gcc/libhsail-rt/rt/workitems.c
Pekka Jääskeläinen d4b7f2ee4b [BRIGFE] Improved support for function and module scope group
segment variables.
    
PRM specs defines function and module scope group segment variables
as an experimental feature. However, PRM test suite uses and
hcc relies on them. In addition, hcc assumes certain group variable
layout in its dynamic group segment allocation code.
    
We cannot have global group memory offsets if we want to
both have kernel-specific group segment size and multiple kernels
calling the same functions that use function scope group memory
variables.
    
Now group segment is handled by separate book keeping of module
scope and function (kernel) offsets. Each function has a "frame"
in the group segment offset to which is given as an argument.

From-SVN: r253233
2017-09-27 15:40:24 +00:00

931 lines
26 KiB
C

/* workitems.c -- The main runtime entry that performs work-item execution in
various ways and the builtin functions closely related to the
implementation.
Copyright (C) 2015-2017 Free Software Foundation, Inc.
Contributed by Pekka Jaaskelainen <pekka.jaaskelainen@parmance.com>
for General Processor Tech.
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files
(the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/* The fiber based multiple work-item work-group execution uses ucontext
based user mode threading. However, if gccbrig is able to optimize the
kernel to a much faster work-group function that implements the multiple
WI execution using loops instead of fibers requiring slow context switches,
the fiber-based implementation won't be called.
*/
#include <stdlib.h>
#include <signal.h>
#include <string.h>
#include "workitems.h"
#include "phsa-rt.h"
#ifdef HAVE_FIBERS
#include "fibers.h"
#endif
#ifdef BENCHMARK_PHSA_RT
#include <stdio.h>
#include <time.h>
static uint64_t wi_count = 0;
static uint64_t wis_skipped = 0;
static uint64_t wi_total = 0;
static clock_t start_time;
#endif
#ifdef DEBUG_PHSA_RT
#include <stdio.h>
#endif
#define PRIVATE_SEGMENT_ALIGN 256
#define FIBER_STACK_SIZE (64*1024)
#define GROUP_SEGMENT_ALIGN 256
uint32_t __hsail_workitemabsid (uint32_t dim, PHSAWorkItem *context);
uint32_t __hsail_workitemid (uint32_t dim, PHSAWorkItem *context);
uint32_t __hsail_gridgroups (uint32_t dim, PHSAWorkItem *context);
uint32_t __hsail_currentworkgroupsize (uint32_t dim, PHSAWorkItem *wi);
uint32_t __hsail_workgroupsize (uint32_t dim, PHSAWorkItem *wi);
void
phsa_fatal_error (int code)
{
exit (code);
}
#ifdef HAVE_FIBERS
/* ucontext-based work-item thread implementation. Runs all work-items in
separate fibers. */
static void
phsa_work_item_thread (int arg0, int arg1)
{
void *arg = fiber_int_args_to_ptr (arg0, arg1);
PHSAWorkItem *wi = (PHSAWorkItem *) arg;
volatile PHSAWorkGroup *wg = wi->wg;
PHSAKernelLaunchData *l_data = wi->launch_data;
do
{
int retcode
