gcc/libstdc++-v3/include/bits/stl_list.h
2004-02-08 05:46:42 +01:00

1247 lines
40 KiB
C++

// List implementation -*- C++ -*-
// Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
/*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1996,1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/** @file stl_list.h
* This is an internal header file, included by other library headers.
* You should not attempt to use it directly.
*/
#ifndef _LIST_H
#define _LIST_H 1
#include <bits/concept_check.h>
namespace __gnu_norm
{
// Supporting structures are split into common and templated types; the
// latter publicly inherits from the former in an effort to reduce code
// duplication. This results in some "needless" static_cast'ing later on,
// but it's all safe downcasting.
/// @if maint Common part of a node in the %list. @endif
struct _List_node_base
{
_List_node_base* _M_next; ///< Self-explanatory
_List_node_base* _M_prev; ///< Self-explanatory
static void
swap(_List_node_base& __x, _List_node_base& __y);
void
transfer(_List_node_base * const __first,
_List_node_base * const __last);
void
reverse();
void
hook(_List_node_base * const __position);
void
unhook();
};
/// @if maint An actual node in the %list. @endif
template<typename _Tp>
struct _List_node : public _List_node_base
{
_Tp _M_data; ///< User's data.
};
/**
* @brief A list::iterator.
*
* @if maint
* All the functions are op overloads.
* @endif
*/
template<typename _Tp>
struct _List_iterator
{
typedef _List_iterator<_Tp> _Self;
typedef _List_node<_Tp> _Node;
typedef ptrdiff_t difference_type;
typedef bidirectional_iterator_tag iterator_category;
typedef _Tp value_type;
typedef _Tp* pointer;
typedef _Tp& reference;
_List_iterator() { }
_List_iterator(_List_node_base* __x)
: _M_node(__x) { }
// Must downcast from List_node_base to _List_node to get to _M_data.
reference
operator*() const
{ return static_cast<_Node*>(_M_node)->_M_data; }
pointer
operator->() const
{ return &static_cast<_Node*>(_M_node)->_M_data; }
_Self&
operator++()
{
_M_node = _M_node->_M_next;
return *this;
}
_Self
operator++(int)
{
_Self __tmp = *this;
_M_node = _M_node->_M_next;
return __tmp;
}
_Self&
operator--()
{
_M_node = _M_node->_M_prev;
return *this;
}
_Self
operator--(int)
{
_Self __tmp = *this;
_M_node = _M_node->_M_prev;
return __tmp;
}
bool
operator==(const _Self& __x) const
{ return _M_node == __x._M_node; }
bool
operator!=(const _Self& __x) const
{ return _M_node != __x._M_node; }
// The only member points to the %list element.
_List_node_base* _M_node;
};
/**
* @brief A list::const_iterator.
*
* @if maint
* All the functions are op overloads.
* @endif
*/
template<typename _Tp>
struct _List_const_iterator
{
typedef _List_const_iterator<_Tp> _Self;
typedef const _List_node<_Tp> _Node;
typedef _List_iterator<_Tp> iterator;
typedef ptrdiff_t difference_type;
typedef bidirectional_iterator_tag iterator_category;
typedef _Tp value_type;
typedef const _Tp* pointer;
typedef const _Tp& reference;
_List_const_iterator() { }
_List_const_iterator(const _List_node_base* __x)
: _M_node(__x) { }
_List_const_iterator(const iterator& __x)
: _M_node(__x._M_node) { }
// Must downcast from List_node_base to _List_node to get to
// _M_data.
reference
operator*() const
{ return static_cast<_Node*>(_M_node)->_M_data; }
pointer
operator->() const
{ return &static_cast<_Node*>(_M_node)->_M_data; }
_Self&
operator++()
{
_M_node = _M_node->_M_next;
return *this;
}
_Self
operator++(int)
{
_Self __tmp = *this;
_M_node = _M_node->_M_next;
return __tmp;
}
_Self&
operator--()
{
_M_node = _M_node->_M_prev;
return *this;
}
_Self
operator--(int)
{
_Self __tmp = *this;
_M_node = _M_node->_M_prev;
return __tmp;
}
bool
operator==(const _Self& __x) const
{ return _M_node == __x._M_node; }
bool
operator!=(const _Self& __x) const
{ return _M_node != __x._M_node; }
// The only member points to the %list element.
const _List_node_base* _M_node;
};
template<typename _Val>
inline bool
operator==(const _List_iterator<_Val>& __x,
const _List_const_iterator<_Val>& __y)
{ return __x._M_node == __y._M_node; }
template<typename _Val>
inline bool
operator!=(const _List_iterator<_Val>& __x,
const _List_const_iterator<_Val>& __y)
{ return __x._M_node != __y._M_node; }
/**
* @if maint
* See bits/stl_deque.h's _Deque_base for an explanation.
