77633f4cd0
2005-11-11 Paolo Carlini <pcarlini@suse.de> PR libstdc++/24799 * include/tr1/functional (hash): Inherit from std::unary_function. * testsuite/tr1/6_containers/unordered/hash/24799.cc: New. PR libstdc++/24805 * include/tr1/boost_shared_ptr.h (swap(shared_ptr<>&, shared_ptr<>&), swap(weak_ptr<>&, weak_ptr<>&)): Move inside namespace tr1. * testsuite/tr1/2_general_utilities/memory/shared_ptr/modifiers/ 24805.cc: New. PR libstdc++/24809 * include/tr1/type_traits (__is_polymorhpic_helper): Adjust destructor. * testsuite/tr1/4_metaprogramming/type_properties/is_polymorphic/ 24809.cc: New. From-SVN: r106796
1281 lines
36 KiB
C++
1281 lines
36 KiB
C++
// TR1 functional header -*- C++ -*-
|
|
|
|
// Copyright (C) 2004, 2005 Free Software Foundation, Inc.
|
|
//
|
|
// This file is part of the GNU ISO C++ Library. This library is free
|
|
// software; you can redistribute it and/or modify it under the
|
|
// terms of the GNU General Public License as published by the
|
|
// Free Software Foundation; either version 2, or (at your option)
|
|
// any later version.
|
|
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
|
|
// You should have received a copy of the GNU General Public License along
|
|
// with this library; see the file COPYING. If not, write to the Free
|
|
// Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
|
|
// USA.
|
|
|
|
// As a special exception, you may use this file as part of a free software
|
|
// library without restriction. Specifically, if other files instantiate
|
|
// templates or use macros or inline functions from this file, or you compile
|
|
// this file and link it with other files to produce an executable, this
|
|
// file does not by itself cause the resulting executable to be covered by
|
|
// the GNU General Public License. This exception does not however
|
|
// invalidate any other reasons why the executable file might be covered by
|
|
// the GNU General Public License.
|
|
|
|
/** @file
|
|
* This is a TR1 C++ Library header.
|
|
*/
|
|
|
|
#ifndef _TR1_FUNCTIONAL
|
|
#define _TR1_FUNCTIONAL 1
|
|
|
|
#pragma GCC system_header
|
|
|
|
#include "../functional"
|
|
#include <typeinfo>
|
|
#include <tr1/type_traits>
|
|
#include <bits/cpp_type_traits.h>
|
|
#include <string> // for std::tr1::hash
|
|
#include <cstdlib> // for std::abort
|
|
#include <cmath> // for std::frexp
|
|
#include <tr1/tuple>
|
|
|
|
namespace std
|
|
{
|
|
namespace tr1
|
|
{
|
|
template<typename _MemberPointer>
|
|
class _Mem_fn;
|
|
|
|
/**
|
|
* @if maint
|
|
* Actual implementation of _Has_result_type, which uses SFINAE to
|
|
* determine if the type _Tp has a publicly-accessible member type
|
|
* result_type.
|
|
* @endif
|
|
*/
|
|
template<typename _Tp>
|
|
class _Has_result_type_helper : __sfinae_types
|
|
{
|
|
template<typename _Up>
|
|
struct _Wrap_type
|
|
{ };
|
|
|
|
template<typename _Up>
|
|
static __one __test(_Wrap_type<typename _Up::result_type>*);
|
|
|
|
template<typename _Up>
|
|
static __two __test(...);
|
|
|
|
public:
|
|
static const bool value = sizeof(__test<_Tp>(0)) == 1;
|
|
};
|
|
|
|
template<typename _Tp>
|
|
struct _Has_result_type
|
|
: integral_constant<
|
|
bool,
|
|
_Has_result_type_helper<typename remove_cv<_Tp>::type>::value>
|
|
{ };
|
|
|
|
/**
|
|
* @if maint
|
|
* If we have found a result_type, extract it.
|
|
* @endif
|
|
*/
|
|
template<bool _Has_result_type, typename _Functor>
|
|
struct _Maybe_get_result_type
|
|
{ };
|
|
|
|
template<typename _Functor>
|
|
struct _Maybe_get_result_type<true, _Functor>
|
|
{
|
|
typedef typename _Functor::result_type result_type;
|
|
};
|
|
|
|
/**
|
|
* @if maint
|
|
* Base class for any function object that has a weak result type, as
|
|
* defined in 3.3/3 of TR1.
|
|
* @endif
|
|
*/
|
|
template<typename _Functor>
|
|
struct _Weak_result_type_impl
|
|
: _Maybe_get_result_type<_Has_result_type<_Functor>::value, _Functor>
|
|
{
|
|
};
|
|
|
|
/**
|
|
* @if maint
|
|
* Strip top-level cv-qualifiers from the function object and let
|
|
* _Weak_result_type_impl perform the real work.
|
|
* @endif
|
|
*/
|
|
template<typename _Functor>
|
|
struct _Weak_result_type
|
|
: _Weak_result_type_impl<typename remove_cv<_Functor>::type>
|
|
{
|
|
};
|
|
|
|
template<typename _Signature>
|
|
class result_of;
|
|
|
|
/**
|
|
* @if maint
|
|
* Actual implementation of result_of. When _Has_result_type is
|
|
* true, gets its result from _Weak_result_type. Otherwise, uses
|
|
* the function object's member template result to extract the
|
|
* result type.
|
|
* @endif
|
|
*/
|
|
template<bool _Has_result_type, typename _Signature>
|
|
struct _Result_of_impl;
|
|
|
|
// Handle member data pointers using _Mem_fn's logic
|
|
template<typename _Res, typename _Class, typename _T1>
|
|
struct _Result_of_impl<false, _Res _Class::*(_T1)>
|
|
{
|
|
typedef typename _Mem_fn<_Res _Class::*>
|
|
::template _Result_type<_T1>::type type;
|
|
};
|
|
|
|
/**
|
|
* @if maint
|
|
* Determines if the type _Tp derives from unary_function.