= fiber_barrier_reach ((fiber_barrier_t *) l_data->wg_start_barrier);
/* At this point the threads can assume that either more_wgs is 0 or
the current_work_group_* is set to point to the WG executed next. */
if (!wi->wg->more_wgs)
break;
#ifdef DEBUG_PHSA_RT
printf (
"Running work-item %lu/%lu/%lu for wg %lu/%lu/%lu / %lu/%lu/%lu...\n",
wi->x, wi->y, wi->z, wg->x, wg->y, wg->z, l_data->wg_max_x,
l_data->wg_max_y, l_data->wg_max_z);
#endif
if (wi->x < __hsail_currentworkgroupsize (0, wi)
&& wi->y < __hsail_currentworkgroupsize (1, wi)
&& wi->z < __hsail_currentworkgroupsize (2, wi))
{
l_data->kernel (l_data->kernarg_addr, wi, wg->group_base_ptr,
wg->initial_group_offset, wg->private_base_ptr);
#ifdef DEBUG_PHSA_RT
printf ("done.\n");
#endif
#ifdef BENCHMARK_PHSA_RT
wi_count++;
#endif
}
else
{
#ifdef DEBUG_PHSA_RT
printf ("skipped (partial WG).\n");
#endif
#ifdef BENCHMARK_PHSA_RT
wis_skipped++;
#endif
}
retcode
= fiber_barrier_reach ((fiber_barrier_t *)
l_data->wg_completion_barrier);
/* The first thread updates the WG to execute next etc. */
if (retcode == 0)
{
#ifdef EXECUTE_WGS_BACKWARDS
if (wg->x == l_data->wg_min_x)
{
wg->x = l_data->wg_max_x - 1;
if (wg->y == l_data->wg_min_y)
{
wg->y = l_data->wg_max_y - 1;
if (wg->z == l_data->wg_min_z)
wg->more_wgs = 0;
else
wg->z--;
}
else
wg->y--;
}
else
wg->x--;
#else
if (wg->x + 1 >= l_data->wg_max_x)
{
wg->x = l_data->wg_min_x;
if (wg->y + 1 >= l_data->wg_max_y)
{
wg->y = l_data->wg_min_y;
if (wg->z + 1 >= l_data->wg_max_z)
wg->more_wgs = 0;
else
wg->z++;
}
else
wg->y++;
}
else
wg->x++;
#endif
/* Reinitialize the work-group barrier according to the new WG's
size, which might not be the same as the previous ones, due
to "partial WGs". */
size_t wg_size = __hsail_currentworkgroupsize (0, wi)
* __hsail_currentworkgroupsize (1, wi)
* __hsail_currentworkgroupsize (2, wi);
#ifdef DEBUG_PHSA_RT
printf ("Reinitializing the WG barrier to %lu.\n", wg_size);
#endif
fiber_barrier_init ((fiber_barrier_t *)
wi->launch_data->wg_sync_barrier,
wg_size);
#ifdef BENCHMARK_PHSA_RT
if (wi_count % 1000 == 0)
{
clock_t spent_time = clock () - start_time;
double spent_time_sec = (double) spent_time / CLOCKS_PER_SEC;
double wis_per_sec = wi_count / spent_time_sec;
uint64_t eta_sec
= (wi_total - wi_count - wis_skipped) / wis_per_sec;
printf ("%lu WIs executed %lu skipped in %lus (%lu WIs/s, ETA in "
"%lu s)\n",
wi_count, wis_skipped, (uint64_t) spent_time_sec,
(uint64_t) wis_per_sec, (uint64_t) eta_sec);
}
#endif
}
}
while (1);
fiber_exit ();
}
#endif
#define MIN(a, b) ((a < b) ? a : b)
#define MAX(a, b) ((a > b) ? a : b)
#ifdef HAVE_FIBERS
/* Spawns a given number of work-items to execute a set of work-groups,
blocks until their completion. */
static void
phsa_execute_wi_gang (PHSAKernelLaunchData *context, void *group_base_ptr,
uint32_t group_local_offset, size_t wg_size_x,
