gcc/libstdc++-v3/include/ext/throw_allocator.h
Paolo Carlini 7d9cb05400 throw_allocator.h: Use noexcept.
2011-06-10  Paolo Carlini  <paolo.carlini@oracle.com>

	* include/ext/throw_allocator.h: Use noexcept.
	* include/ext/pool_allocator.h: Likewise.
	* include/ext/bitmap_allocator.h: Likewise.
	* include/ext/new_allocator.h: Likewise.
	* include/ext/malloc_allocator.h: Likewise.
	* include/ext/array_allocator.h: Likewise.
	* include/ext/mt_allocator.h: Likewise.
	* include/ext/extptr_allocator.h: Likewise.
	* testsuite/util/testsuite_allocator.h: Likewise; do not include
	<cassert> directly, include <testsuite_hooks.h> instead.

From-SVN: r174918
2011-06-10 17:14:40 +00:00

777 lines
20 KiB
C++

// -*- C++ -*-
// Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011
// Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the terms
// of the GNU General Public License as published by the Free Software
// Foundation; either version 3, or (at your option) any later
// version.
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
// Copyright (C) 2004 Ami Tavory and Vladimir Dreizin, IBM-HRL.
// Permission to use, copy, modify, sell, and distribute this software
// is hereby granted without fee, provided that the above copyright
// notice appears in all copies, and that both that copyright notice
// and this permission notice appear in supporting documentation. None
// of the above authors, nor IBM Haifa Research Laboratories, make any
// representation about the suitability of this software for any
// purpose. It is provided "as is" without express or implied
// warranty.
/** @file ext/throw_allocator.h
* This file is a GNU extension to the Standard C++ Library.
*
* Contains two exception-generating types (throw_value, throw_allocator)
* intended to be used as value and allocator types while testing
* exception safety in templatized containers and algorithms. The
* allocator has additional log and debug features. The exception
* generated is of type forced_exception_error.
*/
#ifndef _THROW_ALLOCATOR_H
#define _THROW_ALLOCATOR_H 1
#include <cmath>
#include <ctime>
#include <map>
#include <string>
#include <ostream>
#include <stdexcept>
#include <utility>
#include <bits/functexcept.h>
#include <bits/move.h>
#ifdef __GXX_EXPERIMENTAL_CXX0X__
# include <functional>
# include <random>
#else
# include <tr1/functional>
# include <tr1/random>
#endif
namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
/**
* @brief Thown by exception safety machinery.
* @ingroup exceptions
*/
struct forced_error : public std::exception
{ };
// Substitute for forced_error object when -fno-exceptions.
inline void
__throw_forced_error()
{
#if __EXCEPTIONS
throw forced_error();
#else
__builtin_abort();
#endif
}
/**
* @brief Base class for checking address and label information
* about allocations. Create a std::map between the allocated
* address (void*) and a datum for annotations, which are a pair of
* numbers corresponding to label and allocated size.
*/
struct annotate_base
{
annotate_base()
{
label();
map();
}
static void
set_label(size_t l)
{ label() = l; }
static size_t
get_label()
{ return label(); }
void
insert(void* p, size_t size)
{
if (!p)
{
std::string error("annotate_base::insert null insert!\n");
log_to_string(error, make_entry(p, size));
std::__throw_logic_error(error.c_str());
}
const_iterator found = map().find(p);
if (found != map().end())
{
std::string error("annotate_base::insert double insert!\n");
log_to_string(error, make_entry(p, size));
log_to_string(error, *found);
std::__throw_logic_error(error.c_str());
}
map().insert(make_entry(p, size));
}
void
erase(void* p, size_t size)
{
check_allocated(p, size);
map().erase(p);
}
// See if a particular address and allocation size has been saved.
inline void
check_allocated(void* p, size_t size)
{
const_iterator found = map().find(p);
if (found == map().end())
{
std::string error("annotate_base::check_allocated by value "
"null erase!\n");
log_to_string(error, make_entry(p, size));
std::__throw_logic_error(error.c_str());
}
if (found->second.second != size)
{
std::string error("annotate_base::check_allocated by value "
"wrong-size erase!\n");
log_to_string(error, make_entry(p, size));
log_to_string(error, *found);
std::__throw_logic_error(error.c_str());
}
}
// See if a given label has been allocated.
