gcc/libgo/go/image/jpeg/reader.go
2013-11-06 19:49:01 +00:00

378 lines
11 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package jpeg implements a JPEG image decoder and encoder.
//
// JPEG is defined in ITU-T T.81: http://www.w3.org/Graphics/JPEG/itu-t81.pdf.
package jpeg
import (
"bufio"
"image"
"image/color"
"io"
)
// TODO(nigeltao): fix up the doc comment style so that sentences start with
// the name of the type or function that they annotate.
// A FormatError reports that the input is not a valid JPEG.
type FormatError string
func (e FormatError) Error() string { return "invalid JPEG format: " + string(e) }
// An UnsupportedError reports that the input uses a valid but unimplemented JPEG feature.
type UnsupportedError string
func (e UnsupportedError) Error() string { return "unsupported JPEG feature: " + string(e) }
// Component specification, specified in section B.2.2.
type component struct {
h int // Horizontal sampling factor.
v int // Vertical sampling factor.
c uint8 // Component identifier.
tq uint8 // Quantization table destination selector.
}
const (
dcTable = 0
acTable = 1
maxTc = 1
maxTh = 3
maxTq = 3
// A grayscale JPEG image has only a Y component.
nGrayComponent = 1
// A color JPEG image has Y, Cb and Cr components.
nColorComponent = 3
// We only support 4:4:4, 4:4:0, 4:2:2 and 4:2:0 downsampling, and therefore the
// number of luma samples per chroma sample is at most 2 in the horizontal
// and 2 in the vertical direction.
maxH = 2
maxV = 2
)
const (
soiMarker = 0xd8 // Start Of Image.
eoiMarker = 0xd9 // End Of Image.
sof0Marker = 0xc0 // Start Of Frame (Baseline).
sof2Marker = 0xc2 // Start Of Frame (Progressive).
dhtMarker = 0xc4 // Define Huffman Table.
dqtMarker = 0xdb // Define Quantization Table.
sosMarker = 0xda // Start Of Scan.
driMarker = 0xdd // Define Restart Interval.
rst0Marker = 0xd0 // ReSTart (0).
rst7Marker = 0xd7 // ReSTart (7).
app0Marker = 0xe0 // APPlication specific (0).
app15Marker = 0xef // APPlication specific (15).
comMarker = 0xfe // COMment.
)
// unzig maps from the zig-zag ordering to the natural ordering. For example,
// unzig[3] is the column and row of the fourth element in zig-zag order. The
// value is 16, which means first column (16%8 == 0) and third row (16/8 == 2).
var unzig = [blockSize]int{
0, 1, 8, 16, 9, 2, 3, 10,
17, 24, 32, 25, 18, 11, 4, 5,
12, 19, 26, 33, 40, 48, 41, 34,
27, 20, 13, 6, 7, 14, 21, 28,
35, 42, 49, 56, 57, 50, 43, 36,
29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46,
53, 60, 61, 54, 47, 55, 62, 63,
}
// If the passed in io.Reader does not also have ReadByte, then Decode will introduce its own buffering.
type Reader interface {
io.Reader
ReadByte() (c byte, err error)
}
type decoder struct {
r Reader
b bits
width, height int
img1 *image.Gray
img3 *image.YCbCr
ri int // Restart Interval.
nComp int
progressive bool
eobRun uint16 // End-of-Band run, specified in section G.1.2.2.
comp [nColorComponent]component
progCoeffs [nColorComponent][]block // Saved state between progressive-mode scans.
huff [maxTc + 1][maxTh + 1]huffman
quant [maxTq + 1]block // Quantization tables, in zig-zag order.
tmp [1024]byte
}
// Reads and ignores the next n bytes.
func (d *decoder) ignore(n int) error {
for n > 0 {
m := len(d.tmp)
if m > n {
m = n
}
_, err := io.ReadFull(d.r, d.tmp[0:m])
if err != nil {
return err
}
n -= m
}
return nil
}
// Specified in section B.2.2.
