gcc/libgcc/config/libbid/bid_internal.h
H.J. Lu b2a00c8984 Makefile.in (dfp-filenames): Replace decimal_globals...
libgcc/

2007-09-27  H.J. Lu  <hongjiu.lu@intel.com>

	* Makefile.in (dfp-filenames): Replace decimal_globals,
	decimal_data, binarydecimal and convert_data with
	bid_decimal_globals, bid_decimal_data, bid_binarydecimal
	and bid_convert_data, respectively.

libgcc/config/libbid/

2007-09-27  H.J. Lu  <hongjiu.lu@intel.com>

	* bid128_fromstring.c: Removed.

	* bid_dpd.c: New from libbid 2007-09-26.
	* bid128_to_int16.c: Likewise.
	* bid128_to_int8.c: Likewise.
	* bid128_to_uint8.c: Likewise.
	* bid128_to_uint16.c: Likewise.
	* bid64_to_int16.c: Likewise.
	* bid64_to_int8.c: Likewise.
	* bid64_to_uint16.c: Likewise.
	* bid64_to_uint8.c: Likewise.

	* bid128_2_str.h: Updated from libbid 2007-09-26.
	* bid128_2_str_macros.h: Likewise.
	* bid128_2_str_tables.c: Likewise.
	* bid128_add.c: Likewise.
	* bid128.c: Likewise.
	* bid128_compare.c: Likewise.
	* bid128_div.c: Likewise.
	* bid128_fma.c: Likewise.
	* bid128_logb.c: Likewise.
	* bid128_minmax.c: Likewise.
	* bid128_mul.c: Likewise.
	* bid128_next.c: Likewise.
	* bid128_noncomp.c: Likewise.
	* bid128_quantize.c: Likewise.
	* bid128_rem.c: Likewise.
	* bid128_round_integral.c: Likewise.
	* bid128_scalb.c: Likewise.
	* bid128_sqrt.c: Likewise.
	* bid128_string.c: Likewise.
	* bid128_to_int32.c: Likewise.
	* bid128_to_int64.c: Likewise.
	* bid128_to_uint32.c: Likewise.
	* bid128_to_uint64.c: Likewise.
	* bid32_to_bid128.c: Likewise.
	* bid32_to_bid64.c: Likewise.
	* bid64_add.c: Likewise.
	* bid64_compare.c: Likewise.
	* bid64_div.c: Likewise.
	* bid64_fma.c: Likewise.
	* bid64_logb.c: Likewise.
	* bid64_minmax.c: Likewise.
	* bid64_mul.c: Likewise.
	* bid64_next.c: Likewise.
	* bid64_noncomp.c: Likewise.
	* bid64_quantize.c: Likewise.
	* bid64_rem.c: Likewise.
	* bid64_round_integral.c: Likewise.
	* bid64_scalb.c: Likewise.
	* bid64_sqrt.c: Likewise.
	* bid64_string.c: Likewise.
	* bid64_to_bid128.c: Likewise.
	* bid64_to_int32.c: Likewise.
	* bid64_to_int64.c: Likewise.
	* bid64_to_uint32.c: Likewise.
	* bid64_to_uint64.c: Likewise.
	* bid_b2d.h: Likewise.
	* bid_binarydecimal.c: Likewise.
	* bid_conf.h: Likewise.
	* bid_convert_data.c: Likewise.
	* bid_decimal_data.c: Likewise.
	* bid_decimal_globals.c: Likewise.
	* bid_div_macros.h: Likewise.
	* bid_flag_operations.c: Likewise.
	* bid_from_int.c: Likewise.
	* bid_functions.h: Likewise.
	* bid_gcc_intrinsics.h: Likewise.
	* bid_inline_add.h: Likewise.
	* bid_internal.h: Likewise.
	* bid_round.c: Likewise.
	* bid_sqrt_macros.h: Likewise.
	* _addsub_dd.c: Likewise.
	* _addsub_sd.c: Likewise.
	* _addsub_td.c: Likewise.
	* _dd_to_df.c: Likewise.
	* _dd_to_di.c: Likewise.
	* _dd_to_sd.c: Likewise.
	* _dd_to_sf.c: Likewise.
	* _dd_to_si.c: Likewise.
	* _dd_to_td.c: Likewise.
	* _dd_to_tf.c: Likewise.
	* _dd_to_udi.c: Likewise.
	* _dd_to_usi.c: Likewise.
	* _dd_to_xf.c: Likewise.
	* _df_to_dd.c: Likewise.
	* _df_to_sd.c: Likewise.
	* _df_to_td.c: Likewise.
	* _di_to_dd.c: Likewise.
	* _di_to_sd.c: Likewise.
	* _di_to_td.c: Likewise.
	* _div_dd.c: Likewise.
	* _div_sd.c: Likewise.
	* _div_td.c: Likewise.
	* _eq_dd.c: Likewise.
	* _eq_sd.c: Likewise.
	* _eq_td.c: Likewise.
	* _ge_dd.c: Likewise.
	* _ge_sd.c: Likewise.
	* _ge_td.c: Likewise.
	* _gt_dd.c: Likewise.
	* _gt_sd.c: Likewise.
	* _gt_td.c: Likewise.
	* _isinfd128.c: Likewise.
	* _isinfd32.c: Likewise.
	* _isinfd64.c: Likewise.
	* _le_dd.c: Likewise.
	* _le_sd.c: Likewise.
	* _le_td.c: Likewise.
	* _lt_dd.c: Likewise.
	* _lt_sd.c: Likewise.
	* _lt_td.c: Likewise.
	* _mul_dd.c: Likewise.
	* _mul_sd.c: Likewise.
	* _mul_td.c: Likewise.
	* _ne_dd.c: Likewise.
	* _ne_sd.c: Likewise.
	* _ne_td.c: Likewise.
	* _sd_to_dd.c: Likewise.
	* _sd_to_df.c: Likewise.
	* _sd_to_di.c: Likewise.
	* _sd_to_sf.c: Likewise.
	* _sd_to_si.c: Likewise.
	* _sd_to_td.c: Likewise.
	* _sd_to_tf.c: Likewise.
	* _sd_to_udi.c: Likewise.
	* _sd_to_usi.c: Likewise.
	* _sd_to_xf.c: Likewise.
	* _sf_to_dd.c: Likewise.
	* _sf_to_sd.c: Likewise.
	* _sf_to_td.c: Likewise.
	* _si_to_dd.c: Likewise.
	* _si_to_sd.c: Likewise.
	* _si_to_td.c: Likewise.
	* _td_to_dd.c: Likewise.
	* _td_to_df.c: Likewise.
	* _td_to_di.c: Likewise.
	* _td_to_sd.c: Likewise.
	* _td_to_sf.c: Likewise.
	* _td_to_si.c: Likewise.
	* _td_to_tf.c: Likewise.
	* _td_to_udi.c: Likewise.
	* _td_to_usi.c: Likewise.
	* _td_to_xf.c: Likewise.
	* _tf_to_dd.c: Likewise.
	* _tf_to_sd.c: Likewise.
	* _tf_to_td.c: Likewise.
	* _udi_to_dd.c: Likewise.
	* _udi_to_sd.c: Likewise.
	* _udi_to_td.c: Likewise.
	* _unord_dd.c: Likewise.
	* _unord_sd.c: Likewise.
	* _unord_td.c: Likewise.
	* _usi_to_dd.c: Likewise.
	* _usi_to_sd.c: Likewise.
	* _usi_to_td.c: Likewise.
	* _xf_to_dd.c: Likewise.
	* _xf_to_sd.c: Likewise.
	* _xf_to_td.c: Likewise.

2007-09-27  H.J. Lu  <hongjiu.lu@intel.com>

	* b2d.h: Renamed to ...
	* bid_b2d.h: This.

	* bid128_to_string.c: Renamed to ...
	* bid128_string.c: This.

	* bid_intrinsics.h: Renamed to ...
	* bid_gcc_intrinsics.h: This.

	* bid_string.c: Renamed to ...
	* bid64_string.c: This.

	* binarydecimal.c: Renamed to ...
	* bid_decimal_globals.c: This.

	* convert_data.c: Renamed to ...
	* bid_convert_data.c: This.

	* decimal_data.c: Renamed to ...
	* bid_decimal_data.c: This.

	* decimal_globals.c: Renamed to ...
	* bid_decimal_globals.c: This.

	* div_macros.h: Renamed to ...
	* bid_div_macros.h: This.

	* inline_bid_add.h: Renamed to ...
	* bid_inline_add.h: This.

	* sqrt_macros.h: Renamed to ...
	* bid_sqrt_macros.h: This.

