c90df0d293
Reviewed-on: https://go-review.googlesource.com/64592 From-SVN: r253105
2679 lines
72 KiB
Go
2679 lines
72 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Annotate Ref in Prog with C types by parsing gcc debug output.
|
|
// Conversion of debug output to Go types.
|
|
|
|
package main
|
|
|
|
import (
|
|
"bytes"
|
|
"debug/dwarf"
|
|
"debug/elf"
|
|
"debug/macho"
|
|
"debug/pe"
|
|
"debug/xcoff"
|
|
"encoding/binary"
|
|
"errors"
|
|
"flag"
|
|
"fmt"
|
|
"go/ast"
|
|
"go/parser"
|
|
"go/token"
|
|
"math"
|
|
"os"
|
|
"strconv"
|
|
"strings"
|
|
"unicode"
|
|
"unicode/utf8"
|
|
)
|
|
|
|
var debugDefine = flag.Bool("debug-define", false, "print relevant #defines")
|
|
var debugGcc = flag.Bool("debug-gcc", false, "print gcc invocations")
|
|
|
|
var nameToC = map[string]string{
|
|
"schar": "signed char",
|
|
"uchar": "unsigned char",
|
|
"ushort": "unsigned short",
|
|
"uint": "unsigned int",
|
|
"ulong": "unsigned long",
|
|
"longlong": "long long",
|
|
"ulonglong": "unsigned long long",
|
|
"complexfloat": "float _Complex",
|
|
"complexdouble": "double _Complex",
|
|
}
|
|
|
|
// cname returns the C name to use for C.s.
|
|
// The expansions are listed in nameToC and also
|
|
// struct_foo becomes "struct foo", and similarly for
|
|
// union and enum.
|
|
func cname(s string) string {
|
|
if t, ok := nameToC[s]; ok {
|
|
return t
|
|
}
|
|
|
|
if strings.HasPrefix(s, "struct_") {
|
|
return "struct " + s[len("struct_"):]
|
|
}
|
|
if strings.HasPrefix(s, "union_") {
|
|
return "union " + s[len("union_"):]
|
|
}
|
|
if strings.HasPrefix(s, "enum_") {
|
|
return "enum " + s[len("enum_"):]
|
|
}
|
|
if strings.HasPrefix(s, "sizeof_") {
|
|
return "sizeof(" + cname(s[len("sizeof_"):]) + ")"
|
|
}
|
|
return s
|
|
}
|
|
|
|
// DiscardCgoDirectives processes the import C preamble, and discards
|
|
// all #cgo CFLAGS and LDFLAGS directives, so they don't make their
|
|
// way into _cgo_export.h.
|
|
func (f *File) DiscardCgoDirectives() {
|
|
linesIn := strings.Split(f.Preamble, "\n")
|
|
linesOut := make([]string, 0, len(linesIn))
|
|
for _, line := range linesIn {
|
|
l := strings.TrimSpace(line)
|
|
if len(l) < 5 || l[:4] != "#cgo" || !unicode.IsSpace(rune(l[4])) {
|
|
linesOut = append(linesOut, line)
|
|
} else {
|
|
linesOut = append(linesOut, "")
|
|
}
|
|
}
|
|
f.Preamble = strings.Join(linesOut, "\n")
|
|
}
|
|
|
|
// addToFlag appends args to flag. All flags are later written out onto the
|
|
// _cgo_flags file for the build system to use.
|
|
func (p *Package) addToFlag(flag string, args []string) {
|
|
if flag == "CFLAGS" {
|
|
// We'll need these when preprocessing for dwarf information.
|
|
p.GccOptions = append(p.GccOptions, args...)
|
|
}
|
|
|
|
skip := false
|
|
for i, arg := range args {
|
|
// The go tool will pass us a -I option pointing to objdir;
|
|
// we don't need to record that for later, as the objdir
|
|
// will disappear anyhow.
|
|
if skip {
|
|
// Discard argument in "-I objdir" case.
|
|
skip = false
|
|
} else if strings.HasPrefix(arg, "-I") && strings.HasPrefix(arg[2:], *objDir) {
|
|
// This is -Iobjdir. Don't save this argument.
|
|
} else if arg == "-I" && i+1 < len(args) && strings.HasPrefix(args[i+1], *objDir) {
|
|
// This is -I objdir. Don't save this argument
|
|
// or the next one.
|
|
skip = true
|
|
} else {
|
|
p.CgoFlags[flag] = append(p.CgoFlags[flag], arg)
|
|
}
|
|
}
|
|
}
|
|
|
|
// splitQuoted splits the string s around each instance of one or more consecutive
|
|
// white space characters while taking into account quotes and escaping, and
|
|
// returns an array of substrings of s or an empty list if s contains only white space.
|
|
// Single quotes and double quotes are recognized to prevent splitting within the
|
|
// quoted region, and are removed from the resulting substrings. If a quote in s
|
|
// isn't closed err will be set and r will have the unclosed argument as the
|
|
// last element. The backslash is used for escaping.
|
|
//
|
|
// For example, the following string:
|
|
//
|
|
// `a b:"c d" 'e''f' "g\""`
|
|
//
|
|
// Would be parsed as:
|
|
//
|
|
// []string{"a", "b:c d", "ef", `g"`}
|
|
//
|
|
func splitQuoted(s string) (r []string, err error) {
|
|
var args []string
|
|
arg := make([]rune, len(s))
|
|
escaped := false
|
|
quoted := false
|
|
quote := '\x00'
|
|
i := 0
|
|
for _, r := range s {
|
|
switch {
|
|
case escaped:
|
|
escaped = false
|
|
case r == '\\':
|
|
escaped = true
|
|
continue
|
|
case quote != 0:
|
|
if r == quote {
|
|
quote = 0
|
|
continue
|
|
}
|
|
case r == '"' || r == '\'':
|
|
quoted = true
|
|
quote = r
|
|
continue
|
|
case unicode.IsSpace(r):
|
|
if quoted || i > 0 {
|
|
quoted = false
|
|
args = append(args, string(arg[:i]))
|
|
i = 0
|
|
}
|
|
continue
|
|
}
|
|
arg[i] = r
|
|
i++
|
|
}
|
|
if quoted || i > 0 {
|
|
args = append(args, string(arg[:i]))
|
|
}
|
|
if quote != 0 {
|
|
err = errors.New("unclosed quote")
|
|
} else if escaped {
|
|
err = errors.New("unfinished escaping")
|
|
}
|
|
return args, err
|
|
}
|
|
|
|
// Translate rewrites f.AST, the original Go input, to remove
|
|
// references to the imported package C, replacing them with
|
|
// references to the equivalent Go types, functions, and variables.