size_t wg_size_y, size_t wg_size_z)
{
PHSAWorkItem *wi_threads = NULL;
PHSAWorkGroup wg;
size_t flat_wi_id = 0, x, y, z, max_x, max_y, max_z;
fiber_barrier_t wg_start_barrier;
fiber_barrier_t wg_completion_barrier;
fiber_barrier_t wg_sync_barrier;
max_x = wg_size_x == 0 ? 1 : wg_size_x;
max_y = wg_size_y == 0 ? 1 : wg_size_y;
max_z = wg_size_z == 0 ? 1 : wg_size_z;
size_t wg_size = max_x * max_y * max_z;
if (wg_size > PHSA_MAX_WG_SIZE)
phsa_fatal_error (2);
wg.private_segment_total_size = context->dp->private_segment_size * wg_size;
if (wg.private_segment_total_size > 0
&& posix_memalign (&wg.private_base_ptr, PRIVATE_SEGMENT_ALIGN,
wg.private_segment_total_size)
!= 0)
phsa_fatal_error (3);
wg.alloca_stack_p = wg.private_segment_total_size;
wg.alloca_frame_p = wg.alloca_stack_p;
wg.initial_group_offset = group_local_offset;
#ifdef EXECUTE_WGS_BACKWARDS
wg.x = context->wg_max_x - 1;
wg.y = context->wg_max_y - 1;
wg.z = context->wg_max_z - 1;
#else
wg.x = context->wg_min_x;
wg.y = context->wg_min_y;
wg.z = context->wg_min_z;
#endif
fiber_barrier_init (&wg_sync_barrier, wg_size);
fiber_barrier_init (&wg_start_barrier, wg_size);
fiber_barrier_init (&wg_completion_barrier, wg_size);
context->wg_start_barrier = &wg_start_barrier;
context->wg_sync_barrier = &wg_sync_barrier;
context->wg_completion_barrier = &wg_completion_barrier;
wg.more_wgs = 1;
wg.group_base_ptr = group_base_ptr;
#ifdef BENCHMARK_PHSA_RT
wi_count = 0;
wis_skipped = 0;
start_time = clock ();
#endif
wi_threads = malloc (sizeof (PHSAWorkItem) * max_x * max_y * max_z);
for (x = 0; x < max_x; ++x)
for (y = 0; y < max_y; ++y)
for (z = 0; z < max_z; ++z)
{
PHSAWorkItem *wi = &wi_threads[flat_wi_id];
wi->launch_data = context;
wi->wg = &wg;
wi->x = x;
wi->y = y;
wi->z = z;
/* TODO: set the stack size according to the private
segment size. Too big stack consumes huge amount of
memory in case of huge number of WIs and a too small stack
will fail in mysterious and potentially dangerous ways. */
fiber_init (&wi->fiber, phsa_work_item_thread, wi,
FIBER_STACK_SIZE, PRIVATE_SEGMENT_ALIGN);
++flat_wi_id;
}
do
{
--flat_wi_id;
fiber_join (&wi_threads[flat_wi_id].fiber);
}
while (flat_wi_id > 0);
if (wg.private_segment_total_size > 0)
free (wg.private_base_ptr);
free (wi_threads);
}
/* Spawn the work-item threads to execute work-groups and let
them execute all the WGs, including a potential partial WG. */
static void
phsa_spawn_work_items (PHSAKernelLaunchData *context, void *group_base_ptr,
uint32_t group_local_offset)
{
hsa_kernel_dispatch_packet_t *dp = context->dp;
size_t x, y, z;
context->group_segment_start_addr = (size_t) group_base_ptr;
/* HSA seems to allow the WG size to be larger than the grid size. We need to
saturate the effective WG size to the grid size to prevent the extra WIs
from executing. */
size_t sat_wg_size_x, sat_wg_size_y, sat_wg_size_z, sat_wg_size;