|
|
* @endif
|
|
*/
|
|
template<typename _Tp>
|
|
struct _Derives_from_unary_function : __sfinae_types
|
|
{
|
|
private:
|
|
template<typename _T1, typename _Res>
|
|
static __one __test(const volatile unary_function<_T1, _Res>*);
|
|
|
|
// It's tempting to change "..." to const volatile void*, but
|
|
// that fails when _Tp is a function type.
|
|
static __two __test(...);
|
|
|
|
public:
|
|
static const bool value = sizeof(__test((_Tp*)0)) == 1;
|
|
};
|
|
|
|
/**
|
|
* @if maint
|
|
* Determines if the type _Tp derives from binary_function.
|
|
* @endif
|
|
*/
|
|
template<typename _Tp>
|
|
struct _Derives_from_binary_function : __sfinae_types
|
|
{
|
|
private:
|
|
template<typename _T1, typename _T2, typename _Res>
|
|
static __one __test(const volatile binary_function<_T1, _T2, _Res>*);
|
|
|
|
// It's tempting to change "..." to const volatile void*, but
|
|
// that fails when _Tp is a function type.
|
|
static __two __test(...);
|
|
|
|
public:
|
|
static const bool value = sizeof(__test((_Tp*)0)) == 1;
|
|
};
|
|
|
|
/**
|
|
* @if maint
|
|
* Turns a function type into a function pointer type
|
|
* @endif
|
|
*/
|
|
template<typename _Tp, bool _IsFunctionType = is_function<_Tp>::value>
|
|
struct _Function_to_function_pointer
|
|
{
|
|
typedef _Tp type;
|
|
};
|
|
|
|
template<typename _Tp>
|
|
struct _Function_to_function_pointer<_Tp, true>
|
|
{
|
|
typedef _Tp* type;
|
|
};
|
|
|
|
/**
|
|
* @if maint
|
|
* Knowing which of unary_function and binary_function _Tp derives
|
|
* from, derives from the same and ensures that reference_wrapper
|
|
* will have a weak result type. See cases below.
|
|
* @endif
|
|
*/
|
|
template<bool _Unary, bool _Binary, typename _Tp>
|
|
struct _Reference_wrapper_base_impl;
|
|
|
|
// Not a unary_function or binary_function, so try a weak result type
|
|
template<typename _Tp>
|
|
struct _Reference_wrapper_base_impl<false, false, _Tp>
|
|
: _Weak_result_type<_Tp>
|
|
{ };
|
|
|
|
// unary_function but not binary_function
|
|
template<typename _Tp>
|
|
struct _Reference_wrapper_base_impl<true, false, _Tp>
|
|
: unary_function<typename _Tp::argument_type,
|
|
typename _Tp::result_type>
|
|
{ };
|
|
|
|
// binary_function but not unary_function
|
|
template<typename _Tp>
|
|
struct _Reference_wrapper_base_impl<false, true, _Tp>
|
|
: binary_function<typename _Tp::first_argument_type,
|
|
typename _Tp::second_argument_type,
|
|
typename _Tp::result_type>
|
|
{ };
|
|
|
|
// both unary_function and binary_function. import result_type to
|
|
// avoid conflicts.
|
|
template<typename _Tp>
|
|
struct _Reference_wrapper_base_impl<true, true, _Tp>
|
|
: unary_function<typename _Tp::argument_type,
|
|
typename _Tp::result_type>,
|
|
binary_function<typename _Tp::first_argument_type,
|
|
typename _Tp::second_argument_type,
|
|
typename _Tp::result_type>
|
|
{
|
|
typedef typename _Tp::result_type result_type;
|
|
};
|
|
|
|
/**
|
|
* @if maint
|
|
* Derives from unary_function or binary_function when it
|
|
* can. Specializations handle all of the easy cases. The primary
|
|
* template determines what to do with a class type, which may
|
|
* derive from both unary_function and binary_function.
|
|
* @endif
|
|
*/
|
|
template<typename _Tp>
|
|
struct _Reference_wrapper_base
|
|
: _Reference_wrapper_base_impl<
|
|
_Derives_from_unary_function<_Tp>::value,
|
|
_Derives_from_binary_function<_Tp>::value,
|
|
_Tp>
|
|
{ };
|
|
|
|
// - a function type (unary)
|
|
template<typename _Res, typename _T1>
|
|
struct _Reference_wrapper_base<_Res(_T1)>
|
|
: unary_function<_T1, _Res>
|
|
{ };
|
|
|
|
// - a function type (binary)
|
|
template<typename _Res, typename _T1, typename _T2>
|
|
struct _Reference_wrapper_base<_Res(_T1, _T2)>
|
|
: binary_function<_T1, _T2, _Res>
|
|
{ };
|
|
|
|
// - a function pointer type (unary)
|
|
template<typename _Res, typename _T1>
|
|
struct _Reference_wrapper_base<_Res(*)(_T1)>
|
|
: unary_function<_T1, _Res>
|
|
{ };
|
|
|
|
// - a function pointer type (binary)
|
|