|
|
func (p *Package) Translate(f *File) {
|
|
for _, cref := range f.Ref {
|
|
// Convert C.ulong to C.unsigned long, etc.
|
|
cref.Name.C = cname(cref.Name.Go)
|
|
}
|
|
p.loadDefines(f)
|
|
needType := p.guessKinds(f)
|
|
if len(needType) > 0 {
|
|
p.loadDWARF(f, needType)
|
|
}
|
|
if p.rewriteCalls(f) {
|
|
// Add `import _cgo_unsafe "unsafe"` as the first decl
|
|
// after the package statement.
|
|
imp := &ast.GenDecl{
|
|
Tok: token.IMPORT,
|
|
Specs: []ast.Spec{
|
|
&ast.ImportSpec{
|
|
Name: ast.NewIdent("_cgo_unsafe"),
|
|
Path: &ast.BasicLit{
|
|
Kind: token.STRING,
|
|
Value: `"unsafe"`,
|
|
},
|
|
},
|
|
},
|
|
}
|
|
f.AST.Decls = append([]ast.Decl{imp}, f.AST.Decls...)
|
|
}
|
|
p.rewriteRef(f)
|
|
}
|
|
|
|
// loadDefines coerces gcc into spitting out the #defines in use
|
|
// in the file f and saves relevant renamings in f.Name[name].Define.
|
|
func (p *Package) loadDefines(f *File) {
|
|
var b bytes.Buffer
|
|
b.WriteString(f.Preamble)
|
|
b.WriteString(builtinProlog)
|
|
stdout := p.gccDefines(b.Bytes())
|
|
|
|
for _, line := range strings.Split(stdout, "\n") {
|
|
if len(line) < 9 || line[0:7] != "#define" {
|
|
continue
|
|
}
|
|
|
|
line = strings.TrimSpace(line[8:])
|
|
|
|
var key, val string
|
|
spaceIndex := strings.Index(line, " ")
|
|
tabIndex := strings.Index(line, "\t")
|
|
|
|
if spaceIndex == -1 && tabIndex == -1 {
|
|
continue
|
|
} else if tabIndex == -1 || (spaceIndex != -1 && spaceIndex < tabIndex) {
|
|
key = line[0:spaceIndex]
|
|
val = strings.TrimSpace(line[spaceIndex:])
|
|
} else {
|
|
key = line[0:tabIndex]
|
|
val = strings.TrimSpace(line[tabIndex:])
|
|
}
|
|
|
|
if key == "__clang__" {
|
|
p.GccIsClang = true
|
|
}
|
|
|
|
if n := f.Name[key]; n != nil {
|
|
if *debugDefine {
|
|
fmt.Fprintf(os.Stderr, "#define %s %s\n", key, val)
|
|
}
|
|
n.Define = val
|
|
}
|
|
}
|
|
}
|
|
|
|
// guessKinds tricks gcc into revealing the kind of each
|
|
// name xxx for the references C.xxx in the Go input.
|
|
// The kind is either a constant, type, or variable.
|
|
func (p *Package) guessKinds(f *File) []*Name {
|
|
// Determine kinds for names we already know about,
|
|
// like #defines or 'struct foo', before bothering with gcc.
|
|
var names, needType []*Name
|
|
for _, key := range nameKeys(f.Name) {
|
|
n := f.Name[key]
|
|
// If we've already found this name as a #define
|
|
// and we can translate it as a constant value, do so.
|
|
if n.Define != "" {
|
|
if i, err := strconv.ParseInt(n.Define, 0, 64); err == nil {
|
|
n.Kind = "iconst"
|
|
// Turn decimal into hex, just for consistency
|
|
// with enum-derived constants. Otherwise
|
|
// in the cgo -godefs output half the constants
|
|
// are in hex and half are in whatever the #define used.
|
|
n.Const = fmt.Sprintf("%#x", i)
|
|
} else if n.Define[0] == '\'' {
|
|
if _, err := parser.ParseExpr(n.Define); err == nil {
|
|
n.Kind = "iconst"
|
|
n.Const = n.Define
|
|
}
|
|
} else if n.Define[0] == '"' {
|
|
if _, err := parser.ParseExpr(n.Define); err == nil {
|
|
n.Kind = "sconst"
|
|
n.Const = n.Define
|
|
}
|
|
}
|
|
|
|
if n.IsConst() {
|
|
continue
|
|
}
|
|
|
|
if isName(n.Define) {
|
|
n.C = n.Define
|
|
}
|
|
}
|
|
|
|
// If this is a struct, union, or enum type name, no need to guess the kind.
|
|
if strings.HasPrefix(n.C, "struct ") || strings.HasPrefix(n.C, "union ") || strings.HasPrefix(n.C, "enum ") {
|
|
n.Kind = "type"
|
|
needType = append(needType, n)
|
|
continue
|
|
}
|
|
|
|
// Otherwise, we'll need to find out from gcc.
|
|
names = append(names, n)
|
|
}
|
|
|
|
// Bypass gcc if there's nothing left to find out.
|
|
if len(names) == 0 {
|
|
return needType
|
|
}
|
|
|
|
// Coerce gcc into telling us whether each name is a type, a value, or undeclared.
|
|
// For names, find out whether they are integer constants.
|
|
// We used to look at specific warning or error messages here, but that tied the
|
|
// behavior too closely to specific versions of the compilers.
|
|
// Instead, arrange that we can infer what we need from only the presence or absence
|
|
// of an error on a specific line.