From-SVN: r128841
2007-09-27 10:47:23 -07:00

2613 lines
80 KiB
C

/* Copyright (C) 2007 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file. (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
#ifndef __BIDECIMAL_H
#define __BIDECIMAL_H
#include "bid_conf.h"
#include "bid_functions.h"
#define __BID_INLINE__ static __inline
/*********************************************************************
*
* Logical Shift Macros
*
*********************************************************************/
#define __shr_128(Q, A, k) \
{ \
(Q).w[0] = (A).w[0] >> k; \
(Q).w[0] |= (A).w[1] << (64-k); \
(Q).w[1] = (A).w[1] >> k; \
}
#define __shr_128_long(Q, A, k) \
{ \
if((k)<64) { \
(Q).w[0] = (A).w[0] >> k; \
(Q).w[0] |= (A).w[1] << (64-k); \
(Q).w[1] = (A).w[1] >> k; \
} \
else { \
(Q).w[0] = (A).w[1]>>((k)-64); \
(Q).w[1] = 0; \
} \
}
#define __shl_128_long(Q, A, k) \
{ \
if((k)<64) { \
(Q).w[1] = (A).w[1] << k; \
(Q).w[1] |= (A).w[0] >> (64-k); \
(Q).w[0] = (A).w[0] << k; \
} \
else { \
(Q).w[1] = (A).w[0]<<((k)-64); \
(Q).w[0] = 0; \
} \
}
#define __low_64(Q) (Q).w[0]
/*********************************************************************
*
* String Macros
*
*********************************************************************/
#define tolower_macro(x) (((unsigned char)((x)-'A')<=('Z'-'A'))?((x)-'A'+'a'):(x))
/*********************************************************************
*
* Compare Macros
*
*********************************************************************/
// greater than
// return 0 if A<=B
// non-zero if A>B
#define __unsigned_compare_gt_128(A, B) \
((A.w[1]>B.w[1]) || ((A.w[1]==B.w[1]) && (A.w[0]>B.w[0])))
// greater-or-equal
#define __unsigned_compare_ge_128(A, B) \
((A.w[1]>B.w[1]) || ((A.w[1]==B.w[1]) && (A.w[0]>=B.w[0])))
#define __test_equal_128(A, B) (((A).w[1]==(B).w[1]) && ((A).w[0]==(B).w[0]))
// tighten exponent range
#define __tight_bin_range_128(bp, P, bin_expon) \
{ \
UINT64 M; \
M = 1; \
(bp) = (bin_expon); \
if((bp)<63) { \
M <<= ((bp)+1); \
if((P).w[0] >= M) (bp)++; } \
else if((bp)>64) { \
M <<= ((bp)+1-64); \
if(((P).w[1]>M) ||((P).w[1]==M && (P).w[0]))\
(bp)++; } \
else if((P).w[1]) (bp)++; \
}
/*********************************************************************
*
* Add/Subtract Macros
*
*********************************************************************/
// add 64-bit value to 128-bit
#define __add_128_64(R128, A128, B64) \
{ \
UINT64 R64H; \
R64H = (A128).w[1]; \
(R128).w[0] = (B64) + (A128).w[0]; \
if((R128).w[0] < (B64)) \
R64H ++; \
(R128).w[1] = R64H; \
}
// subtract 64-bit value from 128-bit
#define __sub_128_64(R128, A128, B64) \
{ \
UINT64 R64H; \
R64H = (A128).w[1]; \
if((A128).w[0] < (B64)) \
R64H --; \
(R128).w[1] = R64H; \
(R128).w[0] = (A128).w[0] - (B64); \
}
// add 128-bit value to 128-bit
// assume no carry-out
#define __add_128_128(R128, A128, B128) \
{ \
UINT128 Q128; \
Q128.w[1] = (A128).w[1]+(B128).w[1]; \
Q128.w[0] = (B128).w[0] + (A128).w[0]; \
if(Q128.w[0] < (B128).w[0]) \
Q128.w[1] ++; \
(R128).w[1] = Q128.w[1]; \
(R128).w[0] = Q128.w[0]; \
}
#define __sub_128_128(R128, A128, B128) \
{ \
UINT128 Q128; \
Q128.w[1] = (A128).w[1]-(B128).w[1]; \
Q128.w[0] = (A128).w[0] - (B128).w[0]; \
if((A128).w[0] < (B128).w[0]) \
Q128.w[1] --; \
(R128).w[1] = Q128.w[1]; \
(R128).w[0] = Q128.w[0]; \
}
#define __add_carry_out(S, CY, X, Y) \
{ \
UINT64 X1=X; \
S = X + Y; \
CY = (S<X1) ? 1 : 0; \
}
#define __add_carry_in_out(S, CY, X, Y, CI) \
{ \
UINT64 X1; \
X1 = X + CI; \
S = X1 + Y; \
CY = ((S<X1) || (X1<CI)) ? 1 : 0; \
}
#define __sub_borrow_out(S, CY, X, Y) \
{ \
UINT64 X1=X; \
S = X - Y; \
CY = (S>X1) ? 1 : 0; \
}
#define __sub_borrow_in_out(S, CY, X, Y, CI) \
{ \
UINT64 X1, X0=X; \
X1 = X - CI; \
S = X1 - Y; \
CY = ((S>X1) || (X1>X0)) ? 1 : 0; \
}
// increment C128 and check for rounding overflow:
// if (C_128) = 10^34 then (C_128) = 10^33 and increment the exponent
#define INCREMENT(C_128, exp) \
{ \
C_128.w[0]++; \
if (C_128.w[0] == 0) C_128.w[1]++; \
if (C_128.w[1] == 0x0001ed09bead87c0ull && \
C_128.w[0] == 0x378d8e6400000000ull) { \
exp++; \
C_128.w[1] = 0x0000314dc6448d93ull; \
C_128.w[0] = 0x38c15b0a00000000ull; \
} \
}
// decrement C128 and check for rounding underflow, but only at the
// boundary: if C_128 = 10^33 - 1 and exp > 0 then C_128 = 10^34 - 1
// and decrement the exponent
#define DECREMENT(C_128, exp) \
{ \
C_128.w[0]--; \
if (C_128.w[0] == 0xffffffffffffffffull) C_128.w[1]--; \
if (C_128.w[1] == 0x0000314dc6448d93ull && \
C_128.w[0] == 0x38c15b09ffffffffull && exp > 0) { \
exp--; \
C_128.w[1] = 0x0001ed09bead87c0ull; \
C_128.w[0] = 0x378d8e63ffffffffull; \
} \
}
/*********************************************************************
*
* Multiply Macros
*
*********************************************************************/
#define __mul_64x64_to_64(P64, CX, CY) (P64) = (CX) * (CY)
/***************************************
* Signed, Full 64x64-bit Multiply
***************************************/
#define __imul_64x64_to_128(P, CX, CY) \
{ \
UINT64 SX, SY; \
__mul_64x64_to_128(P, CX, CY); \
\
SX = ((SINT64)(CX))>>63; \
SY = ((SINT64)(CY))>>63; \
SX &= CY; SY &= CX; \
\
(P).w[1] = (P).w[1] - SX - SY; \
}
/***************************************
* Signed, Full 64x128-bit Multiply
***************************************/
#define __imul_64x128_full(Ph, Ql, A, B) \
{ \
UINT128 ALBL, ALBH, QM2, QM; \
\
__imul_64x64_to_128(ALBH, (A), (B).w[1]); \
__imul_64x64_to_128(ALBL, (A), (B).w[0]); \
\
(Ql).w[0] = ALBL.w[0]; \
QM.w[0] = ALBL.w[1]; \
QM.w[1] = ((SINT64)ALBL.w[1])>>63; \
__add_128_128(QM2, ALBH, QM); \
(Ql).w[1] = QM2.w[0]; \
Ph = QM2.w[1]; \
}
/*****************************************************
* Unsigned Multiply Macros
*****************************************************/
// get full 64x64bit product
//
#define __mul_64x64_to_128(P, CX, CY) \
{ \
UINT64 CXH, CXL, CYH,CYL,PL,PH,PM,PM2;\
CXH = (CX) >> 32; \
CXL = (UINT32)(CX); \
CYH = (CY) >> 32; \
CYL = (UINT32)(CY); \
\
PM = CXH*CYL; \
PH = CXH*CYH; \
PL = CXL*CYL; \
PM2 = CXL*CYH; \
PH += (PM>>32); \
PM = (UINT64)((UINT32)PM)+PM2+(PL>>32); \
\
(P).w[1] = PH + (PM>>32); \
(P).w[0] = (PM<<32)+(UINT32)PL; \
}
// get full 64x64bit product
// Note:
// This macro is used for CX < 2^61, CY < 2^61
//
#define __mul_64x64_to_128_fast(P, CX, CY) \
{ \
UINT64 CXH, CXL, CYH, CYL, PL, PH, PM; \
CXH = (CX) >> 32; \
CXL = (UINT32)(CX); \
CYH = (CY) >> 32; \
CYL = (UINT32)(CY); \
\
PM = CXH*CYL; \
PL = CXL*CYL; \
PH = CXH*CYH; \
PM += CXL*CYH; \
PM += (PL>>32); \
\
(P).w[1] = PH + (PM>>32); \
(P).w[0] = (PM<<32)+(UINT32)PL; \
}
// used for CX< 2^60
#define __sqr64_fast(P, CX) \
{ \
UINT64 CXH, CXL, PL, PH, PM; \
CXH = (CX) >> 32; \
CXL = (UINT32)(CX); \
\
PM = CXH*CXL; \
PL = CXL*CXL; \
PH = CXH*CXH; \
PM += PM; \
PM += (PL>>32); \
\
(P).w[1] = PH + (PM>>32); \
(P).w[0] = (PM<<32)+(UINT32)PL; \
}
// get full 64x64bit product
// Note:
// This implementation is used for CX < 2^61, CY < 2^61
//
#define __mul_64x64_to_64_high_fast(P, CX, CY) \
{ \
UINT64 CXH, CXL, CYH, CYL, PL, PH, PM; \
CXH = (CX) >> 32; \
CXL = (UINT32)(CX); \
CYH = (CY) >> 32; \
CYL = (UINT32)(CY); \
\
PM = CXH*CYL; \
PL = CXL*CYL; \
PH = CXH*CYH; \
PM += CXL*CYH; \
PM += (PL>>32); \
\
(P) = PH + (PM>>32); \
}
// get full 64x64bit product
//
#define __mul_64x64_to_128_full(P, CX, CY) \
{ \
UINT64 CXH, CXL, CYH,CYL,PL,PH,PM,PM2;\
CXH = (CX) >> 32; \
CXL = (UINT32)(CX); \
CYH = (CY) >> 32; \
CYL = (UINT32)(CY); \
\
PM = CXH*CYL; \
PH = CXH*CYH; \
PL = CXL*CYL; \
PM2 = CXL*CYH; \
PH += (PM>>32); \
PM = (UINT64)((UINT32)PM)+PM2+(PL>>32); \
\
(P).w[1] = PH + (PM>>32); \
(P).w[0] = (PM<<32)+(UINT32)PL; \
}
#define __mul_128x128_high(Q, A, B) \
{ \
UINT128 ALBL, ALBH, AHBL, AHBH, QM, QM2; \
\
__mul_64x64_to_128(ALBH, (A).w[0], (B).w[1]); \
__mul_64x64_to_128(AHBL, (B).w[0], (A).w[1]); \
__mul_64x64_to_128(ALBL, (A).w[0], (B).w[0]); \
__mul_64x64_to_128(AHBH, (A).w[1],(B).w[1]); \
\
__add_128_128(QM, ALBH, AHBL); \
__add_128_64(QM2, QM, ALBL.w[1]); \
__add_128_64((Q), AHBH, QM2.w[1]); \
}
#define __mul_128x128_full(Qh, Ql, A, B) \
{ \
UINT128 ALBL, ALBH, AHBL, AHBH, QM, QM2; \
\
__mul_64x64_to_128(ALBH, (A).w[0], (B).w[1]); \
__mul_64x64_to_128(AHBL, (B).w[0], (A).w[1]); \
__mul_64x64_to_128(ALBL, (A).w[0], (B).w[0]); \
__mul_64x64_to_128(AHBH, (A).w[1],(B).w[1]); \
\
__add_128_128(QM, ALBH, AHBL); \
(Ql).w[0] = ALBL.w[0]; \
__add_128_64(QM2, QM, ALBL.w[1]); \
__add_128_64((Qh), AHBH, QM2.w[1]); \
(Ql).w[1] = QM2.w[0]; \
}
#define __mul_128x128_low(Ql, A, B) \
{ \
UINT128 ALBL; \
UINT64 QM64; \
\
__mul_64x64_to_128(ALBL, (A).w[0], (B).w[0]); \
QM64 = (B).w[0]*(A).w[1] + (A).w[0]*(B).w[1]; \
\
(Ql).w[0] = ALBL.w[0]; \
(Ql).w[1] = QM64 + ALBL.w[1]; \
}
#define __mul_64x128_low(Ql, A, B) \
{ \
UINT128 ALBL, ALBH, QM2; \