* @endif
*/
template<typename _Tp, typename _Alloc>
class _List_base
: public _Alloc::template rebind<_List_node<_Tp> >::other
{
protected:
// NOTA BENE
// The stored instance is not actually of "allocator_type"'s
// type. Instead we rebind the type to
// Allocator<List_node<Tp>>, which according to [20.1.5]/4
// should probably be the same. List_node<Tp> is not the same
// size as Tp (it's two pointers larger), and specializations on
// Tp may go unused because List_node<Tp> is being bound
// instead.
//
// We put this to the test in the constructors and in
// get_allocator, where we use conversions between
// allocator_type and _Node_Alloc_type. The conversion is
// required by table 32 in [20.1.5].
typedef typename _Alloc::template rebind<_List_node<_Tp> >::other
_Node_Alloc_type;
_List_node_base _M_node;
_List_node<_Tp>*
_M_get_node()
{ return _Node_Alloc_type::allocate(1); }
void
_M_put_node(_List_node<_Tp>* __p)
{ _Node_Alloc_type::deallocate(__p, 1); }
public:
typedef _Alloc allocator_type;
allocator_type
get_allocator() const
{ return allocator_type(*static_cast<const _Node_Alloc_type*>(this)); }
_List_base(const allocator_type& __a)
: _Node_Alloc_type(__a)
{ _M_init(); }
// This is what actually destroys the list.
~_List_base()
{ _M_clear(); }
void
_M_clear();
void
_M_init()
{
this->_M_node._M_next = &this->_M_node;
this->_M_node._M_prev = &this->_M_node;
}
};
/**
* @brief A standard container with linear time access to elements,
* and fixed time insertion/deletion at any point in the sequence.
*
* @ingroup Containers
* @ingroup Sequences
*
* Meets the requirements of a <a href="tables.html#65">container</a>, a
* <a href="tables.html#66">reversible container</a>, and a
* <a href="tables.html#67">sequence</a>, including the
* <a href="tables.html#68">optional sequence requirements</a> with the
* %exception of @c at and @c operator[].
*
* This is a @e doubly @e linked %list. Traversal up and down the
* %list requires linear time, but adding and removing elements (or
* @e nodes) is done in constant time, regardless of where the
* change takes place. Unlike std::vector and std::deque,
* random-access iterators are not provided, so subscripting ( @c
* [] ) access is not allowed. For algorithms which only need
* sequential access, this lack makes no difference.
*
* Also unlike the other standard containers, std::list provides
* specialized algorithms %unique to linked lists, such as
* splicing, sorting, and in-place reversal.
*
* @if maint
* A couple points on memory allocation for list<Tp>:
*
* First, we never actually allocate a Tp, we allocate
* List_node<Tp>'s and trust [20.1.5]/4 to DTRT. This is to ensure
* that after elements from %list<X,Alloc1> are spliced into
* %list<X,Alloc2>, destroying the memory of the second %list is a
* valid operation, i.e., Alloc1 giveth and Alloc2 taketh away.
*
* Second, a %list conceptually represented as
* @code
* A <---> B <---> C <---> D
* @endcode
* is actually circular; a link exists between A and D. The %list
* class holds (as its only data member) a private list::iterator
* pointing to @e D, not to @e A! To get to the head of the %list,
* we start at the tail and move forward by one. When this member
* iterator's next/previous pointers refer to itself, the %list is
* %empty. @endif
*/
template<typename _Tp, typename _Alloc = allocator<_Tp> >
class list : protected _List_base<_Tp, _Alloc>
{
// concept requirements
__glibcxx_class_requires(_Tp, _SGIAssignableConcept)
typedef _List_base<_Tp, _Alloc> _Base;
public:
typedef _Tp value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef _List_iterator<_Tp> iterator;
typedef _List_const_iterator<_Tp> const_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef typename _Base::allocator_type allocator_type;
protected:
// Note that pointers-to-_Node's can be ctor-converted to
// iterator types.
typedef _List_node<_Tp> _Node;
/** @if maint
* One data member plus two memory-handling functions. If the
* _Alloc type requires separate instances, then one of those
* will also be included, accumulated from the topmost parent.