sat_wg_size_x = MIN (dp->workgroup_size_x, dp->grid_size_x);
sat_wg_size_y = MIN (dp->workgroup_size_y, dp->grid_size_y);
sat_wg_size_z = MIN (dp->workgroup_size_z, dp->grid_size_z);
sat_wg_size = sat_wg_size_x * sat_wg_size_y * sat_wg_size_z;
#ifdef BENCHMARK_PHSA_RT
wi_total = (uint64_t) dp->grid_size_x
* (dp->grid_size_y > 0 ? dp->grid_size_y : 1)
* (dp->grid_size_z > 0 ? dp->grid_size_z : 1);
#endif
/* For now execute all work groups in a single coarse thread (does not utilize
multicore/multithread). */
context->wg_min_x = context->wg_min_y = context->wg_min_z = 0;
int dims = dp->setup & 0x3;
context->wg_max_x = ((uint64_t) dp->grid_size_x + dp->workgroup_size_x - 1)
/ dp->workgroup_size_x;
context->wg_max_y
= dims < 2 ? 1 : ((uint64_t) dp->grid_size_y + dp->workgroup_size_y - 1)
/ dp->workgroup_size_y;
context->wg_max_z
= dims < 3 ? 1 : ((uint64_t) dp->grid_size_z + dp->workgroup_size_z - 1)
/ dp->workgroup_size_z;
#ifdef DEBUG_PHSA_RT
printf ("### launching work-groups %lu/%lu/%lu to %lu/%lu/%lu with "
"wg size %lu/%lu/%lu grid size %u/%u/%u\n",
context->wg_min_x, context->wg_min_y, context->wg_min_z,
context->wg_max_x, context->wg_max_y, context->wg_max_z,
sat_wg_size_x, sat_wg_size_y, sat_wg_size_z, dp->grid_size_x,
dp->grid_size_y, dp->grid_size_z);
#endif
phsa_execute_wi_gang (context, group_base_ptr, group_local_offset,
sat_wg_size_x, sat_wg_size_y, sat_wg_size_z);
}
#endif
/* Executes the given work-group function for all work groups in the grid.
A work-group function is a version of the original kernel which executes
the kernel for all work-items in a work-group. It is produced by gccbrig
if it can handle the kernel's barrier usage and is much faster way to
execute massive numbers of work-items in a non-SPMD machine than fibers
(easily 100x faster). */
static void
phsa_execute_work_groups (PHSAKernelLaunchData *context, void *group_base_ptr,
uint32_t group_local_offset)
{
hsa_kernel_dispatch_packet_t *dp = context->dp;
size_t x, y, z, wg_x, wg_y, wg_z;
context->group_segment_start_addr = (size_t) group_base_ptr;
/* HSA seems to allow the WG size to be larger than the grid size. We need
to saturate the effective WG size to the grid size to prevent the extra WIs
from executing. */
size_t sat_wg_size_x, sat_wg_size_y, sat_wg_size_z, sat_wg_size;
sat_wg_size_x = MIN (dp->workgroup_size_x, dp->grid_size_x);
sat_wg_size_y = MIN (dp->workgroup_size_y, dp->grid_size_y);
sat_wg_size_z = MIN (dp->workgroup_size_z, dp->grid_size_z);
sat_wg_size = sat_wg_size_x * sat_wg_size_y * sat_wg_size_z;
#ifdef BENCHMARK_PHSA_RT
wi_total = (uint64_t) dp->grid_size_x
* (dp->grid_size_y > 0 ? dp->grid_size_y : 1)
* (dp->grid_size_z > 0 ? dp->grid_size_z : 1);
#endif
context->wg_min_x = context->wg_min_y = context->wg_min_z = 0;
int dims = dp->setup & 0x3;
context->wg_max_x = ((uint64_t) dp->grid_size_x + dp->workgroup_size_x - 1)