template<typename _Res, typename _T1, typename _T2>
|
|
struct _Reference_wrapper_base<_Res(*)(_T1, _T2)>
|
|
: binary_function<_T1, _T2, _Res>
|
|
{ };
|
|
|
|
// - a pointer to member function type (unary, no qualifiers)
|
|
template<typename _Res, typename _T1>
|
|
struct _Reference_wrapper_base<_Res (_T1::*)()>
|
|
: unary_function<_T1*, _Res>
|
|
{ };
|
|
|
|
// - a pointer to member function type (binary, no qualifiers)
|
|
template<typename _Res, typename _T1, typename _T2>
|
|
struct _Reference_wrapper_base<_Res (_T1::*)(_T2)>
|
|
: binary_function<_T1*, _T2, _Res>
|
|
{ };
|
|
|
|
// - a pointer to member function type (unary, const)
|
|
template<typename _Res, typename _T1>
|
|
struct _Reference_wrapper_base<_Res (_T1::*)() const>
|
|
: unary_function<const _T1*, _Res>
|
|
{ };
|
|
|
|
// - a pointer to member function type (binary, const)
|
|
template<typename _Res, typename _T1, typename _T2>
|
|
struct _Reference_wrapper_base<_Res (_T1::*)(_T2) const>
|
|
: binary_function<const _T1*, _T2, _Res>
|
|
{ };
|
|
|
|
// - a pointer to member function type (unary, volatile)
|
|
template<typename _Res, typename _T1>
|
|
struct _Reference_wrapper_base<_Res (_T1::*)() volatile>
|
|
: unary_function<volatile _T1*, _Res>
|
|
{ };
|
|
|
|
// - a pointer to member function type (binary, volatile)
|
|
template<typename _Res, typename _T1, typename _T2>
|
|
struct _Reference_wrapper_base<_Res (_T1::*)(_T2) volatile>
|
|
: binary_function<volatile _T1*, _T2, _Res>
|
|
{ };
|
|
|
|
// - a pointer to member function type (unary, const volatile)
|
|
template<typename _Res, typename _T1>
|
|
struct _Reference_wrapper_base<_Res (_T1::*)() const volatile>
|
|
: unary_function<const volatile _T1*, _Res>
|
|
{ };
|
|
|
|
// - a pointer to member function type (binary, const volatile)
|
|
template<typename _Res, typename _T1, typename _T2>
|
|
struct _Reference_wrapper_base<_Res (_T1::*)(_T2) const volatile>
|
|
: binary_function<const volatile _T1*, _T2, _Res>
|
|
{ };
|
|
|
|
template<typename _Tp>
|
|
class reference_wrapper
|
|
: public _Reference_wrapper_base<typename remove_cv<_Tp>::type>
|
|
{
|
|
// If _Tp is a function type, we can't form result_of<_Tp(...)>,
|
|
// so turn it into a function pointer type.
|
|
typedef typename _Function_to_function_pointer<_Tp>::type
|
|
_M_func_type;
|
|
|
|
_Tp* _M_data;
|
|
public:
|
|
typedef _Tp type;
|
|
explicit reference_wrapper(_Tp& __indata): _M_data(&__indata)
|
|
{ }
|
|
|
|
reference_wrapper(const reference_wrapper<_Tp>& __inref):
|
|
_M_data(__inref._M_data)
|
|
{ }
|
|
|
|
reference_wrapper&
|
|
operator=(const reference_wrapper<_Tp>& __inref)
|
|
{
|
|
_M_data = __inref._M_data;
|
|
return *this;
|
|
}
|
|
|
|
operator _Tp&() const
|
|
{ return this->get(); }
|
|
|
|
_Tp&
|
|
get() const
|
|
{ return *_M_data; }
|
|
|
|
#define _GLIBCXX_REPEAT_HEADER <tr1/ref_wrap_iterate.h>
|
|
#include <tr1/repeat.h>
|
|
#undef _GLIBCXX_REPEAT_HEADER
|
|
};
|
|
|
|
|
|
// Denotes a reference should be taken to a variable.
|
|
template<typename _Tp>
|
|
inline reference_wrapper<_Tp>
|
|
ref(_Tp& __t)
|
|
{ return reference_wrapper<_Tp>(__t); }
|
|
|
|
// Denotes a const reference should be taken to a variable.
|
|
template<typename _Tp>
|
|
inline reference_wrapper<const _Tp>
|
|
cref(const _Tp& __t)
|
|
{ return reference_wrapper<const _Tp>(__t); }
|
|
|
|
template<typename _Tp>
|
|
inline reference_wrapper<_Tp>
|
|
ref(reference_wrapper<_Tp> __t)
|
|
{ return ref(__t.get()); }
|
|
|
|
template<typename _Tp>
|
|
inline reference_wrapper<const _Tp>
|
|
cref(reference_wrapper<_Tp> __t)
|
|
{ return cref(__t.get()); }
|
|
|
|
template<typename _Tp, bool>
|
|
struct _Mem_fn_const_or_non
|
|
{
|
|
typedef const _Tp& type;
|
|
};
|
|
|
|
template<typename _Tp>
|
|
struct _Mem_fn_const_or_non<_Tp, false>
|
|
{
|
|
typedef _Tp& type;
|
|
};
|
|
|
|
template<typename _Res, typename _Class>
|
|
class _Mem_fn<_Res _Class::*>
|
|
{
|
|
// This bit of genius is due to Peter Dimov, improved slightly by
|
|
// Douglas Gregor.