* @endif
*/
using _Base::_M_node;
using _Base::_M_put_node;
using _Base::_M_get_node;
/**
* @if maint
* @param x An instance of user data.
*
* Allocates space for a new node and constructs a copy of @a x in it.
* @endif
*/
_Node*
_M_create_node(const value_type& __x)
{
_Node* __p = this->_M_get_node();
try
{
std::_Construct(&__p->_M_data, __x);
}
catch(...)
{
_M_put_node(__p);
__throw_exception_again;
}
return __p;
}
/**
* @if maint
* Allocates space for a new node and default-constructs a new
* instance of @c value_type in it.
* @endif
*/
_Node*
_M_create_node()
{
_Node* __p = this->_M_get_node();
try
{
std::_Construct(&__p->_M_data);
}
catch(...)
{
_M_put_node(__p);
__throw_exception_again;
}
return __p;
}
public:
// [23.2.2.1] construct/copy/destroy
// (assign() and get_allocator() are also listed in this section)
/**
* @brief Default constructor creates no elements.
*/
explicit
list(const allocator_type& __a = allocator_type())
: _Base(__a) { }
/**
* @brief Create a %list with copies of an exemplar element.
* @param n The number of elements to initially create.
* @param value An element to copy.
*
* This constructor fills the %list with @a n copies of @a value.
*/
list(size_type __n, const value_type& __value,
const allocator_type& __a = allocator_type())
: _Base(__a)
{ this->insert(begin(), __n, __value); }
/**
* @brief Create a %list with default elements.
* @param n The number of elements to initially create.
*
* This constructor fills the %list with @a n copies of a
* default-constructed element.
*/
explicit
list(size_type __n)
: _Base(allocator_type())
{ this->insert(begin(), __n, value_type()); }
/**
* @brief %List copy constructor.
* @param x A %list of identical element and allocator types.
*
* The newly-created %list uses a copy of the allocation object used
* by @a x.
*/
list(const list& __x)
: _Base(__x.get_allocator())
{ this->insert(begin(), __x.begin(), __x.end()); }
/**
* @brief Builds a %list from a range.
* @param first An input iterator.
* @param last An input iterator.
*
* Create a %list consisting of copies of the elements from
* [@a first,@a last). This is linear in N (where N is
* distance(@a first,@a last)).
*
* @if maint
* We don't need any dispatching tricks here, because insert does all of
* that anyway.
* @endif
*/
template<typename _InputIterator>
list(_InputIterator __first, _InputIterator __last,
const allocator_type& __a = allocator_type())
: _Base(__a)
{ this->insert(begin(), __first, __last); }
/**
* No explicit dtor needed as the _Base dtor takes care of
* things. The _Base dtor only erases the elements, and note
* that if the elements themselves are pointers, the pointed-to
* memory is not touched in any way. Managing the pointer is
* the user's responsibilty.
*/
/**
* @brief %List assignment operator.
* @param x A %list of identical element and allocator types.
*
* All the elements of @a x are copied, but unlike the copy
* constructor, the allocator object is not copied.
*/
list&
operator=(const list& __x);
/**
* @brief Assigns a given value to a %list.
* @param n Number of elements to be assigned.
* @param val Value to be assigned.
*
* This function fills a %list with @a n copies of the given
* value. Note that the assignment completely changes the %list
* and that the resulting %list's size is the same as the number
* of elements assigned. Old data may be lost.
*/
void
assign(size_type __n, const value_type& __val)
{ _M_fill_assign(__n, __val); }
/**
* @brief Assigns a range to a %list.
* @param first An input iterator.
* @param last An input iterator.
*
* This function fills a %list with copies of the elements in the
* range [@a first,@a last).
*
* Note that the assignment completely changes the %list and
* that the resulting %list's size is the same as the number of
* elements assigned. Old data may be lost.
*/
template<typename _InputIterator>
void
assign(_InputIterator __first, _InputIterator __last)
{
// Check whether it's an integral type. If so, it's not an iterator.