func (d *decoder) processSOF(n int) error {
switch n {
case 6 + 3*nGrayComponent:
d.nComp = nGrayComponent
case 6 + 3*nColorComponent:
d.nComp = nColorComponent
default:
return UnsupportedError("SOF has wrong length")
}
_, err := io.ReadFull(d.r, d.tmp[:n])
if err != nil {
return err
}
// We only support 8-bit precision.
if d.tmp[0] != 8 {
return UnsupportedError("precision")
}
d.height = int(d.tmp[1])<<8 + int(d.tmp[2])
d.width = int(d.tmp[3])<<8 + int(d.tmp[4])
if int(d.tmp[5]) != d.nComp {
return UnsupportedError("SOF has wrong number of image components")
}
for i := 0; i < d.nComp; i++ {
d.comp[i].c = d.tmp[6+3*i]
d.comp[i].tq = d.tmp[8+3*i]
if d.nComp == nGrayComponent {
// If a JPEG image has only one component, section A.2 says "this data
// is non-interleaved by definition" and section A.2.2 says "[in this
// case...] the order of data units within a scan shall be left-to-right
// and top-to-bottom... regardless of the values of H_1 and V_1". Section
// 4.8.2 also says "[for non-interleaved data], the MCU is defined to be
// one data unit". Similarly, section A.1.1 explains that it is the ratio
// of H_i to max_j(H_j) that matters, and similarly for V. For grayscale
// images, H_1 is the maximum H_j for all components j, so that ratio is
// always 1. The component's (h, v) is effectively always (1, 1): even if
// the nominal (h, v) is (2, 1), a 20x5 image is encoded in three 8x8
// MCUs, not two 16x8 MCUs.
d.comp[i].h = 1
d.comp[i].v = 1
continue
}
hv := d.tmp[7+3*i]
d.comp[i].h = int(hv >> 4)
d.comp[i].v = int(hv & 0x0f)
// For color images, we only support 4:4:4, 4:4:0, 4:2:2 or 4:2:0 chroma
// downsampling ratios. This implies that the (h, v) values for the Y
// component are either (1, 1), (1, 2), (2, 1) or (2, 2), and the (h, v)
// values for the Cr and Cb components must be (1, 1).
if i == 0 {
if hv != 0x11 && hv != 0x21 && hv != 0x22 && hv != 0x12 {
return UnsupportedError("luma/chroma downsample ratio")
}
} else if hv != 0x11 {
return UnsupportedError("luma/chroma downsample ratio")
}
}
return nil
}
// Specified in section B.2.4.1.
func (d *decoder) processDQT(n int) error {
const qtLength = 1 + blockSize
for ; n >= qtLength; n -= qtLength {
_, err := io.ReadFull(d.r, d.tmp[0:qtLength])
if err != nil {
return err
}
pq := d.tmp[0] >> 4
if pq != 0 {
return UnsupportedError("bad Pq value")
}
tq := d.tmp[0] & 0x0f
if tq > maxTq {
return FormatError("bad Tq value")
}
for i := range d.quant[tq] {
d.quant[tq][i] = int32(d.tmp[i+1])
}
}
if n != 0 {
return FormatError("DQT has wrong length")
}
return nil
}
// Specified in section B.2.4.4.
func (d *decoder) processDRI(n int) error {
if n != 2 {
return FormatError("DRI has wrong length")
}
_, err := io.ReadFull(d.r, d.tmp[0:2])
if err != nil {
return err
}
d.ri = int(d.tmp[0])<<8 + int(d.tmp[1])
return nil
}
// decode reads a JPEG image from r and returns it as an image.Image.
func (d *decoder) decode(r io.Reader, configOnly bool) (image.Image, error) {
if rr, ok := r.(Reader); ok {
d.r = rr
} else {
d.r = bufio.NewReader(r)
}
// Check for the Start Of Image marker.