|
|
//
|
|
// For each name, we generate these lines, where xxx is the index in toSniff plus one.
|
|
//
|
|
// #line xxx "not-declared"
|
|
// void __cgo_f_xxx_1(void) { __typeof__(name) *__cgo_undefined__; }
|
|
// #line xxx "not-type"
|
|
// void __cgo_f_xxx_2(void) { name *__cgo_undefined__; }
|
|
// #line xxx "not-int-const"
|
|
// void __cgo_f_xxx_3(void) { enum { __cgo_undefined__ = (name)*1 }; }
|
|
// #line xxx "not-num-const"
|
|
// void __cgo_f_xxx_4(void) { static const double x = (name); }
|
|
// #line xxx "not-str-lit"
|
|
// void __cgo_f_xxx_5(void) { static const char x[] = (name); }
|
|
// #line xxx "not-signed-int-const"
|
|
// #if 0 < -(name)
|
|
// #line xxx "not-signed-int-const"
|
|
// #error found unsigned int
|
|
// #endif
|
|
//
|
|
// If we see an error at not-declared:xxx, the corresponding name is not declared.
|
|
// If we see an error at not-type:xxx, the corresponding name is a type.
|
|
// If we see an error at not-int-const:xxx, the corresponding name is not an integer constant.
|
|
// If we see an error at not-num-const:xxx, the corresponding name is not a number constant.
|
|
// If we see an error at not-str-lit:xxx, the corresponding name is not a string literal.
|
|
// If we see an error at not-signed-int-const:xxx, the corresponding name is not a signed integer literal.
|
|
//
|
|
// The specific input forms are chosen so that they are valid C syntax regardless of
|
|
// whether name denotes a type or an expression.
|
|
|
|
var b bytes.Buffer
|
|
b.WriteString(f.Preamble)
|
|
b.WriteString(builtinProlog)
|
|
|
|
for i, n := range names {
|
|
fmt.Fprintf(&b, "#line %d \"not-declared\"\n"+
|
|
"void __cgo_f_%d_1(void) { __typeof__(%s) *__cgo_undefined__; }\n"+
|
|
"#line %d \"not-type\"\n"+
|
|
"void __cgo_f_%d_2(void) { %s *__cgo_undefined__; }\n"+
|
|
"#line %d \"not-int-const\"\n"+
|
|
"void __cgo_f_%d_3(void) { enum { __cgo_undefined__ = (%s)*1 }; }\n"+
|
|
"#line %d \"not-num-const\"\n"+
|
|
"void __cgo_f_%d_4(void) { static const double x = (%s); }\n"+
|
|
"#line %d \"not-str-lit\"\n"+
|
|
"void __cgo_f_%d_5(void) { static const char s[] = (%s); }\n"+
|
|
"#line %d \"not-signed-int-const\"\n"+
|
|
"#if 0 < (%s)\n"+
|
|
"#line %d \"not-signed-int-const\"\n"+
|
|
"#error found unsigned int\n"+
|
|
"#endif\n",
|
|
i+1, i+1, n.C,
|
|
i+1, i+1, n.C,
|
|
i+1, i+1, n.C,
|
|
i+1, i+1, n.C,
|
|
i+1, i+1, n.C,
|
|
i+1, n.C, i+1,
|
|
)
|
|
}
|
|
fmt.Fprintf(&b, "#line 1 \"completed\"\n"+
|
|
"int __cgo__1 = __cgo__2;\n")
|
|
|
|
stderr := p.gccErrors(b.Bytes())
|
|
if stderr == "" {
|
|
fatalf("%s produced no output\non input:\n%s", p.gccBaseCmd()[0], b.Bytes())
|
|
}
|
|
|
|
completed := false
|
|
sniff := make([]int, len(names))
|
|
const (
|
|
notType = 1 << iota
|
|
notIntConst
|
|
notNumConst
|
|
notStrLiteral
|
|
notDeclared
|
|
notSignedIntConst
|
|
)
|
|
sawUnmatchedErrors := false
|
|
for _, line := range strings.Split(stderr, "\n") {
|
|
// Ignore warnings and random comments, with one
|
|
// exception: newer GCC versions will sometimes emit
|
|
// an error on a macro #define with a note referring
|
|
// to where the expansion occurs. We care about where
|
|
// the expansion occurs, so in that case treat the note
|
|
// as an error.
|
|
isError := strings.Contains(line, ": error:")
|
|
isErrorNote := strings.Contains(line, ": note:") && sawUnmatchedErrors
|
|
if !isError && !isErrorNote {
|
|
continue
|
|
}
|
|
|
|
c1 := strings.Index(line, ":")
|
|
if c1 < 0 {
|
|
continue
|
|
}
|
|
c2 := strings.Index(line[c1+1:], ":")
|
|
if c2 < 0 {
|
|
continue
|
|
}
|
|
c2 += c1 + 1
|
|
|
|
filename := line[:c1]
|
|
i, _ := strconv.Atoi(line[c1+1 : c2])
|
|
i--
|
|
if i < 0 || i >= len(names) {
|
|
if isError {
|
|
sawUnmatchedErrors = true
|
|
}
|
|
continue
|
|
}
|
|
|
|
switch filename {
|
|
case "completed":
|
|
// Strictly speaking, there is no guarantee that seeing the error at completed:1
|
|
// (at the end of the file) means we've seen all the errors from earlier in the file,
|
|
// but usually it does. Certainly if we don't see the completed:1 error, we did
|
|
// not get all the errors we expected.