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_assign_dispatch(__first, __last, _Integral());
}
/// Get a copy of the memory allocation object.
allocator_type
get_allocator() const
{ return _Base::get_allocator(); }
// iterators
/**
* Returns a read/write iterator that points to the first element in the
* %list. Iteration is done in ordinary element order.
*/
iterator
begin()
{ return this->_M_node._M_next; }
/**
* Returns a read-only (constant) iterator that points to the
* first element in the %list. Iteration is done in ordinary
* element order.
*/
const_iterator
begin() const
{ return this->_M_node._M_next; }
/**
* Returns a read/write iterator that points one past the last
* element in the %list. Iteration is done in ordinary element
* order.
*/
iterator
end() { return &this->_M_node; }
/**
* Returns a read-only (constant) iterator that points one past
* the last element in the %list. Iteration is done in ordinary
* element order.
*/
const_iterator
end() const
{ return &this->_M_node; }
/**
* Returns a read/write reverse iterator that points to the last
* element in the %list. Iteration is done in reverse element
* order.
*/
reverse_iterator
rbegin()
{ return reverse_iterator(end()); }
/**
* Returns a read-only (constant) reverse iterator that points to
* the last element in the %list. Iteration is done in reverse
* element order.
*/
const_reverse_iterator
rbegin() const
{ return const_reverse_iterator(end()); }
/**
* Returns a read/write reverse iterator that points to one
* before the first element in the %list. Iteration is done in
* reverse element order.
*/
reverse_iterator
rend()
{ return reverse_iterator(begin()); }
/**
* Returns a read-only (constant) reverse iterator that points to one
* before the first element in the %list. Iteration is done in reverse
* element order.
*/
const_reverse_iterator
rend() const
{ return const_reverse_iterator(begin()); }
// [23.2.2.2] capacity
/**
* Returns true if the %list is empty. (Thus begin() would equal
* end().)
*/
bool
empty() const
{ return this->_M_node._M_next == &this->_M_node; }
/** Returns the number of elements in the %list. */
size_type
size() const
{ return std::distance(begin(), end()); }
/** Returns the size() of the largest possible %list. */
size_type
max_size() const
{ return size_type(-1); }
/**
* @brief Resizes the %list to the specified number of elements.
* @param new_size Number of elements the %list should contain.
* @param x Data with which new elements should be populated.
*
* This function will %resize the %list to the specified number
* of elements. If the number is smaller than the %list's
* current size the %list is truncated, otherwise the %list is
* extended and new elements are populated with given data.
*/
void
resize(size_type __new_size, const value_type& __x);
/**
* @brief Resizes the %list to the specified number of elements.
* @param new_size Number of elements the %list should contain.
*
* This function will resize the %list to the specified number of
* elements. If the number is smaller than the %list's current
* size the %list is truncated, otherwise the %list is extended
* and new elements are default-constructed.
*/
void
resize(size_type __new_size)
{ this->resize(__new_size, value_type()); }
// element access
/**
* Returns a read/write reference to the data at the first
* element of the %list.
*/
reference
front()
{ return *begin(); }
/**
* Returns a read-only (constant) reference to the data at the first
* element of the %list.
*/
const_reference
front() const
{ return *begin(); }
/**
* Returns a read/write reference to the data at the last element
* of the %list.
*/
reference
back()
{ return *(--end()); }
/**
* Returns a read-only (constant) reference to the data at the last
* element of the %list.
*/
const_reference
back() const
{ return *(--end()); }
// [23.2.2.3] modifiers
/**
* @brief Add data to the front of the %list.
* @param x Data to be added.
*
* This is a typical stack operation. The function creates an
* element at the front of the %list and assigns the given data
* to it. Due to the nature of a %list this operation can be
* done in constant time, and does not invalidate iterators and
* references.
*/
void
push_front(const value_type& __x)
{ this->_M_insert(begin(), __x); }
/**
* @brief Removes first element.
*
* This is a typical stack operation. It shrinks the %list by
* one. Due to the nature of a %list this operation can be done
* in constant time, and only invalidates iterators/references to
* the element being removed.
*
* Note that no data is returned, and if the first element's data
* is needed, it should be retrieved before pop_front() is
* called.
