gcc/libgcc/config/avr/lib1funcs.S
Georg-Johann Lay e55e405619 re PR target/54222 ([avr] Implement fixed-point support)
libgcc/
	PR target/54222
	* config/avr/lib1funcs-fixed.S: New file.
	* config/avr/lib1funcs.S: Include it.  Undefine some divmodsi
	after they are used.
	(neg2, neg4): New macros.
	(__mulqihi3,__umulqihi3,__mulhi3): Rewrite non-MUL variants.
	(__mulhisi3,__umulhisi3,__mulsi3): Rewrite non-MUL variants.
	(__umulhisi3): Speed up MUL variant if there is enough flash.
	* config/avr/avr-lib.h (TA, UTA): Adjust according to gcc's
	avr-modes.def.
	* config/avr/t-avr (LIB1ASMFUNCS): Add: _fractqqsf, _fractuqqsf,
	_fracthqsf, _fractuhqsf, _fracthasf, _fractuhasf, _fractsasf,
	_fractusasf, _fractsfqq, _fractsfuqq, _fractsfhq, _fractsfuhq,
	_fractsfha, _fractsfsa, _mulqq3, _muluqq3, _mulhq3, _muluhq3,
	_mulha3, _muluha3, _mulsa3, _mulusa3, _divqq3, _udivuqq3, _divhq3,
	_udivuhq3, _divha3, _udivuha3, _divsa3, _udivusa3.
	(LIB2FUNCS_EXCLUDE): Add supported functions.

gcc/
	PR target/54222
	* avr-modes.def (HA, SA, DA, TA, UTA): Adjust modes.
	* avr/avr-fixed.md: New file.
	* avr/avr.md: Include it.
	(cc): Add: minus.
	(adjust_len): Add: minus, minus64, ufract, sfract.
	(ALL1, ALL2, ALL4, ORDERED234): New mode iterators.
	(MOVMODE): Add: QQ, UQQ, HQ, UHQ, HA, UHA, SQ, USQ, SA, USA.
	(MPUSH): Add: HQ, UHQ, HA, UHA, SQ, USQ, SA, USA.
	(pushqi1, xload8_A, xload_8, movqi_insn, *reload_inqi, addqi3,
	subqi3, ashlqi3, *ashlqi3, ashrqi3, lshrqi3, *lshrqi3, *cmpqi, 
	cbranchqi4, *cpse.eq): Generalize to handle all 8-bit modes in ALL1.
	(*movhi, reload_inhi, addhi3, *addhi3, addhi3_clobber, subhi3,
	ashlhi3, *ashlhi3_const, ashrhi3, *ashirhi3_const, lshrhi3,
	*lshrhi3_const, *cmphi, cbranchhi4): Generalize to handle all
	16-bit modes in ALL2.
	(subhi3, casesi, strlenhi): Add clobber when expanding minus:HI.
	(*movsi, *reload_insi, addsi3, subsi3, ashlsi3, *ashlsi3_const,
	ashrsi3, *ashrhi3_const, *ashrsi3_const, lshrsi3, *lshrsi3_const,
	*reversed_tstsi, *cmpsi, cbranchsi4): Generalize to handle all
	32-bit modes in ALL4.
	* avr-dimode.md (ALL8): New mode iterator.
	(adddi3, adddi3_insn, adddi3_const_insn, subdi3, subdi3_insn,
	subdi3_const_insn, cbranchdi4, compare_di2,
	compare_const_di2, ashrdi3, lshrdi3, rotldi3, ashldi3_insn,
	ashrdi3_insn, lshrdi3_insn, rotldi3_insn): Generalize to handle
	all 64-bit modes in ALL8.
	* config/avr/avr-protos.h (avr_to_int_mode): New prototype.
	(avr_out_fract, avr_out_minus, avr_out_minus64): New prototypes.
	* config/avr/avr.c (TARGET_FIXED_POINT_SUPPORTED_P): Define to...
	(avr_fixed_point_supported_p): ...this new static function.
	(TARGET_BUILD_BUILTIN_VA_LIST): Define to...
	(avr_build_builtin_va_list): ...this new static function.
	(avr_adjust_type_node): New static function.
	(avr_scalar_mode_supported_p): Allow if ALL_FIXED_POINT_MODE_P.
	(avr_builtin_setjmp_frame_value): Use gen_subhi3 and return new
	pseudo instead of gen_rtx_MINUS.
	(avr_print_operand, avr_operand_rtx_cost): Handle: CONST_FIXED.
	(notice_update_cc): Handle: CC_MINUS.
	(output_movqi): Generalize to handle respective fixed-point modes.
	(output_movhi, output_movsisf, avr_2word_insn_p): Ditto.
	(avr_out_compare, avr_out_plus_1): Also handle fixed-point modes.
	(avr_assemble_integer): Ditto.
	(output_reload_in_const, output_reload_insisf): Ditto.
	(avr_compare_pattern): Skip all modes > 4 bytes.
	(avr_2word_insn_p): Skip movuqq_insn, movqq_insn.
	(avr_out_fract, avr_out_minus, avr_out_minus64): New functions.
	(avr_to_int_mode): New function.
	(adjust_insn_length): Handle: ADJUST_LEN_SFRACT,
	ADJUST_LEN_UFRACT, ADJUST_LEN_MINUS, ADJUST_LEN_MINUS64.
	* config/avr/predicates.md (const0_operand): Allow const_fixed.
	(const_operand, const_or_immediate_operand): New.
	(nonmemory_or_const_operand): New.
	* config/avr/constraints.md (Ynn, Y00, Y01, Y02, Ym1, Ym2, YIJ):
	New constraints.
	* config/avr/avr.h (LONG_LONG_ACCUM_TYPE_SIZE): Define.

From-SVN: r190644
2012-08-24 12:42:48 +00:00

2920 lines
60 KiB
ArmAsm
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* -*- Mode: Asm -*- */
/* Copyright (C) 1998, 1999, 2000, 2007, 2008, 2009
Free Software Foundation, Inc.
Contributed by Denis Chertykov <chertykov@gmail.com>
This file is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.
This file is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#define __zero_reg__ r1
#define __tmp_reg__ r0
#define __SREG__ 0x3f
#if defined (__AVR_HAVE_SPH__)
#define __SP_H__ 0x3e
#endif
#define __SP_L__ 0x3d
#define __RAMPZ__ 0x3B
#define __EIND__ 0x3C
/* Most of the functions here are called directly from avr.md
patterns, instead of using the standard libcall mechanisms.
This can make better code because GCC knows exactly which
of the call-used registers (not all of them) are clobbered. */
/* FIXME: At present, there is no SORT directive in the linker
script so that we must not assume that different modules
in the same input section like .libgcc.text.mul will be
located close together. Therefore, we cannot use
RCALL/RJMP to call a function like __udivmodhi4 from
__divmodhi4 and have to use lengthy XCALL/XJMP even
though they are in the same input section and all same
input sections together are small enough to reach every
location with a RCALL/RJMP instruction. */
.macro mov_l r_dest, r_src
#if defined (__AVR_HAVE_MOVW__)
movw \r_dest, \r_src
#else
mov \r_dest, \r_src
#endif
.endm
.macro mov_h r_dest, r_src
#if defined (__AVR_HAVE_MOVW__)
; empty
#else
mov \r_dest, \r_src
#endif
.endm
.macro wmov r_dest, r_src
#if defined (__AVR_HAVE_MOVW__)
movw \r_dest, \r_src
#else
mov \r_dest, \r_src
mov \r_dest+1, \r_src+1
#endif
.endm
#if defined (__AVR_HAVE_JMP_CALL__)
#define XCALL call
#define XJMP jmp
#else
#define XCALL rcall
#define XJMP rjmp
#endif
.macro DEFUN name
.global \name
.func \name
\name:
.endm
.macro ENDF name
.size \name, .-\name
.endfunc
.endm
;; Negate a 2-byte value held in consecutive registers
.macro NEG2 reg
com \reg+1
neg \reg
sbci \reg+1, -1
.endm
;; Negate a 4-byte value held in consecutive registers
.macro NEG4 reg
com \reg+3
com \reg+2
com \reg+1
.if \reg >= 16
neg \reg
sbci \reg+1, -1
sbci \reg+2, -1
sbci \reg+3, -1
.else
com \reg
adc \reg, __zero_reg__
adc \reg+1, __zero_reg__
adc \reg+2, __zero_reg__
adc \reg+3, __zero_reg__
.endif
.endm
#define exp_lo(N) hlo8 ((N) << 23)
#define exp_hi(N) hhi8 ((N) << 23)
.section .text.libgcc.mul, "ax", @progbits
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
/* Note: mulqi3, mulhi3 are open-coded on the enhanced core. */
#if !defined (__AVR_HAVE_MUL__)
/*******************************************************
Multiplication 8 x 8 without MUL
*******************************************************/
#if defined (L_mulqi3)
#define r_arg2 r22 /* multiplicand */
#define r_arg1 r24 /* multiplier */
#define r_res __tmp_reg__ /* result */
DEFUN __mulqi3
clr r_res ; clear result
__mulqi3_loop:
sbrc r_arg1,0
add r_res,r_arg2
add r_arg2,r_arg2 ; shift multiplicand
breq __mulqi3_exit ; while multiplicand != 0
lsr r_arg1 ;
brne __mulqi3_loop ; exit if multiplier = 0
__mulqi3_exit:
mov r_arg1,r_res ; result to return register
ret
ENDF __mulqi3
#undef r_arg2
#undef r_arg1
#undef r_res
#endif /* defined (L_mulqi3) */
/*******************************************************
Widening Multiplication 16 = 8 x 8 without MUL
Multiplication 16 x 16 without MUL
*******************************************************/
#define A0 r22
#define A1 r23
#define B0 r24
#define BB0 r20
#define B1 r25
;; Output overlaps input, thus expand result in CC0/1
#define C0 r24
#define C1 r25
#define CC0 __tmp_reg__
#define CC1 R21
#if defined (L_umulqihi3)
;;; R25:R24 = (unsigned int) R22 * (unsigned int) R24
;;; (C1:C0) = (unsigned int) A0 * (unsigned int) B0
;;; Clobbers: __tmp_reg__, R21..R23
DEFUN __umulqihi3
clr A1
clr B1
XJMP __mulhi3
ENDF __umulqihi3
#endif /* L_umulqihi3 */
#if defined (L_mulqihi3)
;;; R25:R24 = (signed int) R22 * (signed int) R24
;;; (C1:C0) = (signed int) A0 * (signed int) B0
;;; Clobbers: __tmp_reg__, R20..R23
DEFUN __mulqihi3
;; Sign-extend B0
clr B1
sbrc B0, 7
com B1