|
|
completed = true
|
|
|
|
case "not-declared":
|
|
sniff[i] |= notDeclared
|
|
case "not-type":
|
|
sniff[i] |= notType
|
|
case "not-int-const":
|
|
sniff[i] |= notIntConst
|
|
case "not-num-const":
|
|
sniff[i] |= notNumConst
|
|
case "not-str-lit":
|
|
sniff[i] |= notStrLiteral
|
|
case "not-signed-int-const":
|
|
sniff[i] |= notSignedIntConst
|
|
default:
|
|
if isError {
|
|
sawUnmatchedErrors = true
|
|
}
|
|
continue
|
|
}
|
|
|
|
sawUnmatchedErrors = false
|
|
}
|
|
|
|
if !completed {
|
|
fatalf("%s did not produce error at completed:1\non input:\n%s\nfull error output:\n%s", p.gccBaseCmd()[0], b.Bytes(), stderr)
|
|
}
|
|
|
|
for i, n := range names {
|
|
switch sniff[i] &^ notSignedIntConst {
|
|
default:
|
|
var tpos token.Pos
|
|
for _, ref := range f.Ref {
|
|
if ref.Name == n {
|
|
tpos = ref.Pos()
|
|
break
|
|
}
|
|
}
|
|
error_(tpos, "could not determine kind of name for C.%s", fixGo(n.Go))
|
|
case notStrLiteral | notType:
|
|
if sniff[i]¬SignedIntConst != 0 {
|
|
n.Kind = "uconst"
|
|
} else {
|
|
n.Kind = "iconst"
|
|
}
|
|
case notIntConst | notStrLiteral | notType:
|
|
n.Kind = "fconst"
|
|
case notIntConst | notNumConst | notType:
|
|
n.Kind = "sconst"
|
|
case notIntConst | notNumConst | notStrLiteral:
|
|
n.Kind = "type"
|
|
case notIntConst | notNumConst | notStrLiteral | notType:
|
|
n.Kind = "not-type"
|
|
}
|
|
}
|
|
if nerrors > 0 {
|
|
// Check if compiling the preamble by itself causes any errors,
|
|
// because the messages we've printed out so far aren't helpful
|
|
// to users debugging preamble mistakes. See issue 8442.
|
|
preambleErrors := p.gccErrors([]byte(f.Preamble))
|
|
if len(preambleErrors) > 0 {
|
|
error_(token.NoPos, "\n%s errors for preamble:\n%s", p.gccBaseCmd()[0], preambleErrors)
|
|
}
|
|
|
|
fatalf("unresolved names")
|
|
}
|
|
|
|
needType = append(needType, names...)
|
|
return needType
|
|
}
|
|
|
|
// loadDWARF parses the DWARF debug information generated
|
|
// by gcc to learn the details of the constants, variables, and types
|
|
// being referred to as C.xxx.
|
|
func (p *Package) loadDWARF(f *File, names []*Name) {
|
|
// Extract the types from the DWARF section of an object
|
|
// from a well-formed C program. Gcc only generates DWARF info
|
|
// for symbols in the object file, so it is not enough to print the
|
|
// preamble and hope the symbols we care about will be there.
|
|
// Instead, emit
|
|
// __typeof__(names[i]) *__cgo__i;
|
|
// for each entry in names and then dereference the type we
|
|
// learn for __cgo__i.
|
|
var b bytes.Buffer
|
|
b.WriteString(f.Preamble)
|
|
b.WriteString(builtinProlog)
|
|
b.WriteString("#line 1 \"cgo-dwarf-inference\"\n")
|
|
for i, n := range names {
|
|
fmt.Fprintf(&b, "__typeof__(%s) *__cgo__%d;\n", n.C, i)
|
|
if n.Kind == "iconst" || n.Kind == "uconst" {
|
|
fmt.Fprintf(&b, "enum { __cgo_enum__%d = %s };\n", i, n.C)
|
|
}
|
|
}
|
|
|
|
// We create a data block initialized with the values,
|
|
// so we can read them out of the object file.
|
|
fmt.Fprintf(&b, "long long __cgodebug_ints[] = {\n")
|
|
for _, n := range names {
|
|
if n.Kind == "iconst" || n.Kind == "uconst" {
|
|
fmt.Fprintf(&b, "\t%s,\n", n.C)
|
|
} else {
|
|
fmt.Fprintf(&b, "\t0,\n")
|
|
}
|
|
}
|
|
// for the last entry, we cannot use 0, otherwise
|
|
// in case all __cgodebug_data is zero initialized,
|
|
// LLVM-based gcc will place the it in the __DATA.__common
|
|
// zero-filled section (our debug/macho doesn't support
|
|
// this)
|
|
fmt.Fprintf(&b, "\t1\n")
|
|
fmt.Fprintf(&b, "};\n")
|
|
|
|
// do the same work for floats.
|
|
fmt.Fprintf(&b, "double __cgodebug_floats[] = {\n")
|
|
for _, n := range names {
|
|
if n.Kind == "fconst" {
|
|
fmt.Fprintf(&b, "\t%s,\n", n.C)
|
|
} else {
|
|
fmt.Fprintf(&b, "\t0,\n")
|
|
}
|
|
}
|
|
fmt.Fprintf(&b, "\t1\n")
|
|
fmt.Fprintf(&b, "};\n")
|
|
|
|
// do the same work for strings.
|
|
for i, n := range names {
|
|
if n.Kind == "sconst" {
|
|
fmt.Fprintf(&b, "const char __cgodebug_str__%d[] = %s;\n", i, n.C)
|
|
fmt.Fprintf(&b, "const unsigned long long __cgodebug_strlen__%d = sizeof(%s)-1;\n", i, n.C)
|
|
}
|
|
}
|
|
|
|
d, ints, floats, strs := p.gccDebug(b.Bytes(), len(names))
|
|
|
|
// Scan DWARF info for top-level TagVariable entries with AttrName __cgo__i.
|
|
types := make([]dwarf.Type, len(names))
|
|
nameToIndex := make(map[*Name]int)
|
|
for i, n := range names {
|
|
nameToIndex[n] = i
|
|
}
|
|
nameToRef := make(map[*Name]*Ref)
|
|
for _, ref := range f.Ref {
|
|
nameToRef[ref.Name] = ref
|
|
}
|
|
r := d.Reader()
|
|
for {
|
|
e, err := r.Next()
|
|
if err != nil {
|
|
fatalf("reading DWARF entry: %s", err)
|
|
}
|
|
if e == nil {
|
|
break
|
|
}
|
|
switch e.Tag {
|
|
case dwarf.TagVariable:
|
|
name, _ := e.Val(dwarf.AttrName).(string)
|
|
typOff, _ := e.Val(dwarf.AttrType).(dwarf.Offset)
|
|
if name == "" || typOff == 0 {
|
|
if e.Val(dwarf.AttrSpecification) != nil {
|
|
// Since we are reading all the DWARF,
|
|
// assume we will see the variable elsewhere.