*/
void
pop_front()
{ this->_M_erase(begin()); }
/**
* @brief Add data to the end of the %list.
* @param x Data to be added.
*
* This is a typical stack operation. The function creates an
* element at the end of the %list and assigns the given data to
* it. Due to the nature of a %list this operation can be done
* in constant time, and does not invalidate iterators and
* references.
*/
void
push_back(const value_type& __x)
{ this->_M_insert(end(), __x); }
/**
* @brief Removes last element.
*
* This is a typical stack operation. It shrinks the %list by
* one. Due to the nature of a %list this operation can be done
* in constant time, and only invalidates iterators/references to
* the element being removed.
*
* Note that no data is returned, and if the last element's data
* is needed, it should be retrieved before pop_back() is called.
*/
void
pop_back()
{ this->_M_erase(this->_M_node._M_prev); }
/**
* @brief Inserts given value into %list before specified iterator.
* @param position An iterator into the %list.
* @param x Data to be inserted.
* @return An iterator that points to the inserted data.
*
* This function will insert a copy of the given value before
* the specified location. Due to the nature of a %list this
* operation can be done in constant time, and does not
* invalidate iterators and references.
*/
iterator
insert(iterator __position, const value_type& __x);
/**
* @brief Inserts a number of copies of given data into the %list.
* @param position An iterator into the %list.
* @param n Number of elements to be inserted.
* @param x Data to be inserted.
*
* This function will insert a specified number of copies of the
* given data before the location specified by @a position.
*
* Due to the nature of a %list this operation can be done in
* constant time, and does not invalidate iterators and
* references.
*/
void
insert(iterator __position, size_type __n, const value_type& __x)
{ _M_fill_insert(__position, __n, __x); }
/**
* @brief Inserts a range into the %list.
* @param position An iterator into the %list.
* @param first An input iterator.
* @param last An input iterator.
*
* This function will insert copies of the data in the range [@a
* first,@a last) into the %list before the location specified by
* @a position.
*
* Due to the nature of a %list this operation can be done in
* constant time, and does not invalidate iterators and
* references.
*/
template<typename _InputIterator>
void
insert(iterator __position, _InputIterator __first,
_InputIterator __last)
{
// Check whether it's an integral type. If so, it's not an iterator.
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_insert_dispatch(__position, __first, __last, _Integral());
}
/**
* @brief Remove element at given position.
* @param position Iterator pointing to element to be erased.
* @return An iterator pointing to the next element (or end()).
*
* This function will erase the element at the given position and thus
* shorten the %list by one.
*
* Due to the nature of a %list this operation can be done in
* constant time, and only invalidates iterators/references to
* the element being removed. The user is also cautioned that
* this function only erases the element, and that if the element
* is itself a pointer, the pointed-to memory is not touched in
* any way. Managing the pointer is the user's responsibilty.
*/
iterator
erase(iterator __position);
/**
* @brief Remove a range of elements.
* @param first Iterator pointing to the first element to be erased.
* @param last Iterator pointing to one past the last element to be
* erased.
* @return An iterator pointing to the element pointed to by @a last
* prior to erasing (or end()).
*
* This function will erase the elements in the range @a
* [first,last) and shorten the %list accordingly.
*
* Due to the nature of a %list this operation can be done in
* constant time, and only invalidates iterators/references to
* the element being removed. The user is also cautioned that
* this function only erases the elements, and that if the
* elements themselves are pointers, the pointed-to memory is not
* touched in any way. Managing the pointer is the user's
* responsibilty.
*/
iterator
erase(iterator __first, iterator __last)
{
while (__first != __last)
__first = erase(__first);
return __last;
}
/**
* @brief Swaps data with another %list.
* @param x A %list of the same element and allocator types.
*
* This exchanges the elements between two lists in constant
* time. Note that the global std::swap() function is
* specialized such that std::swap(l1,l2) will feed to this
* function.
*/
void
swap(list& __x)
{ _List_node_base::swap(this->_M_node,__x._M_node); }
/**
* Erases all the elements. Note that this function only erases
* the elements, and that if the elements themselves are
* pointers, the pointed-to memory is not touched in any way.
* Managing the pointer is the user's responsibilty.
*/
void
clear()
{
_Base::_M_clear();
_Base::_M_init();
}
// [23.2.2.4] list operations
/**
* @brief Insert contents of another %list.