__mul_64x64_to_128(ALBH, (A), (B).w[1]); \
__mul_64x64_to_128(ALBL, (A), (B).w[0]); \
(Ql).w[0] = ALBL.w[0]; \
__add_128_64(QM2, ALBH, ALBL.w[1]); \
(Ql).w[1] = QM2.w[0]; \
}
#define __mul_64x128_full(Ph, Ql, A, B) \
{ \
UINT128 ALBL, ALBH, QM2; \
\
__mul_64x64_to_128(ALBH, (A), (B).w[1]); \
__mul_64x64_to_128(ALBL, (A), (B).w[0]); \
\
(Ql).w[0] = ALBL.w[0]; \
__add_128_64(QM2, ALBH, ALBL.w[1]); \
(Ql).w[1] = QM2.w[0]; \
Ph = QM2.w[1]; \
}
#define __mul_64x128_to_192(Q, A, B) \
{ \
UINT128 ALBL, ALBH, QM2; \
\
__mul_64x64_to_128(ALBH, (A), (B).w[1]); \
__mul_64x64_to_128(ALBL, (A), (B).w[0]); \
\
(Q).w[0] = ALBL.w[0]; \
__add_128_64(QM2, ALBH, ALBL.w[1]); \
(Q).w[1] = QM2.w[0]; \
(Q).w[2] = QM2.w[1]; \
}
#define __mul_64x128_to192(Q, A, B) \
{ \
UINT128 ALBL, ALBH, QM2; \
\
__mul_64x64_to_128(ALBH, (A), (B).w[1]); \
__mul_64x64_to_128(ALBL, (A), (B).w[0]); \
\
(Q).w[0] = ALBL.w[0]; \
__add_128_64(QM2, ALBH, ALBL.w[1]); \
(Q).w[1] = QM2.w[0]; \
(Q).w[2] = QM2.w[1]; \
}
#define __mul_128x128_to_256(P256, A, B) \
{ \
UINT128 Qll, Qlh; \
UINT64 Phl, Phh, CY1, CY2; \
\
__mul_64x128_full(Phl, Qll, A.w[0], B); \
__mul_64x128_full(Phh, Qlh, A.w[1], B); \
(P256).w[0] = Qll.w[0]; \
__add_carry_out((P256).w[1],CY1, Qlh.w[0], Qll.w[1]); \
__add_carry_in_out((P256).w[2],CY2, Qlh.w[1], Phl, CY1); \
(P256).w[3] = Phh + CY2; \
}
//
// For better performance, will check A.w[1] against 0,
// but not B.w[1]
// Use this macro accordingly
#define __mul_128x128_to_256_check_A(P256, A, B) \
{ \
UINT128 Qll, Qlh; \
UINT64 Phl, Phh, CY1, CY2; \
\
__mul_64x128_full(Phl, Qll, A.w[0], B); \
(P256).w[0] = Qll.w[0]; \
if(A.w[1]) { \
__mul_64x128_full(Phh, Qlh, A.w[1], B); \
__add_carry_out((P256).w[1],CY1, Qlh.w[0], Qll.w[1]); \
__add_carry_in_out((P256).w[2],CY2, Qlh.w[1], Phl, CY1); \
(P256).w[3] = Phh + CY2; } \
else { \
(P256).w[1] = Qll.w[1]; \
(P256).w[2] = Phl; \
(P256).w[3] = 0; } \
}
#define __mul_64x192_to_256(lP, lA, lB) \
{ \
UINT128 lP0,lP1,lP2; \
UINT64 lC; \
__mul_64x64_to_128(lP0, lA, (lB).w[0]); \
__mul_64x64_to_128(lP1, lA, (lB).w[1]); \
__mul_64x64_to_128(lP2, lA, (lB).w[2]); \
(lP).w[0] = lP0.w[0]; \
__add_carry_out((lP).w[1],lC,lP1.w[0],lP0.w[1]); \
__add_carry_in_out((lP).w[2],lC,lP2.w[0],lP1.w[1],lC); \
(lP).w[3] = lP2.w[1] + lC; \
}
#define __mul_64x256_to_320(P, A, B) \
{ \
UINT128 lP0,lP1,lP2,lP3; \
UINT64 lC; \
__mul_64x64_to_128(lP0, A, (B).w[0]); \
__mul_64x64_to_128(lP1, A, (B).w[1]); \
__mul_64x64_to_128(lP2, A, (B).w[2]); \
__mul_64x64_to_128(lP3, A, (B).w[3]); \
(P).w[0] = lP0.w[0]; \
__add_carry_out((P).w[1],lC,lP1.w[0],lP0.w[1]); \
__add_carry_in_out((P).w[2],lC,lP2.w[0],lP1.w[1],lC); \
__add_carry_in_out((P).w[3],lC,lP3.w[0],lP2.w[1],lC); \
(P).w[4] = lP3.w[1] + lC; \
}
#define __mul_192x192_to_384(P, A, B) \
{ \
UINT256 P0,P1,P2; \
UINT64 CY; \
__mul_64x192_to_256(P0, (A).w[0], B); \
__mul_64x192_to_256(P1, (A).w[1], B); \
__mul_64x192_to_256(P2, (A).w[2], B); \
(P).w[0] = P0.w[0]; \
__add_carry_out((P).w[1],CY,P1.w[0],P0.w[1]); \
__add_carry_in_out((P).w[2],CY,P1.w[1],P0.w[2],CY); \
__add_carry_in_out((P).w[3],CY,P1.w[2],P0.w[3],CY); \
(P).w[4] = P1.w[3] + CY; \
__add_carry_out((P).w[2],CY,P2.w[0],(P).w[2]); \
__add_carry_in_out((P).w[3],CY,P2.w[1],(P).w[3],CY); \
__add_carry_in_out((P).w[4],CY,P2.w[2],(P).w[4],CY); \
(P).w[5] = P2.w[3] + CY; \
}
#define __mul_64x320_to_384(P, A, B) \
{ \
UINT128 lP0,lP1,lP2,lP3,lP4; \
UINT64 lC; \
__mul_64x64_to_128(lP0, A, (B).w[0]); \
__mul_64x64_to_128(lP1, A, (B).w[1]); \
__mul_64x64_to_128(lP2, A, (B).w[2]); \
__mul_64x64_to_128(lP3, A, (B).w[3]); \
__mul_64x64_to_128(lP4, A, (B).w[4]); \
(P).w[0] = lP0.w[0]; \
__add_carry_out((P).w[1],lC,lP1.w[0],lP0.w[1]); \
__add_carry_in_out((P).w[2],lC,lP2.w[0],lP1.w[1],lC); \
__add_carry_in_out((P).w[3],lC,lP3.w[0],lP2.w[1],lC); \
__add_carry_in_out((P).w[4],lC,lP4.w[0],lP3.w[1],lC); \
(P).w[5] = lP4.w[1] + lC; \
}
// A*A
// Full 128x128-bit product
#define __sqr128_to_256(P256, A) \
{ \
UINT128 Qll, Qlh, Qhh; \
UINT64 TMP_C1, TMP_C2; \
\
__mul_64x64_to_128(Qhh, A.w[1], A.w[1]); \
__mul_64x64_to_128(Qlh, A.w[0], A.w[1]); \
Qhh.w[1] += (Qlh.w[1]>>63); \
Qlh.w[1] = (Qlh.w[1]+Qlh.w[1])|(Qlh.w[0]>>63); \
Qlh.w[0] += Qlh.w[0]; \
__mul_64x64_to_128(Qll, A.w[0], A.w[0]); \
\
__add_carry_out((P256).w[1],TMP_C1, Qlh.w[0], Qll.w[1]); \
(P256).w[0] = Qll.w[0]; \
__add_carry_in_out((P256).w[2],TMP_C2, Qlh.w[1], Qhh.w[0], TMP_C1); \
(P256).w[3] = Qhh.w[1]+TMP_C2; \
}
#define __mul_128x128_to_256_low_high(PQh, PQl, A, B) \
{ \
UINT128 Qll, Qlh; \
UINT64 Phl, Phh, C1, C2; \
\
__mul_64x128_full(Phl, Qll, A.w[0], B); \
__mul_64x128_full(Phh, Qlh, A.w[1], B); \
(PQl).w[0] = Qll.w[0]; \
__add_carry_out((PQl).w[1],C1, Qlh.w[0], Qll.w[1]); \
__add_carry_in_out((PQh).w[0],C2, Qlh.w[1], Phl, C1); \
(PQh).w[1] = Phh + C2; \
}
#define __mul_256x256_to_512(P, A, B) \
{ \
UINT512 P0,P1,P2,P3; \
UINT64 CY; \
__mul_64x256_to_320(P0, (A).w[0], B); \
__mul_64x256_to_320(P1, (A).w[1], B); \
__mul_64x256_to_320(P2, (A).w[2], B); \
__mul_64x256_to_320(P3, (A).w[3], B); \
(P).w[0] = P0.w[0]; \
__add_carry_out((P).w[1],CY,P1.w[0],P0.w[1]); \
__add_carry_in_out((P).w[2],CY,P1.w[1],P0.w[2],CY); \
__add_carry_in_out((P).w[3],CY,P1.w[2],P0.w[3],CY); \
__add_carry_in_out((P).w[4],CY,P1.w[3],P0.w[4],CY); \
(P).w[5] = P1.w[4] + CY; \
__add_carry_out((P).w[2],CY,P2.w[0],(P).w[2]); \
__add_carry_in_out((P).w[3],CY,P2.w[1],(P).w[3],CY); \
__add_carry_in_out((P).w[4],CY,P2.w[2],(P).w[4],CY); \
__add_carry_in_out((P).w[5],CY,P2.w[3],(P).w[5],CY); \
(P).w[6] = P2.w[4] + CY; \
__add_carry_out((P).w[3],CY,P3.w[0],(P).w[3]); \
__add_carry_in_out((P).w[4],CY,P3.w[1],(P).w[4],CY); \
__add_carry_in_out((P).w[5],CY,P3.w[2],(P).w[5],CY); \
__add_carry_in_out((P).w[6],CY,P3.w[3],(P).w[6],CY); \
(P).w[7] = P3.w[4] + CY; \
}
#define __mul_192x256_to_448(P, A, B) \
{ \
UINT512 P0,P1,P2; \
UINT64 CY; \
__mul_64x256_to_320(P0, (A).w[0], B); \
__mul_64x256_to_320(P1, (A).w[1], B); \
__mul_64x256_to_320(P2, (A).w[2], B); \
(P).w[0] = P0.w[0]; \
__add_carry_out((P).w[1],CY,P1.w[0],P0.w[1]); \
__add_carry_in_out((P).w[2],CY,P1.w[1],P0.w[2],CY); \
__add_carry_in_out((P).w[3],CY,P1.w[2],P0.w[3],CY); \
__add_carry_in_out((P).w[4],CY,P1.w[3],P0.w[4],CY); \
(P).w[5] = P1.w[4] + CY; \
__add_carry_out((P).w[2],CY,P2.w[0],(P).w[2]); \
__add_carry_in_out((P).w[3],CY,P2.w[1],(P).w[3],CY); \
__add_carry_in_out((P).w[4],CY,P2.w[2],(P).w[4],CY); \
__add_carry_in_out((P).w[5],CY,P2.w[3],(P).w[5],CY); \
(P).w[6] = P2.w[4] + CY; \
}
#define __mul_320x320_to_640(P, A, B) \
{ \
UINT512 P0,P1,P2,P3; \
UINT64 CY; \
__mul_256x256_to_512((P), (A), B); \
__mul_64x256_to_320(P1, (A).w[4], B); \
__mul_64x256_to_320(P2, (B).w[4], A); \
__mul_64x64_to_128(P3, (A).w[4], (B).w[4]); \
__add_carry_out((P0).w[0],CY,P1.w[0],P2.w[0]); \
__add_carry_in_out((P0).w[1],CY,P1.w[1],P2.w[1],CY); \
__add_carry_in_out((P0).w[2],CY,P1.w[2],P2.w[2],CY); \
__add_carry_in_out((P0).w[3],CY,P1.w[3],P2.w[3],CY); \
__add_carry_in_out((P0).w[4],CY,P1.w[4],P2.w[4],CY); \
P3.w[1] += CY; \
__add_carry_out((P).w[4],CY,(P).w[4],P0.w[0]); \
__add_carry_in_out((P).w[5],CY,(P).w[5],P0.w[1],CY); \
__add_carry_in_out((P).w[6],CY,(P).w[6],P0.w[2],CY); \
__add_carry_in_out((P).w[7],CY,(P).w[7],P0.w[3],CY); \
__add_carry_in_out((P).w[8],CY,P3.w[0],P0.w[4],CY); \
(P).w[9] = P3.w[1] + CY; \
}
#define __mul_384x384_to_768(P, A, B) \
{ \
UINT512 P0,P1,P2,P3; \
UINT64 CY; \
__mul_320x320_to_640((P), (A), B); \
__mul_64x320_to_384(P1, (A).w[5], B); \
__mul_64x320_to_384(P2, (B).w[5], A); \
__mul_64x64_to_128(P3, (A).w[5], (B).w[5]); \
__add_carry_out((P0).w[0],CY,P1.w[0],P2.w[0]); \
__add_carry_in_out((P0).w[1],CY,P1.w[1],P2.w[1],CY); \
__add_carry_in_out((P0).w[2],CY,P1.w[2],P2.w[2],CY); \
__add_carry_in_out((P0).w[3],CY,P1.w[3],P2.w[3],CY); \
__add_carry_in_out((P0).w[4],CY,P1.w[4],P2.w[4],CY); \
__add_carry_in_out((P0).w[5],CY,P1.w[5],P2.w[5],CY); \
P3.w[1] += CY; \
__add_carry_out((P).w[5],CY,(P).w[5],P0.w[0]); \
__add_carry_in_out((P).w[6],CY,(P).w[6],P0.w[1],CY); \
__add_carry_in_out((P).w[7],CY,(P).w[7],P0.w[2],CY); \
__add_carry_in_out((P).w[8],CY,(P).w[8],P0.w[3],CY); \
__add_carry_in_out((P).w[9],CY,(P).w[9],P0.w[4],CY); \
__add_carry_in_out((P).w[10],CY,P3.w[0],P0.w[5],CY); \
(P).w[11] = P3.w[1] + CY; \
}
#define __mul_64x128_short(Ql, A, B) \
{ \
UINT64 ALBH_L; \
\
__mul_64x64_to_64(ALBH_L, (A),(B).w[1]); \
__mul_64x64_to_128((Ql), (A), (B).w[0]); \
\
(Ql).w[1] += ALBH_L; \
}
#define __scale128_10(D,_TMP) \
{ \
UINT128 _TMP2,_TMP8; \
_TMP2.w[1] = (_TMP.w[1]<<1)|(_TMP.w[0]>>63); \
_TMP2.w[0] = _TMP.w[0]<<1; \
_TMP8.w[1] = (_TMP.w[1]<<3)|(_TMP.w[0]>>61); \
_TMP8.w[0] = _TMP.w[0]<<3; \
__add_128_128(D, _TMP2, _TMP8); \
}
// 64x64-bit product
#define __mul_64x64_to_128MACH(P128, CX64, CY64) \
{ \
UINT64 CXH,CXL,CYH,CYL,PL,PH,PM,PM2; \
CXH = (CX64) >> 32; \
CXL = (UINT32)(CX64); \
CYH = (CY64) >> 32; \
CYL = (UINT32)(CY64); \