;; The multiplication runs twice as fast if A1 is zero, thus:
;; Zero-extend A0
clr A1
#ifdef __AVR_HAVE_JMP_CALL__
;; Store B0 * sign of A
clr BB0
sbrc A0, 7
mov BB0, B0
call __mulhi3
#else /* have no CALL */
;; Skip sign-extension of A if A >= 0
;; Same size as with the first alternative but avoids errata skip
;; and is faster if A >= 0
sbrs A0, 7
rjmp __mulhi3
;; If A < 0 store B
mov BB0, B0
rcall __mulhi3
#endif /* HAVE_JMP_CALL */
;; 1-extend A after the multiplication
sub C1, BB0
ret
ENDF __mulqihi3
#endif /* L_mulqihi3 */
#if defined (L_mulhi3)
;;; R25:R24 = R23:R22 * R25:R24
;;; (C1:C0) = (A1:A0) * (B1:B0)
;;; Clobbers: __tmp_reg__, R21..R23
DEFUN __mulhi3
;; Clear result
clr CC0
clr CC1
rjmp 3f
1:
;; Bit n of A is 1 --> C += B << n
add CC0, B0
adc CC1, B1
2:
lsl B0
rol B1
3:
;; If B == 0 we are ready
sbiw B0, 0
breq 9f
;; Carry = n-th bit of A
lsr A1
ror A0
;; If bit n of A is set, then go add B * 2^n to C
brcs 1b
;; Carry = 0 --> The ROR above acts like CP A0, 0
;; Thus, it is sufficient to CPC the high part to test A against 0
cpc A1, __zero_reg__
;; Only proceed if A != 0
brne 2b
9:
;; Move Result into place
mov C0, CC0
mov C1, CC1
ret
ENDF __mulhi3
#endif /* L_mulhi3 */
#undef A0
#undef A1
#undef B0
#undef BB0
#undef B1
#undef C0
#undef C1
#undef CC0
#undef CC1
#define A0 22
#define A1 A0+1
#define A2 A0+2
#define A3 A0+3
#define B0 18
#define B1 B0+1
#define B2 B0+2
#define B3 B0+3
#define CC0 26
#define CC1 CC0+1
#define CC2 30
#define CC3 CC2+1
#define C0 22
#define C1 C0+1
#define C2 C0+2
#define C3 C0+3
/*******************************************************
Widening Multiplication 32 = 16 x 16 without MUL
*******************************************************/
#if defined (L_umulhisi3)
DEFUN __umulhisi3
wmov B0, 24
;; Zero-extend B
clr B2
clr B3
;; Zero-extend A
wmov A2, B2
XJMP __mulsi3
ENDF __umulhisi3
#endif /* L_umulhisi3 */
#if defined (L_mulhisi3)
DEFUN __mulhisi3
wmov B0, 24
;; Sign-extend B
lsl r25
sbc B2, B2
mov B3, B2
#ifdef __AVR_ERRATA_SKIP_JMP_CALL__
;; Sign-extend A
clr A2
sbrc A1, 7
com A2
mov A3, A2
XJMP __mulsi3
#else /* no __AVR_ERRATA_SKIP_JMP_CALL__ */
;; Zero-extend A and __mulsi3 will run at least twice as fast
;; compared to a sign-extended A.
clr A2
clr A3
sbrs A1, 7
XJMP __mulsi3
;; If A < 0 then perform the B * 0xffff.... before the
;; very multiplication by initializing the high part of the
;; result CC with -B.
wmov CC2, A2
sub CC2, B0
sbc CC3, B1
XJMP __mulsi3_helper
#endif /* __AVR_ERRATA_SKIP_JMP_CALL__ */
ENDF __mulhisi3
#endif /* L_mulhisi3 */
/*******************************************************
Multiplication 32 x 32 without MUL
*******************************************************/
#if defined (L_mulsi3)
DEFUN __mulsi3
;; Clear result
clr CC2
clr CC3
;; FALLTHRU
ENDF __mulsi3
DEFUN __mulsi3_helper
clr CC0
clr CC1
rjmp 3f
1: ;; If bit n of A is set, then add B * 2^n to the result in CC
;; CC += B
add CC0,B0 $ adc CC1,B1 $ adc CC2,B2 $ adc CC3,B3
2: ;; B <<= 1
lsl B0 $ rol B1 $ rol B2 $ rol B3
3: ;; A >>= 1: Carry = n-th bit of A
lsr A3 $ ror A2 $ ror A1 $ ror A0
brcs 1b
;; Only continue if A != 0
sbci A1, 0
brne 2b
sbiw A2, 0
brne 2b
;; All bits of A are consumed: Copy result to return register C
wmov C0, CC0
wmov C2, CC2
ret
ENDF __mulsi3_helper
#endif /* L_mulsi3 */
#undef A0
#undef A1
#undef A2
#undef A3
#undef B0
#undef B1
#undef B2
#undef B3
#undef C0
#undef C1
#undef C2
#undef C3
#undef CC0
#undef CC1
#undef CC2
#undef CC3
#endif /* !defined (__AVR_HAVE_MUL__) */
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
#if defined (__AVR_HAVE_MUL__)
#define A0 26
#define B0 18
#define C0 22
#define A1 A0+1
#define B1 B0+1
#define B2 B0+2
#define B3 B0+3
#define C1 C0+1
#define C2 C0+2
#define C3 C0+3
/*******************************************************
Widening Multiplication 32 = 16 x 16 with MUL
*******************************************************/
#if defined (L_mulhisi3)
;;; R25:R22 = (signed long) R27:R26 * (signed long) R19:R18
;;; C3:C0 = (signed long) A1:A0 * (signed long) B1:B0
;;; Clobbers: __tmp_reg__
DEFUN __mulhisi3
XCALL __umulhisi3
;; Sign-extend B
tst B1
brpl 1f
sub C2, A0
sbc C3, A1
1: ;; Sign-extend A
XJMP __usmulhisi3_tail
ENDF __mulhisi3
#endif /* L_mulhisi3 */
#if defined (L_usmulhisi3)
;;; R25:R22 = (signed long) R27:R26 * (unsigned long) R19:R18
;;; C3:C0 = (signed long) A1:A0 * (unsigned long) B1:B0
;;; Clobbers: __tmp_reg__
DEFUN __usmulhisi3
XCALL __umulhisi3
;; FALLTHRU
ENDF __usmulhisi3
DEFUN __usmulhisi3_tail
;; Sign-extend A
sbrs A1, 7
ret
sub C2, B0
sbc C3, B1
ret
ENDF __usmulhisi3_tail
#endif /* L_usmulhisi3 */
#if defined (L_umulhisi3)
;;; R25:R22 = (unsigned long) R27:R26 * (unsigned long) R19:R18
;;; C3:C0 = (unsigned long) A1:A0 * (unsigned long) B1:B0
;;; Clobbers: __tmp_reg__
DEFUN __umulhisi3
mul A0, B0
movw C0, r0
mul A1, B1
movw C2, r0
mul A0, B1
#ifdef __AVR_HAVE_JMP_CALL__
;; This function is used by many other routines, often multiple times.
;; Therefore, if the flash size is not too limited, avoid the RCALL
;; and inverst 6 Bytes to speed things up.
add C1, r0
adc C2, r1
clr __zero_reg__
adc C3, __zero_reg__
#else
rcall 1f
#endif
mul A1, B0
1: add C1, r0
adc C2, r1
clr __zero_reg__
adc C3, __zero_reg__
ret
ENDF __umulhisi3
#endif /* L_umulhisi3 */
/*******************************************************
Widening Multiplication 32 = 16 x 32 with MUL
*******************************************************/
#if defined (L_mulshisi3)
;;; R25:R22 = (signed long) R27:R26 * R21:R18
;;; (C3:C0) = (signed long) A1:A0 * B3:B0
;;; Clobbers: __tmp_reg__
DEFUN __mulshisi3
#ifdef __AVR_ERRATA_SKIP_JMP_CALL__
;; Some cores have problem skipping 2-word instruction
tst A1
brmi __mulohisi3
#else
sbrs A1, 7
#endif /* __AVR_HAVE_JMP_CALL__ */
XJMP __muluhisi3
;; FALLTHRU
ENDF __mulshisi3
;;; R25:R22 = (one-extended long) R27:R26 * R21:R18
;;; (C3:C0) = (one-extended long) A1:A0 * B3:B0
;;; Clobbers: __tmp_reg__
DEFUN __mulohisi3
XCALL __muluhisi3
;; One-extend R27:R26 (A1:A0)
sub C2, B0
sbc C3, B1
ret
ENDF __mulohisi3
#endif /* L_mulshisi3 */
#if defined (L_muluhisi3)
;;; R25:R22 = (unsigned long) R27:R26 * R21:R18
;;; (C3:C0) = (unsigned long) A1:A0 * B3:B0
;;; Clobbers: __tmp_reg__
DEFUN __muluhisi3
XCALL __umulhisi3
mul A0, B3
add C3, r0
mul A1, B2
add C3, r0
mul A0, B2
add C2, r0
adc C3, r1
clr __zero_reg__
ret
ENDF __muluhisi3
#endif /* L_muluhisi3 */
/*******************************************************
Multiplication 32 x 32 with MUL
*******************************************************/
#if defined (L_mulsi3)
;;; R25:R22 = R25:R22 * R21:R18
;;; (C3:C0) = C3:C0 * B3:B0
;;; Clobbers: R26, R27, __tmp_reg__
DEFUN __mulsi3
movw A0, C0
push C2
push C3
XCALL __muluhisi3
pop A1
pop A0
;; A1:A0 now contains the high word of A
mul A0, B0
add C2, r0
adc C3, r1
mul A0, B1
add C3, r0
mul A1, B0
add C3, r0
clr __zero_reg__
ret
ENDF __mulsi3
#endif /* L_mulsi3 */
#undef A0
#undef A1
#undef B0
#undef B1
#undef B2
#undef B3
#undef C0
#undef C1
#undef C2
#undef C3
#endif /* __AVR_HAVE_MUL__ */
/*******************************************************
Multiplication 24 x 24 with MUL
*******************************************************/
#if defined (L_mulpsi3)
;; A[0..2]: In: Multiplicand; Out: Product
#define A0 22
#define A1 A0+1
#define A2 A0+2
;; B[0..2]: In: Multiplier
#define B0 18
#define B1 B0+1
#define B2 B0+2
#if defined (__AVR_HAVE_MUL__)
;; C[0..2]: Expand Result
#define C0 22
#define C1 C0+1
#define C2 C0+2
;; R24:R22 *= R20:R18
;; Clobbers: r21, r25, r26, r27, __tmp_reg__
#define AA0 26
#define AA2 21
DEFUN __mulpsi3
wmov AA0, A0
mov AA2, A2
XCALL __umulhisi3
mul AA2, B0 $ add C2, r0
mul AA0, B2 $ add C2, r0
clr __zero_reg__
ret
ENDF __mulpsi3
#undef AA2
#undef AA0
#undef C2
#undef C1
#undef C0
#else /* !HAVE_MUL */
;; C[0..2]: Expand Result
#define C0 0
#define C1 C0+1
#define C2 21
;; R24:R22 *= R20:R18
;; Clobbers: __tmp_reg__, R18, R19, R20, R21
DEFUN __mulpsi3
;; C[] = 0
clr __tmp_reg__
clr C2
0: ;; Shift N-th Bit of B[] into Carry. N = 24 - Loop
LSR B2 $ ror B1 $ ror B0
;; If the N-th Bit of B[] was set...
