gcc/libgfortran/generated/matmul_r8.c
François-Xavier Coudert 644cb69f80 re PR libfortran/19308 (I/O library should support more real and integer kinds)
PR libfortran/19308
	PR fortran/20120
	PR libfortran/22437

	* Makefile.am: Add generated files for large real and integers
	kinds. Add a rule to create the kinds.inc c99_protos.inc files.
	Use kinds.inc to preprocess Fortran generated files.
	* libgfortran.h: Add macro definitions for GFC_INTEGER_16_HUGE,
	GFC_REAL_10_HUGE and GFC_REAL_16_HUGE. Add types gfc_array_i16,
	gfc_array_r10, gfc_array_r16, gfc_array_c10, gfc_array_c16,
	gfc_array_l16.
	* mk-kinds-h.sh: Define macros HAVE_GFC_LOGICAL_* and
	HAVE_GFC_COMPLEX_* when these types are available.
	* intrinsics/ishftc.c (ishftc16): New function for GFC_INTEGER_16.
	* m4/all.m4, m4/any.m4, m4/count.m4, m4/cshift1.m4, m4/dotprod.m4,
	m4/dotprodc.m4, m4/dotprodl.m4, m4/eoshift1.m4, m4/eoshift3.m4,
	m4/exponent.m4, m4/fraction.m4, m4/in_pack.m4, m4/in_unpack.m4,
	m4/matmul.m4, m4/matmull.m4, m4/maxloc0.m4, m4/maxloc1.m4,
	m4/maxval.m4, m4/minloc0.m4, m4/minloc1.m4, m4/minval.m4, m4/mtype.m4,
	m4/nearest.m4, m4/pow.m4, m4/product.m4, m4/reshape.m4,
	m4/set_exponent.m4, m4/shape.m4, m4/specific.m4, m4/specific2.m4,
	m4/sum.m4, m4/transpose.m4: Protect generated functions with
	appropriate "#if defined (HAVE_GFC_type_kind)" preprocessor directives.
	* Makefile.in: Regenerate.
	* all files in generated/: Regenerate.

	* f95-lang.c (DO_DEFINE_MATH_BUILTIN): Add support for long
	double builtin function.
	(gfc_init_builtin_functions): Add mfunc_longdouble,
	mfunc_clongdouble and func_clongdouble_longdouble trees. Build
	them for round, trunc, cabs, copysign and pow functions.
	* iresolve.c (gfc_resolve_reshape, gfc_resolve_transpose): Add
	case for kind 10 and 16.
	* trans-decl.c: Add trees for cpowl10, cpowl16, ishftc16,
	exponent10 and exponent16.
	(gfc_build_intrinsic_function_decls): Build nodes for int16,
	real10, real16, complex10 and complex16 types. Build all possible
	combinations for function _gfortran_pow_?n_?n. Build function
	calls cpowl10, cpowl16, ishftc16, exponent10 and exponent16.
	* trans-expr.c (gfc_conv_power_op): Add case for integer(16),
	real(10) and real(16).
	* trans-intrinsic.c: Add suppport for long double builtin
	functions in BUILT_IN_FUNCTION, LIBM_FUNCTION and LIBF_FUNCTION
	macros.
	(gfc_conv_intrinsic_aint): Add case for integer(16), real(10) and
	real(16) kinds.
	(gfc_build_intrinsic_lib_fndecls): Add support for real10_decl
	and real16_decl in library functions.
	(gfc_get_intrinsic_lib_fndecl): Add cases for real and complex
	kinds 10 and 16.
	(gfc_conv_intrinsic_exponent): Add cases for real(10) and real(16)
	kinds.
	(gfc_conv_intrinsic_sign): Likewise.
	(gfc_conv_intrinsic_ishftc): Add case for integer(16) kind.
	* trans-types.c (gfc_get_int_type, gfc_get_real_type,
	gfc_get_complex_type, gfc_get_logical_type): Doesn't error out in
	the case of kinds not available.
	* trans.h: Declare trees for cpowl10, cpowl16, ishftc16,
	exponent10 and exponent16.

	* gfortran.dg/large_real_kind_2.F90: New test.
	* gfortran.dg/large_integer_kind_2.f90: New test.