|
|
break
|
|
}
|
|
fatalf("malformed DWARF TagVariable entry")
|
|
}
|
|
if !strings.HasPrefix(name, "__cgo__") {
|
|
break
|
|
}
|
|
typ, err := d.Type(typOff)
|
|
if err != nil {
|
|
fatalf("loading DWARF type: %s", err)
|
|
}
|
|
t, ok := typ.(*dwarf.PtrType)
|
|
if !ok || t == nil {
|
|
fatalf("internal error: %s has non-pointer type", name)
|
|
}
|
|
i, err := strconv.Atoi(name[7:])
|
|
if err != nil {
|
|
fatalf("malformed __cgo__ name: %s", name)
|
|
}
|
|
types[i] = t.Type
|
|
}
|
|
if e.Tag != dwarf.TagCompileUnit {
|
|
r.SkipChildren()
|
|
}
|
|
}
|
|
|
|
// Record types and typedef information.
|
|
var conv typeConv
|
|
conv.Init(p.PtrSize, p.IntSize)
|
|
for i, n := range names {
|
|
if types[i] == nil {
|
|
continue
|
|
}
|
|
pos := token.NoPos
|
|
if ref, ok := nameToRef[n]; ok {
|
|
pos = ref.Pos()
|
|
}
|
|
f, fok := types[i].(*dwarf.FuncType)
|
|
if n.Kind != "type" && fok {
|
|
n.Kind = "func"
|
|
n.FuncType = conv.FuncType(f, pos)
|
|
} else {
|
|
n.Type = conv.Type(types[i], pos)
|
|
switch n.Kind {
|
|
case "iconst":
|
|
if i < len(ints) {
|
|
n.Const = fmt.Sprintf("%#x", ints[i])
|
|
}
|
|
case "uconst":
|
|
if i < len(ints) {
|
|
n.Const = fmt.Sprintf("%#x", uint64(ints[i]))
|
|
}
|
|
case "fconst":
|
|
if i < len(floats) {
|
|
n.Const = fmt.Sprintf("%f", floats[i])
|
|
}
|
|
case "sconst":
|
|
if i < len(strs) {
|
|
n.Const = fmt.Sprintf("%q", strs[i])
|
|
}
|
|
}
|
|
}
|
|
conv.FinishType(pos)
|
|
}
|
|
}
|
|
|
|
// mangleName does name mangling to translate names
|
|
// from the original Go source files to the names
|
|
// used in the final Go files generated by cgo.
|
|
func (p *Package) mangleName(n *Name) {
|
|
// When using gccgo variables have to be
|
|
// exported so that they become global symbols
|
|
// that the C code can refer to.
|
|
prefix := "_C"
|
|
if *gccgo && n.IsVar() {
|
|
prefix = "C"
|
|
}
|
|
n.Mangle = prefix + n.Kind + "_" + n.Go
|
|
}
|
|
|
|
// rewriteCalls rewrites all calls that pass pointers to check that
|
|
// they follow the rules for passing pointers between Go and C.
|
|
// This returns whether the package needs to import unsafe as _cgo_unsafe.
|
|
func (p *Package) rewriteCalls(f *File) bool {
|
|
needsUnsafe := false
|
|
for _, call := range f.Calls {
|
|
// This is a call to C.xxx; set goname to "xxx".
|
|
goname := call.Call.Fun.(*ast.SelectorExpr).Sel.Name
|
|
if goname == "malloc" {
|
|
continue
|
|
}
|
|
name := f.Name[goname]
|
|
if name.Kind != "func" {
|
|
// Probably a type conversion.
|
|
continue
|
|
}
|
|
if p.rewriteCall(f, call, name) {
|
|
needsUnsafe = true
|
|
}
|
|
}
|
|
return needsUnsafe
|
|
}
|
|
|
|
// rewriteCall rewrites one call to add pointer checks.
|
|
// If any pointer checks are required, we rewrite the call into a
|
|
// function literal that calls _cgoCheckPointer for each pointer
|
|
// argument and then calls the original function.
|
|
// This returns whether the package needs to import unsafe as _cgo_unsafe.
|
|
func (p *Package) rewriteCall(f *File, call *Call, name *Name) bool {
|
|
// Avoid a crash if the number of arguments is
|
|
// less than the number of parameters.
|
|
// This will be caught when the generated file is compiled.
|
|
if len(call.Call.Args) < len(name.FuncType.Params) {
|
|
return false
|
|
}
|
|
|
|
any := false
|
|
for i, param := range name.FuncType.Params {
|
|
if p.needsPointerCheck(f, param.Go, call.Call.Args[i]) {
|
|
any = true
|
|
break
|
|
}
|
|
}
|
|
if !any {
|
|
return false
|
|
}
|
|
|
|
// We need to rewrite this call.
|
|
//
|
|
// We are going to rewrite C.f(p) to
|
|
// func (_cgo0 ptype) {
|
|
// _cgoCheckPointer(_cgo0)
|
|
// C.f(_cgo0)
|
|
// }(p)
|
|
// Using a function literal like this lets us do correct
|
|
// argument type checking, and works correctly if the call is
|
|
// deferred.
|
|
needsUnsafe := false
|
|
params := make([]*ast.Field, len(name.FuncType.Params))
|
|
nargs := make([]ast.Expr, len(name.FuncType.Params))
|
|
var stmts []ast.Stmt
|
|
for i, param := range name.FuncType.Params {
|
|
// params is going to become the parameters of the
|
|
// function literal.
|
|
// nargs is going to become the list of arguments made
|
|
// by the call within the function literal.
|
|
// nparam is the parameter of the function literal that
|
|
// corresponds to param.
|
|
|
|
origArg := call.Call.Args[i]
|
|
nparam := ast.NewIdent(fmt.Sprintf("_cgo%d", i))
|
|
nargs[i] = nparam
|
|
|
|
// The Go version of the C type might use unsafe.Pointer,
|
|
// but the file might not import unsafe.