brcc 1f
;; ...then add A[] * 2^N to the Result C[]
ADD C0,A0 $ adc C1,A1 $ adc C2,A2
1: ;; Multiply A[] by 2
LSL A0 $ rol A1 $ rol A2
;; Loop until B[] is 0
subi B0,0 $ sbci B1,0 $ sbci B2,0
brne 0b
;; Copy C[] to the return Register A[]
wmov A0, C0
mov A2, C2
clr __zero_reg__
ret
ENDF __mulpsi3
#undef C2
#undef C1
#undef C0
#endif /* HAVE_MUL */
#undef B2
#undef B1
#undef B0
#undef A2
#undef A1
#undef A0
#endif /* L_mulpsi3 */
#if defined (L_mulsqipsi3) && defined (__AVR_HAVE_MUL__)
;; A[0..2]: In: Multiplicand
#define A0 22
#define A1 A0+1
#define A2 A0+2
;; BB: In: Multiplier
#define BB 25
;; C[0..2]: Result
#define C0 18
#define C1 C0+1
#define C2 C0+2
;; C[] = A[] * sign_extend (BB)
DEFUN __mulsqipsi3
mul A0, BB
movw C0, r0
mul A2, BB
mov C2, r0
mul A1, BB
add C1, r0
adc C2, r1
clr __zero_reg__
sbrs BB, 7
ret
;; One-extend BB
sub C1, A0
sbc C2, A1
ret
ENDF __mulsqipsi3
#undef C2
#undef C1
#undef C0
#undef BB
#undef A2
#undef A1
#undef A0
#endif /* L_mulsqipsi3 && HAVE_MUL */
/*******************************************************
Multiplication 64 x 64
*******************************************************/
#if defined (L_muldi3)
;; A[] = A[] * B[]
;; A[0..7]: In: Multiplicand
;; Out: Product
#define A0 18
#define A1 A0+1
#define A2 A0+2
#define A3 A0+3
#define A4 A0+4
#define A5 A0+5
#define A6 A0+6
#define A7 A0+7
;; B[0..7]: In: Multiplier
#define B0 10
#define B1 B0+1
#define B2 B0+2
#define B3 B0+3
#define B4 B0+4
#define B5 B0+5
#define B6 B0+6
#define B7 B0+7
#if defined (__AVR_HAVE_MUL__)
;; Define C[] for convenience
;; Notice that parts of C[] overlap A[] respective B[]
#define C0 16
#define C1 C0+1
#define C2 20
#define C3 C2+1
#define C4 28
#define C5 C4+1
#define C6 C4+2
#define C7 C4+3
;; A[] *= B[]
;; R25:R18 *= R17:R10
;; Ordinary ABI-Function
DEFUN __muldi3
push r29
push r28
push r17
push r16
;; Counting in Words, we have to perform a 4 * 4 Multiplication
;; 3 * 0 + 0 * 3
mul A7,B0 $ $ mov C7,r0
mul A0,B7 $ $ add C7,r0
mul A6,B1 $ $ add C7,r0
mul A6,B0 $ mov C6,r0 $ add C7,r1
mul B6,A1 $ $ add C7,r0
mul B6,A0 $ add C6,r0 $ adc C7,r1
;; 1 * 2
mul A2,B4 $ add C6,r0 $ adc C7,r1
mul A3,B4 $ $ add C7,r0
mul A2,B5 $ $ add C7,r0
push A5
push A4
push B1
push B0
push A3
push A2
;; 0 * 0
wmov 26, B0
XCALL __umulhisi3
wmov C0, 22
wmov C2, 24
;; 0 * 2
wmov 26, B4
XCALL __umulhisi3 $ wmov C4,22 $ add C6,24 $ adc C7,25
wmov 26, B2
;; 0 * 1
rcall __muldi3_6
pop A0
pop A1
;; 1 * 1
wmov 26, B2
XCALL __umulhisi3 $ add C4,22 $ adc C5,23 $ adc C6,24 $ adc C7,25
pop r26
pop r27
;; 1 * 0
rcall __muldi3_6
pop A0
pop A1
;; 2 * 0
XCALL __umulhisi3 $ add C4,22 $ adc C5,23 $ adc C6,24 $ adc C7,25
;; 2 * 1
wmov 26, B2
XCALL __umulhisi3 $ $ $ add C6,22 $ adc C7,23
;; A[] = C[]
wmov A0, C0
;; A2 = C2 already
wmov A4, C4
wmov A6, C6
clr __zero_reg__
pop r16
pop r17
pop r28
pop r29
ret
__muldi3_6:
XCALL __umulhisi3
add C2, 22
adc C3, 23
adc C4, 24
adc C5, 25
brcc 0f
adiw C6, 1
0: ret
ENDF __muldi3
#undef C7
#undef C6
#undef C5
#undef C4
#undef C3
#undef C2
#undef C1
#undef C0
#else /* !HAVE_MUL */
#define C0 26
#define C1 C0+1
#define C2 C0+2
#define C3 C0+3
#define C4 C0+4
#define C5 C0+5
#define C6 0
#define C7 C6+1
#define Loop 9
;; A[] *= B[]
;; R25:R18 *= R17:R10
;; Ordinary ABI-Function
DEFUN __muldi3
push r29
push r28
push Loop
ldi C0, 64
mov Loop, C0
;; C[] = 0
clr __tmp_reg__
wmov C0, 0
wmov C2, 0
wmov C4, 0
0: ;; Rotate B[] right by 1 and set Carry to the N-th Bit of B[]
;; where N = 64 - Loop.
;; Notice that B[] = B[] >>> 64 so after this Routine has finished,
;; B[] will have its initial Value again.
LSR B7 $ ror B6 $ ror B5 $ ror B4
ror B3 $ ror B2 $ ror B1 $ ror B0
;; If the N-th Bit of B[] was set then...
brcc 1f
;; ...finish Rotation...