PM = CXH*CYL; \
PH = CXH*CYH; \
PL = CXL*CYL; \
PM2 = CXL*CYH; \
PH += (PM>>32); \
PM = (UINT64)((UINT32)PM)+PM2+(PL>>32); \
(P128).w[1] = PH + (PM>>32); \
(P128).w[0] = (PM<<32)+(UINT32)PL; \
}
// 64x64-bit product
#define __mul_64x64_to_128HIGH(P64, CX64, CY64) \
{ \
UINT64 CXH,CXL,CYH,CYL,PL,PH,PM,PM2; \
CXH = (CX64) >> 32; \
CXL = (UINT32)(CX64); \
CYH = (CY64) >> 32; \
CYL = (UINT32)(CY64); \
PM = CXH*CYL; \
PH = CXH*CYH; \
PL = CXL*CYL; \
PM2 = CXL*CYH; \
PH += (PM>>32); \
PM = (UINT64)((UINT32)PM)+PM2+(PL>>32); \
P64 = PH + (PM>>32); \
}
#define __mul_128x64_to_128(Q128, A64, B128) \
{ \
UINT64 ALBH_L; \
ALBH_L = (A64) * (B128).w[1]; \
__mul_64x64_to_128MACH((Q128), (A64), (B128).w[0]); \
(Q128).w[1] += ALBH_L; \
}
// might simplify by calculating just QM2.w[0]
#define __mul_64x128_to_128(Ql, A, B) \
{ \
UINT128 ALBL, ALBH, QM2; \
__mul_64x64_to_128(ALBH, (A), (B).w[1]); \
__mul_64x64_to_128(ALBL, (A), (B).w[0]); \
(Ql).w[0] = ALBL.w[0]; \
__add_128_64(QM2, ALBH, ALBL.w[1]); \
(Ql).w[1] = QM2.w[0]; \
}
/*********************************************************************
*
* BID Pack/Unpack Macros
*
*********************************************************************/
/////////////////////////////////////////
// BID64 definitions
////////////////////////////////////////
#define DECIMAL_MAX_EXPON_64 767
#define DECIMAL_EXPONENT_BIAS 398
#define MAX_FORMAT_DIGITS 16
/////////////////////////////////////////
// BID128 definitions
////////////////////////////////////////
#define DECIMAL_MAX_EXPON_128 12287
#define DECIMAL_EXPONENT_BIAS_128 6176
#define MAX_FORMAT_DIGITS_128 34
/////////////////////////////////////////
// BID32 definitions
////////////////////////////////////////
#define DECIMAL_MAX_EXPON_32 191
#define DECIMAL_EXPONENT_BIAS_32 101
#define MAX_FORMAT_DIGITS_32 7
////////////////////////////////////////
// Constant Definitions
///////////////////////////////////////
#define SPECIAL_ENCODING_MASK64 0x6000000000000000ull
#define INFINITY_MASK64 0x7800000000000000ull
#define SINFINITY_MASK64 0xf800000000000000ull
#define SSNAN_MASK64 0xfc00000000000000ull
#define NAN_MASK64 0x7c00000000000000ull
#define SNAN_MASK64 0x7e00000000000000ull
#define QUIET_MASK64 0xfdffffffffffffffull
#define LARGE_COEFF_MASK64 0x0007ffffffffffffull
#define LARGE_COEFF_HIGH_BIT64 0x0020000000000000ull
#define SMALL_COEFF_MASK64 0x001fffffffffffffull
#define EXPONENT_MASK64 0x3ff
#define EXPONENT_SHIFT_LARGE64 51
#define EXPONENT_SHIFT_SMALL64 53
#define LARGEST_BID64 0x77fb86f26fc0ffffull
#define SMALLEST_BID64 0xf7fb86f26fc0ffffull
#define SMALL_COEFF_MASK128 0x0001ffffffffffffull
#define LARGE_COEFF_MASK128 0x00007fffffffffffull
#define EXPONENT_MASK128 0x3fff
#define LARGEST_BID128_HIGH 0x5fffed09bead87c0ull
#define LARGEST_BID128_LOW 0x378d8e63ffffffffull
#define SPECIAL_ENCODING_MASK32 0x60000000ul
#define INFINITY_MASK32 0x78000000ul
#define LARGE_COEFF_MASK32 0x007ffffful
#define LARGE_COEFF_HIGH_BIT32 0x00800000ul
#define SMALL_COEFF_MASK32 0x001ffffful
#define EXPONENT_MASK32 0xff
#define LARGEST_BID32 0x77f8967f
#define NAN_MASK32 0x7c000000
#define SNAN_MASK32 0x7e000000
#define MASK_BINARY_EXPONENT 0x7ff0000000000000ull
#define BINARY_EXPONENT_BIAS 0x3ff
#define UPPER_EXPON_LIMIT 51
// data needed for BID pack/unpack macros
extern UINT64 round_const_table[][19];
extern UINT128 reciprocals10_128[];
extern int recip_scale[];
extern UINT128 power10_table_128[];
extern int estimate_decimal_digits[];
extern int estimate_bin_expon[];
extern UINT64 power10_index_binexp[];
extern int short_recip_scale[];
extern UINT64 reciprocals10_64[];
extern UINT128 power10_index_binexp_128[];
extern UINT128 round_const_table_128[][36];
//////////////////////////////////////////////
// Status Flag Handling
/////////////////////////////////////////////
#define __set_status_flags(fpsc, status) *(fpsc) |= status
#define is_inexact(fpsc) ((*(fpsc))&INEXACT_EXCEPTION)
__BID_INLINE__ UINT64
unpack_BID64 (UINT64 * psign_x, int *pexponent_x,
UINT64 * pcoefficient_x, UINT64 x) {
UINT64 tmp, coeff;
*psign_x = x & 0x8000000000000000ull;
if ((x & SPECIAL_ENCODING_MASK64) == SPECIAL_ENCODING_MASK64) {
// special encodings
// coefficient
coeff = (x & LARGE_COEFF_MASK64) | LARGE_COEFF_HIGH_BIT64;
if ((x & INFINITY_MASK64) == INFINITY_MASK64) {
*pexponent_x = 0;
*pcoefficient_x = x & 0xfe03ffffffffffffull;
if ((x & 0x0003ffffffffffffull) >= 1000000000000000ull)
*pcoefficient_x = x & 0xfe00000000000000ull;
if ((x & NAN_MASK64) == INFINITY_MASK64)
*pcoefficient_x = x & SINFINITY_MASK64;
return 0; // NaN or Infinity
}
// check for non-canonical values
if (coeff >= 10000000000000000ull)
coeff = 0;
*pcoefficient_x = coeff;
// get exponent
tmp = x >> EXPONENT_SHIFT_LARGE64;
*pexponent_x = (int) (tmp & EXPONENT_MASK64);
return coeff;
}
// exponent
tmp = x >> EXPONENT_SHIFT_SMALL64;
*pexponent_x = (int) (tmp & EXPONENT_MASK64);
// coefficient
*pcoefficient_x = (x & SMALL_COEFF_MASK64);
return *pcoefficient_x;
}
//
// BID64 pack macro (general form)
//
__BID_INLINE__ UINT64
get_BID64 (UINT64 sgn, int expon, UINT64 coeff, int rmode,
unsigned *fpsc) {
UINT128 Stemp, Q_low;
UINT64 QH, r, mask, C64, remainder_h, CY, carry;
int extra_digits, amount, amount2;
unsigned status;
if (coeff > 9999999999999999ull) {
expon++;
coeff = 1000000000000000ull;
}
// check for possible underflow/overflow
if (((unsigned) expon) >= 3 * 256) {
if (expon < 0) {
// underflow
if (expon + MAX_FORMAT_DIGITS < 0) {
#ifdef SET_STATUS_FLAGS
__set_status_flags (fpsc,
UNDERFLOW_EXCEPTION | INEXACT_EXCEPTION);
#endif
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
#ifndef IEEE_ROUND_NEAREST
if (rmode == ROUNDING_DOWN && sgn)
return 0x8000000000000001ull;
if (rmode == ROUNDING_UP && !sgn)
return 1ull;
#endif
#endif
// result is 0
return sgn;
}
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
#ifndef IEEE_ROUND_NEAREST
if (sgn && (unsigned) (rmode - 1) < 2)
rmode = 3 - rmode;
#endif
#endif
// get digits to be shifted out
extra_digits = -expon;
coeff += round_const_table[rmode][extra_digits];
// get coeff*(2^M[extra_digits])/10^extra_digits
__mul_64x128_full (QH, Q_low, coeff,
reciprocals10_128[extra_digits]);
// now get P/10^extra_digits: shift Q_high right by M[extra_digits]-128
amount = recip_scale[extra_digits];
C64 = QH >> amount;
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
#ifndef IEEE_ROUND_NEAREST
if (rmode == 0) //ROUNDING_TO_NEAREST
#endif
if (C64 & 1) {
// check whether fractional part of initial_P/10^extra_digits is exactly .5
// get remainder
amount2 = 64 - amount;
remainder_h = 0;
remainder_h--;
remainder_h >>= amount2;
remainder_h = remainder_h & QH;
if (!remainder_h
&& (Q_low.w[1] < reciprocals10_128[extra_digits].w[1]
|| (Q_low.w[1] == reciprocals10_128[extra_digits].w[1]
&& Q_low.w[0] <
reciprocals10_128[extra_digits].w[0]))) {
C64--;
}
}
#endif
#ifdef SET_STATUS_FLAGS
if (is_inexact (fpsc))
__set_status_flags (fpsc, UNDERFLOW_EXCEPTION);
else {
status = INEXACT_EXCEPTION;
// get remainder
remainder_h = QH << (64 - amount);
switch (rmode) {
case ROUNDING_TO_NEAREST:
case ROUNDING_TIES_AWAY:
// test whether fractional part is 0
if (remainder_h == 0x8000000000000000ull
&& (Q_low.w[1] < reciprocals10_128[extra_digits].w[1]
|| (Q_low.w[1] == reciprocals10_128[extra_digits].w[1]
&& Q_low.w[0] <
reciprocals10_128[extra_digits].w[0])))
status = EXACT_STATUS;
break;
case ROUNDING_DOWN:
case ROUNDING_TO_ZERO:
if (!remainder_h
&& (Q_low.w[1] < reciprocals10_128[extra_digits].w[1]
|| (Q_low.w[1] == reciprocals10_128[extra_digits].w[1]
&& Q_low.w[0] <
reciprocals10_128[extra_digits].w[0])))
status = EXACT_STATUS;
break;
default:
// round up
__add_carry_out (Stemp.w[0], CY, Q_low.w[0],
reciprocals10_128[extra_digits].w[0]);
__add_carry_in_out (Stemp.w[1], carry, Q_low.w[1],
reciprocals10_128[extra_digits].w[1], CY);
if ((remainder_h >> (64 - amount)) + carry >=
(((UINT64) 1) << amount))
status = EXACT_STATUS;
}
if (status != EXACT_STATUS)
__set_status_flags (fpsc, UNDERFLOW_EXCEPTION | status);
}
#endif
return sgn | C64;
}
while (coeff < 1000000000000000ull && expon >= 3 * 256) {
expon--;
coeff = (coeff << 3) + (coeff << 1);
}
if (expon > DECIMAL_MAX_EXPON_64) {
#ifdef SET_STATUS_FLAGS
__set_status_flags (fpsc, OVERFLOW_EXCEPTION | INEXACT_EXCEPTION);
#endif
// overflow
r = sgn | INFINITY_MASK64;
switch (rmode) {
case ROUNDING_DOWN:
if (!sgn)
r = LARGEST_BID64;
break;
case ROUNDING_TO_ZERO:
r = sgn | LARGEST_BID64;
break;
case ROUNDING_UP:
// round up
if (sgn)
r = SMALLEST_BID64;
}
return r;
}
}
mask = 1;
mask <<= EXPONENT_SHIFT_SMALL64;
// check whether coefficient fits in 10*5+3 bits
if (coeff < mask) {
r = expon;
r <<= EXPONENT_SHIFT_SMALL64;
r |= (coeff | sgn);
return r;
}
// special format
// eliminate the case coeff==10^16 after rounding
if (coeff == 10000000000000000ull) {