/ dp->workgroup_size_x;
context->wg_max_y
= dims < 2 ? 1 : ((uint64_t) dp->grid_size_y + dp->workgroup_size_y - 1)
/ dp->workgroup_size_y;
context->wg_max_z
= dims < 3 ? 1 : ((uint64_t) dp->grid_size_z + dp->workgroup_size_z - 1)
/ dp->workgroup_size_z;
#ifdef DEBUG_PHSA_RT
printf ("### launching work-groups %lu/%lu/%lu to %lu/%lu/%lu with "
"wg size %lu/%lu/%lu grid size %u/%u/%u\n",
context->wg_min_x, context->wg_min_y, context->wg_min_z,
context->wg_max_x, context->wg_max_y, context->wg_max_z,
sat_wg_size_x, sat_wg_size_y, sat_wg_size_z, dp->grid_size_x,
dp->grid_size_y, dp->grid_size_z);
#endif
PHSAWorkItem wi;
PHSAWorkGroup wg;
wi.wg = &wg;
wi.x = wi.y = wi.z = 0;
wi.launch_data = context;
#ifdef BENCHMARK_PHSA_RT
start_time = clock ();
uint64_t wg_count = 0;
#endif
size_t wg_size = __hsail_workgroupsize (0, &wi)
* __hsail_workgroupsize (1, &wi)
* __hsail_workgroupsize (2, &wi);
void *private_base_ptr = NULL;
if (dp->private_segment_size > 0
&& posix_memalign (&private_base_ptr, PRIVATE_SEGMENT_ALIGN,
dp->private_segment_size * wg_size)
!= 0)
phsa_fatal_error (3);
wg.alloca_stack_p = dp->private_segment_size * wg_size;
wg.alloca_frame_p = wg.alloca_stack_p;
wg.private_base_ptr = private_base_ptr;
wg.group_base_ptr = group_base_ptr;
#ifdef DEBUG_PHSA_RT
printf ("priv seg size %u wg_size %lu @ %p\n", dp->private_segment_size,
wg_size, private_base_ptr);
#endif
for (wg_z = context->wg_min_z; wg_z < context->wg_max_z; ++wg_z)
for (wg_y = context->wg_min_y; wg_y < context->wg_max_y; ++wg_y)
for (wg_x = context->wg_min_x; wg_x < context->wg_max_x; ++wg_x)
{
wi.wg->x = wg_x;
wi.wg->y = wg_y;
wi.wg->z = wg_z;
context->kernel (context->kernarg_addr, &wi, group_base_ptr,
group_local_offset, private_base_ptr);
#if defined (BENCHMARK_PHSA_RT)
wg_count++;
if (wg_count % 1000000 == 0)
{
clock_t spent_time = clock () - start_time;
uint64_t wi_count = wg_x * sat_wg_size_x + wg_y * sat_wg_size_y
+ wg_z * sat_wg_size_z;
double spent_time_sec = (double) spent_time / CLOCKS_PER_SEC;
double wis_per_sec = wi_count / spent_time_sec;
uint64_t eta_sec = (wi_total - wi_count) / wis_per_sec;
printf ("%lu WIs executed in %lus (%lu WIs/s, ETA in %lu s)\n",
wi_count, (uint64_t) spent_time_sec,
(uint64_t) wis_per_sec, (uint64_t) eta_sec);
}
#endif
}
#ifdef BENCHMARK_PHSA_RT
clock_t spent_time = clock () - start_time;
double spent_time_sec = (double) spent_time / CLOCKS_PER_SEC;
double wis_per_sec = wi_total / spent_time_sec;
printf ("### %lu WIs executed in %lu s (%lu WIs / s)\n", wi_total,
(uint64_t) spent_time_sec, (uint64_t) wis_per_sec);
#endif
free (private_base_ptr);
private_base_ptr = NULL;
}
/* gccbrig generates the following from each HSAIL kernel:
1) The actual kernel function (a single work-item kernel or a work-group
function) generated from HSAIL (BRIG).
static void _Kernel (void* args, void* context, void* group_base_ptr)
{
...