ori B7, 1 << 7
;; ...and add A[] * 2^N to the Result C[]
ADD C0,A0 $ adc C1,A1 $ adc C2,A2 $ adc C3,A3
adc C4,A4 $ adc C5,A5 $ adc C6,A6 $ adc C7,A7
1: ;; Multiply A[] by 2
LSL A0 $ rol A1 $ rol A2 $ rol A3
rol A4 $ rol A5 $ rol A6 $ rol A7
dec Loop
brne 0b
;; We expanded the Result in C[]
;; Copy Result to the Return Register A[]
wmov A0, C0
wmov A2, C2
wmov A4, C4
wmov A6, C6
clr __zero_reg__
pop Loop
pop r28
pop r29
ret
ENDF __muldi3
#undef Loop
#undef C7
#undef C6
#undef C5
#undef C4
#undef C3
#undef C2
#undef C1
#undef C0
#endif /* HAVE_MUL */
#undef B7
#undef B6
#undef B5
#undef B4
#undef B3
#undef B2
#undef B1
#undef B0
#undef A7
#undef A6
#undef A5
#undef A4
#undef A3
#undef A2
#undef A1
#undef A0
#endif /* L_muldi3 */
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
.section .text.libgcc.div, "ax", @progbits
/*******************************************************
Division 8 / 8 => (result + remainder)
*******************************************************/
#define r_rem r25 /* remainder */
#define r_arg1 r24 /* dividend, quotient */
#define r_arg2 r22 /* divisor */
#define r_cnt r23 /* loop count */
#if defined (L_udivmodqi4)
DEFUN __udivmodqi4
sub r_rem,r_rem ; clear remainder and carry
ldi r_cnt,9 ; init loop counter
rjmp __udivmodqi4_ep ; jump to entry point
__udivmodqi4_loop:
rol r_rem ; shift dividend into remainder
cp r_rem,r_arg2 ; compare remainder & divisor
brcs __udivmodqi4_ep ; remainder <= divisor
sub r_rem,r_arg2 ; restore remainder
__udivmodqi4_ep:
rol r_arg1 ; shift dividend (with CARRY)
dec r_cnt ; decrement loop counter
brne __udivmodqi4_loop
com r_arg1 ; complement result
; because C flag was complemented in loop
ret
ENDF __udivmodqi4
#endif /* defined (L_udivmodqi4) */
#if defined (L_divmodqi4)
DEFUN __divmodqi4
bst r_arg1,7 ; store sign of dividend
mov __tmp_reg__,r_arg1
eor __tmp_reg__,r_arg2; r0.7 is sign of result
sbrc r_arg1,7
neg r_arg1 ; dividend negative : negate
sbrc r_arg2,7
neg r_arg2 ; divisor negative : negate
XCALL __udivmodqi4 ; do the unsigned div/mod
brtc __divmodqi4_1
neg r_rem ; correct remainder sign
__divmodqi4_1:
sbrc __tmp_reg__,7
neg r_arg1 ; correct result sign
__divmodqi4_exit:
ret
ENDF __divmodqi4
#endif /* defined (L_divmodqi4) */
#undef r_rem
#undef r_arg1
#undef r_arg2
#undef r_cnt
/*******************************************************
Division 16 / 16 => (result + remainder)
*******************************************************/
#define r_remL r26 /* remainder Low */
#define r_remH r27 /* remainder High */
/* return: remainder */
#define r_arg1L r24 /* dividend Low */
#define r_arg1H r25 /* dividend High */
/* return: quotient */
#define r_arg2L r22 /* divisor Low */
#define r_arg2H r23 /* divisor High */
#define r_cnt r21 /* loop count */
#if defined (L_udivmodhi4)
DEFUN __udivmodhi4
sub r_remL,r_remL
sub r_remH,r_remH ; clear remainder and carry
ldi r_cnt,17 ; init loop counter
rjmp __udivmodhi4_ep ; jump to entry point
__udivmodhi4_loop:
rol r_remL ; shift dividend into remainder
rol r_remH
cp r_remL,r_arg2L ; compare remainder & divisor
cpc r_remH,r_arg2H
brcs __udivmodhi4_ep ; remainder < divisor
sub r_remL,r_arg2L ; restore remainder
sbc r_remH,r_arg2H
__udivmodhi4_ep:
rol r_arg1L ; shift dividend (with CARRY)
rol r_arg1H
dec r_cnt ; decrement loop counter
brne __udivmodhi4_loop
com r_arg1L
com r_arg1H
; div/mod results to return registers, as for the div() function
mov_l r_arg2L, r_arg1L ; quotient
mov_h r_arg2H, r_arg1H
mov_l r_arg1L, r_remL ; remainder
mov_h r_arg1H, r_remH
ret
ENDF __udivmodhi4
#endif /* defined (L_udivmodhi4) */
#if defined (L_divmodhi4)
DEFUN __divmodhi4
.global _div
_div:
bst r_arg1H,7 ; store sign of dividend
mov __tmp_reg__,r_arg2H
brtc 0f
com __tmp_reg__ ; r0.7 is sign of result
rcall __divmodhi4_neg1 ; dividend negative: negate
0:
sbrc r_arg2H,7
rcall __divmodhi4_neg2 ; divisor negative: negate
XCALL __udivmodhi4 ; do the unsigned div/mod
sbrc __tmp_reg__,7
rcall __divmodhi4_neg2 ; correct remainder sign
brtc __divmodhi4_exit
__divmodhi4_neg1:
;; correct dividend/remainder sign
com r_arg1H
neg r_arg1L
sbci r_arg1H,0xff
ret
__divmodhi4_neg2:
;; correct divisor/result sign
com r_arg2H
neg r_arg2L
sbci r_arg2H,0xff
__divmodhi4_exit:
ret
ENDF __divmodhi4
#endif /* defined (L_divmodhi4) */
#undef r_remH
#undef r_remL
#undef r_arg1H
#undef r_arg1L
#undef r_arg2H
#undef r_arg2L
#undef r_cnt
/*******************************************************
Division 24 / 24 => (result + remainder)
*******************************************************/
;; A[0..2]: In: Dividend; Out: Quotient
#define A0 22
#define A1 A0+1
#define A2 A0+2
;; B[0..2]: In: Divisor; Out: Remainder
#define B0 18
#define B1 B0+1
#define B2 B0+2
;; C[0..2]: Expand remainder
#define C0 __zero_reg__
#define C1 26
#define C2 25
;; Loop counter
#define r_cnt 21
#if defined (L_udivmodpsi4)
;; R24:R22 = R24:R22 udiv R20:R18
;; R20:R18 = R24:R22 umod R20:R18
;; Clobbers: R21, R25, R26
DEFUN __udivmodpsi4
; init loop counter
ldi r_cnt, 24+1
; Clear remainder and carry. C0 is already 0
clr C1
sub C2, C2
; jump to entry point
rjmp __udivmodpsi4_start
__udivmodpsi4_loop:
; shift dividend into remainder
rol C0
rol C1
rol C2
; compare remainder & divisor
cp C0, B0
cpc C1, B1
cpc C2, B2
brcs __udivmodpsi4_start ; remainder <= divisor
sub C0, B0 ; restore remainder
sbc C1, B1
sbc C2, B2
__udivmodpsi4_start:
; shift dividend (with CARRY)
rol A0
rol A1
rol A2
; decrement loop counter
dec r_cnt
brne __udivmodpsi4_loop
com A0
com A1
com A2
; div/mod results to return registers
; remainder
mov B0, C0
mov B1, C1
mov B2, C2
clr __zero_reg__ ; C0
ret
ENDF __udivmodpsi4
#endif /* defined (L_udivmodpsi4) */
#if defined (L_divmodpsi4)
;; R24:R22 = R24:R22 div R20:R18
;; R20:R18 = R24:R22 mod R20:R18
;; Clobbers: T, __tmp_reg__, R21, R25, R26
DEFUN __divmodpsi4
; R0.7 will contain the sign of the result:
; R0.7 = A.sign ^ B.sign
mov __tmp_reg__, B2
; T-flag = sign of dividend
bst A2, 7
brtc 0f
com __tmp_reg__
; Adjust dividend's sign
rcall __divmodpsi4_negA
0:
; Adjust divisor's sign
sbrc B2, 7
rcall __divmodpsi4_negB
; Do the unsigned div/mod
XCALL __udivmodpsi4
; Adjust quotient's sign
sbrc __tmp_reg__, 7
rcall __divmodpsi4_negA
; Adjust remainder's sign
brtc __divmodpsi4_end
__divmodpsi4_negB:
; Correct divisor/remainder sign
com B2
com B1
neg B0
sbci B1, -1
sbci B2, -1
ret
; Correct dividend/quotient sign
__divmodpsi4_negA:
com A2
com A1
neg A0
sbci A1, -1
sbci A2, -1
__divmodpsi4_end:
ret
ENDF __divmodpsi4
#endif /* defined (L_divmodpsi4) */
#undef A0
#undef A1
#undef A2
#undef B0
#undef B1
#undef B2
#undef C0
#undef C1
#undef C2
#undef r_cnt
/*******************************************************
Division 32 / 32 => (result + remainder)
*******************************************************/
#define r_remHH r31 /* remainder High */
#define r_remHL r30
#define r_remH r27
#define r_remL r26 /* remainder Low */
/* return: remainder */
#define r_arg1HH r25 /* dividend High */
#define r_arg1HL r24
#define r_arg1H r23
#define r_arg1L r22 /* dividend Low */
/* return: quotient */
#define r_arg2HH r21 /* divisor High */
#define r_arg2HL r20
#define r_arg2H r19
#define r_arg2L r18 /* divisor Low */
#define r_cnt __zero_reg__ /* loop count (0 after the loop!) */
#if defined (L_udivmodsi4)
DEFUN __udivmodsi4
ldi r_remL, 33 ; init loop counter
mov r_cnt, r_remL
sub r_remL,r_remL
sub r_remH,r_remH ; clear remainder and carry
mov_l r_remHL, r_remL
mov_h r_remHH, r_remH
rjmp __udivmodsi4_ep ; jump to entry point
__udivmodsi4_loop:
rol r_remL ; shift dividend into remainder
rol r_remH
rol r_remHL
rol r_remHH
cp r_remL,r_arg2L ; compare remainder & divisor
cpc r_remH,r_arg2H
cpc r_remHL,r_arg2HL
cpc r_remHH,r_arg2HH
brcs __udivmodsi4_ep ; remainder <= divisor
sub r_remL,r_arg2L ; restore remainder
sbc r_remH,r_arg2H
sbc r_remHL,r_arg2HL
sbc r_remHH,r_arg2HH
__udivmodsi4_ep:
rol r_arg1L ; shift dividend (with CARRY)
rol r_arg1H
rol r_arg1HL
rol r_arg1HH
dec r_cnt ; decrement loop counter
brne __udivmodsi4_loop
; __zero_reg__ now restored (r_cnt == 0)
com r_arg1L
com r_arg1H
com r_arg1HL
com r_arg1HH
; div/mod results to return registers, as for the ldiv() function
mov_l r_arg2L, r_arg1L ; quotient
mov_h r_arg2H, r_arg1H
mov_l r_arg2HL, r_arg1HL
mov_h r_arg2HH, r_arg1HH
mov_l r_arg1L, r_remL ; remainder
mov_h r_arg1H, r_remH
mov_l r_arg1HL, r_remHL
mov_h r_arg1HH, r_remHH
ret
ENDF __udivmodsi4
#endif /* defined (L_udivmodsi4) */
#if defined (L_divmodsi4)
DEFUN __divmodsi4
mov __tmp_reg__,r_arg2HH
bst r_arg1HH,7 ; store sign of dividend
brtc 0f
com __tmp_reg__ ; r0.7 is sign of result
rcall __divmodsi4_neg1 ; dividend negative: negate
0:
sbrc r_arg2HH,7
rcall __divmodsi4_neg2 ; divisor negative: negate
XCALL __udivmodsi4 ; do the unsigned div/mod
sbrc __tmp_reg__, 7 ; correct quotient sign
rcall __divmodsi4_neg2
brtc __divmodsi4_exit ; correct remainder sign
__divmodsi4_neg1:
;; correct dividend/remainder sign
com r_arg1HH
com r_arg1HL
com r_arg1H
neg r_arg1L
sbci r_arg1H, 0xff
sbci r_arg1HL,0xff
sbci r_arg1HH,0xff
ret
__divmodsi4_neg2:
;; correct divisor/quotient sign
com r_arg2HH
com r_arg2HL
com r_arg2H
neg r_arg2L
sbci r_arg2H,0xff
sbci r_arg2HL,0xff
sbci r_arg2HH,0xff
__divmodsi4_exit:
ret
ENDF __divmodsi4
#endif /* defined (L_divmodsi4) */
#undef r_remHH
#undef r_remHL
#undef r_remH
#undef r_remL
#undef r_arg1HH
#undef r_arg1HL
#undef r_arg1H
#undef r_arg1L
#undef r_arg2HH
#undef r_arg2HL
#undef r_arg2H
#undef r_arg2L
#undef r_cnt
/*******************************************************
Division 64 / 64
Modulo 64 % 64
*******************************************************/
;; Use Speed-optimized Version on "big" Devices, i.e. Devices with
;; at least 16k of Program Memory. For smaller Devices, depend
;; on MOVW and SP Size. There is a Connexion between SP Size and
;; Flash Size so that SP Size can be used to test for Flash Size.