inline void
check_allocated(size_t label)
{
const_iterator beg = map().begin();
const_iterator end = map().end();
std::string found;
while (beg != end)
{
if (beg->second.first == label)
log_to_string(found, *beg);
++beg;
}
if (!found.empty())
{
std::string error("annotate_base::check_allocated by label\n");
error += found;
std::__throw_logic_error(error.c_str());
}
}
private:
typedef std::pair<size_t, size_t> data_type;
typedef std::map<void*, data_type> map_type;
typedef map_type::value_type entry_type;
typedef map_type::const_iterator const_iterator;
typedef map_type::const_reference const_reference;
friend std::ostream&
operator<<(std::ostream&, const annotate_base&);
entry_type
make_entry(void* p, size_t size)
{ return std::make_pair(p, data_type(get_label(), size)); }
void
log_to_string(std::string& s, const_reference ref) const
{
char buf[40];
const char tab('\t');
s += "label: ";
unsigned long l = static_cast<unsigned long>(ref.second.first);
__builtin_sprintf(buf, "%lu", l);
s += buf;
s += tab;
s += "size: ";
l = static_cast<unsigned long>(ref.second.second);
__builtin_sprintf(buf, "%lu", l);
s += buf;
s += tab;
s += "address: ";
__builtin_sprintf(buf, "%p", ref.first);
s += buf;
s += '\n';
}
static size_t&
label()
{
static size_t _S_label(std::numeric_limits<size_t>::max());
return _S_label;
}
static map_type&
map()
{
static map_type _S_map;
return _S_map;
}
};
inline std::ostream&
operator<<(std::ostream& os, const annotate_base& __b)
{
std::string error;
typedef annotate_base base_type;
base_type::const_iterator beg = __b.map().begin();
base_type::const_iterator end = __b.map().end();
for (; beg != end; ++beg)
__b.log_to_string(error, *beg);
return os << error;
}
/**
* @brief Base struct for condition policy.
*
* Requires a public member function with the signature
* void throw_conditionally()
*/
struct condition_base
{
virtual ~condition_base() { };
};
/**
* @brief Base class for incremental control and throw.
*/
struct limit_condition : public condition_base
{
// Scope-level adjustor objects: set limit for throw at the
// beginning of a scope block, and restores to previous limit when
// object is destroyed on exiting the block.
struct adjustor_base
{
private:
const size_t _M_orig;
public:
adjustor_base() : _M_orig(limit()) { }
virtual
~adjustor_base() { set_limit(_M_orig); }
};
/// Never enter the condition.
struct never_adjustor : public adjustor_base
{
never_adjustor() { set_limit(std::numeric_limits<size_t>::max()); }
};
/// Always enter the condition.
struct always_adjustor : public adjustor_base
{
always_adjustor() { set_limit(count()); }
};
/// Enter the nth condition.
struct limit_adjustor : public adjustor_base
{
limit_adjustor(const size_t __l) { set_limit(__l); }
};
// Increment _S_count every time called.
// If _S_count matches the limit count, throw.
static void
throw_conditionally()
{
if (count() == limit())
__throw_forced_error();
++count();
}
static size_t&
count()
{
static size_t _S_count(0);
return _S_count;
}
static size_t&
limit()
{
static size_t _S_limit(std::numeric_limits<size_t>::max());
return _S_limit;
}
// Zero the throw counter, set limit to argument.
static void
set_limit(const size_t __l)
{
limit() = __l;
count() = 0;
}
};
/**
* @brief Base class for random probability control and throw.
*/
struct random_condition : public condition_base
{
// Scope-level adjustor objects: set probability for throw at the
// beginning of a scope block, and restores to previous
// probability when object is destroyed on exiting the block.
struct adjustor_base
{
private:
const double _M_orig;
public:
adjustor_base() : _M_orig(probability()) { }
virtual ~adjustor_base()
{ set_probability(_M_orig); }
};
/// Group condition.
struct group_adjustor : public adjustor_base
{
group_adjustor(size_t size)
{ set_probability(1 - std::pow(double(1 - probability()),
double(0.5 / (size + 1))));
}
};
/// Never enter the condition.
struct never_adjustor : public adjustor_base
{
never_adjustor() { set_probability(0); }
};
/// Always enter the condition.
struct always_adjustor : public adjustor_base
{
always_adjustor() { set_probability(1); }
};
random_condition()
{
probability();
engine();
}
static void
set_probability(double __p)
{ probability() = __p; }
static void
throw_conditionally()
{
if (generate() < probability())
__throw_forced_error();
}
void
seed(unsigned long __s)
{ engine().seed(__s); }
private:
#ifdef __GXX_EXPERIMENTAL_CXX0X__
typedef std::uniform_real_distribution<double> distribution_type;
typedef std::mt19937 engine_type;
#else
typedef std::tr1::uniform_real<double> distribution_type;
typedef std::tr1::mt19937 engine_type;
#endif
static double
generate()
{
#ifdef __GXX_EXPERIMENTAL_CXX0X__
const distribution_type distribution(0, 1);
static auto generator = std::bind(distribution, engine());
#else
// Use variate_generator to get normalized results.