|
|
template<typename _Tp>
|
|
_Res&
|
|
_M_call(_Tp& __object, _Class *) const
|
|
{ return __object.*__pm; }
|
|
|
|
template<typename _Tp, typename _Up>
|
|
_Res&
|
|
_M_call(_Tp& __object, _Up * const *) const
|
|
{ return (*__object).*__pm; }
|
|
|
|
template<typename _Tp, typename _Up>
|
|
const _Res&
|
|
_M_call(_Tp& __object, const _Up * const *) const
|
|
{ return (*__object).*__pm; }
|
|
|
|
template<typename _Tp>
|
|
const _Res&
|
|
_M_call(_Tp& __object, const _Class *) const
|
|
{ return __object.*__pm; }
|
|
|
|
template<typename _Tp>
|
|
const _Res&
|
|
_M_call(_Tp& __ptr, const volatile void*) const
|
|
{ return (*__ptr).*__pm; }
|
|
|
|
template<typename _Tp> static _Tp& __get_ref();
|
|
|
|
template<typename _Tp>
|
|
static __sfinae_types::__one __check_const(_Tp&, _Class*);
|
|
template<typename _Tp, typename _Up>
|
|
static __sfinae_types::__one __check_const(_Tp&, _Up * const *);
|
|
template<typename _Tp, typename _Up>
|
|
static __sfinae_types::__two __check_const(_Tp&, const _Up * const *);
|
|
template<typename _Tp>
|
|
static __sfinae_types::__two __check_const(_Tp&, const _Class*);
|
|
template<typename _Tp>
|
|
static __sfinae_types::__two __check_const(_Tp&, const volatile void*);
|
|
|
|
public:
|
|
template<typename _Tp>
|
|
struct _Result_type
|
|
: _Mem_fn_const_or_non<
|
|
_Res,
|
|
(sizeof(__sfinae_types::__two)
|
|
== sizeof(__check_const<_Tp>(__get_ref<_Tp>(), (_Tp*)0)))>
|
|
{ };
|
|
|
|
template<typename _Signature>
|
|
struct result;
|
|
|
|
template<typename _CVMem, typename _Tp>
|
|
struct result<_CVMem(_Tp)>
|
|
: public _Result_type<_Tp> { };
|
|
|
|
template<typename _CVMem, typename _Tp>
|
|
struct result<_CVMem(_Tp&)>
|
|
: public _Result_type<_Tp> { };
|
|
|
|
explicit _Mem_fn(_Res _Class::*__pm) : __pm(__pm) { }
|
|
|
|
// Handle objects
|
|
_Res& operator()(_Class& __object) const
|
|
{ return __object.*__pm; }
|
|
|
|
const _Res& operator()(const _Class& __object) const
|
|
{ return __object.*__pm; }
|
|
|
|
// Handle pointers
|
|
_Res& operator()(_Class* __object) const
|
|
{ return __object->*__pm; }
|
|
|
|
const _Res&
|
|
operator()(const _Class* __object) const
|
|
{ return __object->*__pm; }
|
|
|
|
// Handle smart pointers and derived
|
|
template<typename _Tp>
|
|
typename _Result_type<_Tp>::type
|
|
operator()(_Tp& __unknown) const
|
|
{ return _M_call(__unknown, &__unknown); }
|
|
|
|
private:
|
|
_Res _Class::*__pm;
|
|
};
|
|
|
|
/**
|
|
* @brief Returns a function object that forwards to the member
|
|
* pointer @a pm.
|
|
*/
|
|
template<typename _Tp, typename _Class>
|
|
inline _Mem_fn<_Tp _Class::*>
|
|
mem_fn(_Tp _Class::* __pm)
|
|
{
|
|
return _Mem_fn<_Tp _Class::*>(__pm);
|
|
}
|
|
|
|
/**
|
|
* @brief Determines if the given type _Tp is a function object
|
|
* should be treated as a subexpression when evaluating calls to
|
|
* function objects returned by bind(). [TR1 3.6.1]
|
|
*/
|
|
template<typename _Tp>
|
|
struct is_bind_expression
|
|
{
|
|
static const bool value = false;
|
|
};
|
|
|
|
/**
|
|
* @brief Determines if the given type _Tp is a placeholder in a
|
|
* bind() expression and, if so, which placeholder it is. [TR1 3.6.2]
|
|
*/
|
|
template<typename _Tp>
|
|
struct is_placeholder
|
|
{
|
|
static const int value = 0;
|
|
};
|
|
|
|
/**
|
|
* @if maint
|
|
* The type of placeholder objects defined by libstdc++.
|
|
* @endif
|
|
*/
|
|
template<int _Num> struct _Placeholder { };
|
|
|
|
/**
|
|
* @if maint
|
|
* Partial specialization of is_placeholder that provides the placeholder
|
|
* number for the placeholder objects defined by libstdc++.
|
|
* @endif
|
|
*/
|
|
template<int _Num>
|
|
struct is_placeholder<_Placeholder<_Num> >
|
|
{
|
|
static const int value = _Num;
|
|
};
|
|
|
|
/**
|
|
* @if maint
|
|
* Maps an argument to bind() into an actual argument to the bound
|
|
* function object [TR1 3.6.3/5]. Only the first parameter should
|
|
* be specified: the rest are used to determine among the various
|
|
* implementations. Note that, although this class is a function
|
|
* object, isn't not entirely normal because it takes only two
|
|
* parameters regardless of the number of parameters passed to the
|
|
* bind expression. The first parameter is the bound argument and
|
|
* the second parameter is a tuple containing references to the
|
|
* rest of the arguments.
|
|
* @endif
|
|
*/
|
|
template<typename _Arg,
|
|
bool _IsBindExp = is_bind_expression<_Arg>::value,
|
|
bool _IsPlaceholder = (is_placeholder<_Arg>::value > 0)>
|
|
class _Mu;
|
|
|
|
/**
|
|
* @if maint
|
|
* If the argument is reference_wrapper<_Tp>, returns the
|
|
* underlying reference. [TR1 3.6.3/5 bullet 1]
|
|
* @endif
|
|
*/
|
|
template<typename _Tp>
|
|
class _Mu<reference_wrapper<_Tp>, false, false>
|
|
{
|
|
public:
|
|
typedef _Tp& result_type;
|
|
|
|
/* Note: This won't actually work for const volatile
|
|
* reference_wrappers, because reference_wrapper::get() is const
|
|
* but not volatile-qualified. This might be a defect in the TR.
|
|
*/
|
|
template<typename _CVRef, typename _Tuple>
|
|
result_type
|
|
operator()(_CVRef& __arg, const _Tuple&) const volatile
|
|
{ return __arg.get(); }
|
|
};
|
|
|
|
/**
|
|
* @if maint
|
|
* If the argument is a bind expression, we invoke the underlying
|
|
* function object with the same cv-qualifiers as we are given and
|
|
* pass along all of our arguments (unwrapped). [TR1 3.6.3/5 bullet 2]
|
|
* @endif
|
|
*/
|
|
template<typename _Arg>
|
|
class _Mu<_Arg, true, false>
|
|
{
|
|
public:
|
|
template<typename _Signature> class result;
|
|
|
|
#define _GLIBCXX_REPEAT_HEADER <tr1/mu_iterate.h>
|
|
# include <tr1/repeat.h>
|
|
#undef _GLIBCXX_REPEAT_HEADER
|
|
};
|
|
|
|
/**
|
|
* @if maint
|
|
* If the argument is a placeholder for the Nth argument, returns
|
|
* a reference to the Nth argument to the bind function object.