#if defined (__AVR_HAVE_JMP_CALL__)
# define SPEED_DIV 8
#elif defined (__AVR_HAVE_MOVW__) && defined (__AVR_HAVE_SPH__)
# define SPEED_DIV 16
#else
# define SPEED_DIV 0
#endif
;; A[0..7]: In: Dividend;
;; Out: Quotient (T = 0)
;; Out: Remainder (T = 1)
#define A0 18
#define A1 A0+1
#define A2 A0+2
#define A3 A0+3
#define A4 A0+4
#define A5 A0+5
#define A6 A0+6
#define A7 A0+7
;; B[0..7]: In: Divisor; Out: Clobber
#define B0 10
#define B1 B0+1
#define B2 B0+2
#define B3 B0+3
#define B4 B0+4
#define B5 B0+5
#define B6 B0+6
#define B7 B0+7
;; C[0..7]: Expand remainder; Out: Remainder (unused)
#define C0 8
#define C1 C0+1
#define C2 30
#define C3 C2+1
#define C4 28
#define C5 C4+1
#define C6 26
#define C7 C6+1
;; Holds Signs during Division Routine
#define SS __tmp_reg__
;; Bit-Counter in Division Routine
#define R_cnt __zero_reg__
;; Scratch Register for Negation
#define NN r31
#if defined (L_udivdi3)
;; R25:R18 = R24:R18 umod R17:R10
;; Ordinary ABI-Function
DEFUN __umoddi3
set
rjmp __udivdi3_umoddi3
ENDF __umoddi3
;; R25:R18 = R24:R18 udiv R17:R10
;; Ordinary ABI-Function
DEFUN __udivdi3
clt
ENDF __udivdi3
DEFUN __udivdi3_umoddi3
push C0
push C1
push C4
push C5
XCALL __udivmod64
pop C5
pop C4
pop C1
pop C0
ret
ENDF __udivdi3_umoddi3
#endif /* L_udivdi3 */
#if defined (L_udivmod64)
;; Worker Routine for 64-Bit unsigned Quotient and Remainder Computation
;; No Registers saved/restored; the Callers will take Care.
;; Preserves B[] and T-flag
;; T = 0: Compute Quotient in A[]
;; T = 1: Compute Remainder in A[] and shift SS one Bit left
DEFUN __udivmod64
;; Clear Remainder (C6, C7 will follow)
clr C0
clr C1
wmov C2, C0
wmov C4, C0
ldi C7, 64
#if SPEED_DIV == 0 || SPEED_DIV == 16
;; Initialize Loop-Counter
mov R_cnt, C7
wmov C6, C0
#endif /* SPEED_DIV */
#if SPEED_DIV == 8
push A7
clr C6
1: ;; Compare shifted Devidend against Divisor
;; If -- even after Shifting -- it is smaller...
CP A7,B0 $ cpc C0,B1 $ cpc C1,B2 $ cpc C2,B3
cpc C3,B4 $ cpc C4,B5 $ cpc C5,B6 $ cpc C6,B7
brcc 2f
;; ...then we can subtract it. Thus, it is legal to shift left
$ mov C6,C5 $ mov C5,C4 $ mov C4,C3
mov C3,C2 $ mov C2,C1 $ mov C1,C0 $ mov C0,A7
mov A7,A6 $ mov A6,A5 $ mov A5,A4 $ mov A4,A3
mov A3,A2 $ mov A2,A1 $ mov A1,A0 $ clr A0
;; 8 Bits are done
subi C7, 8
brne 1b
;; Shifted 64 Bits: A7 has traveled to C7
pop C7
;; Divisor is greater than Dividend. We have:
;; A[] % B[] = A[]
;; A[] / B[] = 0
;; Thus, we can return immediately
rjmp 5f
2: ;; Initialze Bit-Counter with Number of Bits still to be performed
mov R_cnt, C7
;; Push of A7 is not needed because C7 is still 0
pop C7
clr C7
#elif SPEED_DIV == 16
;; Compare shifted Dividend against Divisor
cp A7, B3
cpc C0, B4
cpc C1, B5
cpc C2, B6
cpc C3, B7
brcc 2f
;; Divisor is greater than shifted Dividen: We can shift the Dividend
;; and it is still smaller than the Divisor --> Shift one 32-Bit Chunk
wmov C2,A6 $ wmov C0,A4
wmov A6,A2 $ wmov A4,A0
wmov A2,C6 $ wmov A0,C4
;; Set Bit Counter to 32
lsr R_cnt
2:
#elif SPEED_DIV
#error SPEED_DIV = ?
#endif /* SPEED_DIV */
;; The very Division + Remainder Routine
3: ;; Left-shift Dividend...
lsl A0 $ rol A1 $ rol A2 $ rol A3
rol A4 $ rol A5 $ rol A6 $ rol A7
;; ...into Remainder
rol C0 $ rol C1 $ rol C2 $ rol C3
rol C4 $ rol C5 $ rol C6 $ rol C7
;; Compare Remainder and Divisor
CP C0,B0 $ cpc C1,B1 $ cpc C2,B2 $ cpc C3,B3
cpc C4,B4 $ cpc C5,B5 $ cpc C6,B6 $ cpc C7,B7
brcs 4f
;; Divisor fits into Remainder: Subtract it from Remainder...
SUB C0,B0 $ sbc C1,B1 $ sbc C2,B2 $ sbc C3,B3
sbc C4,B4 $ sbc C5,B5 $ sbc C6,B6 $ sbc C7,B7
;; ...and set according Bit in the upcoming Quotient
;; The Bit will travel to its final Position
ori A0, 1
4: ;; This Bit is done
dec R_cnt
brne 3b
;; __zero_reg__ is 0 again
;; T = 0: We are fine with the Quotient in A[]
;; T = 1: Copy Remainder to A[]
5: brtc 6f
wmov A0, C0
wmov A2, C2
wmov A4, C4
wmov A6, C6
;; Move the Sign of the Result to SS.7
lsl SS
6: ret
ENDF __udivmod64
#endif /* L_udivmod64 */
#if defined (L_divdi3)
;; R25:R18 = R24:R18 mod R17:R10
;; Ordinary ABI-Function
DEFUN __moddi3
set
rjmp __divdi3_moddi3
ENDF __moddi3
;; R25:R18 = R24:R18 div R17:R10
;; Ordinary ABI-Function
DEFUN __divdi3
clt
ENDF __divdi3
DEFUN __divdi3_moddi3
#if SPEED_DIV
mov r31, A7
or r31, B7
brmi 0f
;; Both Signs are 0: the following Complexitiy is not needed
XJMP __udivdi3_umoddi3
#endif /* SPEED_DIV */
0: ;; The Prologue
;; Save 12 Registers: Y, 17...8
;; No Frame needed (X = 0)
clr r26
clr r27
ldi r30, lo8(gs(1f))
ldi r31, hi8(gs(1f))
XJMP __prologue_saves__ + ((18 - 12) * 2)
1: ;; SS.7 will contain the Sign of the Quotient (A.sign * B.sign)
;; SS.6 will contain the Sign of the Remainder (A.sign)
mov SS, A7
asr SS
;; Adjust Dividend's Sign as needed
#if SPEED_DIV
;; Compiling for Speed we know that at least one Sign must be < 0
;; Thus, if A[] >= 0 then we know B[] < 0
brpl 22f
#else
brpl 21f
#endif /* SPEED_DIV */
XCALL __negdi2
;; Adjust Divisor's Sign and SS.7 as needed
21: tst B7
brpl 3f
22: ldi NN, 1 << 7
eor SS, NN
ldi NN, -1
com B4 $ com B5 $ com B6 $ com B7
$ com B1 $ com B2 $ com B3
NEG B0
$ sbc B1,NN $ sbc B2,NN $ sbc B3,NN
sbc B4,NN $ sbc B5,NN $ sbc B6,NN $ sbc B7,NN
3: ;; Do the unsigned 64-Bit Division/Modulo (depending on T-flag)
XCALL __udivmod64
;; Adjust Result's Sign
#ifdef __AVR_ERRATA_SKIP_JMP_CALL__
tst SS
brpl 4f
#else
sbrc SS, 7
#endif /* __AVR_HAVE_JMP_CALL__ */
XCALL __negdi2
4: ;; Epilogue: Restore the Z = 12 Registers and return
in r28, __SP_L__
#if defined (__AVR_HAVE_SPH__)
in r29, __SP_H__
#else
clr r29
#endif /* #SP = 8/16 */
ldi r30, 12
XJMP __epilogue_restores__ + ((18 - 12) * 2)
ENDF __divdi3_moddi3
#undef R_cnt
#undef SS
#undef NN
#endif /* L_divdi3 */
.section .text.libgcc, "ax", @progbits
#define TT __tmp_reg__
#if defined (L_adddi3)
;; (set (reg:DI 18)
;; (plus:DI (reg:DI 18)
;; (reg:DI 10)))
DEFUN __adddi3
ADD A0,B0 $ adc A1,B1 $ adc A2,B2 $ adc A3,B3
adc A4,B4 $ adc A5,B5 $ adc A6,B6 $ adc A7,B7
ret
ENDF __adddi3
#endif /* L_adddi3 */
#if defined (L_adddi3_s8)
;; (set (reg:DI 18)
;; (plus:DI (reg:DI 18)
;; (sign_extend:SI (reg:QI 26))))
DEFUN __adddi3_s8
clr TT
sbrc r26, 7
com TT
ADD A0,r26 $ adc A1,TT $ adc A2,TT $ adc A3,TT
adc A4,TT $ adc A5,TT $ adc A6,TT $ adc A7,TT