}
2) A public facing kernel function that is called from the PHSA runtime:
a) A single work-item function (that requires fibers for multi-WI):
void Kernel (void* context)
{
__launch_launch_kernel (_Kernel, context);
}
or
b) a when gccbrig could generate a work-group function:
void Kernel (void* context)
{
__hsail_launch_wg_function (_Kernel, context);
}
*/
#ifdef HAVE_FIBERS
void
__hsail_launch_kernel (gccbrigKernelFunc kernel, PHSAKernelLaunchData *context,
void *group_base_ptr, uint32_t group_local_offset)
{
context->kernel = kernel;
phsa_spawn_work_items (context, group_base_ptr, group_local_offset);
}
#endif
void
__hsail_launch_wg_function (gccbrigKernelFunc kernel,
PHSAKernelLaunchData *context, void *group_base_ptr,
uint32_t group_local_offset)
{
context->kernel = kernel;
phsa_execute_work_groups (context, group_base_ptr, group_local_offset);
}
uint32_t
__hsail_workitemabsid (uint32_t dim, PHSAWorkItem *context)
{
hsa_kernel_dispatch_packet_t *dp = context->launch_data->dp;
uint32_t id;
switch (dim)
{
default:
case 0:
/* Overflow semantics in the case of WG dim > grid dim. */
id = ((uint64_t) context->wg->x * dp->workgroup_size_x + context->x)
% dp->grid_size_x;
break;
case 1:
id = ((uint64_t) context->wg->y * dp->workgroup_size_y + context->y)
% dp->grid_size_y;
break;
case 2:
id = ((uint64_t) context->wg->z * dp->workgroup_size_z + context->z)
% dp->grid_size_z;
break;
}
return id;
}
uint64_t
__hsail_workitemabsid_u64 (uint32_t dim, PHSAWorkItem *context)
{
hsa_kernel_dispatch_packet_t *dp = context->launch_data->dp;
uint64_t id;
switch (dim)
{
default:
case 0:
/* Overflow semantics in the case of WG dim > grid dim. */
id = ((uint64_t) context->wg->x * dp->workgroup_size_x + context->x)
% dp->grid_size_x;
break;
case 1:
id = ((uint64_t) context->wg->y * dp->workgroup_size_y + context->y)
% dp->grid_size_y;
break;
case 2:
id = ((uint64_t) context->wg->z * dp->workgroup_size_z + context->z)
% dp->grid_size_z;
break;
}
return id;
}
uint32_t
__hsail_workitemid (uint32_t dim, PHSAWorkItem *context)
{
PHSAWorkItem *c = (PHSAWorkItem *) context;
hsa_kernel_dispatch_packet_t *dp = context->launch_data->dp;
/* The number of dimensions is in the two least significant bits. */
int dims = dp->setup & 0x3;
uint32_t id;
switch (dim)
{
default:
case 0:
id = c->x;
break;
case 1:
id = dims < 2 ? 0 : c->y;
break;
case 2:
id = dims < 3 ? 0 : c->z;
break;
}
return id;
}
uint32_t
__hsail_gridgroups (uint32_t dim, PHSAWorkItem *context)
{
hsa_kernel_dispatch_packet_t *dp = context->launch_data->dp;
int dims = dp->setup & 0x3;
uint32_t id;
switch (dim)
{
default:
case 0:
id = (dp->grid_size_x + dp->workgroup_size_x - 1) / dp->workgroup_size_x;
break;
case 1:
id = dims < 2 ? 1 : (dp->grid_size_y + dp->workgroup_size_y - 1)
/ dp->workgroup_size_y;
break;
case 2:
id = dims < 3 ? 1 : (dp->grid_size_z + dp->workgroup_size_z - 1)
/ dp->workgroup_size_z;
break;
}
return id;
}
uint32_t
__hsail_workitemflatid (PHSAWorkItem *c)
{
hsa_kernel_dispatch_packet_t *dp = c->launch_data->dp;
return c->x + c->y * dp->workgroup_size_x
+ c->z * dp->workgroup_size_x * dp->workgroup_size_y;
}
uint32_t
__hsail_currentworkitemflatid (PHSAWorkItem *c)
{
hsa_kernel_dispatch_packet_t *dp = c->launch_data->dp;
return c->x + c->y * __hsail_currentworkgroupsize (0, c)
+ c->z * __hsail_currentworkgroupsize (0, c)
* __hsail_currentworkgroupsize (1, c);
}
void
__hsail_setworkitemid (uint32_t dim, uint32_t id, PHSAWorkItem *context)
{
