gcc/libgo/runtime/mheapmap64.h
Ian Lance Taylor 7a9389330e Add Go frontend, libgo library, and Go testsuite.
gcc/:
	* gcc.c (default_compilers): Add entry for ".go".
	* common.opt: Add -static-libgo as a driver option.
	* doc/install.texi (Configuration): Mention libgo as an option for
	--enable-shared.  Mention go as an option for --enable-languages.
	* doc/invoke.texi (Overall Options): Mention .go as a file name
	suffix.  Mention go as a -x option.
	* doc/frontends.texi (G++ and GCC): Mention Go as a supported
	language.
	* doc/sourcebuild.texi (Top Level): Mention libgo.
	* doc/standards.texi (Standards): Add section on Go language.
	Move references for other languages into their own section.
	* doc/contrib.texi (Contributors): Mention that I contributed the
	Go frontend.
gcc/testsuite/:
	* lib/go.exp: New file.
	* lib/go-dg.exp: New file.
	* lib/go-torture.exp: New file.
	* lib/target-supports.exp (check_compile): Match // Go.

From-SVN: r167407
2010-12-03 04:34:57 +00:00

61 lines
1.8 KiB
C

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Free(v) must be able to determine the MSpan containing v.
// The MHeapMap is a 3-level radix tree mapping page numbers to MSpans.
//
// NOTE(rsc): On a 32-bit platform (= 20-bit page numbers),
// we can swap in a 2-level radix tree.
//
// NOTE(rsc): We use a 3-level tree because tcmalloc does, but
// having only three levels requires approximately 1 MB per node
// in the tree, making the minimum map footprint 3 MB.
// Using a 4-level tree would cut the minimum footprint to 256 kB.
// On the other hand, it's just virtual address space: most of
// the memory is never going to be touched, thus never paged in.
typedef struct MHeapMapNode2 MHeapMapNode2;
typedef struct MHeapMapNode3 MHeapMapNode3;
enum
{
// 64 bit address - 12 bit page size = 52 bits to map
MHeapMap_Level1Bits = 18,
MHeapMap_Level2Bits = 18,
MHeapMap_Level3Bits = 16,
MHeapMap_TotalBits =
MHeapMap_Level1Bits +
MHeapMap_Level2Bits +
MHeapMap_Level3Bits,
MHeapMap_Level1Mask = (1<<MHeapMap_Level1Bits) - 1,
MHeapMap_Level2Mask = (1<<MHeapMap_Level2Bits) - 1,
MHeapMap_Level3Mask = (1<<MHeapMap_Level3Bits) - 1,
};
struct MHeapMap
{
void *(*allocator)(uintptr);
MHeapMapNode2 *p[1<<MHeapMap_Level1Bits];
};
struct MHeapMapNode2
{
MHeapMapNode3 *p[1<<MHeapMap_Level2Bits];
};
struct MHeapMapNode3
{
MSpan *s[1<<MHeapMap_Level3Bits];
};
void runtime_MHeapMap_Init(MHeapMap *m, void *(*allocator)(uintptr));
bool runtime_MHeapMap_Preallocate(MHeapMap *m, PageID k, uintptr npages);
MSpan* runtime_MHeapMap_Get(MHeapMap *m, PageID k);
MSpan* runtime_MHeapMap_GetMaybe(MHeapMap *m, PageID k);
void runtime_MHeapMap_Set(MHeapMap *m, PageID k, MSpan *v);