|
|
// Rewrite the Go type if necessary to use _cgo_unsafe.
|
|
ptype := p.rewriteUnsafe(param.Go)
|
|
if ptype != param.Go {
|
|
needsUnsafe = true
|
|
}
|
|
|
|
params[i] = &ast.Field{
|
|
Names: []*ast.Ident{nparam},
|
|
Type: ptype,
|
|
}
|
|
|
|
if !p.needsPointerCheck(f, param.Go, origArg) {
|
|
continue
|
|
}
|
|
|
|
// Run the cgo pointer checks on nparam.
|
|
|
|
// Change the function literal to call the real function
|
|
// with the parameter passed through _cgoCheckPointer.
|
|
c := &ast.CallExpr{
|
|
Fun: ast.NewIdent("_cgoCheckPointer"),
|
|
Args: []ast.Expr{
|
|
nparam,
|
|
},
|
|
}
|
|
|
|
// Add optional additional arguments for an address
|
|
// expression.
|
|
c.Args = p.checkAddrArgs(f, c.Args, origArg)
|
|
|
|
stmt := &ast.ExprStmt{
|
|
X: c,
|
|
}
|
|
stmts = append(stmts, stmt)
|
|
}
|
|
|
|
fcall := &ast.CallExpr{
|
|
Fun: call.Call.Fun,
|
|
Args: nargs,
|
|
}
|
|
ftype := &ast.FuncType{
|
|
Params: &ast.FieldList{
|
|
List: params,
|
|
},
|
|
}
|
|
if name.FuncType.Result != nil {
|
|
rtype := p.rewriteUnsafe(name.FuncType.Result.Go)
|
|
if rtype != name.FuncType.Result.Go {
|
|
needsUnsafe = true
|
|
}
|
|
ftype.Results = &ast.FieldList{
|
|
List: []*ast.Field{
|
|
&ast.Field{
|
|
Type: rtype,
|
|
},
|
|
},
|
|
}
|
|
}
|
|
|
|
// There is a Ref pointing to the old call.Call.Fun.
|
|
for _, ref := range f.Ref {
|
|
if ref.Expr == &call.Call.Fun {
|
|
ref.Expr = &fcall.Fun
|
|
|
|
// If this call expects two results, we have to
|
|
// adjust the results of the function we generated.
|
|
if ref.Context == "call2" {
|
|
if ftype.Results == nil {
|
|
// An explicit void argument
|
|
// looks odd but it seems to
|
|
// be how cgo has worked historically.
|
|
ftype.Results = &ast.FieldList{
|
|
List: []*ast.Field{
|
|
&ast.Field{
|
|
Type: ast.NewIdent("_Ctype_void"),
|
|
},
|
|
},
|
|
}
|
|
}
|
|
ftype.Results.List = append(ftype.Results.List,
|
|
&ast.Field{
|
|
Type: ast.NewIdent("error"),
|
|
})
|
|
}
|
|
}
|
|
}
|
|
|
|
var fbody ast.Stmt
|
|
if ftype.Results == nil {
|
|
fbody = &ast.ExprStmt{
|
|
X: fcall,
|
|
}
|
|
} else {
|
|
fbody = &ast.ReturnStmt{
|
|
Results: []ast.Expr{fcall},
|
|
}
|
|
}
|
|
call.Call.Fun = &ast.FuncLit{
|
|
Type: ftype,
|
|
Body: &ast.BlockStmt{
|
|
List: append(stmts, fbody),
|
|
},
|
|
}
|
|
call.Call.Lparen = token.NoPos
|
|
call.Call.Rparen = token.NoPos
|
|
|
|
return needsUnsafe
|
|
}
|
|
|
|
// needsPointerCheck returns whether the type t needs a pointer check.
|
|
// This is true if t is a pointer and if the value to which it points
|
|
// might contain a pointer.
|
|
func (p *Package) needsPointerCheck(f *File, t ast.Expr, arg ast.Expr) bool {
|
|
// An untyped nil does not need a pointer check, and when
|
|
// _cgoCheckPointer returns the untyped nil the type assertion we
|
|
// are going to insert will fail. Easier to just skip nil arguments.
|
|
// TODO: Note that this fails if nil is shadowed.
|
|
if id, ok := arg.(*ast.Ident); ok && id.Name == "nil" {
|
|
return false
|
|
}
|
|
|
|
return p.hasPointer(f, t, true)
|
|
}
|
|
|
|
// hasPointer is used by needsPointerCheck. If top is true it returns
|
|
// whether t is or contains a pointer that might point to a pointer.
|
|
// If top is false it returns whether t is or contains a pointer.
|
|
// f may be nil.
|
|
func (p *Package) hasPointer(f *File, t ast.Expr, top bool) bool {
|
|
switch t := t.(type) {
|
|
case *ast.ArrayType:
|
|
if t.Len == nil {
|
|
if !top {
|
|
return true
|
|
}
|
|
return p.hasPointer(f, t.Elt, false)
|
|
}
|
|
return p.hasPointer(f, t.Elt, top)
|
|
case *ast.StructType:
|
|
for _, field := range t.Fields.List {
|
|
if p.hasPointer(f, field.Type, top) {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
case *ast.StarExpr: // Pointer type.
|
|
if !top {
|
|
return true
|
|
}
|
|
// Check whether this is a pointer to a C union (or class)
|
|
// type that contains a pointer.
|
|
if unionWithPointer[t.X] {
|
|
return true
|
|
}
|
|
return p.hasPointer(f, t.X, false)
|
|
case *ast.FuncType, *ast.InterfaceType, *ast.MapType, *ast.ChanType:
|
|
return true
|
|
case *ast.Ident:
|
|
// TODO: Handle types defined within function.