switch (dim)
{
default:
case 0:
context->x = id;
break;
case 1:
context->y = id;
break;
case 2:
context->z = id;
break;
}
}
uint64_t
__hsail_workitemflatabsid_u64 (PHSAWorkItem *context)
{
PHSAWorkItem *c = (PHSAWorkItem *) context;
hsa_kernel_dispatch_packet_t *dp = context->launch_data->dp;
/* Work-item flattened absolute ID = ID0 + ID1 * max0 + ID2 * max0 * max1. */
uint64_t id0 = __hsail_workitemabsid (0, context);
uint64_t id1 = __hsail_workitemabsid (1, context);
uint64_t id2 = __hsail_workitemabsid (2, context);
uint64_t max0 = dp->grid_size_x;
uint64_t max1 = dp->grid_size_y;
uint64_t id = id0 + id1 * max0 + id2 * max0 * max1;
return id;
}
uint32_t
__hsail_workitemflatabsid_u32 (PHSAWorkItem *context)
{
PHSAWorkItem *c = (PHSAWorkItem *) context;
hsa_kernel_dispatch_packet_t *dp = context->launch_data->dp;
/* work-item flattened absolute ID = ID0 + ID1 * max0 + ID2 * max0 * max1. */
uint64_t id0 = __hsail_workitemabsid (0, context);
uint64_t id1 = __hsail_workitemabsid (1, context);
uint64_t id2 = __hsail_workitemabsid (2, context);
uint64_t max0 = dp->grid_size_x;
uint64_t max1 = dp->grid_size_y;
uint64_t id = id0 + id1 * max0 + id2 * max0 * max1;
return (uint32_t) id;
}
uint32_t
__hsail_currentworkgroupsize (uint32_t dim, PHSAWorkItem *wi)
{
hsa_kernel_dispatch_packet_t *dp = wi->launch_data->dp;
uint32_t wg_size = 0;
switch (dim)
{
default:
case 0:
if ((uint64_t) wi->wg->x < dp->grid_size_x / dp->workgroup_size_x)
wg_size = dp->workgroup_size_x; /* Full WG. */
else
wg_size = dp->grid_size_x % dp->workgroup_size_x; /* Partial WG. */
break;
case 1:
if ((uint64_t) wi->wg->y < dp->grid_size_y / dp->workgroup_size_y)
wg_size = dp->workgroup_size_y; /* Full WG. */
else
wg_size = dp->grid_size_y % dp->workgroup_size_y; /* Partial WG. */
break;
case 2:
if ((uint64_t) wi->wg->z < dp->grid_size_z / dp->workgroup_size_z)
wg_size = dp->workgroup_size_z; /* Full WG. */
else
wg_size = dp->grid_size_z % dp->workgroup_size_z; /* Partial WG. */
break;
}
return wg_size;
}
uint32_t
__hsail_workgroupsize (uint32_t dim, PHSAWorkItem *wi)
{
hsa_kernel_dispatch_packet_t *dp = wi->launch_data->dp;
switch (dim)
{
default:
case 0:
return dp->workgroup_size_x;
case 1:
return dp->workgroup_size_y;
case 2:
return dp->workgroup_size_z;
}
}
uint32_t
__hsail_gridsize (uint32_t dim, PHSAWorkItem *wi)
{
hsa_kernel_dispatch_packet_t *dp = wi->launch_data->dp;
switch (dim)
{
default:
case 0:
return dp->grid_size_x;
case 1:
return dp->grid_size_y;
case 2:
return dp->grid_size_z;
}
}
uint32_t
__hsail_workgroupid (uint32_t dim, PHSAWorkItem *wi)
{
switch (dim)
{
default:
case 0:
return wi->wg->x;
case 1:
return wi->wg->y;
case 2:
return wi->wg->z;
}
}
uint32_t
__hsail_dim (PHSAWorkItem *wi)
{
hsa_kernel_dispatch_packet_t *dp = wi->launch_data->dp;
return dp->setup & 0x3;
}
uint64_t
__hsail_packetid (PHSAWorkItem *wi)
{
return wi->launch_data->packet_id;
}
uint32_t
__hsail_packetcompletionsig_sig32 (PHSAWorkItem *wi)
{
return (uint32_t) wi->launch_data->dp->completion_signal.handle;
}
uint64_t
__hsail_packetcompletionsig_sig64 (PHSAWorkItem *wi)
{
return (uint64_t) (wi->launch_data->dp->completion_signal.handle);
}
#ifdef HAVE_FIBERS
void
__hsail_barrier (PHSAWorkItem *wi)
{
fiber_barrier_reach ((fiber_barrier_t *) wi->launch_data->wg_sync_barrier);
}
#endif
/* Return a 32b private segment address that points to a dynamically
allocated chunk of 'size' with 'align'.