* @param position Iterator referencing the element to insert before.
* @param x Source list.
*
* The elements of @a x are inserted in constant time in front of
* the element referenced by @a position. @a x becomes an empty
* list.
*/
void
splice(iterator __position, list& __x)
{
if (!__x.empty())
this->_M_transfer(__position, __x.begin(), __x.end());
}
/**
* @brief Insert element from another %list.
* @param position Iterator referencing the element to insert before.
* @param x Source list.
* @param i Iterator referencing the element to move.
*
* Removes the element in list @a x referenced by @a i and
* inserts it into the current list before @a position.
*/
void
splice(iterator __position, list&, iterator __i)
{
iterator __j = __i;
++__j;
if (__position == __i || __position == __j)
return;
this->_M_transfer(__position, __i, __j);
}
/**
* @brief Insert range from another %list.
* @param position Iterator referencing the element to insert before.
* @param x Source list.
* @param first Iterator referencing the start of range in x.
* @param last Iterator referencing the end of range in x.
*
* Removes elements in the range [first,last) and inserts them
* before @a position in constant time.
*
* Undefined if @a position is in [first,last).
*/
void
splice(iterator __position, list&, iterator __first, iterator __last)
{
if (__first != __last)
this->_M_transfer(__position, __first, __last);
}
/**
* @brief Remove all elements equal to value.
* @param value The value to remove.
*
* Removes every element in the list equal to @a value.
* Remaining elements stay in list order. Note that this
* function only erases the elements, and that if the elements
* themselves are pointers, the pointed-to memory is not
* touched in any way. Managing the pointer is the user's
* responsibilty.
*/
void
remove(const _Tp& __value);
/**
* @brief Remove all elements satisfying a predicate.
* @param Predicate Unary predicate function or object.
*
* Removes every element in the list for which the predicate
* returns true. Remaining elements stay in list order. Note
* that this function only erases the elements, and that if the
* elements themselves are pointers, the pointed-to memory is
* not touched in any way. Managing the pointer is the user's
* responsibilty.
*/
template<typename _Predicate>
void
remove_if(_Predicate);
/**
* @brief Remove consecutive duplicate elements.
*
* For each consecutive set of elements with the same value,
* remove all but the first one. Remaining elements stay in
* list order. Note that this function only erases the
* elements, and that if the elements themselves are pointers,
* the pointed-to memory is not touched in any way. Managing
* the pointer is the user's responsibilty.
*/
void
unique();
/**
* @brief Remove consecutive elements satisfying a predicate.
* @param BinaryPredicate Binary predicate function or object.
*
* For each consecutive set of elements [first,last) that
* satisfy predicate(first,i) where i is an iterator in
* [first,last), remove all but the first one. Remaining
* elements stay in list order. Note that this function only
* erases the elements, and that if the elements themselves are
* pointers, the pointed-to memory is not touched in any way.
* Managing the pointer is the user's responsibilty.
*/
template<typename _BinaryPredicate>
void
unique(_BinaryPredicate);
/**
* @brief Merge sorted lists.
* @param x Sorted list to merge.
*
* Assumes that both @a x and this list are sorted according to
* operator<(). Merges elements of @a x into this list in
* sorted order, leaving @a x empty when complete. Elements in
* this list precede elements in @a x that are equal.
*/
void
merge(list& __x);
/**
* @brief Merge sorted lists according to comparison function.
* @param x Sorted list to merge.
* @param StrictWeakOrdering Comparison function definining
* sort order.
*
* Assumes that both @a x and this list are sorted according to
* StrictWeakOrdering. Merges elements of @a x into this list
* in sorted order, leaving @a x empty when complete. Elements
* in this list precede elements in @a x that are equivalent
* according to StrictWeakOrdering().
*/
template<typename _StrictWeakOrdering>
void
merge(list&, _StrictWeakOrdering);
/**
* @brief Reverse the elements in list.
*
* Reverse the order of elements in the list in linear time.
*/
void
reverse()
{ this->_M_node.reverse(); }
/**
* @brief Sort the elements.
*
* Sorts the elements of this list in NlogN time. Equivalent
* elements remain in list order.
*/
void
sort();
/**
* @brief Sort the elements according to comparison function.
*
* Sorts the elements of this list in NlogN time. Equivalent
* elements remain in list order.
