gcc/libsanitizer/tsan/tsan_sync.cc
Kostya Serebryany df77f0e4ec libsanitizer merge from upstream r196090
From-SVN: r205695
2013-12-05 09:18:38 +00:00

305 lines
6.5 KiB
C++

//===-- tsan_sync.cc ------------------------------------------------------===//
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
//===----------------------------------------------------------------------===//
#include "sanitizer_common/sanitizer_placement_new.h"
#include "tsan_sync.h"
#include "tsan_rtl.h"
#include "tsan_mman.h"
namespace __tsan {
SyncVar::SyncVar(uptr addr, u64 uid)
: mtx(MutexTypeSyncVar, StatMtxSyncVar)
, addr(addr)
, uid(uid)
, owner_tid(kInvalidTid)
, last_lock()
, recursion()
, is_rw()
, is_recursive()
, is_broken()
, is_linker_init() {
}
SyncTab::Part::Part()
: mtx(MutexTypeSyncTab, StatMtxSyncTab)
, val() {
}
SyncTab::SyncTab() {
}
SyncTab::~SyncTab() {
for (int i = 0; i < kPartCount; i++) {
while (tab_[i].val) {
SyncVar *tmp = tab_[i].val;
tab_[i].val = tmp->next;
DestroyAndFree(tmp);
}
}
}
SyncVar* SyncTab::GetOrCreateAndLock(ThreadState *thr, uptr pc,
uptr addr, bool write_lock) {
return GetAndLock(thr, pc, addr, write_lock, true);
}
SyncVar* SyncTab::GetIfExistsAndLock(uptr addr, bool write_lock) {
return GetAndLock(0, 0, addr, write_lock, false);
}
SyncVar* SyncTab::Create(ThreadState *thr, uptr pc, uptr addr) {
StatInc(thr, StatSyncCreated);
void *mem = internal_alloc(MBlockSync, sizeof(SyncVar));
const u64 uid = atomic_fetch_add(&uid_gen_, 1, memory_order_relaxed);
SyncVar *res = new(mem) SyncVar(addr, uid);
#ifndef TSAN_GO
res->creation_stack_id = CurrentStackId(thr, pc);
#endif
return res;
}
SyncVar* SyncTab::GetAndLock(ThreadState *thr, uptr pc,
uptr addr, bool write_lock, bool create) {
#ifndef TSAN_GO
{ // NOLINT
SyncVar *res = GetJavaSync(thr, pc, addr, write_lock, create);
if (res)
return res;
}
// Here we ask only PrimaryAllocator, because
// SecondaryAllocator::PointerIsMine() is slow and we have fallback on
// the hashmap anyway.
if (PrimaryAllocator::PointerIsMine((void*)addr)) {
MBlock *b = user_mblock(thr, (void*)addr);
CHECK_NE(b, 0);
MBlock::ScopedLock l(b);
SyncVar *res = 0;
for (res = b->ListHead(); res; res = res->next) {
if (res->addr == addr)
break;
}
if (res == 0) {
if (!create)
return 0;
res = Create(thr, pc, addr);
b->ListPush(res);
}
if (write_lock)
res->mtx.Lock();
else
res->mtx.ReadLock();
return res;
}
#endif
Part *p = &tab_[PartIdx(addr)];
{
ReadLock l(&p->mtx);
for (SyncVar *res = p->val; res; res = res->next) {
if (res->addr == addr) {
if (write_lock)
res->mtx.Lock();
else
res->mtx.ReadLock();
return res;
}
}
}
if (!create)
return 0;
{
Lock l(&p->mtx);
SyncVar *res = p->val;
for (; res; res = res->next) {
if (res->addr == addr)
break;
}
if (res == 0) {
res = Create(thr, pc, addr);