ret
ENDF __adddi3_s8
#endif /* L_adddi3_s8 */
#if defined (L_subdi3)
;; (set (reg:DI 18)
;; (minus:DI (reg:DI 18)
;; (reg:DI 10)))
DEFUN __subdi3
SUB A0,B0 $ sbc A1,B1 $ sbc A2,B2 $ sbc A3,B3
sbc A4,B4 $ sbc A5,B5 $ sbc A6,B6 $ sbc A7,B7
ret
ENDF __subdi3
#endif /* L_subdi3 */
#if defined (L_cmpdi2)
;; (set (cc0)
;; (compare (reg:DI 18)
;; (reg:DI 10)))
DEFUN __cmpdi2
CP A0,B0 $ cpc A1,B1 $ cpc A2,B2 $ cpc A3,B3
cpc A4,B4 $ cpc A5,B5 $ cpc A6,B6 $ cpc A7,B7
ret
ENDF __cmpdi2
#endif /* L_cmpdi2 */
#if defined (L_cmpdi2_s8)
;; (set (cc0)
;; (compare (reg:DI 18)
;; (sign_extend:SI (reg:QI 26))))
DEFUN __cmpdi2_s8
clr TT
sbrc r26, 7
com TT
CP A0,r26 $ cpc A1,TT $ cpc A2,TT $ cpc A3,TT
cpc A4,TT $ cpc A5,TT $ cpc A6,TT $ cpc A7,TT
ret
ENDF __cmpdi2_s8
#endif /* L_cmpdi2_s8 */
#if defined (L_negdi2)
DEFUN __negdi2
com A4 $ com A5 $ com A6 $ com A7
$ com A1 $ com A2 $ com A3
NEG A0
$ sbci A1,-1 $ sbci A2,-1 $ sbci A3,-1
sbci A4,-1 $ sbci A5,-1 $ sbci A6,-1 $ sbci A7,-1
ret
ENDF __negdi2
#endif /* L_negdi2 */
#undef TT
#undef C7
#undef C6
#undef C5
#undef C4
#undef C3
#undef C2
#undef C1
#undef C0
#undef B7
#undef B6
#undef B5
#undef B4
#undef B3
#undef B2
#undef B1
#undef B0
#undef A7
#undef A6
#undef A5
#undef A4
#undef A3
#undef A2
#undef A1
#undef A0
.section .text.libgcc.prologue, "ax", @progbits
/**********************************
* This is a prologue subroutine
**********************************/
#if defined (L_prologue)
;; This function does not clobber T-flag; 64-bit division relies on it
DEFUN __prologue_saves__
push r2
push r3
push r4
push r5
push r6
push r7
push r8
push r9
push r10
push r11
push r12
push r13
push r14
push r15
push r16
push r17
push r28
push r29
#if !defined (__AVR_HAVE_SPH__)
in r28,__SP_L__
sub r28,r26
out __SP_L__,r28
clr r29
#elif defined (__AVR_XMEGA__)
in r28,__SP_L__
in r29,__SP_H__
sub r28,r26
sbc r29,r27
out __SP_L__,r28
out __SP_H__,r29
#else
in r28,__SP_L__
in r29,__SP_H__
sub r28,r26
sbc r29,r27
in __tmp_reg__,__SREG__
cli
out __SP_H__,r29
out __SREG__,__tmp_reg__
out __SP_L__,r28
#endif /* #SP = 8/16 */
#if defined (__AVR_HAVE_EIJMP_EICALL__)
eijmp
#else
ijmp
#endif
ENDF __prologue_saves__
#endif /* defined (L_prologue) */
/*
* This is an epilogue subroutine
*/
#if defined (L_epilogue)
DEFUN __epilogue_restores__
ldd r2,Y+18
ldd r3,Y+17
ldd r4,Y+16
ldd r5,Y+15
ldd r6,Y+14
ldd r7,Y+13
ldd r8,Y+12
ldd r9,Y+11
ldd r10,Y+10
ldd r11,Y+9
ldd r12,Y+8
ldd r13,Y+7
ldd r14,Y+6
ldd r15,Y+5
ldd r16,Y+4
ldd r17,Y+3
ldd r26,Y+2
#if !defined (__AVR_HAVE_SPH__)
ldd r29,Y+1
add r28,r30
out __SP_L__,r28
mov r28, r26
#elif defined (__AVR_XMEGA__)
ldd r27,Y+1
add r28,r30
adc r29,__zero_reg__
out __SP_L__,r28
out __SP_H__,r29
wmov 28, 26
#else
ldd r27,Y+1
add r28,r30
adc r29,__zero_reg__
in __tmp_reg__,__SREG__
cli
out __SP_H__,r29
out __SREG__,__tmp_reg__
out __SP_L__,r28
mov_l r28, r26
mov_h r29, r27
#endif /* #SP = 8/16 */
ret
ENDF __epilogue_restores__
#endif /* defined (L_epilogue) */
#ifdef L_exit
.section .fini9,"ax",@progbits
DEFUN _exit
.weak exit
exit:
ENDF _exit
/* Code from .fini8 ... .fini1 sections inserted by ld script. */
.section .fini0,"ax",@progbits
cli
__stop_program:
rjmp __stop_program
#endif /* defined (L_exit) */
#ifdef L_cleanup
.weak _cleanup
.func _cleanup
_cleanup:
ret
.endfunc
#endif /* defined (L_cleanup) */
.section .text.libgcc, "ax", @progbits
#ifdef L_tablejump
DEFUN __tablejump2__
lsl r30
rol r31
;; FALLTHRU
ENDF __tablejump2__
DEFUN __tablejump__
#if defined (__AVR_HAVE_LPMX__)
lpm __tmp_reg__, Z+
lpm r31, Z
mov r30, __tmp_reg__
#if defined (__AVR_HAVE_EIJMP_EICALL__)
eijmp
#else
ijmp
#endif
#else /* !HAVE_LPMX */
lpm
adiw r30, 1
push r0
lpm
push r0
#if defined (__AVR_HAVE_EIJMP_EICALL__)
in __tmp_reg__, __EIND__
push __tmp_reg__
#endif
ret
#endif /* !HAVE_LPMX */
ENDF __tablejump__
#endif /* defined (L_tablejump) */
#ifdef L_copy_data
.section .init4,"ax",@progbits
DEFUN __do_copy_data
#if defined(__AVR_HAVE_ELPMX__)
ldi r17, hi8(__data_end)
ldi r26, lo8(__data_start)
ldi r27, hi8(__data_start)
ldi r30, lo8(__data_load_start)
ldi r31, hi8(__data_load_start)
ldi r16, hh8(__data_load_start)
out __RAMPZ__, r16
rjmp .L__do_copy_data_start
.L__do_copy_data_loop:
elpm r0, Z+
st X+, r0
.L__do_copy_data_start:
cpi r26, lo8(__data_end)
cpc r27, r17
brne .L__do_copy_data_loop
#elif !defined(__AVR_HAVE_ELPMX__) && defined(__AVR_HAVE_ELPM__)
ldi r17, hi8(__data_end)
ldi r26, lo8(__data_start)
ldi r27, hi8(__data_start)
ldi r30, lo8(__data_load_start)
ldi r31, hi8(__data_load_start)
ldi r16, hh8(__data_load_start - 0x10000)
.L__do_copy_data_carry:
inc r16
out __RAMPZ__, r16
rjmp .L__do_copy_data_start
.L__do_copy_data_loop:
elpm
st X+, r0
adiw r30, 1
brcs .L__do_copy_data_carry
.L__do_copy_data_start:
cpi r26, lo8(__data_end)
cpc r27, r17
brne .L__do_copy_data_loop
#elif !defined(__AVR_HAVE_ELPMX__) && !defined(__AVR_HAVE_ELPM__)
ldi r17, hi8(__data_end)
ldi r26, lo8(__data_start)
ldi r27, hi8(__data_start)
ldi r30, lo8(__data_load_start)
ldi r31, hi8(__data_load_start)
rjmp .L__do_copy_data_start
.L__do_copy_data_loop:
#if defined (__AVR_HAVE_LPMX__)
lpm r0, Z+
#else
lpm
adiw r30, 1
#endif
st X+, r0
.L__do_copy_data_start:
cpi r26, lo8(__data_end)
cpc r27, r17
brne .L__do_copy_data_loop
#endif /* !defined(__AVR_HAVE_ELPMX__) && !defined(__AVR_HAVE_ELPM__) */
#if defined (__AVR_HAVE_ELPM__) && defined (__AVR_HAVE_RAMPD__)
;; Reset RAMPZ to 0 so that EBI devices don't read garbage from RAM
out __RAMPZ__, __zero_reg__
#endif /* ELPM && RAMPD */
ENDF __do_copy_data
#endif /* L_copy_data */
/* __do_clear_bss is only necessary if there is anything in .bss section. */
#ifdef L_clear_bss
.section .init4,"ax",@progbits
DEFUN __do_clear_bss
ldi r17, hi8(__bss_end)
ldi r26, lo8(__bss_start)
ldi r27, hi8(__bss_start)
rjmp .do_clear_bss_start
.do_clear_bss_loop:
st X+, __zero_reg__
.do_clear_bss_start:
cpi r26, lo8(__bss_end)
cpc r27, r17
brne .do_clear_bss_loop
ENDF __do_clear_bss
#endif /* L_clear_bss */
/* __do_global_ctors and __do_global_dtors are only necessary
if there are any constructors/destructors. */
#ifdef L_ctors
.section .init6,"ax",@progbits
DEFUN __do_global_ctors
#if defined(__AVR_HAVE_ELPM__)
ldi r17, hi8(__ctors_start)