r = expon + 1;
r <<= EXPONENT_SHIFT_SMALL64;
r |= (1000000000000000ull | sgn);
return r;
}
r = expon;
r <<= EXPONENT_SHIFT_LARGE64;
r |= (sgn | SPECIAL_ENCODING_MASK64);
// add coeff, without leading bits
mask = (mask >> 2) - 1;
coeff &= mask;
r |= coeff;
return r;
}
//
// No overflow/underflow checking
//
__BID_INLINE__ UINT64
fast_get_BID64 (UINT64 sgn, int expon, UINT64 coeff) {
UINT64 r, mask;
mask = 1;
mask <<= EXPONENT_SHIFT_SMALL64;
// check whether coefficient fits in 10*5+3 bits
if (coeff < mask) {
r = expon;
r <<= EXPONENT_SHIFT_SMALL64;
r |= (coeff | sgn);
return r;
}
// special format
// eliminate the case coeff==10^16 after rounding
if (coeff == 10000000000000000ull) {
r = expon + 1;
r <<= EXPONENT_SHIFT_SMALL64;
r |= (1000000000000000ull | sgn);
return r;
}
r = expon;
r <<= EXPONENT_SHIFT_LARGE64;
r |= (sgn | SPECIAL_ENCODING_MASK64);
// add coeff, without leading bits
mask = (mask >> 2) - 1;
coeff &= mask;
r |= coeff;
return r;
}
//
// no underflow checking
//
__BID_INLINE__ UINT64
fast_get_BID64_check_OF (UINT64 sgn, int expon, UINT64 coeff, int rmode,
unsigned *fpsc) {
UINT64 r, mask;
if (((unsigned) expon) >= 3 * 256 - 1) {
if ((expon == 3 * 256 - 1) && coeff == 10000000000000000ull) {
expon = 3 * 256;
coeff = 1000000000000000ull;
}
if (((unsigned) expon) >= 3 * 256) {
while (coeff < 1000000000000000ull && expon >= 3 * 256) {
expon--;
coeff = (coeff << 3) + (coeff << 1);
}
if (expon > DECIMAL_MAX_EXPON_64) {
#ifdef SET_STATUS_FLAGS
__set_status_flags (fpsc,
OVERFLOW_EXCEPTION | INEXACT_EXCEPTION);
#endif
// overflow
r = sgn | INFINITY_MASK64;
switch (rmode) {
case ROUNDING_DOWN:
if (!sgn)
r = LARGEST_BID64;
break;
case ROUNDING_TO_ZERO:
r = sgn | LARGEST_BID64;
break;
case ROUNDING_UP:
// round up
if (sgn)
r = SMALLEST_BID64;
}
return r;
}
}
}
mask = 1;
mask <<= EXPONENT_SHIFT_SMALL64;
// check whether coefficient fits in 10*5+3 bits
if (coeff < mask) {
r = expon;
r <<= EXPONENT_SHIFT_SMALL64;
r |= (coeff | sgn);
return r;
}
// special format
// eliminate the case coeff==10^16 after rounding
if (coeff == 10000000000000000ull) {
r = expon + 1;
r <<= EXPONENT_SHIFT_SMALL64;
r |= (1000000000000000ull | sgn);
return r;
}
r = expon;
r <<= EXPONENT_SHIFT_LARGE64;
r |= (sgn | SPECIAL_ENCODING_MASK64);
// add coeff, without leading bits
mask = (mask >> 2) - 1;
coeff &= mask;
r |= coeff;
return r;
}
//
// No overflow/underflow checking
// or checking for coefficients equal to 10^16 (after rounding)
//
__BID_INLINE__ UINT64
very_fast_get_BID64 (UINT64 sgn, int expon, UINT64 coeff) {
UINT64 r, mask;
mask = 1;
mask <<= EXPONENT_SHIFT_SMALL64;
// check whether coefficient fits in 10*5+3 bits
if (coeff < mask) {
r = expon;
r <<= EXPONENT_SHIFT_SMALL64;
r |= (coeff | sgn);
return r;
}
// special format
r = expon;
r <<= EXPONENT_SHIFT_LARGE64;
r |= (sgn | SPECIAL_ENCODING_MASK64);
// add coeff, without leading bits
mask = (mask >> 2) - 1;
coeff &= mask;
r |= coeff;
return r;
}
//
// No overflow/underflow checking or checking for coefficients above 2^53
//
__BID_INLINE__ UINT64
very_fast_get_BID64_small_mantissa (UINT64 sgn, int expon, UINT64 coeff) {
// no UF/OF
UINT64 r;
r = expon;
r <<= EXPONENT_SHIFT_SMALL64;
r |= (coeff | sgn);
return r;
}
//
// This pack macro is used when underflow is known to occur
//
__BID_INLINE__ UINT64
get_BID64_UF (UINT64 sgn, int expon, UINT64 coeff, UINT64 R, int rmode,
unsigned *fpsc) {
UINT128 C128, Q_low, Stemp;
UINT64 C64, remainder_h, QH, carry, CY;
int extra_digits, amount, amount2;
unsigned status;
// underflow
if (expon + MAX_FORMAT_DIGITS < 0) {
#ifdef SET_STATUS_FLAGS
__set_status_flags (fpsc, UNDERFLOW_EXCEPTION | INEXACT_EXCEPTION);
#endif
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
#ifndef IEEE_ROUND_NEAREST
if (rmode == ROUNDING_DOWN && sgn)
return 0x8000000000000001ull;
if (rmode == ROUNDING_UP && !sgn)
return 1ull;
#endif
#endif
// result is 0
return sgn;
}
// 10*coeff
coeff = (coeff << 3) + (coeff << 1);
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
#ifndef IEEE_ROUND_NEAREST
if (sgn && (unsigned) (rmode - 1) < 2)
rmode = 3 - rmode;
#endif
#endif
if (R)
coeff |= 1;
// get digits to be shifted out
extra_digits = 1 - expon;
C128.w[0] = coeff + round_const_table[rmode][extra_digits];
// get coeff*(2^M[extra_digits])/10^extra_digits
__mul_64x128_full (QH, Q_low, C128.w[0],
reciprocals10_128[extra_digits]);
// now get P/10^extra_digits: shift Q_high right by M[extra_digits]-128
amount = recip_scale[extra_digits];
C64 = QH >> amount;
//__shr_128(C128, Q_high, amount);
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
#ifndef IEEE_ROUND_NEAREST
if (rmode == 0) //ROUNDING_TO_NEAREST
#endif
if (C64 & 1) {
// check whether fractional part of initial_P/10^extra_digits is exactly .5
// get remainder
amount2 = 64 - amount;
remainder_h = 0;
remainder_h--;
remainder_h >>= amount2;
remainder_h = remainder_h & QH;
if (!remainder_h
&& (Q_low.w[1] < reciprocals10_128[extra_digits].w[1]
|| (Q_low.w[1] == reciprocals10_128[extra_digits].w[1]
&& Q_low.w[0] <
reciprocals10_128[extra_digits].w[0]))) {
C64--;
}
}
#endif
#ifdef SET_STATUS_FLAGS
if (is_inexact (fpsc))
__set_status_flags (fpsc, UNDERFLOW_EXCEPTION);
else {
status = INEXACT_EXCEPTION;
// get remainder
remainder_h = QH << (64 - amount);
switch (rmode) {
case ROUNDING_TO_NEAREST:
case ROUNDING_TIES_AWAY:
// test whether fractional part is 0
if (remainder_h == 0x8000000000000000ull
&& (Q_low.w[1] < reciprocals10_128[extra_digits].w[1]
|| (Q_low.w[1] == reciprocals10_128[extra_digits].w[1]
&& Q_low.w[0] <
reciprocals10_128[extra_digits].w[0])))
status = EXACT_STATUS;
break;
case ROUNDING_DOWN:
case ROUNDING_TO_ZERO:
if (!remainder_h
&& (Q_low.w[1] < reciprocals10_128[extra_digits].w[1]
|| (Q_low.w[1] == reciprocals10_128[extra_digits].w[1]
&& Q_low.w[0] <
reciprocals10_128[extra_digits].w[0])))
status = EXACT_STATUS;
break;
default:
// round up
__add_carry_out (Stemp.w[0], CY, Q_low.w[0],
reciprocals10_128[extra_digits].w[0]);
__add_carry_in_out (Stemp.w[1], carry, Q_low.w[1],
reciprocals10_128[extra_digits].w[1], CY);
if ((remainder_h >> (64 - amount)) + carry >=
(((UINT64) 1) << amount))
status = EXACT_STATUS;
}
if (status != EXACT_STATUS)
__set_status_flags (fpsc, UNDERFLOW_EXCEPTION | status);
}
#endif
return sgn | C64;
}
//
// This pack macro doesnot check for coefficients above 2^53
//
__BID_INLINE__ UINT64
get_BID64_small_mantissa (UINT64 sgn, int expon, UINT64 coeff,
int rmode, unsigned *fpsc) {
UINT128 C128, Q_low, Stemp;
UINT64 r, mask, C64, remainder_h, QH, carry, CY;
int extra_digits, amount, amount2;
unsigned status;
// check for possible underflow/overflow
if (((unsigned) expon) >= 3 * 256) {
if (expon < 0) {
// underflow
if (expon + MAX_FORMAT_DIGITS < 0) {
#ifdef SET_STATUS_FLAGS
__set_status_flags (fpsc,
UNDERFLOW_EXCEPTION | INEXACT_EXCEPTION);
#endif
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
#ifndef IEEE_ROUND_NEAREST
if (rmode == ROUNDING_DOWN && sgn)
return 0x8000000000000001ull;
if (rmode == ROUNDING_UP && !sgn)
return 1ull;
#endif
#endif
// result is 0
return sgn;
}
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
#ifndef IEEE_ROUND_NEAREST
if (sgn && (unsigned) (rmode - 1) < 2)
rmode = 3 - rmode;
#endif
#endif
// get digits to be shifted out
extra_digits = -expon;
C128.w[0] = coeff + round_const_table[rmode][extra_digits];
// get coeff*(2^M[extra_digits])/10^extra_digits
__mul_64x128_full (QH, Q_low, C128.w[0],
reciprocals10_128[extra_digits]);
// now get P/10^extra_digits: shift Q_high right by M[extra_digits]-128
amount = recip_scale[extra_digits];
C64 = QH >> amount;
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
#ifndef IEEE_ROUND_NEAREST
if (rmode == 0) //ROUNDING_TO_NEAREST
#endif
if (C64 & 1) {
// check whether fractional part of initial_P/10^extra_digits is exactly .5
// get remainder
amount2 = 64 - amount;
remainder_h = 0;
remainder_h--;
remainder_h >>= amount2;
remainder_h = remainder_h & QH;
if (!remainder_h
&& (Q_low.w[1] < reciprocals10_128[extra_digits].w[1]
|| (Q_low.w[1] == reciprocals10_128[extra_digits].w[1]
&& Q_low.w[0] <
reciprocals10_128[extra_digits].w[0]))) {
C64--;
}
}
#endif
#ifdef SET_STATUS_FLAGS
if (is_inexact (fpsc))
__set_status_flags (fpsc, UNDERFLOW_EXCEPTION);
else {
status = INEXACT_EXCEPTION;
// get remainder
remainder_h = QH << (64 - amount);
switch (rmode) {
case ROUNDING_TO_NEAREST:
case ROUNDING_TIES_AWAY:
// test whether fractional part is 0
if (remainder_h == 0x8000000000000000ull
&& (Q_low.w[1] < reciprocals10_128[extra_digits].w[1]
|| (Q_low.w[1] == reciprocals10_128[extra_digits].w[1]
&& Q_low.w[0] <
reciprocals10_128[extra_digits].w[0])))
status = EXACT_STATUS;
break;
case ROUNDING_DOWN:
case ROUNDING_TO_ZERO:
if (!remainder_h
&& (Q_low.w[1] < reciprocals10_128[extra_digits].w[1]
|| (Q_low.w[1] == reciprocals10_128[extra_digits].w[1]