_, err := io.ReadFull(d.r, d.tmp[0:2])
if err != nil {
return nil, err
}
if d.tmp[0] != 0xff || d.tmp[1] != soiMarker {
return nil, FormatError("missing SOI marker")
}
// Process the remaining segments until the End Of Image marker.
for {
_, err := io.ReadFull(d.r, d.tmp[0:2])
if err != nil {
return nil, err
}
for d.tmp[0] != 0xff {
// Strictly speaking, this is a format error. However, libjpeg is
// liberal in what it accepts. As of version 9, next_marker in
// jdmarker.c treats this as a warning (JWRN_EXTRANEOUS_DATA) and
// continues to decode the stream. Even before next_marker sees
// extraneous data, jpeg_fill_bit_buffer in jdhuff.c reads as many
// bytes as it can, possibly past the end of a scan's data. It
// effectively puts back any markers that it overscanned (e.g. an
// "\xff\xd9" EOI marker), but it does not put back non-marker data,
// and thus it can silently ignore a small number of extraneous
// non-marker bytes before next_marker has a chance to see them (and
// print a warning).
//
// We are therefore also liberal in what we accept. Extraneous data
// is silently ignored.
//
// This is similar to, but not exactly the same as, the restart
// mechanism within a scan (the RST[0-7] markers).
//
// Note that extraneous 0xff bytes in e.g. SOS data are escaped as
// "\xff\x00", and so are detected a little further down below.
d.tmp[0] = d.tmp[1]
d.tmp[1], err = d.r.ReadByte()
if err != nil {
return nil, err
}
}
marker := d.tmp[1]
if marker == 0 {
// Treat "\xff\x00" as extraneous data.
continue
}
for marker == 0xff {
// Section B.1.1.2 says, "Any marker may optionally be preceded by any
// number of fill bytes, which are bytes assigned code X'FF'".
marker, err = d.r.ReadByte()
if err != nil {
return nil, err
}
}
if marker == eoiMarker { // End Of Image.
break
}
if rst0Marker <= marker && marker <= rst7Marker {
// Figures B.2 and B.16 of the specification suggest that restart markers should
// only occur between Entropy Coded Segments and not after the final ECS.
// However, some encoders may generate incorrect JPEGs with a final restart
// marker. That restart marker will be seen here instead of inside the processSOS
// method, and is ignored as a harmless error. Restart markers have no extra data,
// so we check for this before we read the 16-bit length of the segment.
continue
}
// Read the 16-bit length of the segment. The value includes the 2 bytes for the
// length itself, so we subtract 2 to get the number of remaining bytes.
_, err = io.ReadFull(d.r, d.tmp[0:2])
if err != nil {
return nil, err
}
n := int(d.tmp[0])<<8 + int(d.tmp[1]) - 2
if n < 0 {
return nil, FormatError("short segment length")
}
switch {
case marker == sof0Marker || marker == sof2Marker: // Start Of Frame.
d.progressive = marker == sof2Marker
err = d.processSOF(n)
if configOnly {
return nil, err
}
case marker == dhtMarker: // Define Huffman Table.
err = d.processDHT(n)
case marker == dqtMarker: // Define Quantization Table.
err = d.processDQT(n)
case marker == sosMarker: // Start Of Scan.
err = d.processSOS(n)
case marker == driMarker: // Define Restart Interval.
err = d.processDRI(n)
case app0Marker <= marker && marker <= app15Marker || marker == comMarker: // APPlication specific, or COMment.
err = d.ignore(n)
default:
err = UnsupportedError("unknown marker")
}
if err != nil {
return nil, err
}
}
if d.img1 != nil {
return d.img1, nil
}
if d.img3 != nil {
return d.img3, nil
}
return nil, FormatError("missing SOS marker")
}
// Decode reads a JPEG image from r and returns it as an image.Image.
func Decode(r io.Reader) (image.Image, error) {
var d decoder
return d.decode(r, false)
}
// DecodeConfig returns the color model and dimensions of a JPEG image without
// decoding the entire image.
func DecodeConfig(r io.Reader) (image.Config, error) {
var d decoder
if _, err := d.decode(r, true); err != nil {
return image.Config{}, err
}
switch d.nComp {
case nGrayComponent:
return image.Config{
ColorModel: color.GrayModel,
Width: d.width,
Height: d.height,
}, nil
case nColorComponent:
return image.Config{
ColorModel: color.YCbCrModel,
Width: d.width,
Height: d.height,
}, nil
}
return image.Config{}, FormatError("missing SOF marker")
}
func init() {
image.RegisterFormat("jpeg", "\xff\xd8", Decode, DecodeConfig)
}