case GFC_DTYPE_REAL_8:
spread_scalar_r8 ((gfc_array_r8 *) ret, (GFC_REAL_8 *) source,
*along, *pncopies);
return;
#ifdef HAVE_GFC_REAL_10
case GFC_DTYPE_REAL_10:
spread_scalar_r10 ((gfc_array_r10 *) ret, (GFC_REAL_10 *) source,
*along, *pncopies);
return;
#endif
#ifdef HAVE_GFC_REAL_16
case GFC_DTYPE_REAL_16:
spread_scalar_r16 ((gfc_array_r16 *) ret, (GFC_REAL_16 *) source,
*along, *pncopies);
return;
#endif
case GFC_DTYPE_COMPLEX_4:
spread_scalar_c4 ((gfc_array_c4 *) ret, (GFC_COMPLEX_4 *) source,
*along, *pncopies);
return;
case GFC_DTYPE_COMPLEX_8:
spread_scalar_c8 ((gfc_array_c8 *) ret, (GFC_COMPLEX_8 *) source,
*along, *pncopies);
return;
#ifdef HAVE_GFC_COMPLEX_10
case GFC_DTYPE_COMPLEX_10:
spread_scalar_c10 ((gfc_array_c10 *) ret, (GFC_COMPLEX_10 *) source,
*along, *pncopies);
return;
#endif
#ifdef HAVE_GFC_COMPLEX_16
case GFC_DTYPE_COMPLEX_16:
spread_scalar_c16 ((gfc_array_c16 *) ret, (GFC_COMPLEX_16 *) source,
*along, *pncopies);
return;
#endif
case GFC_DTYPE_DERIVED_2:
if (GFC_UNALIGNED_2(ret->data) || GFC_UNALIGNED_2(source))
break;
else
{
spread_scalar_i2 ((gfc_array_i2 *) ret, (GFC_INTEGER_2 *) source,
*along, *pncopies);
return;
}
case GFC_DTYPE_DERIVED_4:
if (GFC_UNALIGNED_4(ret->data) || GFC_UNALIGNED_4(source))
break;
else
{
spread_scalar_i4 ((gfc_array_i4 *) ret, (GFC_INTEGER_4 *) source,
*along, *pncopies);
return;
}
case GFC_DTYPE_DERIVED_8:
if (GFC_UNALIGNED_8(ret->data) || GFC_UNALIGNED_8(source))
break;
else
{
spread_scalar_i8 ((gfc_array_i8 *) ret, (GFC_INTEGER_8 *) source,
*along, *pncopies);
return;
}
#ifdef HAVE_GFC_INTEGER_16
case GFC_DTYPE_DERIVED_16:
if (GFC_UNALIGNED_16(ret->data) || GFC_UNALIGNED_16(source))
break;
else
{
spread_scalar_i16 ((gfc_array_i16 *) ret, (GFC_INTEGER_16 *) source,
*along, *pncopies);
return;
}
#endif
}
spread_internal_scalar (ret, source, along, pncopies, GFC_DESCRIPTOR_SIZE (ret));
}
extern void spread_char_scalar (gfc_array_char *, GFC_INTEGER_4,
const char *, const index_type *,
const index_type *, GFC_INTEGER_4);
export_proto(spread_char_scalar);
void
spread_char_scalar (gfc_array_char *ret,
GFC_INTEGER_4 ret_length __attribute__((unused)),
const char *source, const index_type *along,
const index_type *pncopies, GFC_INTEGER_4 source_length)
{
if (!ret->dtype)
runtime_error ("return array missing descriptor in spread()");
spread_internal_scalar (ret, source, along, pncopies, source_length);
}
extern void spread_char4_scalar (gfc_array_char *, GFC_INTEGER_4,
const char *, const index_type *,
const index_type *, GFC_INTEGER_4);
export_proto(spread_char4_scalar);
void
spread_char4_scalar (gfc_array_char *ret,
GFC_INTEGER_4 ret_length __attribute__((unused)),
const char *source, const index_type *along,
const index_type *pncopies, GFC_INTEGER_4 source_length)
{
if (!ret->dtype)
runtime_error ("return array missing descriptor in spread()");
spread_internal_scalar (ret, source, along, pncopies,
source_length * sizeof (gfc_char4_t));
}