|
|
* [TR1 3.6.3/5 bullet 3]
|
|
* @endif
|
|
*/
|
|
template<typename _Arg>
|
|
class _Mu<_Arg, false, true>
|
|
{
|
|
public:
|
|
template<typename _Signature> class result;
|
|
|
|
template<typename _CVMu, typename _CVArg, typename _Tuple>
|
|
class result<_CVMu(_CVArg, _Tuple)>
|
|
{
|
|
// Add a reference, if it hasn't already been done for us.
|
|
// This allows us to be a little bit sloppy in constructing
|
|
// the tuple that we pass to result_of<...>.
|
|
typedef typename tuple_element<(is_placeholder<_Arg>::value - 1),
|
|
_Tuple>::type __base_type;
|
|
|
|
public:
|
|
typedef typename add_reference<__base_type>::type type;
|
|
};
|
|
|
|
template<typename _Tuple>
|
|
typename result<_Mu(_Arg, _Tuple)>::type
|
|
operator()(const volatile _Arg&, const _Tuple& __tuple) const volatile
|
|
{
|
|
return ::std::tr1::get<(is_placeholder<_Arg>::value - 1)>(__tuple);
|
|
}
|
|
};
|
|
|
|
/**
|
|
* @if maint
|
|
* If the argument is just a value, returns a reference to that
|
|
* value. The cv-qualifiers on the reference are the same as the
|
|
* cv-qualifiers on the _Mu object. [TR1 3.6.3/5 bullet 4]
|
|
* @endif
|
|
*/
|
|
template<typename _Arg>
|
|
class _Mu<_Arg, false, false>
|
|
{
|
|
public:
|
|
template<typename _Signature> struct result;
|
|
|
|
template<typename _CVMu, typename _CVArg, typename _Tuple>
|
|
struct result<_CVMu(_CVArg, _Tuple)>
|
|
{
|
|
typedef typename add_reference<_CVArg>::type type;
|
|
};
|
|
|
|
// Pick up the cv-qualifiers of the argument
|
|
template<typename _CVArg, typename _Tuple>
|
|
_CVArg& operator()(_CVArg& __arg, const _Tuple&) const volatile
|
|
{ return __arg; }
|
|
};
|
|
|
|
/**
|
|
* @if maint
|
|
* Maps member pointers into instances of _Mem_fn but leaves all
|
|
* other function objects untouched. Used by tr1::bind(). The
|
|
* primary template handles the non--member-pointer case.
|
|
* @endif
|
|
*/
|
|
template<typename _Tp>
|
|
struct _Maybe_wrap_member_pointer
|
|
{
|
|
typedef _Tp type;
|
|
static const _Tp& __do_wrap(const _Tp& __x) { return __x; }
|
|
};
|
|
|
|
/**
|
|
* @if maint
|
|
* Maps member pointers into instances of _Mem_fn but leaves all
|
|
* other function objects untouched. Used by tr1::bind(). This
|
|
* partial specialization handles the member pointer case.
|
|
* @endif
|
|
*/
|
|
template<typename _Tp, typename _Class>
|
|
struct _Maybe_wrap_member_pointer<_Tp _Class::*>
|
|
{
|
|
typedef _Mem_fn<_Tp _Class::*> type;
|
|
static type __do_wrap(_Tp _Class::* __pm) { return type(__pm); }
|
|
};
|
|
|
|
/**
|
|
* @if maint
|
|
* Type of the function object returned from bind().
|
|
* @endif
|
|
*/
|
|
template<typename _Signature>
|
|
struct _Bind;
|
|
|
|
/**
|
|
* @if maint
|
|
* Type of the function object returned from bind<R>().
|
|
* @endif
|
|
*/
|
|
template<typename _Result, typename _Signature>
|
|
struct _Bind_result;
|
|
|
|
/**
|
|
* @if maint
|
|
* Class template _Bind is always a bind expression.
|
|
* @endif
|
|
*/
|
|
template<typename _Signature>
|
|
struct is_bind_expression<_Bind<_Signature> >
|
|
{
|
|
static const bool value = true;
|
|
};
|
|
|
|
/**
|
|
* @if maint
|
|
* Class template _Bind_result is always a bind expression.
|
|
* @endif
|
|
*/
|
|
template<typename _Result, typename _Signature>
|
|
struct is_bind_expression<_Bind_result<_Result, _Signature> >
|
|
{
|
|
static const bool value = true;
|
|
};
|
|
|
|
/**
|
|
* @brief Exception class thrown when class template function's
|
|
* operator() is called with an empty target.
|
|
*
|
|
*/
|
|
class bad_function_call : public std::exception { };
|
|
|
|
/**
|
|
* @if maint
|
|
* The integral constant expression 0 can be converted into a
|
|
* pointer to this type. It is used by the function template to
|
|
* accept NULL pointers.
|
|
* @endif
|
|
*/
|
|
struct _M_clear_type;
|
|
|
|
/**
|
|
* @if maint
|
|
* Trait identifying "location-invariant" types, meaning that the
|
|
* address of the object (or any of its members) will not escape.
|
|
* Also implies a trivial copy constructor and assignment operator.