ldi r28, lo8(__ctors_end)
ldi r29, hi8(__ctors_end)
ldi r16, hh8(__ctors_end)
rjmp .L__do_global_ctors_start
.L__do_global_ctors_loop:
sbiw r28, 2
sbc r16, __zero_reg__
mov_h r31, r29
mov_l r30, r28
out __RAMPZ__, r16
XCALL __tablejump_elpm__
.L__do_global_ctors_start:
cpi r28, lo8(__ctors_start)
cpc r29, r17
ldi r24, hh8(__ctors_start)
cpc r16, r24
brne .L__do_global_ctors_loop
#else
ldi r17, hi8(__ctors_start)
ldi r28, lo8(__ctors_end)
ldi r29, hi8(__ctors_end)
rjmp .L__do_global_ctors_start
.L__do_global_ctors_loop:
sbiw r28, 2
mov_h r31, r29
mov_l r30, r28
XCALL __tablejump__
.L__do_global_ctors_start:
cpi r28, lo8(__ctors_start)
cpc r29, r17
brne .L__do_global_ctors_loop
#endif /* defined(__AVR_HAVE_ELPM__) */
ENDF __do_global_ctors
#endif /* L_ctors */
#ifdef L_dtors
.section .fini6,"ax",@progbits
DEFUN __do_global_dtors
#if defined(__AVR_HAVE_ELPM__)
ldi r17, hi8(__dtors_end)
ldi r28, lo8(__dtors_start)
ldi r29, hi8(__dtors_start)
ldi r16, hh8(__dtors_start)
rjmp .L__do_global_dtors_start
.L__do_global_dtors_loop:
sbiw r28, 2
sbc r16, __zero_reg__
mov_h r31, r29
mov_l r30, r28
out __RAMPZ__, r16
XCALL __tablejump_elpm__
.L__do_global_dtors_start:
cpi r28, lo8(__dtors_end)
cpc r29, r17
ldi r24, hh8(__dtors_end)
cpc r16, r24
brne .L__do_global_dtors_loop
#else
ldi r17, hi8(__dtors_end)
ldi r28, lo8(__dtors_start)
ldi r29, hi8(__dtors_start)
rjmp .L__do_global_dtors_start
.L__do_global_dtors_loop:
mov_h r31, r29
mov_l r30, r28
XCALL __tablejump__
adiw r28, 2
.L__do_global_dtors_start:
cpi r28, lo8(__dtors_end)
cpc r29, r17
brne .L__do_global_dtors_loop
#endif /* defined(__AVR_HAVE_ELPM__) */
ENDF __do_global_dtors
#endif /* L_dtors */
.section .text.libgcc, "ax", @progbits
#ifdef L_tablejump_elpm
DEFUN __tablejump_elpm__
#if defined (__AVR_HAVE_ELPMX__)
elpm __tmp_reg__, Z+
elpm r31, Z
mov r30, __tmp_reg__
#if defined (__AVR_HAVE_RAMPD__)
;; Reset RAMPZ to 0 so that EBI devices don't read garbage from RAM
out __RAMPZ__, __zero_reg__
#endif /* RAMPD */
#if defined (__AVR_HAVE_EIJMP_EICALL__)
eijmp
#else
ijmp
#endif
#elif defined (__AVR_HAVE_ELPM__)
elpm
adiw r30, 1
push r0
elpm
push r0
#if defined (__AVR_HAVE_EIJMP_EICALL__)
in __tmp_reg__, __EIND__
push __tmp_reg__
#endif
ret
#endif
ENDF __tablejump_elpm__
#endif /* defined (L_tablejump_elpm) */
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Loading n bytes from Flash; n = 3,4
;; R22... = Flash[Z]
;; Clobbers: __tmp_reg__
#if (defined (L_load_3) \
|| defined (L_load_4)) \
&& !defined (__AVR_HAVE_LPMX__)
;; Destination
#define D0 22
#define D1 D0+1
#define D2 D0+2
#define D3 D0+3
.macro .load dest, n
lpm
mov \dest, r0
.if \dest != D0+\n-1
adiw r30, 1
.else
sbiw r30, \n-1
.endif
.endm
#if defined (L_load_3)
DEFUN __load_3
push D3
XCALL __load_4
pop D3
ret
ENDF __load_3
#endif /* L_load_3 */
#if defined (L_load_4)
DEFUN __load_4
.load D0, 4
.load D1, 4
.load D2, 4
.load D3, 4
ret
ENDF __load_4
#endif /* L_load_4 */
#endif /* L_load_3 || L_load_3 */
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Loading n bytes from Flash or RAM; n = 1,2,3,4
;; R22... = Flash[R21:Z] or RAM[Z] depending on R21.7
;; Clobbers: __tmp_reg__, R21, R30, R31
#if (defined (L_xload_1) \
|| defined (L_xload_2) \
|| defined (L_xload_3) \
|| defined (L_xload_4))
;; Destination
#define D0 22
#define D1 D0+1
#define D2 D0+2
#define D3 D0+3
;; Register containing bits 16+ of the address
#define HHI8 21
.macro .xload dest, n
#if defined (__AVR_HAVE_ELPMX__)
elpm \dest, Z+
#elif defined (__AVR_HAVE_ELPM__)
elpm
mov \dest, r0
.if \dest != D0+\n-1
adiw r30, 1
adc HHI8, __zero_reg__
out __RAMPZ__, HHI8
.endif
#elif defined (__AVR_HAVE_LPMX__)
lpm \dest, Z+
#else
lpm
mov \dest, r0
.if \dest != D0+\n-1
adiw r30, 1
.endif
#endif
#if defined (__AVR_HAVE_ELPM__) && defined (__AVR_HAVE_RAMPD__)
.if \dest == D0+\n-1
;; Reset RAMPZ to 0 so that EBI devices don't read garbage from RAM
out __RAMPZ__, __zero_reg__
.endif
#endif
.endm ; .xload
#if defined (L_xload_1)
DEFUN __xload_1
#if defined (__AVR_HAVE_LPMX__) && !defined (__AVR_HAVE_ELPM__)
sbrc HHI8, 7
ld D0, Z
sbrs HHI8, 7
lpm D0, Z
ret
#else
sbrc HHI8, 7
rjmp 1f
#if defined (__AVR_HAVE_ELPM__)
out __RAMPZ__, HHI8
#endif /* __AVR_HAVE_ELPM__ */
.xload D0, 1
ret
1: ld D0, Z
ret
#endif /* LPMx && ! ELPM */
ENDF __xload_1
#endif /* L_xload_1 */
#if defined (L_xload_2)
DEFUN __xload_2
sbrc HHI8, 7
rjmp 1f
#if defined (__AVR_HAVE_ELPM__)
out __RAMPZ__, HHI8
#endif /* __AVR_HAVE_ELPM__ */
.xload D0, 2
.xload D1, 2
ret
1: ld D0, Z+
ld D1, Z+
ret
ENDF __xload_2
#endif /* L_xload_2 */
#if defined (L_xload_3)
DEFUN __xload_3
sbrc HHI8, 7
rjmp 1f
#if defined (__AVR_HAVE_ELPM__)
out __RAMPZ__, HHI8
#endif /* __AVR_HAVE_ELPM__ */
.xload D0, 3
.xload D1, 3
.xload D2, 3
ret
1: ld D0, Z+
ld D1, Z+
ld D2, Z+
ret
ENDF __xload_3
#endif /* L_xload_3 */
#if defined (L_xload_4)
DEFUN __xload_4
sbrc HHI8, 7
rjmp 1f
#if defined (__AVR_HAVE_ELPM__)
out __RAMPZ__, HHI8
#endif /* __AVR_HAVE_ELPM__ */
.xload D0, 4
.xload D1, 4
.xload D2, 4
.xload D3, 4
ret
1: ld D0, Z+
ld D1, Z+
ld D2, Z+
ld D3, Z+
ret
ENDF __xload_4
#endif /* L_xload_4 */
#endif /* L_xload_{1|2|3|4} */
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; memcopy from Address Space __pgmx to RAM
;; R23:Z = Source Address
;; X = Destination Address
;; Clobbers: __tmp_reg__, R23, R24, R25, X, Z
#if defined (L_movmemx)
#define HHI8 23
#define LOOP 24
DEFUN __movmemx_qi
;; #Bytes to copy fity in 8 Bits (1..255)
;; Zero-extend Loop Counter
clr LOOP+1
;; FALLTHRU
ENDF __movmemx_qi
DEFUN __movmemx_hi
;; Read from where?
sbrc HHI8, 7
rjmp 1f
;; Read from Flash
#if defined (__AVR_HAVE_ELPM__)
out __RAMPZ__, HHI8
#endif
0: ;; Load 1 Byte from Flash...
#if defined (__AVR_HAVE_ELPMX__)
elpm r0, Z+
#elif defined (__AVR_HAVE_ELPM__)
elpm
adiw r30, 1
adc HHI8, __zero_reg__
out __RAMPZ__, HHI8
#elif defined (__AVR_HAVE_LPMX__)
lpm r0, Z+
#else
lpm
adiw r30, 1
#endif
;; ...and store that Byte to RAM Destination
st X+, r0
sbiw LOOP, 1
brne 0b
#if defined (__AVR_HAVE_ELPM__) && defined (__AVR_HAVE_RAMPD__)
;; Reset RAMPZ to 0 so that EBI devices don't read garbage from RAM
out __RAMPZ__, __zero_reg__
#endif /* ELPM && RAMPD */
ret
;; Read from RAM
1: ;; Read 1 Byte from RAM...