&& Q_low.w[0] <
reciprocals10_128[extra_digits].w[0])))
status = EXACT_STATUS;
break;
default:
// round up
__add_carry_out (Stemp.w[0], CY, Q_low.w[0],
reciprocals10_128[extra_digits].w[0]);
__add_carry_in_out (Stemp.w[1], carry, Q_low.w[1],
reciprocals10_128[extra_digits].w[1], CY);
if ((remainder_h >> (64 - amount)) + carry >=
(((UINT64) 1) << amount))
status = EXACT_STATUS;
}
if (status != EXACT_STATUS)
__set_status_flags (fpsc, UNDERFLOW_EXCEPTION | status);
}
#endif
return sgn | C64;
}
while (coeff < 1000000000000000ull && expon >= 3 * 256) {
expon--;
coeff = (coeff << 3) + (coeff << 1);
}
if (expon > DECIMAL_MAX_EXPON_64) {
#ifdef SET_STATUS_FLAGS
__set_status_flags (fpsc, OVERFLOW_EXCEPTION | INEXACT_EXCEPTION);
#endif
// overflow
r = sgn | INFINITY_MASK64;
switch (rmode) {
case ROUNDING_DOWN:
if (!sgn)
r = LARGEST_BID64;
break;
case ROUNDING_TO_ZERO:
r = sgn | LARGEST_BID64;
break;
case ROUNDING_UP:
// round up
if (sgn)
r = SMALLEST_BID64;
}
return r;
} else {
mask = 1;
mask <<= EXPONENT_SHIFT_SMALL64;
if (coeff >= mask) {
r = expon;
r <<= EXPONENT_SHIFT_LARGE64;
r |= (sgn | SPECIAL_ENCODING_MASK64);
// add coeff, without leading bits
mask = (mask >> 2) - 1;
coeff &= mask;
r |= coeff;
return r;
}
}
}
r = expon;
r <<= EXPONENT_SHIFT_SMALL64;
r |= (coeff | sgn);
return r;
}
/*****************************************************************************
*
* BID128 pack/unpack macros
*
*****************************************************************************/
//
// Macro for handling BID128 underflow
// sticky bit given as additional argument
//
__BID_INLINE__ UINT128 *
handle_UF_128_rem (UINT128 * pres, UINT64 sgn, int expon, UINT128 CQ,
UINT64 R, unsigned *prounding_mode, unsigned *fpsc) {
UINT128 T128, TP128, Qh, Ql, Qh1, Stemp, Tmp, Tmp1, CQ2, CQ8;
UINT64 carry, CY;
int ed2, amount;
unsigned rmode, status;
// UF occurs
if (expon + MAX_FORMAT_DIGITS_128 < 0) {
#ifdef SET_STATUS_FLAGS
__set_status_flags (fpsc, UNDERFLOW_EXCEPTION | INEXACT_EXCEPTION);
#endif
pres->w[1] = sgn;
pres->w[0] = 0;
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
#ifndef IEEE_ROUND_NEAREST
if ((sgn && *prounding_mode == ROUNDING_DOWN)
|| (!sgn && *prounding_mode == ROUNDING_UP))
pres->w[0] = 1ull;
#endif
#endif
return pres;
}
// CQ *= 10
CQ2.w[1] = (CQ.w[1] << 1) | (CQ.w[0] >> 63);
CQ2.w[0] = CQ.w[0] << 1;
CQ8.w[1] = (CQ.w[1] << 3) | (CQ.w[0] >> 61);
CQ8.w[0] = CQ.w[0] << 3;
__add_128_128 (CQ, CQ2, CQ8);
// add remainder
if (R)
CQ.w[0] |= 1;
ed2 = 1 - expon;
// add rounding constant to CQ
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
#ifndef IEEE_ROUND_NEAREST
rmode = *prounding_mode;
if (sgn && (unsigned) (rmode - 1) < 2)
rmode = 3 - rmode;
#else
rmode = 0;
#endif
#else
rmode = 0;
#endif
T128 = round_const_table_128[rmode][ed2];
__add_carry_out (CQ.w[0], carry, T128.w[0], CQ.w[0]);
CQ.w[1] = CQ.w[1] + T128.w[1] + carry;
TP128 = reciprocals10_128[ed2];
__mul_128x128_full (Qh, Ql, CQ, TP128);
amount = recip_scale[ed2];
if (amount >= 64) {
CQ.w[0] = Qh.w[1] >> (amount - 64);
CQ.w[1] = 0;
} else {
__shr_128 (CQ, Qh, amount);
}
expon = 0;
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
#ifndef IEEE_ROUND_NEAREST
if (!(*prounding_mode))
#endif
if (CQ.w[0] & 1) {
// check whether fractional part of initial_P/10^ed1 is exactly .5
// get remainder
__shl_128_long (Qh1, Qh, (128 - amount));
if (!Qh1.w[1] && !Qh1.w[0]
&& (Ql.w[1] < reciprocals10_128[ed2].w[1]
|| (Ql.w[1] == reciprocals10_128[ed2].w[1]
&& Ql.w[0] < reciprocals10_128[ed2].w[0]))) {
CQ.w[0]--;
}
}
#endif
#ifdef SET_STATUS_FLAGS
if (is_inexact (fpsc))
__set_status_flags (fpsc, UNDERFLOW_EXCEPTION);
else {
status = INEXACT_EXCEPTION;
// get remainder
__shl_128_long (Qh1, Qh, (128 - amount));
switch (rmode) {
case ROUNDING_TO_NEAREST:
case ROUNDING_TIES_AWAY:
// test whether fractional part is 0
if (Qh1.w[1] == 0x8000000000000000ull && (!Qh1.w[0])
&& (Ql.w[1] < reciprocals10_128[ed2].w[1]
|| (Ql.w[1] == reciprocals10_128[ed2].w[1]
&& Ql.w[0] < reciprocals10_128[ed2].w[0])))
status = EXACT_STATUS;
break;
case ROUNDING_DOWN:
case ROUNDING_TO_ZERO:
if ((!Qh1.w[1]) && (!Qh1.w[0])
&& (Ql.w[1] < reciprocals10_128[ed2].w[1]
|| (Ql.w[1] == reciprocals10_128[ed2].w[1]
&& Ql.w[0] < reciprocals10_128[ed2].w[0])))
status = EXACT_STATUS;
break;
default:
// round up
__add_carry_out (Stemp.w[0], CY, Ql.w[0],
reciprocals10_128[ed2].w[0]);
__add_carry_in_out (Stemp.w[1], carry, Ql.w[1],
reciprocals10_128[ed2].w[1], CY);
__shr_128_long (Qh, Qh1, (128 - amount));
Tmp.w[0] = 1;
Tmp.w[1] = 0;
__shl_128_long (Tmp1, Tmp, amount);
Qh.w[0] += carry;
if (Qh.w[0] < carry)
Qh.w[1]++;
if (__unsigned_compare_ge_128 (Qh, Tmp1))
status = EXACT_STATUS;
}
if (status != EXACT_STATUS)
__set_status_flags (fpsc, UNDERFLOW_EXCEPTION | status);
}
#endif
pres->w[1] = sgn | CQ.w[1];
pres->w[0] = CQ.w[0];
return pres;
}
//
// Macro for handling BID128 underflow
//
__BID_INLINE__ UINT128 *
handle_UF_128 (UINT128 * pres, UINT64 sgn, int expon, UINT128 CQ,
unsigned *prounding_mode, unsigned *fpsc) {
UINT128 T128, TP128, Qh, Ql, Qh1, Stemp, Tmp, Tmp1;
UINT64 carry, CY;
int ed2, amount;
unsigned rmode, status;
// UF occurs
if (expon + MAX_FORMAT_DIGITS_128 < 0) {
#ifdef SET_STATUS_FLAGS
__set_status_flags (fpsc, UNDERFLOW_EXCEPTION | INEXACT_EXCEPTION);
#endif
pres->w[1] = sgn;
pres->w[0] = 0;
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
#ifndef IEEE_ROUND_NEAREST
if ((sgn && *prounding_mode == ROUNDING_DOWN)
|| (!sgn && *prounding_mode == ROUNDING_UP))
pres->w[0] = 1ull;
#endif
#endif
return pres;
}
ed2 = 0 - expon;
// add rounding constant to CQ
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
#ifndef IEEE_ROUND_NEAREST
rmode = *prounding_mode;
if (sgn && (unsigned) (rmode - 1) < 2)
rmode = 3 - rmode;
#else
rmode = 0;
#endif
#else
rmode = 0;
#endif
T128 = round_const_table_128[rmode][ed2];
__add_carry_out (CQ.w[0], carry, T128.w[0], CQ.w[0]);
CQ.w[1] = CQ.w[1] + T128.w[1] + carry;
TP128 = reciprocals10_128[ed2];
__mul_128x128_full (Qh, Ql, CQ, TP128);
amount = recip_scale[ed2];
if (amount >= 64) {
CQ.w[0] = Qh.w[1] >> (amount - 64);
CQ.w[1] = 0;
} else {
__shr_128 (CQ, Qh, amount);
}
expon = 0;
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
#ifndef IEEE_ROUND_NEAREST
if (!(*prounding_mode))
#endif
if (CQ.w[0] & 1) {
// check whether fractional part of initial_P/10^ed1 is exactly .5
// get remainder
__shl_128_long (Qh1, Qh, (128 - amount));
if (!Qh1.w[1] && !Qh1.w[0]
&& (Ql.w[1] < reciprocals10_128[ed2].w[1]
|| (Ql.w[1] == reciprocals10_128[ed2].w[1]
&& Ql.w[0] < reciprocals10_128[ed2].w[0]))) {
CQ.w[0]--;
}
}
#endif
#ifdef SET_STATUS_FLAGS
if (is_inexact (fpsc))
__set_status_flags (fpsc, UNDERFLOW_EXCEPTION);
else {
status = INEXACT_EXCEPTION;
// get remainder
__shl_128_long (Qh1, Qh, (128 - amount));
switch (rmode) {
case ROUNDING_TO_NEAREST:
case ROUNDING_TIES_AWAY:
// test whether fractional part is 0
if (Qh1.w[1] == 0x8000000000000000ull && (!Qh1.w[0])
&& (Ql.w[1] < reciprocals10_128[ed2].w[1]
|| (Ql.w[1] == reciprocals10_128[ed2].w[1]
&& Ql.w[0] < reciprocals10_128[ed2].w[0])))
status = EXACT_STATUS;
break;
case ROUNDING_DOWN:
case ROUNDING_TO_ZERO:
if ((!Qh1.w[1]) && (!Qh1.w[0])
&& (Ql.w[1] < reciprocals10_128[ed2].w[1]
|| (Ql.w[1] == reciprocals10_128[ed2].w[1]
&& Ql.w[0] < reciprocals10_128[ed2].w[0])))
status = EXACT_STATUS;
break;
default:
// round up
__add_carry_out (Stemp.w[0], CY, Ql.w[0],
reciprocals10_128[ed2].w[0]);
__add_carry_in_out (Stemp.w[1], carry, Ql.w[1],
reciprocals10_128[ed2].w[1], CY);
__shr_128_long (Qh, Qh1, (128 - amount));
Tmp.w[0] = 1;
Tmp.w[1] = 0;
__shl_128_long (Tmp1, Tmp, amount);
Qh.w[0] += carry;
if (Qh.w[0] < carry)
Qh.w[1]++;
if (__unsigned_compare_ge_128 (Qh, Tmp1))
status = EXACT_STATUS;
}
if (status != EXACT_STATUS)
__set_status_flags (fpsc, UNDERFLOW_EXCEPTION | status);
}
#endif
pres->w[1] = sgn | CQ.w[1];
pres->w[0] = CQ.w[0];
return pres;
}
//
// BID128 unpack, input passed by value
//
__BID_INLINE__ UINT64
unpack_BID128_value (UINT64 * psign_x, int *pexponent_x,
UINT128 * pcoefficient_x, UINT128 x) {
UINT128 coeff, T33, T34;
UINT64 ex;
*psign_x = (x.w[1]) & 0x8000000000000000ull;
// special encodings
if ((x.w[1] & INFINITY_MASK64) >= SPECIAL_ENCODING_MASK64) {
if ((x.w[1] & INFINITY_MASK64) < INFINITY_MASK64) {
// non-canonical input
pcoefficient_x->w[0] = 0;
pcoefficient_x->w[1] = 0;
ex = (x.w[1]) >> 47;
*pexponent_x = ((int) ex) & EXPONENT_MASK128;
return 0;
}
// 10^33
T33 = power10_table_128[33];
/*coeff.w[0] = x.w[0];
coeff.w[1] = (x.w[1]) & LARGE_COEFF_MASK128;
pcoefficient_x->w[0] = x.w[0];
pcoefficient_x->w[1] = x.w[1];
if (__unsigned_compare_ge_128 (coeff, T33)) // non-canonical
pcoefficient_x->w[1] &= (~LARGE_COEFF_MASK128); */
pcoefficient_x->w[0] = x.w[0];
pcoefficient_x->w[1] = (x.w[1]) & 0x00003fffffffffffull;