*/
template<typename _StrictWeakOrdering>
void
sort(_StrictWeakOrdering);
protected:
// Internal assign functions follow.
// Called by the range assign to implement [23.1.1]/9
template<typename _Integer>
void
_M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
{
_M_fill_assign(static_cast<size_type>(__n),
static_cast<value_type>(__val));
}
// Called by the range assign to implement [23.1.1]/9
template<typename _InputIterator>
void
_M_assign_dispatch(_InputIterator __first, _InputIterator __last,
__false_type);
// Called by assign(n,t), and the range assign when it turns out
// to be the same thing.
void
_M_fill_assign(size_type __n, const value_type& __val);
// Internal insert functions follow.
// Called by the range insert to implement [23.1.1]/9
template<typename _Integer>
void
_M_insert_dispatch(iterator __pos, _Integer __n, _Integer __x,
__true_type)
{
_M_fill_insert(__pos, static_cast<size_type>(__n),
static_cast<value_type>(__x));
}
// Called by the range insert to implement [23.1.1]/9
template<typename _InputIterator>
void
_M_insert_dispatch(iterator __pos,
_InputIterator __first, _InputIterator __last,
__false_type)
{
for ( ; __first != __last; ++__first)
_M_insert(__pos, *__first);
}
// Called by insert(p,n,x), and the range insert when it turns out
// to be the same thing.
void
_M_fill_insert(iterator __pos, size_type __n, const value_type& __x)
{
for ( ; __n > 0; --__n)
_M_insert(__pos, __x);
}
// Moves the elements from [first,last) before position.
void
_M_transfer(iterator __position, iterator __first, iterator __last)
{ __position._M_node->transfer(__first._M_node,__last._M_node); }
// Inserts new element at position given and with value given.
void
_M_insert(iterator __position, const value_type& __x)
{
_Node* __tmp = _M_create_node(__x);
__tmp->hook(__position._M_node);
}
// Erases element at position given.
void
_M_erase(iterator __position)
{
__position._M_node->unhook();
_Node* __n = static_cast<_Node*>(__position._M_node);
std::_Destroy(&__n->_M_data);
_M_put_node(__n);
}
};
/**
* @brief List equality comparison.
* @param x A %list.
* @param y A %list of the same type as @a x.
* @return True iff the size and elements of the lists are equal.
*
* This is an equivalence relation. It is linear in the size of
* the lists. Lists are considered equivalent if their sizes are
* equal, and if corresponding elements compare equal.
*/
template<typename _Tp, typename _Alloc>
inline bool
operator==(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
{
typedef typename list<_Tp,_Alloc>::const_iterator const_iterator;
const_iterator __end1 = __x.end();
const_iterator __end2 = __y.end();
const_iterator __i1 = __x.begin();
const_iterator __i2 = __y.begin();
while (__i1 != __end1 && __i2 != __end2 && *__i1 == *__i2)
{
++__i1;
++__i2;
}
return __i1 == __end1 && __i2 == __end2;
}
/**
* @brief List ordering relation.
* @param x A %list.
* @param y A %list of the same type as @a x.
* @return True iff @a x is lexicographically less than @a y.
*
* This is a total ordering relation. It is linear in the size of the
* lists. The elements must be comparable with @c <.
*
* See std::lexicographical_compare() for how the determination is made.
*/
template<typename _Tp, typename _Alloc>
inline bool
operator<(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
{ return std::lexicographical_compare(__x.begin(), __x.end(),
__y.begin(), __y.end()); }
/// Based on operator==
template<typename _Tp, typename _Alloc>
inline bool
operator!=(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
{ return !(__x == __y); }
/// Based on operator<
template<typename _Tp, typename _Alloc>
inline bool
operator>(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
{ return __y < __x; }
/// Based on operator<
template<typename _Tp, typename _Alloc>
inline bool
operator<=(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
{ return !(__y < __x); }
/// Based on operator<
template<typename _Tp, typename _Alloc>
inline bool
operator>=(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
{ return !(__x < __y); }
/// See std::list::swap().
template<typename _Tp, typename _Alloc>
inline void
swap(list<_Tp, _Alloc>& __x, list<_Tp, _Alloc>& __y)
{ __x.swap(__y); }
} // namespace __gnu_norm
#endif /* _LIST_H */