Allocates the space from the end of the private segment allocated
for the whole work group. In implementations with separate private
memories per WI, we will need to have a stack pointer per WI. But in
the current implementation, the segment is shared, so we possibly
save some space in case all WIs do not call the alloca.
The "alloca frames" are organized as follows:
wg->alloca_stack_p points to the last allocated data (initially
outside the private segment)
wg->alloca_frame_p points to the first address _outside_ the current
function's allocations (initially to the same as alloca_stack_p)
The data is allocated downwards from the end of the private segment.
In the beginning of a new function which has allocas, a new alloca
frame is pushed which adds the current alloca_frame_p (the current
function's frame starting point) to the top of the alloca stack and
alloca_frame_p is set to the current stack position.
At the exit points of a function with allocas, the alloca frame
is popped before returning. This involves popping the alloca_frame_p
to the one of the previous function in the call stack, and alloca_stack_p
similarly, to the position of the last word alloca'd by the previous
function.
*/
uint32_t
__hsail_alloca (uint32_t size, uint32_t align, PHSAWorkItem *wi)
{
volatile PHSAWorkGroup *wg = wi->wg;
uint32_t new_pos = wg->alloca_stack_p - size;
while (new_pos % align != 0)
new_pos--;
wg->alloca_stack_p = new_pos;
#ifdef DEBUG_ALLOCA
printf ("--- alloca (%u, %u) sp @%u fp @%u\n", size, align,
wg->alloca_stack_p, wg->alloca_frame_p);
#endif
return new_pos;
}
/* Initializes a new "alloca frame" in the private segment.
This should be called at all the function entry points in case
the function contains at least one call to alloca. */
void
__hsail_alloca_push_frame (PHSAWorkItem *wi)
{
volatile PHSAWorkGroup *wg = wi->wg;
/* Store the alloca_frame_p without any alignment padding so
we know exactly where the previous frame ended after popping
it. */
#ifdef DEBUG_ALLOCA
printf ("--- push frame ");
#endif
uint32_t last_word_offs = __hsail_alloca (4, 1, wi);
memcpy (wg->private_base_ptr + last_word_offs,
(const void *) &wg->alloca_frame_p, 4);
wg->alloca_frame_p = last_word_offs;
#ifdef DEBUG_ALLOCA
printf ("--- sp @%u fp @%u\n", wg->alloca_stack_p, wg->alloca_frame_p);
#endif
}
/* Frees the current "alloca frame" and restores the frame
pointer.
This should be called at all the function return points in case
the function contains at least one call to alloca. Restores the
alloca stack to the condition it was before pushing the frame
the last time. */
void
__hsail_alloca_pop_frame (PHSAWorkItem *wi)
{
volatile PHSAWorkGroup *wg = wi->wg;
wg->alloca_stack_p = wg->alloca_frame_p;
memcpy ((void *) &wg->alloca_frame_p,
(const void *) (wg->private_base_ptr + wg->alloca_frame_p), 4);
/* Now frame_p points to the beginning of the previous function's
frame and stack_p to its end. */
wg->alloca_stack_p += 4;
#ifdef DEBUG_ALLOCA
printf ("--- pop frame sp @%u fp @%u\n", wg->alloca_stack_p,
wg->alloca_frame_p);
#endif
}