From-SVN: r104889
2005-10-03 07:22:20 +00:00

222 lines
6.2 KiB
C

/* Implementation of the MATMUL intrinsic
Copyright 2002, 2005 Free Software Foundation, Inc.
Contributed by Paul Brook <paul@nowt.org>
This file is part of the GNU Fortran 95 runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file. (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public
License along with libgfortran; see the file COPYING. If not,
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "config.h"
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "libgfortran.h"
#if defined (HAVE_GFC_REAL_8)
/* This is a C version of the following fortran pseudo-code. The key
point is the loop order -- we access all arrays column-first, which
improves the performance enough to boost galgel spec score by 50%.
DIMENSION A(M,COUNT), B(COUNT,N), C(M,N)
C = 0
DO J=1,N
DO K=1,COUNT
DO I=1,M
C(I,J) = C(I,J)+A(I,K)*B(K,J)
*/
extern void matmul_r8 (gfc_array_r8 * retarray, gfc_array_r8 * a, gfc_array_r8 * b);
export_proto(matmul_r8);
void
matmul_r8 (gfc_array_r8 * retarray, gfc_array_r8 * a, gfc_array_r8 * b)
{
GFC_REAL_8 *abase;
GFC_REAL_8 *bbase;
GFC_REAL_8 *dest;
index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
index_type x, y, n, count, xcount, ycount;
assert (GFC_DESCRIPTOR_RANK (a) == 2
|| GFC_DESCRIPTOR_RANK (b) == 2);
/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
Either A or B (but not both) can be rank 1:
o One-dimensional argument A is implicitly treated as a row matrix
dimensioned [1,count], so xcount=1.
o One-dimensional argument B is implicitly treated as a column matrix
dimensioned [count, 1], so ycount=1.
*/
if (retarray->data == NULL)
{
if (GFC_DESCRIPTOR_RANK (a) == 1)
{
retarray->dim[0].lbound = 0;
retarray->dim[0].ubound = b->dim[1].ubound - b->dim[1].lbound;
retarray->dim[0].stride = 1;
}
else if (GFC_DESCRIPTOR_RANK (b) == 1)
{
retarray->dim[0].lbound = 0;
retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
retarray->dim[0].stride = 1;
}
else
{
retarray->dim[0].lbound = 0;
retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
retarray->dim[0].stride = 1;
retarray->dim[1].lbound = 0;
retarray->dim[1].ubound = b->dim[1].ubound - b->dim[1].lbound;
retarray->dim[1].stride = retarray->dim[0].ubound+1;
}
retarray->data
= internal_malloc_size (sizeof (GFC_REAL_8) * size0 ((array_t *) retarray));
retarray->offset = 0;
}
abase = a->data;
bbase = b->data;
dest = retarray->data;
if (retarray->dim[0].stride == 0)
retarray->dim[0].stride = 1;
if (a->dim[0].stride == 0)
a->dim[0].stride = 1;
if (b->dim[0].stride == 0)
b->dim[0].stride = 1;
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
{
/* One-dimensional result may be addressed in the code below
either as a row or a column matrix. We want both cases to
work. */
rxstride = rystride = retarray->dim[0].stride;
}
else
{
rxstride = retarray->dim[0].stride;
rystride = retarray->dim[1].stride;
}
if (GFC_DESCRIPTOR_RANK (a) == 1)
{
/* Treat it as a a row matrix A[1,count]. */
axstride = a->dim[0].stride;
aystride = 1;
xcount = 1;
count = a->dim[0].ubound + 1 - a->dim[0].lbound;
}
else
{
axstride = a->dim[0].stride;
aystride = a->dim[1].stride;
count = a->dim[1].ubound + 1 - a->dim[1].lbound;
xcount = a->dim[0].ubound + 1 - a->dim[0].lbound;
}
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
if (GFC_DESCRIPTOR_RANK (b) == 1)
{
/* Treat it as a column matrix B[count,1] */
bxstride = b->dim[0].stride;
/* bystride should never be used for 1-dimensional b.
in case it is we want it to cause a segfault, rather than
an incorrect result. */
bystride = 0xDEADBEEF;
ycount = 1;
}
else
{
bxstride = b->dim[0].stride;
bystride = b->dim[1].stride;
ycount = b->dim[1].ubound + 1 - b->dim[1].lbound;
}
abase = a->data;
bbase = b->data;
dest = retarray->data;
if (rxstride == 1 && axstride == 1 && bxstride == 1)
{
GFC_REAL_8 *bbase_y;
GFC_REAL_8 *dest_y;
GFC_REAL_8 *abase_n;
GFC_REAL_8 bbase_yn;
if (rystride == ycount)
memset (dest, 0, (sizeof (GFC_REAL_8) * size0((array_t *) retarray)));
else
{
for (y = 0; y < ycount; y++)
for (x = 0; x < xcount; x++)
dest[x + y*rystride] = (GFC_REAL_8)0;
}
for (y = 0; y < ycount; y++)
{
bbase_y = bbase + y*bystride;
dest_y = dest + y*rystride;
for (n = 0; n < count; n++)
{
abase_n = abase + n*aystride;
bbase_yn = bbase_y[n];
for (x = 0; x < xcount; x++)
{
dest_y[x] += abase_n[x] * bbase_yn;
}
}
}
}
else
{
for (y = 0; y < ycount; y++)
for (x = 0; x < xcount; x++)
dest[x*rxstride + y*rystride] = (GFC_REAL_8)0;
for (y = 0; y < ycount; y++)
for (n = 0; n < count; n++)
for (x = 0; x < xcount; x++)
/* dest[x,y] += a[x,n] * b[n,y] */
dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
}
}
#endif