|
|
* @endif
|
|
*/
|
|
template<typename _Tp>
|
|
struct __is_location_invariant
|
|
: integral_constant<bool,
|
|
(is_pointer<_Tp>::value
|
|
|| is_member_pointer<_Tp>::value)>
|
|
{
|
|
};
|
|
|
|
class _Undefined_class;
|
|
|
|
union _Nocopy_types
|
|
{
|
|
void* _M_object;
|
|
const void* _M_const_object;
|
|
void (*_M_function_pointer)();
|
|
void (_Undefined_class::*_M_member_pointer)();
|
|
};
|
|
|
|
union _Any_data {
|
|
void* _M_access() { return &_M_pod_data[0]; }
|
|
const void* _M_access() const { return &_M_pod_data[0]; }
|
|
|
|
template<typename _Tp> _Tp& _M_access()
|
|
{ return *static_cast<_Tp*>(_M_access()); }
|
|
|
|
template<typename _Tp> const _Tp& _M_access() const
|
|
{ return *static_cast<const _Tp*>(_M_access()); }
|
|
|
|
_Nocopy_types _M_unused;
|
|
char _M_pod_data[sizeof(_Nocopy_types)];
|
|
};
|
|
|
|
enum _Manager_operation
|
|
{
|
|
__get_type_info,
|
|
__get_functor_ptr,
|
|
__clone_functor,
|
|
__destroy_functor
|
|
};
|
|
|
|
/* Simple type wrapper that helps avoid annoying const problems
|
|
when casting between void pointers and pointers-to-pointers. */
|
|
template<typename _Tp>
|
|
struct _Simple_type_wrapper
|
|
{
|
|
_Simple_type_wrapper(_Tp __value) : __value(__value) { }
|
|
|
|
_Tp __value;
|
|
};
|
|
|
|
template<typename _Tp>
|
|
struct __is_location_invariant<_Simple_type_wrapper<_Tp> >
|
|
: __is_location_invariant<_Tp>
|
|
{
|
|
};
|
|
|
|
// Converts a reference to a function object into a callable
|
|
// function object.
|
|
template<typename _Functor>
|
|
inline _Functor& __callable_functor(_Functor& __f) { return __f; }
|
|
|
|
template<typename _Member, typename _Class>
|
|
inline _Mem_fn<_Member _Class::*>
|
|
__callable_functor(_Member _Class::* &__p)
|
|
{ return mem_fn(__p); }
|
|
|
|
template<typename _Member, typename _Class>
|
|
inline _Mem_fn<_Member _Class::*>
|
|
__callable_functor(_Member _Class::* const &__p)
|
|
{ return mem_fn(__p); }
|
|
|
|
template<typename _Signature, typename _Functor>
|
|
class _Function_handler;
|
|
|
|
template<typename _Signature>
|
|
class function;
|
|
|
|
|
|
/**
|
|
* @if maint
|
|
* Base class of all polymorphic function object wrappers.
|
|
* @endif
|
|
*/
|
|
class _Function_base
|
|
{
|
|
public:
|
|
static const std::size_t _M_max_size = sizeof(_Nocopy_types);
|
|
static const std::size_t _M_max_align = __alignof__(_Nocopy_types);
|
|
|
|
template<typename _Functor>
|
|
class _Base_manager
|
|
{
|
|
protected:
|
|
static const bool __stored_locally =
|
|
(__is_location_invariant<_Functor>::value
|
|
&& sizeof(_Functor) <= _M_max_size
|
|
&& __alignof__(_Functor) <= _M_max_align
|
|
&& (_M_max_align % __alignof__(_Functor) == 0));
|
|
typedef integral_constant<bool, __stored_locally> _Local_storage;
|
|
|
|
// Retrieve a pointer to the function object
|
|
static _Functor* _M_get_pointer(const _Any_data& __source)
|
|
{
|
|
const _Functor* __ptr =
|
|
__stored_locally? &__source._M_access<_Functor>()
|
|
/* have stored a pointer */ : __source._M_access<_Functor*>();
|
|
return const_cast<_Functor*>(__ptr);
|
|
}
|
|
|
|
// Clone a location-invariant function object that fits within
|
|
// an _Any_data structure.
|
|
static void
|
|
_M_clone(_Any_data& __dest, const _Any_data& __source, true_type)
|
|
{
|
|
new (__dest._M_access()) _Functor(__source._M_access<_Functor>());
|
|
}
|
|
|
|
// Clone a function object that is not location-invariant or
|
|
// that cannot fit into an _Any_data structure.
|
|
static void
|
|
_M_clone(_Any_data& __dest, const _Any_data& __source, false_type)
|
|
{
|
|
__dest._M_access<_Functor*>() =
|
|
new _Functor(*__source._M_access<_Functor*>());
|
|
}
|
|
|
|
// Destroying a location-invariant object may still require
|
|
// destruction.
|
|
static void
|
|
_M_destroy(_Any_data& __victim, true_type)
|
|
{
|
|
__victim._M_access<_Functor>().~_Functor();
|
|
}
|
|
|
|
// Destroying an object located on the heap.