if (__unsigned_compare_ge_128 ((*pcoefficient_x), T33)) // non-canonical
{
pcoefficient_x->w[1] = (x.w[1]) & 0xfe00000000000000ull;
pcoefficient_x->w[0] = 0;
} else
pcoefficient_x->w[1] = (x.w[1]) & 0xfe003fffffffffffull;
if ((x.w[1] & NAN_MASK64) == INFINITY_MASK64) {
pcoefficient_x->w[0] = 0;
pcoefficient_x->w[1] = x.w[1] & SINFINITY_MASK64;
}
*pexponent_x = 0;
return 0; // NaN or Infinity
}
coeff.w[0] = x.w[0];
coeff.w[1] = (x.w[1]) & SMALL_COEFF_MASK128;
// 10^34
T34 = power10_table_128[34];
// check for non-canonical values
if (__unsigned_compare_ge_128 (coeff, T34))
coeff.w[0] = coeff.w[1] = 0;
pcoefficient_x->w[0] = coeff.w[0];
pcoefficient_x->w[1] = coeff.w[1];
ex = (x.w[1]) >> 49;
*pexponent_x = ((int) ex) & EXPONENT_MASK128;
return coeff.w[0] | coeff.w[1];
}
//
// BID128 unpack, input pased by reference
//
__BID_INLINE__ UINT64
unpack_BID128 (UINT64 * psign_x, int *pexponent_x,
UINT128 * pcoefficient_x, UINT128 * px) {
UINT128 coeff, T33, T34;
UINT64 ex;
*psign_x = (px->w[1]) & 0x8000000000000000ull;
// special encodings
if ((px->w[1] & INFINITY_MASK64) >= SPECIAL_ENCODING_MASK64) {
if ((px->w[1] & INFINITY_MASK64) < INFINITY_MASK64) {
// non-canonical input
pcoefficient_x->w[0] = 0;
pcoefficient_x->w[1] = 0;
ex = (px->w[1]) >> 47;
*pexponent_x = ((int) ex) & EXPONENT_MASK128;
return 0;
}
// 10^33
T33 = power10_table_128[33];
coeff.w[0] = px->w[0];
coeff.w[1] = (px->w[1]) & LARGE_COEFF_MASK128;
pcoefficient_x->w[0] = px->w[0];
pcoefficient_x->w[1] = px->w[1];
if (__unsigned_compare_ge_128 (coeff, T33)) { // non-canonical
pcoefficient_x->w[1] &= (~LARGE_COEFF_MASK128);
pcoefficient_x->w[0] = 0;
}
*pexponent_x = 0;
return 0; // NaN or Infinity
}
coeff.w[0] = px->w[0];
coeff.w[1] = (px->w[1]) & SMALL_COEFF_MASK128;
// 10^34
T34 = power10_table_128[34];
// check for non-canonical values
if (__unsigned_compare_ge_128 (coeff, T34))
coeff.w[0] = coeff.w[1] = 0;
pcoefficient_x->w[0] = coeff.w[0];
pcoefficient_x->w[1] = coeff.w[1];
ex = (px->w[1]) >> 49;
*pexponent_x = ((int) ex) & EXPONENT_MASK128;
return coeff.w[0] | coeff.w[1];
}
//
// Pack macro checks for overflow, but not underflow
//
__BID_INLINE__ UINT128 *
get_BID128_very_fast_OF (UINT128 * pres, UINT64 sgn, int expon,
UINT128 coeff, unsigned *prounding_mode,
unsigned *fpsc) {
UINT128 T;
UINT64 tmp, tmp2;
if ((unsigned) expon > DECIMAL_MAX_EXPON_128) {
if (expon - MAX_FORMAT_DIGITS_128 <= DECIMAL_MAX_EXPON_128) {
T = power10_table_128[MAX_FORMAT_DIGITS_128 - 1];
while (__unsigned_compare_gt_128 (T, coeff)
&& expon > DECIMAL_MAX_EXPON_128) {
coeff.w[1] =
(coeff.w[1] << 3) + (coeff.w[1] << 1) + (coeff.w[0] >> 61) +
(coeff.w[0] >> 63);
tmp2 = coeff.w[0] << 3;
coeff.w[0] = (coeff.w[0] << 1) + tmp2;
if (coeff.w[0] < tmp2)
coeff.w[1]++;
expon--;
}
}
if ((unsigned) expon > DECIMAL_MAX_EXPON_128) {
// OF
#ifdef SET_STATUS_FLAGS
__set_status_flags (fpsc, OVERFLOW_EXCEPTION | INEXACT_EXCEPTION);
#endif
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
#ifndef IEEE_ROUND_NEAREST
if (*prounding_mode == ROUNDING_TO_ZERO
|| (sgn && *prounding_mode == ROUNDING_UP) || (!sgn
&&
*prounding_mode
==
ROUNDING_DOWN))
{
pres->w[1] = sgn | LARGEST_BID128_HIGH;
pres->w[0] = LARGEST_BID128_LOW;
} else
#endif
#endif
{
pres->w[1] = sgn | INFINITY_MASK64;
pres->w[0] = 0;
}
return pres;
}
}
pres->w[0] = coeff.w[0];
tmp = expon;
tmp <<= 49;
pres->w[1] = sgn | tmp | coeff.w[1];
return pres;
}
//
// No overflow/underflow checks
// No checking for coefficient == 10^34 (rounding artifact)
//
__BID_INLINE__ UINT128 *
get_BID128_very_fast (UINT128 * pres, UINT64 sgn, int expon,
UINT128 coeff) {
UINT64 tmp;
pres->w[0] = coeff.w[0];
tmp = expon;
tmp <<= 49;
pres->w[1] = sgn | tmp | coeff.w[1];
return pres;
}
//
// No overflow/underflow checks
//
__BID_INLINE__ UINT128 *
get_BID128_fast (UINT128 * pres, UINT64 sgn, int expon, UINT128 coeff) {
UINT64 tmp;
// coeff==10^34?
if (coeff.w[1] == 0x0001ed09bead87c0ull
&& coeff.w[0] == 0x378d8e6400000000ull) {
expon++;
// set coefficient to 10^33
coeff.w[1] = 0x0000314dc6448d93ull;
coeff.w[0] = 0x38c15b0a00000000ull;
}
pres->w[0] = coeff.w[0];
tmp = expon;
tmp <<= 49;
pres->w[1] = sgn | tmp | coeff.w[1];
return pres;
}
//
// General BID128 pack macro
//
__BID_INLINE__ UINT128 *
get_BID128 (UINT128 * pres, UINT64 sgn, int expon, UINT128 coeff,
unsigned *prounding_mode, unsigned *fpsc) {
UINT128 T;
UINT64 tmp, tmp2;
// coeff==10^34?
if (coeff.w[1] == 0x0001ed09bead87c0ull
&& coeff.w[0] == 0x378d8e6400000000ull) {
expon++;
// set coefficient to 10^33
coeff.w[1] = 0x0000314dc6448d93ull;
coeff.w[0] = 0x38c15b0a00000000ull;
}
// check OF, UF
if (expon < 0 || expon > DECIMAL_MAX_EXPON_128) {
// check UF
if (expon < 0) {
return handle_UF_128 (pres, sgn, expon, coeff, prounding_mode,
fpsc);
}
if (expon - MAX_FORMAT_DIGITS_128 <= DECIMAL_MAX_EXPON_128) {
T = power10_table_128[MAX_FORMAT_DIGITS_128 - 1];
while (__unsigned_compare_gt_128 (T, coeff)
&& expon > DECIMAL_MAX_EXPON_128) {
coeff.w[1] =
(coeff.w[1] << 3) + (coeff.w[1] << 1) + (coeff.w[0] >> 61) +
(coeff.w[0] >> 63);
tmp2 = coeff.w[0] << 3;
coeff.w[0] = (coeff.w[0] << 1) + tmp2;
if (coeff.w[0] < tmp2)
coeff.w[1]++;
expon--;
}
}
if (expon > DECIMAL_MAX_EXPON_128) {
if (!(coeff.w[1] | coeff.w[0])) {
pres->w[1] = sgn | (((UINT64) DECIMAL_MAX_EXPON_128) << 49);
pres->w[0] = 0;
return pres;
}
// OF
#ifdef SET_STATUS_FLAGS
__set_status_flags (fpsc, OVERFLOW_EXCEPTION | INEXACT_EXCEPTION);
#endif
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
#ifndef IEEE_ROUND_NEAREST
if (*prounding_mode == ROUNDING_TO_ZERO
|| (sgn && *prounding_mode == ROUNDING_UP) || (!sgn
&&
*prounding_mode
==
ROUNDING_DOWN))
{
pres->w[1] = sgn | LARGEST_BID128_HIGH;
pres->w[0] = LARGEST_BID128_LOW;
} else
#endif
#endif
{
pres->w[1] = sgn | INFINITY_MASK64;
pres->w[0] = 0;
}
return pres;
}
}
pres->w[0] = coeff.w[0];
tmp = expon;
tmp <<= 49;
pres->w[1] = sgn | tmp | coeff.w[1];
return pres;
}
//
// Macro used for conversions from string
// (no additional arguments given for rounding mode, status flags)
//
__BID_INLINE__ UINT128 *
get_BID128_string (UINT128 * pres, UINT64 sgn, int expon, UINT128 coeff) {
UINT128 D2, D8;
UINT64 tmp;
unsigned rmode = 0, status;
// coeff==10^34?
if (coeff.w[1] == 0x0001ed09bead87c0ull
&& coeff.w[0] == 0x378d8e6400000000ull) {
expon++;
// set coefficient to 10^33
coeff.w[1] = 0x0000314dc6448d93ull;
coeff.w[0] = 0x38c15b0a00000000ull;
}
// check OF, UF
if ((unsigned) expon > DECIMAL_MAX_EXPON_128) {
// check UF
if (expon < 0)
return handle_UF_128 (pres, sgn, expon, coeff, &rmode, &status);
// OF
if (expon < DECIMAL_MAX_EXPON_128 + 34) {
while (expon > DECIMAL_MAX_EXPON_128 &&
(coeff.w[1] < power10_table_128[33].w[1] ||
(coeff.w[1] == power10_table_128[33].w[1]
&& coeff.w[0] < power10_table_128[33].w[0]))) {
D2.w[1] = (coeff.w[1] << 1) | (coeff.w[0] >> 63);
D2.w[0] = coeff.w[0] << 1;
D8.w[1] = (coeff.w[1] << 3) | (coeff.w[0] >> 61);
D8.w[0] = coeff.w[0] << 3;
__add_128_128 (coeff, D2, D8);
expon--;
}
} else if (!(coeff.w[0] | coeff.w[1]))
expon = DECIMAL_MAX_EXPON_128;
if (expon > DECIMAL_MAX_EXPON_128) {
pres->w[1] = sgn | INFINITY_MASK64;
pres->w[0] = 0;
switch (rmode) {
case ROUNDING_DOWN:
if (!sgn) {
pres->w[1] = LARGEST_BID128_HIGH;
pres->w[0] = LARGEST_BID128_LOW;
}
break;
case ROUNDING_TO_ZERO:
pres->w[1] = sgn | LARGEST_BID128_HIGH;
pres->w[0] = LARGEST_BID128_LOW;
break;
case ROUNDING_UP:
// round up
if (sgn) {
pres->w[1] = sgn | LARGEST_BID128_HIGH;
pres->w[0] = LARGEST_BID128_LOW;
}
break;
}
return pres;
}
}
pres->w[0] = coeff.w[0];
tmp = expon;
tmp <<= 49;
pres->w[1] = sgn | tmp | coeff.w[1];
return pres;
}
/*****************************************************************************
*
* BID32 pack/unpack macros
*
*****************************************************************************/
__BID_INLINE__ UINT32
unpack_BID32 (UINT32 * psign_x, int *pexponent_x,
UINT32 * pcoefficient_x, UINT32 x) {
UINT32 tmp;
*psign_x = x & 0x80000000;
if ((x & SPECIAL_ENCODING_MASK32) == SPECIAL_ENCODING_MASK32) {
// special encodings
if ((x & INFINITY_MASK32) == INFINITY_MASK32) {
*pcoefficient_x = x & 0xfe0fffff;
if ((x & 0x000fffff) >= 1000000)
*pcoefficient_x = x & 0xfe000000;
if ((x & NAN_MASK32) == INFINITY_MASK32)
*pcoefficient_x = x & 0xf8000000;
*pexponent_x = 0;
return 0; // NaN or Infinity
}
// coefficient
*pcoefficient_x = (x & SMALL_COEFF_MASK32) | LARGE_COEFF_HIGH_BIT32;
// check for non-canonical value
if (*pcoefficient_x >= 10000000)
*pcoefficient_x = 0;
// get exponent
tmp = x >> 21;
*pexponent_x = tmp & EXPONENT_MASK32;
return 1;
}
// exponent
tmp = x >> 23;
*pexponent_x = tmp & EXPONENT_MASK32;
// coefficient
*pcoefficient_x = (x & LARGE_COEFF_MASK32);
return *pcoefficient_x;
}
//
// General pack macro for BID32
//
__BID_INLINE__ UINT32
get_BID32 (UINT32 sgn, int expon, UINT64 coeff, int rmode,
unsigned *fpsc) {
UINT128 Q;