res->next = p->val;
p->val = res;
}
if (write_lock)
res->mtx.Lock();
else
res->mtx.ReadLock();
return res;
}
}
SyncVar* SyncTab::GetAndRemove(ThreadState *thr, uptr pc, uptr addr) {
#ifndef TSAN_GO
{ // NOLINT
SyncVar *res = GetAndRemoveJavaSync(thr, pc, addr);
if (res)
return res;
}
if (PrimaryAllocator::PointerIsMine((void*)addr)) {
MBlock *b = user_mblock(thr, (void*)addr);
CHECK_NE(b, 0);
SyncVar *res = 0;
{
MBlock::ScopedLock l(b);
res = b->ListHead();
if (res) {
if (res->addr == addr) {
if (res->is_linker_init)
return 0;
b->ListPop();
} else {
SyncVar **prev = &res->next;
res = *prev;
while (res) {
if (res->addr == addr) {
if (res->is_linker_init)
return 0;
*prev = res->next;
break;
}
prev = &res->next;
res = *prev;
}
}
if (res) {
StatInc(thr, StatSyncDestroyed);
res->mtx.Lock();
res->mtx.Unlock();
}
}
}
return res;
}
#endif
Part *p = &tab_[PartIdx(addr)];
SyncVar *res = 0;
{
Lock l(&p->mtx);
SyncVar **prev = &p->val;
res = *prev;
while (res) {
if (res->addr == addr) {
if (res->is_linker_init)
return 0;
*prev = res->next;
break;
}
prev = &res->next;
res = *prev;
}
}
if (res) {
StatInc(thr, StatSyncDestroyed);
res->mtx.Lock();
res->mtx.Unlock();
}
return res;
}
int SyncTab::PartIdx(uptr addr) {
return (addr >> 3) % kPartCount;
}
StackTrace::StackTrace()
: n_()
, s_()
, c_() {
}
StackTrace::StackTrace(uptr *buf, uptr cnt)
: n_()
, s_(buf)
, c_(cnt) {
CHECK_NE(buf, 0);
CHECK_NE(cnt, 0);
}
StackTrace::~StackTrace() {
Reset();
}
void StackTrace::Reset() {
if (s_ && !c_) {
CHECK_NE(n_, 0);
internal_free(s_);
s_ = 0;
}
n_ = 0;
}
void StackTrace::Init(const uptr *pcs, uptr cnt) {
Reset();
if (cnt == 0)
return;
if (c_) {
CHECK_NE(s_, 0);
CHECK_LE(cnt, c_);
} else {
s_ = (uptr*)internal_alloc(MBlockStackTrace, cnt * sizeof(s_[0]));
}
n_ = cnt;
internal_memcpy(s_, pcs, cnt * sizeof(s_[0]));
}
void StackTrace::ObtainCurrent(ThreadState *thr, uptr toppc) {
Reset();
n_ = thr->shadow_stack_pos - thr->shadow_stack;
if (n_ + !!toppc == 0)
return;
uptr start = 0;
if (c_) {
CHECK_NE(s_, 0);
if (n_ + !!toppc > c_) {
start = n_ - c_ + !!toppc;
n_ = c_ - !!toppc;
}
} else {
// Cap potentially huge stacks.
if (n_ + !!toppc > kTraceStackSize) {
start = n_ - kTraceStackSize + !!toppc;
n_ = kTraceStackSize - !!toppc;
}
s_ = (uptr*)internal_alloc(MBlockStackTrace,
(n_ + !!toppc) * sizeof(s_[0]));
}
for (uptr i = 0; i < n_; i++)
s_[i] = thr->shadow_stack[start + i];
if (toppc) {
s_[n_] = toppc;
n_++;
}
}
void StackTrace::CopyFrom(const StackTrace& other) {
Reset();
Init(other.Begin(), other.Size());
}
bool StackTrace::IsEmpty() const {
return n_ == 0;
}
uptr StackTrace::Size() const {
return n_;
}
uptr StackTrace::Get(uptr i) const {
CHECK_LT(i, n_);
return s_[i];
}
const uptr *StackTrace::Begin() const {
return s_;
}
} // namespace __tsan