|
|
static void
|
|
_M_destroy(_Any_data& __victim, false_type)
|
|
{
|
|
delete __victim._M_access<_Functor*>();
|
|
}
|
|
|
|
public:
|
|
static bool
|
|
_M_manager(_Any_data& __dest, const _Any_data& __source,
|
|
_Manager_operation __op)
|
|
{
|
|
switch (__op) {
|
|
case __get_type_info:
|
|
__dest._M_access<const type_info*>() = &typeid(_Functor);
|
|
break;
|
|
|
|
case __get_functor_ptr:
|
|
__dest._M_access<_Functor*>() = _M_get_pointer(__source);
|
|
break;
|
|
|
|
case __clone_functor:
|
|
_M_clone(__dest, __source, _Local_storage());
|
|
break;
|
|
|
|
case __destroy_functor:
|
|
_M_destroy(__dest, _Local_storage());
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void
|
|
_M_init_functor(_Any_data& __functor, const _Functor& __f)
|
|
{
|
|
_M_init_functor(__functor, __f, _Local_storage());
|
|
}
|
|
|
|
template<typename _Signature>
|
|
static bool
|
|
_M_not_empty_function(const function<_Signature>& __f)
|
|
{
|
|
return __f;
|
|
}
|
|
|
|
template<typename _Tp>
|
|
static bool
|
|
_M_not_empty_function(const _Tp*& __fp)
|
|
{
|
|
return __fp;
|
|
}
|
|
|
|
template<typename _Class, typename _Tp>
|
|
static bool
|
|
_M_not_empty_function(_Tp _Class::* const& __mp)
|
|
{
|
|
return __mp;
|
|
}
|
|
|
|
template<typename _Tp>
|
|
static bool
|
|
_M_not_empty_function(const _Tp&)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
static void
|
|
_M_init_functor(_Any_data& __functor, const _Functor& __f, true_type)
|
|
{
|
|
new (__functor._M_access()) _Functor(__f);
|
|
}
|
|
|
|
static void
|
|
_M_init_functor(_Any_data& __functor, const _Functor& __f, false_type)
|
|
{
|
|
__functor._M_access<_Functor*>() = new _Functor(__f);
|
|
}
|
|
};
|
|
|
|
template<typename _Functor>
|
|
class _Ref_manager : public _Base_manager<_Functor*>
|
|
{
|
|
typedef _Function_base::_Base_manager<_Functor*> _Base;
|
|
|
|
public:
|
|
static bool
|
|
_M_manager(_Any_data& __dest, const _Any_data& __source,
|
|
_Manager_operation __op)
|
|
{
|
|
switch (__op) {
|
|
case __get_type_info:
|
|
__dest._M_access<const type_info*>() = &typeid(_Functor);
|
|
break;
|
|
|
|
case __get_functor_ptr:
|
|
__dest._M_access<_Functor*>() = *_Base::_M_get_pointer(__source);
|
|
return is_const<_Functor>::value;
|
|
break;
|
|
|
|
default:
|
|
_Base::_M_manager(__dest, __source, __op);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void
|
|
_M_init_functor(_Any_data& __functor, reference_wrapper<_Functor> __f)
|
|
{
|
|
// TBD: Use address_of function instead
|
|
_Base::_M_init_functor(__functor, &__f.get());
|
|
}
|
|
};
|
|
|
|
_Function_base() : _M_manager(0) { }
|
|
|
|
~_Function_base()
|
|
{
|
|
if (_M_manager)
|
|
{
|
|
_M_manager(_M_functor, _M_functor, __destroy_functor);
|
|
}
|
|
}
|
|
|
|
|
|
bool _M_empty() const { return !_M_manager; }
|
|
|
|
typedef bool (*_Manager_type)(_Any_data&, const _Any_data&,
|
|
_Manager_operation);
|
|
|
|
_Any_data _M_functor;
|
|
_Manager_type _M_manager;
|
|
};
|
|
|
|
// [3.7.2.7] null pointer comparisons
|
|
|
|
/**
|
|
* @brief Compares a polymorphic function object wrapper against 0
|
|
* (the NULL pointer).
|
|
* @returns @c true if the wrapper has no target, @c false otherwise
|
|
*
|
|
* This function will not throw an exception.
|
|
*/
|
|
template<typename _Signature>
|
|
inline bool
|
|
operator==(const function<_Signature>& __f, _M_clear_type*)
|
|
{
|
|
return !__f;
|
|
}
|
|
|
|
/**
|
|
* @overload
|
|
*/
|
|
template<typename _Signature>
|
|
inline bool
|
|
operator==(_M_clear_type*, const function<_Signature>& __f)
|
|
{
|
|
return !__f;
|
|
}
|
|
|
|
/**
|
|
* @brief Compares a polymorphic function object wrapper against 0
|
|
* (the NULL pointer).
|
|
* @returns @c false if the wrapper has no target, @c true otherwise
|
|
*
|
|
* This function will not throw an exception.
|
|
*/
|
|
template<typename _Signature>
|
|
inline bool
|
|
operator!=(const function<_Signature>& __f, _M_clear_type*)
|
|
{
|
|
return __f;
|
|
}
|
|
|
|
/**
|
|
* @overload
|
|
*/
|
|
template<typename _Signature>
|
|
inline bool
|
|
operator!=(_M_clear_type*, const function<_Signature>& __f)
|
|
{
|
|
return __f;
|
|
}
|
|
|
|
// [3.7.2.8] specialized algorithms
|
|
|
|
/**
|
|
* @brief Swap the targets of two polymorphic function object wrappers.
|
|
*
|
|
* This function will not throw an exception.
|
|
*/
|
|
template<typename _Signature>
|
|
inline void
|
|
swap(function<_Signature>& __x, function<_Signature>& __y)
|
|
{
|
|
__x.swap(__y);
|
|
}
|
|
|
|
#define _GLIBCXX_JOIN(X,Y) _GLIBCXX_JOIN2( X , Y )
|
|
#define _GLIBCXX_JOIN2(X,Y) _GLIBCXX_JOIN3(X,Y)
|
|
#define _GLIBCXX_JOIN3(X,Y) X##Y
|
|
#define _GLIBCXX_REPEAT_HEADER <tr1/functional_iterate.h>
|
|
#include <tr1/repeat.h>
|
|
#undef _GLIBCXX_REPEAT_HEADER
|
|
#undef _GLIBCXX_JOIN3
|
|
#undef _GLIBCXX_JOIN2
|
|
#undef _GLIBCXX_JOIN
|
|
|
|
// Definition of default hash function std::tr1::hash<>. The types for
|
|
// which std::tr1::hash<T> is defined is in clause 6.3.3. of the PDTR.