ld r0, Z+
;; and store that Byte to RAM Destination
st X+, r0
sbiw LOOP, 1
brne 1b
ret
ENDF __movmemx_hi
#undef HHI8
#undef LOOP
#endif /* L_movmemx */
.section .text.libgcc.builtins, "ax", @progbits
/**********************************
* Find first set Bit (ffs)
**********************************/
#if defined (L_ffssi2)
;; find first set bit
;; r25:r24 = ffs32 (r25:r22)
;; clobbers: r22, r26
DEFUN __ffssi2
clr r26
tst r22
brne 1f
subi r26, -8
or r22, r23
brne 1f
subi r26, -8
or r22, r24
brne 1f
subi r26, -8
or r22, r25
brne 1f
ret
1: mov r24, r22
XJMP __loop_ffsqi2
ENDF __ffssi2
#endif /* defined (L_ffssi2) */
#if defined (L_ffshi2)
;; find first set bit
;; r25:r24 = ffs16 (r25:r24)
;; clobbers: r26
DEFUN __ffshi2
clr r26
#ifdef __AVR_ERRATA_SKIP_JMP_CALL__
;; Some cores have problem skipping 2-word instruction
tst r24
breq 2f
#else
cpse r24, __zero_reg__
#endif /* __AVR_HAVE_JMP_CALL__ */
1: XJMP __loop_ffsqi2
2: ldi r26, 8
or r24, r25
brne 1b
ret
ENDF __ffshi2
#endif /* defined (L_ffshi2) */
#if defined (L_loop_ffsqi2)
;; Helper for ffshi2, ffssi2
;; r25:r24 = r26 + zero_extend16 (ffs8(r24))
;; r24 must be != 0
;; clobbers: r26
DEFUN __loop_ffsqi2
inc r26
lsr r24
brcc __loop_ffsqi2
mov r24, r26
clr r25
ret
ENDF __loop_ffsqi2
#endif /* defined (L_loop_ffsqi2) */
/**********************************
* Count trailing Zeros (ctz)
**********************************/
#if defined (L_ctzsi2)
;; count trailing zeros
;; r25:r24 = ctz32 (r25:r22)
;; clobbers: r26, r22
;; ctz(0) = 255
;; Note that ctz(0) in undefined for GCC
DEFUN __ctzsi2
XCALL __ffssi2
dec r24
ret
ENDF __ctzsi2
#endif /* defined (L_ctzsi2) */
#if defined (L_ctzhi2)
;; count trailing zeros
;; r25:r24 = ctz16 (r25:r24)
;; clobbers: r26
;; ctz(0) = 255
;; Note that ctz(0) in undefined for GCC
DEFUN __ctzhi2
XCALL __ffshi2
dec r24
ret
ENDF __ctzhi2
#endif /* defined (L_ctzhi2) */
/**********************************
* Count leading Zeros (clz)
**********************************/
#if defined (L_clzdi2)
;; count leading zeros
;; r25:r24 = clz64 (r25:r18)
;; clobbers: r22, r23, r26
DEFUN __clzdi2
XCALL __clzsi2
sbrs r24, 5
ret
mov_l r22, r18
mov_h r23, r19
mov_l r24, r20
mov_h r25, r21
XCALL __clzsi2
subi r24, -32
ret
ENDF __clzdi2
#endif /* defined (L_clzdi2) */
#if defined (L_clzsi2)
;; count leading zeros
;; r25:r24 = clz32 (r25:r22)
;; clobbers: r26
DEFUN __clzsi2
XCALL __clzhi2
sbrs r24, 4
ret
mov_l r24, r22
mov_h r25, r23
XCALL __clzhi2
subi r24, -16
ret
ENDF __clzsi2
#endif /* defined (L_clzsi2) */
#if defined (L_clzhi2)
;; count leading zeros
;; r25:r24 = clz16 (r25:r24)
;; clobbers: r26
DEFUN __clzhi2
clr r26
tst r25
brne 1f
subi r26, -8
or r25, r24
brne 1f
ldi r24, 16
ret
1: cpi r25, 16
brsh 3f
subi r26, -3
swap r25
2: inc r26
3: lsl r25
brcc 2b
mov r24, r26
clr r25
ret
ENDF __clzhi2
#endif /* defined (L_clzhi2) */
/**********************************
* Parity
**********************************/
#if defined (L_paritydi2)
;; r25:r24 = parity64 (r25:r18)
;; clobbers: __tmp_reg__
DEFUN __paritydi2
eor r24, r18
eor r24, r19
eor r24, r20
eor r24, r21
XJMP __paritysi2
ENDF __paritydi2
#endif /* defined (L_paritydi2) */
#if defined (L_paritysi2)
;; r25:r24 = parity32 (r25:r22)
;; clobbers: __tmp_reg__
DEFUN __paritysi2
eor r24, r22
eor r24, r23
XJMP __parityhi2
ENDF __paritysi2
#endif /* defined (L_paritysi2) */
#if defined (L_parityhi2)
;; r25:r24 = parity16 (r25:r24)
;; clobbers: __tmp_reg__
DEFUN __parityhi2
eor r24, r25
;; FALLTHRU
ENDF __parityhi2
;; r25:r24 = parity8 (r24)
;; clobbers: __tmp_reg__
DEFUN __parityqi2
;; parity is in r24[0..7]
mov __tmp_reg__, r24
swap __tmp_reg__
eor r24, __tmp_reg__
;; parity is in r24[0..3]
subi r24, -4
andi r24, -5
subi r24, -6
;; parity is in r24[0,3]
sbrc r24, 3
inc r24
;; parity is in r24[0]
andi r24, 1
clr r25
ret
ENDF __parityqi2
#endif /* defined (L_parityhi2) */
/**********************************
* Population Count
**********************************/
#if defined (L_popcounthi2)
;; population count
;; r25:r24 = popcount16 (r25:r24)
;; clobbers: __tmp_reg__
DEFUN __popcounthi2
XCALL __popcountqi2
push r24
mov r24, r25
XCALL __popcountqi2
clr r25
;; FALLTHRU
ENDF __popcounthi2
DEFUN __popcounthi2_tail
pop __tmp_reg__
add r24, __tmp_reg__
ret
ENDF __popcounthi2_tail
#endif /* defined (L_popcounthi2) */
#if defined (L_popcountsi2)
;; population count
;; r25:r24 = popcount32 (r25:r22)
;; clobbers: __tmp_reg__
DEFUN __popcountsi2
XCALL __popcounthi2
push r24
mov_l r24, r22
mov_h r25, r23
XCALL __popcounthi2
XJMP __popcounthi2_tail
ENDF __popcountsi2
#endif /* defined (L_popcountsi2) */
#if defined (L_popcountdi2)
;; population count
;; r25:r24 = popcount64 (r25:r18)
;; clobbers: r22, r23, __tmp_reg__
DEFUN __popcountdi2
XCALL __popcountsi2
push r24
mov_l r22, r18
mov_h r23, r19
mov_l r24, r20
mov_h r25, r21
XCALL __popcountsi2
XJMP __popcounthi2_tail
ENDF __popcountdi2
#endif /* defined (L_popcountdi2) */
#if defined (L_popcountqi2)
;; population count
;; r24 = popcount8 (r24)
;; clobbers: __tmp_reg__
DEFUN __popcountqi2
mov __tmp_reg__, r24
andi r24, 1
lsr __tmp_reg__
lsr __tmp_reg__
adc r24, __zero_reg__
lsr __tmp_reg__
adc r24, __zero_reg__
lsr __tmp_reg__
adc r24, __zero_reg__
lsr __tmp_reg__
adc r24, __zero_reg__
lsr __tmp_reg__
adc r24, __zero_reg__
lsr __tmp_reg__
adc r24, __tmp_reg__
ret
ENDF __popcountqi2
#endif /* defined (L_popcountqi2) */
/**********************************
* Swap bytes
**********************************/
;; swap two registers with different register number
.macro bswap a, b
eor \a, \b
eor \b, \a
eor \a, \b
.endm
#if defined (L_bswapsi2)
;; swap bytes
;; r25:r22 = bswap32 (r25:r22)
DEFUN __bswapsi2
bswap r22, r25
bswap r23, r24
ret
ENDF __bswapsi2
#endif /* defined (L_bswapsi2) */
#if defined (L_bswapdi2)
;; swap bytes
;; r25:r18 = bswap64 (r25:r18)
DEFUN __bswapdi2
bswap r18, r25
bswap r19, r24
bswap r20, r23
bswap r21, r22
ret
ENDF __bswapdi2
#endif /* defined (L_bswapdi2) */
/**********************************
* 64-bit shifts
**********************************/
#if defined (L_ashrdi3)
;; Arithmetic shift right
;; r25:r18 = ashr64 (r25:r18, r17:r16)
DEFUN __ashrdi3
push r16
andi r16, 63
breq 2f
1: asr r25
ror r24
ror r23
ror r22
ror r21
ror r20
ror r19
ror r18
dec r16
brne 1b
2: pop r16
ret
ENDF __ashrdi3
#endif /* defined (L_ashrdi3) */
#if defined (L_lshrdi3)
;; Logic shift right
;; r25:r18 = lshr64 (r25:r18, r17:r16)
DEFUN __lshrdi3
push r16
andi r16, 63
breq 2f
1: lsr r25
ror r24
ror r23
ror r22
ror r21
ror r20
ror r19
ror r18
dec r16
brne 1b
2: pop r16
ret
ENDF __lshrdi3
#endif /* defined (L_lshrdi3) */
#if defined (L_ashldi3)
;; Shift left
;; r25:r18 = ashl64 (r25:r18, r17:r16)
DEFUN __ashldi3
push r16
andi r16, 63
breq 2f
1: lsl r18
rol r19
rol r20
rol r21
rol r22
rol r23
rol r24
rol r25
dec r16
brne 1b
2: pop r16
ret
ENDF __ashldi3
#endif /* defined (L_ashldi3) */
#if defined (L_rotldi3)
;; Shift left
;; r25:r18 = rotl64 (r25:r18, r17:r16)
DEFUN __rotldi3
push r16
andi r16, 63
breq 2f
1: lsl r18
rol r19
rol r20
rol r21
rol r22
rol r23
rol r24
rol r25
adc r18, __zero_reg__
dec r16
brne 1b
2: pop r16
ret
ENDF __rotldi3
#endif /* defined (L_rotldi3) */
.section .text.libgcc.fmul, "ax", @progbits
/***********************************************************/
;;; Softmul versions of FMUL, FMULS and FMULSU to implement
;;; __builtin_avr_fmul* if !AVR_HAVE_MUL
/***********************************************************/
#define A1 24
#define B1 25
#define C0 22
#define C1 23
#define A0 __tmp_reg__
#ifdef L_fmuls
;;; r23:r22 = fmuls (r24, r25) like in FMULS instruction
;;; Clobbers: r24, r25, __tmp_reg__
DEFUN __fmuls
;; A0.7 = negate result?
mov A0, A1
eor A0, B1
;; B1 = |B1|
sbrc B1, 7
neg B1
XJMP __fmulsu_exit
ENDF __fmuls
#endif /* L_fmuls */
#ifdef L_fmulsu
;;; r23:r22 = fmulsu (r24, r25) like in FMULSU instruction
;;; Clobbers: r24, r25, __tmp_reg__
DEFUN __fmulsu
;; A0.7 = negate result?
mov A0, A1
;; FALLTHRU
ENDF __fmulsu
;; Helper for __fmuls and __fmulsu
DEFUN __fmulsu_exit
;; A1 = |A1|
sbrc A1, 7
neg A1
#ifdef __AVR_ERRATA_SKIP_JMP_CALL__
;; Some cores have problem skipping 2-word instruction
tst A0
brmi 1f
#else
sbrs A0, 7
#endif /* __AVR_HAVE_JMP_CALL__ */
XJMP __fmul
1: XCALL __fmul
;; C = -C iff A0.7 = 1
NEG2 C0
ret
ENDF __fmulsu_exit
#endif /* L_fmulsu */
#ifdef L_fmul
;;; r22:r23 = fmul (r24, r25) like in FMUL instruction
;;; Clobbers: r24, r25, __tmp_reg__
DEFUN __fmul
; clear result
clr C0
clr C1
clr A0
1: tst B1
;; 1.0 = 0x80, so test for bit 7 of B to see if A must to be added to C.
2: brpl 3f
;; C += A
add C0, A0
adc C1, A1
3: ;; A >>= 1
lsr A1
ror A0
;; B <<= 1
lsl B1
brne 2b
ret
ENDF __fmul
#endif /* L_fmul */
#undef A0
#undef A1
#undef B1
#undef C0
#undef C1
#include "lib1funcs-fixed.S"