UINT64 C64, remainder_h, carry, Stemp;
UINT32 r, mask;
int extra_digits, amount, amount2;
unsigned status;
if (coeff > 9999999ull) {
expon++;
coeff = 1000000ull;
}
// check for possible underflow/overflow
if (((unsigned) expon) > DECIMAL_MAX_EXPON_32) {
if (expon < 0) {
// underflow
if (expon + MAX_FORMAT_DIGITS_32 < 0) {
#ifdef SET_STATUS_FLAGS
__set_status_flags (fpsc,
UNDERFLOW_EXCEPTION | INEXACT_EXCEPTION);
#endif
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
#ifndef IEEE_ROUND_NEAREST
if (rmode == ROUNDING_DOWN && sgn)
return 0x80000001;
if (rmode == ROUNDING_UP && !sgn)
return 1;
#endif
#endif
// result is 0
return sgn;
}
// get digits to be shifted out
#ifdef IEEE_ROUND_NEAREST_TIES_AWAY
rmode = 0;
#endif
#ifdef IEEE_ROUND_NEAREST
rmode = 0;
#endif
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
#ifndef IEEE_ROUND_NEAREST
if (sgn && (unsigned) (rmode - 1) < 2)
rmode = 3 - rmode;
#endif
#endif
extra_digits = -expon;
coeff += round_const_table[rmode][extra_digits];
// get coeff*(2^M[extra_digits])/10^extra_digits
__mul_64x64_to_128 (Q, coeff, reciprocals10_64[extra_digits]);
// now get P/10^extra_digits: shift Q_high right by M[extra_digits]-128
amount = short_recip_scale[extra_digits];
C64 = Q.w[1] >> amount;
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
#ifndef IEEE_ROUND_NEAREST
if (rmode == 0) //ROUNDING_TO_NEAREST
#endif
if (C64 & 1) {
// check whether fractional part of initial_P/10^extra_digits is exactly .5
// get remainder
amount2 = 64 - amount;
remainder_h = 0;
remainder_h--;
remainder_h >>= amount2;
remainder_h = remainder_h & Q.w[1];
if (!remainder_h && (Q.w[0] < reciprocals10_64[extra_digits])) {
C64--;
}
}
#endif
#ifdef SET_STATUS_FLAGS
if (is_inexact (fpsc))
__set_status_flags (fpsc, UNDERFLOW_EXCEPTION);
else {
status = INEXACT_EXCEPTION;
// get remainder
remainder_h = Q.w[1] << (64 - amount);
switch (rmode) {
case ROUNDING_TO_NEAREST:
case ROUNDING_TIES_AWAY:
// test whether fractional part is 0
if (remainder_h == 0x8000000000000000ull
&& (Q.w[0] < reciprocals10_64[extra_digits]))
status = EXACT_STATUS;
break;
case ROUNDING_DOWN:
case ROUNDING_TO_ZERO:
if (!remainder_h && (Q.w[0] < reciprocals10_64[extra_digits]))
status = EXACT_STATUS;
break;
default:
// round up
__add_carry_out (Stemp, carry, Q.w[0],
reciprocals10_64[extra_digits]);
if ((remainder_h >> (64 - amount)) + carry >=
(((UINT64) 1) << amount))
status = EXACT_STATUS;
}
if (status != EXACT_STATUS)
__set_status_flags (fpsc, UNDERFLOW_EXCEPTION | status);
}
#endif
return sgn | (UINT32) C64;
}
while (coeff < 1000000 && expon > DECIMAL_MAX_EXPON_32) {
coeff = (coeff << 3) + (coeff << 1);
expon--;
}
if (((unsigned) expon) > DECIMAL_MAX_EXPON_32) {
__set_status_flags (fpsc, OVERFLOW_EXCEPTION | INEXACT_EXCEPTION);
// overflow
r = sgn | INFINITY_MASK32;
switch (rmode) {
case ROUNDING_DOWN:
if (!sgn)
r = LARGEST_BID32;
break;
case ROUNDING_TO_ZERO:
r = sgn | LARGEST_BID32;
break;
case ROUNDING_UP:
// round up
if (sgn)
r = sgn | LARGEST_BID32;
}
return r;
}
}
mask = 1 << 23;
// check whether coefficient fits in DECIMAL_COEFF_FIT bits
if (coeff < mask) {
r = expon;
r <<= 23;
r |= ((UINT32) coeff | sgn);
return r;
}
// special format
r = expon;
r <<= 21;
r |= (sgn | SPECIAL_ENCODING_MASK32);
// add coeff, without leading bits
mask = (1 << 21) - 1;
r |= (((UINT32) coeff) & mask);
return r;
}
//
// no overflow/underflow checks
//
__BID_INLINE__ UINT32
very_fast_get_BID32 (UINT32 sgn, int expon, UINT32 coeff) {
UINT32 r, mask;
mask = 1 << 23;
// check whether coefficient fits in 10*2+3 bits
if (coeff < mask) {
r = expon;
r <<= 23;
r |= (coeff | sgn);
return r;
}
// special format
r = expon;
r <<= 21;
r |= (sgn | SPECIAL_ENCODING_MASK32);
// add coeff, without leading bits
mask = (1 << 21) - 1;
coeff &= mask;
r |= coeff;
return r;
}
/*************************************************************
*
*************************************************************/
typedef
ALIGN (16)
struct {
UINT64 w[6];
} UINT384;
typedef ALIGN (16)
struct {
UINT64 w[8];
} UINT512;
// #define P 34
#define MASK_STEERING_BITS 0x6000000000000000ull
#define MASK_BINARY_EXPONENT1 0x7fe0000000000000ull
#define MASK_BINARY_SIG1 0x001fffffffffffffull
#define MASK_BINARY_EXPONENT2 0x1ff8000000000000ull
//used to take G[2:w+3] (sec 3.3)
#define MASK_BINARY_SIG2 0x0007ffffffffffffull
//used to mask out G4:T0 (sec 3.3)
#define MASK_BINARY_OR2 0x0020000000000000ull
//used to prefix 8+G4 to T (sec 3.3)
#define UPPER_EXPON_LIMIT 51
#define MASK_EXP 0x7ffe000000000000ull
#define MASK_SPECIAL 0x7800000000000000ull
#define MASK_NAN 0x7c00000000000000ull
#define MASK_SNAN 0x7e00000000000000ull
#define MASK_ANY_INF 0x7c00000000000000ull
#define MASK_INF 0x7800000000000000ull
#define MASK_SIGN 0x8000000000000000ull
#define MASK_COEFF 0x0001ffffffffffffull
#define BIN_EXP_BIAS (0x1820ull << 49)
#define EXP_MIN 0x0000000000000000ull
// EXP_MIN = (-6176 + 6176) << 49
#define EXP_MAX 0x5ffe000000000000ull
// EXP_MAX = (6111 + 6176) << 49
#define EXP_MAX_P1 0x6000000000000000ull
// EXP_MAX + 1 = (6111 + 6176 + 1) << 49
#define EXP_P1 0x0002000000000000ull
// EXP_ P1= 1 << 49
#define expmin -6176
// min unbiased exponent
#define expmax 6111
// max unbiased exponent
#define expmin16 -398
// min unbiased exponent
#define expmax16 369
// max unbiased exponent
#define SIGNMASK32 0x80000000
#define BID64_SIG_MAX 0x002386F26FC0ffffull
#define SIGNMASK64 0x8000000000000000ull
// typedef unsigned int FPSC; // floating-point status and control
// bit31:
// bit30:
// bit29:
// bit28:
// bit27:
// bit26:
// bit25:
// bit24:
// bit23:
// bit22:
// bit21:
// bit20:
// bit19:
// bit18:
// bit17:
// bit16:
// bit15:
// bit14: RC:2
// bit13: RC:1
// bit12: RC:0
// bit11: PM
// bit10: UM
// bit9: OM
// bit8: ZM
// bit7: DM
// bit6: IM
// bit5: PE
// bit4: UE
// bit3: OE
// bit2: ZE
// bit1: DE
// bit0: IE
#define ROUNDING_MODE_MASK 0x00007000
typedef struct _DEC_DIGITS {
unsigned int digits;
UINT64 threshold_hi;
UINT64 threshold_lo;
unsigned int digits1;
} DEC_DIGITS;
extern DEC_DIGITS nr_digits[];
extern UINT64 midpoint64[];
extern UINT128 midpoint128[];
extern UINT192 midpoint192[];
extern UINT256 midpoint256[];
extern UINT64 ten2k64[];
extern UINT128 ten2k128[];
extern UINT256 ten2k256[];
extern UINT128 ten2mk128[];
extern UINT64 ten2mk64[];
extern UINT128 ten2mk128trunc[];
extern int shiftright128[];
extern UINT64 maskhigh128[];
extern UINT64 maskhigh128M[];
extern UINT64 maskhigh192M[];
extern UINT64 maskhigh256M[];
extern UINT64 onehalf128[];
extern UINT64 onehalf128M[];
extern UINT64 onehalf192M[];
extern UINT64 onehalf256M[];
extern UINT128 ten2mk128M[];
extern UINT128 ten2mk128truncM[];
extern UINT192 ten2mk192truncM[];
extern UINT256 ten2mk256truncM[];
extern int shiftright128M[];
extern int shiftright192M[];
extern int shiftright256M[];
extern UINT192 ten2mk192M[];
extern UINT256 ten2mk256M[];
extern unsigned char char_table2[];
extern unsigned char char_table3[];
extern UINT64 ten2m3k64[];
extern unsigned int shift_ten2m3k64[];
extern UINT128 ten2m3k128[];
extern unsigned int shift_ten2m3k128[];
/***************************************************************************
*************** TABLES FOR GENERAL ROUNDING FUNCTIONS *********************
***************************************************************************/
extern UINT64 Kx64[];
extern unsigned int Ex64m64[];
extern UINT64 half64[];
extern UINT64 mask64[];
extern UINT64 ten2mxtrunc64[];
extern UINT128 Kx128[];
extern unsigned int Ex128m128[];
extern UINT64 half128[];
extern UINT64 mask128[];
extern UINT128 ten2mxtrunc128[];
extern UINT192 Kx192[];
extern unsigned int Ex192m192[];
extern UINT64 half192[];
extern UINT64 mask192[];
extern UINT192 ten2mxtrunc192[];
extern UINT256 Kx256[];
extern unsigned int Ex256m256[];
extern UINT64 half256[];
extern UINT64 mask256[];
extern UINT256 ten2mxtrunc256[];
typedef union __bid64_128 {
UINT64 b64;
UINT128 b128;
} BID64_128;
BID64_128 bid_fma (unsigned int P0,
BID64_128 x1, unsigned int P1,
BID64_128 y1, unsigned int P2,
BID64_128 z1, unsigned int P3,
unsigned int rnd_mode, FPSC * fpsc);
#define P16 16
#define P34 34
union __int_double {
UINT64 i;
double d;
};
typedef union __int_double int_double;
union __int_float {
UINT32 i;
float d;
};
typedef union __int_float int_float;
#define SWAP(A,B,T) {\
T = A; \
A = B; \
B = T; \
}
// this macro will find coefficient_x to be in [2^A, 2^(A+1) )
// ie it knows that it is A bits long
#define NUMBITS(A, coefficient_x, tempx){\
temp_x.d=(float)coefficient_x;\
A=((tempx.i >>23) & EXPONENT_MASK32) - 0x7f;\
}
enum class_types {
signalingNaN,
quietNaN,
negativeInfinity,
negativeNormal,
negativeSubnormal,
negativeZero,
positiveZero,
positiveSubnormal,
positiveNormal,
positiveInfinity
};
typedef union {
UINT64 ui64;
double d;
} BID_UI64DOUBLE;
#endif