|
|
for _, d := range p.Decl {
|
|
gd, ok := d.(*ast.GenDecl)
|
|
if !ok || gd.Tok != token.TYPE {
|
|
continue
|
|
}
|
|
for _, spec := range gd.Specs {
|
|
ts, ok := spec.(*ast.TypeSpec)
|
|
if !ok {
|
|
continue
|
|
}
|
|
if ts.Name.Name == t.Name {
|
|
return p.hasPointer(f, ts.Type, top)
|
|
}
|
|
}
|
|
}
|
|
if def := typedef[t.Name]; def != nil {
|
|
return p.hasPointer(f, def.Go, top)
|
|
}
|
|
if t.Name == "string" {
|
|
return !top
|
|
}
|
|
if t.Name == "error" {
|
|
return true
|
|
}
|
|
if goTypes[t.Name] != nil {
|
|
return false
|
|
}
|
|
// We can't figure out the type. Conservative
|
|
// approach is to assume it has a pointer.
|
|
return true
|
|
case *ast.SelectorExpr:
|
|
if l, ok := t.X.(*ast.Ident); !ok || l.Name != "C" {
|
|
// Type defined in a different package.
|
|
// Conservative approach is to assume it has a
|
|
// pointer.
|
|
return true
|
|
}
|
|
if f == nil {
|
|
// Conservative approach: assume pointer.
|
|
return true
|
|
}
|
|
name := f.Name[t.Sel.Name]
|
|
if name != nil && name.Kind == "type" && name.Type != nil && name.Type.Go != nil {
|
|
return p.hasPointer(f, name.Type.Go, top)
|
|
}
|
|
// We can't figure out the type. Conservative
|
|
// approach is to assume it has a pointer.
|
|
return true
|
|
default:
|
|
error_(t.Pos(), "could not understand type %s", gofmt(t))
|
|
return true
|
|
}
|
|
}
|
|
|
|
// checkAddrArgs tries to add arguments to the call of
|
|
// _cgoCheckPointer when the argument is an address expression. We
|
|
// pass true to mean that the argument is an address operation of
|
|
// something other than a slice index, which means that it's only
|
|
// necessary to check the specific element pointed to, not the entire
|
|
// object. This is for &s.f, where f is a field in a struct. We can
|
|
// pass a slice or array, meaning that we should check the entire
|
|
// slice or array but need not check any other part of the object.
|
|
// This is for &s.a[i], where we need to check all of a. However, we
|
|
// only pass the slice or array if we can refer to it without side
|
|
// effects.
|
|
func (p *Package) checkAddrArgs(f *File, args []ast.Expr, x ast.Expr) []ast.Expr {
|
|
// Strip type conversions.
|
|
for {
|
|
c, ok := x.(*ast.CallExpr)
|
|
if !ok || len(c.Args) != 1 || !p.isType(c.Fun) {
|
|
break
|
|
}
|
|
x = c.Args[0]
|
|
}
|
|
u, ok := x.(*ast.UnaryExpr)
|
|
if !ok || u.Op != token.AND {
|
|
return args
|
|
}
|
|
index, ok := u.X.(*ast.IndexExpr)
|
|
if !ok {
|
|
// This is the address of something that is not an
|
|
// index expression. We only need to examine the
|
|
// single value to which it points.
|
|
// TODO: what if true is shadowed?
|
|
return append(args, ast.NewIdent("true"))
|
|
}
|
|
if !p.hasSideEffects(f, index.X) {
|
|
// Examine the entire slice.
|
|
return append(args, index.X)
|
|
}
|
|
// Treat the pointer as unknown.
|
|
return args
|
|
}
|
|
|
|
// hasSideEffects returns whether the expression x has any side
|
|
// effects. x is an expression, not a statement, so the only side
|
|
// effect is a function call.
|
|
func (p *Package) hasSideEffects(f *File, x ast.Expr) bool {
|
|
found := false
|
|
f.walk(x, "expr",
|
|
func(f *File, x interface{}, context string) {
|
|
switch x.(type) {
|
|
case *ast.CallExpr:
|
|
found = true
|
|
}
|
|
})
|
|
return found
|
|
}
|
|
|
|
// isType returns whether the expression is definitely a type.
|
|
// This is conservative--it returns false for an unknown identifier.
|
|
func (p *Package) isType(t ast.Expr) bool {
|
|
switch t := t.(type) {
|
|
case *ast.SelectorExpr:
|
|
id, ok := t.X.(*ast.Ident)
|
|
if !ok {
|
|
return false
|
|
}
|
|
if id.Name == "unsafe" && t.Sel.Name == "Pointer" {
|
|
return true
|
|
}
|
|
if id.Name == "C" && typedef["_Ctype_"+t.Sel.Name] != nil {
|
|
return true
|
|
}
|
|
return false
|
|
case *ast.Ident:
|
|
// TODO: This ignores shadowing.
|
|
switch t.Name {
|
|
case "unsafe.Pointer", "bool", "byte",
|
|
"complex64", "complex128",
|
|
"error",
|
|
"float32", "float64",
|
|
"int", "int8", "int16", "int32", "int64",
|
|
"rune", "string",
|
|
"uint", "uint8", "uint16", "uint32", "uint64", "uintptr":
|
|
|
|
return true
|
|
}
|
|
case *ast.StarExpr:
|
|
return p.isType(t.X)
|
|
case *ast.ArrayType, *ast.StructType, *ast.FuncType, *ast.InterfaceType,
|
|
*ast.MapType, *ast.ChanType:
|
|
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
// rewriteUnsafe returns a version of t with references to unsafe.Pointer
|
|
// rewritten to use _cgo_unsafe.Pointer instead.
|
|
func (p *Package) rewriteUnsafe(t ast.Expr) ast.Expr {
|
|
switch t := t.(type) {
|
|
case *ast.Ident:
|
|
// We don't see a SelectorExpr for unsafe.Pointer;
|
|
// this is created by code in this file.