|
|
template<typename T>
|
|
struct hash;
|
|
|
|
#define tr1_hashtable_define_trivial_hash(T) \
|
|
template<> \
|
|
struct hash<T> \
|
|
: public std::unary_function<T, std::size_t> \
|
|
{ \
|
|
std::size_t \
|
|
operator()(T val) const \
|
|
{ return static_cast<std::size_t>(val); } \
|
|
}
|
|
|
|
tr1_hashtable_define_trivial_hash(bool);
|
|
tr1_hashtable_define_trivial_hash(char);
|
|
tr1_hashtable_define_trivial_hash(signed char);
|
|
tr1_hashtable_define_trivial_hash(unsigned char);
|
|
tr1_hashtable_define_trivial_hash(wchar_t);
|
|
tr1_hashtable_define_trivial_hash(short);
|
|
tr1_hashtable_define_trivial_hash(int);
|
|
tr1_hashtable_define_trivial_hash(long);
|
|
tr1_hashtable_define_trivial_hash(unsigned short);
|
|
tr1_hashtable_define_trivial_hash(unsigned int);
|
|
tr1_hashtable_define_trivial_hash(unsigned long);
|
|
|
|
#undef tr1_hashtable_define_trivial_hash
|
|
|
|
template<typename T>
|
|
struct hash<T*>
|
|
: public std::unary_function<T*, std::size_t>
|
|
{
|
|
std::size_t
|
|
operator()(T* p) const
|
|
{ return reinterpret_cast<std::size_t>(p); }
|
|
};
|
|
|
|
// Fowler / Noll / Vo (FNV) Hash (type FNV-1a)
|
|
// (used by the next specializations of std::tr1::hash<>)
|
|
|
|
// Dummy generic implementation (for sizeof(size_t) != 4, 8).
|
|
template<std::size_t = sizeof(std::size_t)>
|
|
struct Fnv_hash
|
|
{
|
|
static std::size_t
|
|
hash(const char* first, std::size_t length)
|
|
{
|
|
std::size_t result = 0;
|
|
for (; length > 0; --length)
|
|
result = (result * 131) + *first++;
|
|
return result;
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct Fnv_hash<4>
|
|
{
|
|
static std::size_t
|
|
hash(const char* first, std::size_t length)
|
|
{
|
|
std::size_t result = 2166136261UL;
|
|
for (; length > 0; --length)
|
|
{
|
|
result ^= (std::size_t)*first++;
|
|
result *= 16777619UL;
|
|
}
|
|
return result;
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct Fnv_hash<8>
|
|
{
|
|
static std::size_t
|
|
hash(const char* first, std::size_t length)
|
|
{
|
|
std::size_t result = 14695981039346656037ULL;
|
|
for (; length > 0; --length)
|
|
{
|
|
result ^= (std::size_t)*first++;
|
|
result *= 1099511628211ULL;
|
|
}
|
|
return result;
|
|
}
|
|
};
|
|
|
|
// XXX String and floating point hashes probably shouldn't be inline
|
|
// member functions, since are nontrivial. Once we have the framework
|
|
// for TR1 .cc files, these should go in one.
|
|
template<>
|
|
struct hash<std::string>
|
|
: public std::unary_function<std::string, std::size_t>
|
|
{
|
|
std::size_t
|
|
operator()(const std::string& s) const
|
|
{ return Fnv_hash<>::hash(s.data(), s.length()); }
|
|
};
|
|
|
|
#ifdef _GLIBCXX_USE_WCHAR_T
|
|
template<>
|
|
struct hash<std::wstring>
|
|
: public std::unary_function<std::wstring, std::size_t>
|
|
{
|
|
std::size_t
|
|
operator()(const std::wstring& s) const
|
|
{
|
|
return Fnv_hash<>::hash(reinterpret_cast<const char*>(s.data()),
|
|
s.length() * sizeof(wchar_t));
|
|
}
|
|
};
|
|
#endif
|
|
|
|
template<>
|
|
struct hash<float>
|
|
: public std::unary_function<float, std::size_t>
|
|
{
|
|
std::size_t
|
|
operator()(float fval) const
|
|
{
|
|
std::size_t result = 0;
|
|
|
|
// 0 and -0 both hash to zero.
|
|
if (fval != 0.0f)
|
|
result = Fnv_hash<>::hash(reinterpret_cast<const char*>(&fval),
|
|
sizeof(fval));
|
|
return result;
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct hash<double>
|
|
: public std::unary_function<double, std::size_t>
|
|
{
|
|
std::size_t
|
|
operator()(double dval) const
|
|
{
|
|
std::size_t result = 0;
|
|
|
|
// 0 and -0 both hash to zero.
|
|
if (dval != 0.0)
|
|
result = Fnv_hash<>::hash(reinterpret_cast<const char*>(&dval),
|
|
sizeof(dval));
|
|
return result;
|
|
}
|
|
};
|
|
|
|
// For long double, careful with random padding bits (e.g., on x86,
|
|
// 10 bytes -> 12 bytes) and resort to frexp.
|
|
template<>
|
|
struct hash<long double>
|
|
: public std::unary_function<long double, std::size_t>
|
|
{
|
|
std::size_t
|
|
operator()(long double ldval) const
|
|
{
|
|
std::size_t result = 0;
|
|
|
|
int exponent;
|
|
ldval = std::frexp(ldval, &exponent);
|
|
ldval = ldval < 0.0l ? -(ldval + 0.5l) : ldval;
|
|
|
|
const long double mult = std::numeric_limits<std::size_t>::max() + 1.0l;
|
|
ldval *= mult;
|
|
|
|
// Try to use all the bits of the mantissa (really necessary only
|
|
// on 32-bit targets, at least for 80-bit floating point formats).
|
|
const std::size_t hibits = (std::size_t)ldval;
|
|
ldval = (ldval - (long double)hibits) * mult;
|
|
|
|
const std::size_t coeff =
|
|
(std::numeric_limits<std::size_t>::max()
|
|
/ std::numeric_limits<long double>::max_exponent);
|
|
|
|
result = hibits + (std::size_t)ldval + coeff * exponent;
|
|
|
|
return result;
|
|
}
|
|
};
|
|
}
|
|
}
|
|
|
|
#endif
|