typedef std::tr1::variate_generator<engine_type, distribution_type> gen_t;
distribution_type distribution(0, 1);
static gen_t generator(engine(), distribution);
#endif
double random = generator();
if (random < distribution.min() || random > distribution.max())
{
std::string __s("random_condition::generate");
__s += "\n";
__s += "random number generated is: ";
char buf[40];
__builtin_sprintf(buf, "%f", random);
__s += buf;
std::__throw_out_of_range(__s.c_str());
}
return random;
}
static double&
probability()
{
static double _S_p;
return _S_p;
}
static engine_type&
engine()
{
static engine_type _S_e;
return _S_e;
}
};
/**
* @brief Class with exception generation control. Intended to be
* used as a value_type in templatized code.
*
* Note: Destructor not allowed to throw.
*/
template<typename _Cond>
struct throw_value_base : public _Cond
{
typedef _Cond condition_type;
using condition_type::throw_conditionally;
std::size_t _M_i;
#ifndef _GLIBCXX_IS_AGGREGATE
throw_value_base() : _M_i(0)
{ throw_conditionally(); }
throw_value_base(const throw_value_base& __v) : _M_i(__v._M_i)
{ throw_conditionally(); }
explicit throw_value_base(const std::size_t __i) : _M_i(__i)
{ throw_conditionally(); }
#endif
throw_value_base&
operator=(const throw_value_base& __v)
{
throw_conditionally();
_M_i = __v._M_i;
return *this;
}
throw_value_base&
operator++()
{
throw_conditionally();
++_M_i;
return *this;
}
};
template<typename _Cond>
inline void
swap(throw_value_base<_Cond>& __a, throw_value_base<_Cond>& __b)
{
typedef throw_value_base<_Cond> throw_value;
throw_value::throw_conditionally();
throw_value orig(__a);
__a = __b;
__b = orig;
}
// General instantiable types requirements.
template<typename _Cond>
inline bool
operator==(const throw_value_base<_Cond>& __a,
const throw_value_base<_Cond>& __b)
{
typedef throw_value_base<_Cond> throw_value;
throw_value::throw_conditionally();
bool __ret = __a._M_i == __b._M_i;
return __ret;
}
template<typename _Cond>
inline bool
operator<(const throw_value_base<_Cond>& __a,
const throw_value_base<_Cond>& __b)
{
typedef throw_value_base<_Cond> throw_value;
throw_value::throw_conditionally();
bool __ret = __a._M_i < __b._M_i;
return __ret;
}
// Numeric algorithms instantiable types requirements.
template<typename _Cond>
inline throw_value_base<_Cond>
operator+(const throw_value_base<_Cond>& __a,
const throw_value_base<_Cond>& __b)
{
typedef throw_value_base<_Cond> throw_value;
throw_value::throw_conditionally();
throw_value __ret(__a._M_i + __b._M_i);
return __ret;
}
template<typename _Cond>
inline throw_value_base<_Cond>
operator-(const throw_value_base<_Cond>& __a,
const throw_value_base<_Cond>& __b)
{
typedef throw_value_base<_Cond> throw_value;
throw_value::throw_conditionally();
throw_value __ret(__a._M_i - __b._M_i);
return __ret;
}
template<typename _Cond>
inline throw_value_base<_Cond>
operator*(const throw_value_base<_Cond>& __a,
const throw_value_base<_Cond>& __b)
{
typedef throw_value_base<_Cond> throw_value;
throw_value::throw_conditionally();
throw_value __ret(__a._M_i * __b._M_i);
return __ret;
}
/// Type throwing via limit condition.
struct throw_value_limit : public throw_value_base<limit_condition>
{
typedef throw_value_base<limit_condition> base_type;
#ifndef _GLIBCXX_IS_AGGREGATE
throw_value_limit() { }
throw_value_limit(const throw_value_limit& __other)
: base_type(__other._M_i) { }
explicit throw_value_limit(const std::size_t __i) : base_type(__i) { }
#endif
};
/// Type throwing via random condition.
struct throw_value_random : public throw_value_base<random_condition>
{
typedef throw_value_base<random_condition> base_type;
#ifndef _GLIBCXX_IS_AGGREGATE
throw_value_random() { }
throw_value_random(const throw_value_random& __other)
: base_type(__other._M_i) { }
explicit throw_value_random(const std::size_t __i) : base_type(__i) { }
#endif
};
/**
* @brief Allocator class with logging and exception generation control.
* Intended to be used as an allocator_type in templatized code.
* @ingroup allocators
*
* Note: Deallocate not allowed to throw.
*/
template<typename _Tp, typename _Cond>
class throw_allocator_base
: public annotate_base, public _Cond
{
public:
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef _Tp value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
private:
typedef _Cond condition_type;
std::allocator<value_type> _M_allocator;
using condition_type::throw_conditionally;
public:
size_type
max_size() const _GLIBCXX_USE_NOEXCEPT
{ return _M_allocator.max_size(); }
pointer
address(reference __x) const _GLIBCXX_NOEXCEPT
{ return std::__addressof(__x); }
const_pointer
address(const_reference __x) const _GLIBCXX_NOEXCEPT
{ return std::__addressof(__x); }
pointer
allocate(size_type __n, std::allocator<void>::const_pointer hint = 0)
{
if (__n > this->max_size())
std::__throw_bad_alloc();
throw_conditionally();
pointer const a = _M_allocator.allocate(__n, hint);
insert(a, sizeof(value_type) * __n);
return a;
}
#ifdef __GXX_EXPERIMENTAL_CXX0X__
template<typename _Up, typename... _Args>
void
construct(_Up* __p, _Args&&... __args)
{ return _M_allocator.construct(__p, std::forward<_Args>(__args)...); }
template<typename _Up>
void
destroy(_Up* __p)
{ _M_allocator.destroy(__p); }
#else
void
construct(pointer __p, const value_type& val)
{ return _M_allocator.construct(__p, val); }
void
destroy(pointer __p)
{ _M_allocator.destroy(__p); }
#endif
void
deallocate(pointer __p, size_type __n)
{
erase(__p, sizeof(value_type) * __n);
_M_allocator.deallocate(__p, __n);
}
void
check_allocated(pointer __p, size_type __n)
{
size_type __t = sizeof(value_type) * __n;
annotate_base::check_allocated(__p, __t);
}
void
check_allocated(size_type __n)
{ annotate_base::check_allocated(__n); }
};
template<typename _Tp, typename _Cond>
inline bool
operator==(const throw_allocator_base<_Tp, _Cond>&,
const throw_allocator_base<_Tp, _Cond>&)
{ return true; }
template<typename _Tp, typename _Cond>
inline bool
operator!=(const throw_allocator_base<_Tp, _Cond>&,
const throw_allocator_base<_Tp, _Cond>&)
{ return false; }
/// Allocator throwing via limit condition.
template<typename _Tp>
struct throw_allocator_limit
: public throw_allocator_base<_Tp, limit_condition>
{
template<typename _Tp1>
struct rebind
{ typedef throw_allocator_limit<_Tp1> other; };
throw_allocator_limit() _GLIBCXX_USE_NOEXCEPT { }
throw_allocator_limit(const throw_allocator_limit&)
_GLIBCXX_USE_NOEXCEPT { }
template<typename _Tp1>
throw_allocator_limit(const throw_allocator_limit<_Tp1>&)
_GLIBCXX_USE_NOEXCEPT { }
~throw_allocator_limit() _GLIBCXX_USE_NOEXCEPT { }
};
/// Allocator throwing via random condition.
template<typename _Tp>
struct throw_allocator_random
: public throw_allocator_base<_Tp, random_condition>
{
template<typename _Tp1>
struct rebind
{ typedef throw_allocator_random<_Tp1> other; };
throw_allocator_random() _GLIBCXX_USE_NOEXCEPT { }
throw_allocator_random(const throw_allocator_random&)
_GLIBCXX_USE_NOEXCEPT { }
template<typename _Tp1>
throw_allocator_random(const throw_allocator_random<_Tp1>&)
_GLIBCXX_USE_NOEXCEPT { }
~throw_allocator_random() _GLIBCXX_USE_NOEXCEPT { }
};
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace
#ifdef __GXX_EXPERIMENTAL_CXX0X__
# include <bits/functional_hash.h>
namespace std _GLIBCXX_VISIBILITY(default)
{
/// Explicit specialization of std::hash for __gnu_cxx::throw_value_limit.
template<>
struct hash<__gnu_cxx::throw_value_limit>
: public std::unary_function<__gnu_cxx::throw_value_limit, size_t>
{
size_t
operator()(const __gnu_cxx::throw_value_limit& __val) const
{
std::hash<std::size_t> __h;
size_t __result = __h(__val._M_i);
return __result;
}
};
/// Explicit specialization of std::hash for __gnu_cxx::throw_value_limit.
template<>
struct hash<__gnu_cxx::throw_value_random>
: public std::unary_function<__gnu_cxx::throw_value_random, size_t>
{
size_t
operator()(const __gnu_cxx::throw_value_random& __val) const
{
std::hash<std::size_t> __h;
size_t __result = __h(__val._M_i);
return __result;
}
};
} // end namespace std
#endif
#endif