|
|
if t.Name == "unsafe.Pointer" {
|
|
return ast.NewIdent("_cgo_unsafe.Pointer")
|
|
}
|
|
case *ast.ArrayType:
|
|
t1 := p.rewriteUnsafe(t.Elt)
|
|
if t1 != t.Elt {
|
|
r := *t
|
|
r.Elt = t1
|
|
return &r
|
|
}
|
|
case *ast.StructType:
|
|
changed := false
|
|
fields := *t.Fields
|
|
fields.List = nil
|
|
for _, f := range t.Fields.List {
|
|
ft := p.rewriteUnsafe(f.Type)
|
|
if ft == f.Type {
|
|
fields.List = append(fields.List, f)
|
|
} else {
|
|
fn := *f
|
|
fn.Type = ft
|
|
fields.List = append(fields.List, &fn)
|
|
changed = true
|
|
}
|
|
}
|
|
if changed {
|
|
r := *t
|
|
r.Fields = &fields
|
|
return &r
|
|
}
|
|
case *ast.StarExpr: // Pointer type.
|
|
x1 := p.rewriteUnsafe(t.X)
|
|
if x1 != t.X {
|
|
r := *t
|
|
r.X = x1
|
|
return &r
|
|
}
|
|
}
|
|
return t
|
|
}
|
|
|
|
// rewriteRef rewrites all the C.xxx references in f.AST to refer to the
|
|
// Go equivalents, now that we have figured out the meaning of all
|
|
// the xxx. In *godefs mode, rewriteRef replaces the names
|
|
// with full definitions instead of mangled names.
|
|
func (p *Package) rewriteRef(f *File) {
|
|
// Keep a list of all the functions, to remove the ones
|
|
// only used as expressions and avoid generating bridge
|
|
// code for them.
|
|
functions := make(map[string]bool)
|
|
|
|
// Assign mangled names.
|
|
for _, n := range f.Name {
|
|
if n.Kind == "not-type" {
|
|
n.Kind = "var"
|
|
}
|
|
if n.Mangle == "" {
|
|
p.mangleName(n)
|
|
}
|
|
if n.Kind == "func" {
|
|
functions[n.Go] = false
|
|
}
|
|
}
|
|
|
|
// Now that we have all the name types filled in,
|
|
// scan through the Refs to identify the ones that
|
|
// are trying to do a ,err call. Also check that
|
|
// functions are only used in calls.
|
|
for _, r := range f.Ref {
|
|
if r.Name.IsConst() && r.Name.Const == "" {
|
|
error_(r.Pos(), "unable to find value of constant C.%s", fixGo(r.Name.Go))
|
|
}
|
|
var expr ast.Expr = ast.NewIdent(r.Name.Mangle) // default
|
|
switch r.Context {
|
|
case "call", "call2":
|
|
if r.Name.Kind != "func" {
|
|
if r.Name.Kind == "type" {
|
|
r.Context = "type"
|
|
if r.Name.Type == nil {
|
|
error_(r.Pos(), "invalid conversion to C.%s: undefined C type '%s'", fixGo(r.Name.Go), r.Name.C)
|
|
break
|
|
}
|
|
expr = r.Name.Type.Go
|
|
break
|
|
}
|
|
error_(r.Pos(), "call of non-function C.%s", fixGo(r.Name.Go))
|
|
break
|
|
}
|
|
functions[r.Name.Go] = true
|
|
if r.Context == "call2" {
|
|
if r.Name.Go == "_CMalloc" {
|
|
error_(r.Pos(), "no two-result form for C.malloc")
|
|
break
|
|
}
|
|
// Invent new Name for the two-result function.
|
|
n := f.Name["2"+r.Name.Go]
|
|
if n == nil {
|
|
n = new(Name)
|
|
*n = *r.Name
|
|
n.AddError = true
|
|
n.Mangle = "_C2func_" + n.Go
|
|
f.Name["2"+r.Name.Go] = n
|
|
}
|
|
expr = ast.NewIdent(n.Mangle)
|
|
r.Name = n
|
|
break
|
|
}
|
|
case "expr":
|
|
if r.Name.Kind == "func" {
|
|
if builtinDefs[r.Name.C] != "" {
|
|
error_(r.Pos(), "use of builtin '%s' not in function call", fixGo(r.Name.C))
|
|
}
|
|
|
|
// Function is being used in an expression, to e.g. pass around a C function pointer.
|
|
// Create a new Name for this Ref which causes the variable to be declared in Go land.
|
|
fpName := "fp_" + r.Name.Go
|
|
name := f.Name[fpName]
|
|
if name == nil {
|
|
name = &Name{
|
|
Go: fpName,
|
|
C: r.Name.C,
|
|
Kind: "fpvar",
|
|
Type: &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("void*"), Go: ast.NewIdent("unsafe.Pointer")},
|
|
}
|
|
p.mangleName(name)
|
|
f.Name[fpName] = name
|
|
}
|
|
r.Name = name
|
|
// Rewrite into call to _Cgo_ptr to prevent assignments. The _Cgo_ptr
|
|
// function is defined in out.go and simply returns its argument. See
|
|
// issue 7757.
|
|
expr = &ast.CallExpr{
|
|
Fun: &ast.Ident{NamePos: (*r.Expr).Pos(), Name: "_Cgo_ptr"},
|
|
Args: []ast.Expr{ast.NewIdent(name.Mangle)},
|
|
}
|
|
} else if r.Name.Kind == "type" {
|
|
// Okay - might be new(T)
|
|
if r.Name.Type == nil {
|
|
error_(r.Pos(), "expression C.%s: undefined C type '%s'", fixGo(r.Name.Go), r.Name.C)
|
|
break
|
|
}
|
|
expr = r.Name.Type.Go
|
|
} else if r.Name.Kind == "var" {
|
|
expr = &ast.StarExpr{Star: (*r.Expr).Pos(), X: expr}
|
|
}
|
|
|
|
case "selector":
|
|
if r.Name.Kind == "var" {
|
|
expr = &ast.StarExpr{Star: (*r.Expr).Pos(), X: expr}
|
|
} else {
|
|
error_(r.Pos(), "only C variables allowed in selector expression %s", fixGo(r.Name.Go))
|
|
}
|
|
|
|
case "type":
|
|
if r.Name.Kind != "type" {
|
|
error_(r.Pos(), "expression C.%s used as type", fixGo(r.Name.Go))
|
|
} else if r.Name.Type == nil {
|
|
// Use of C.enum_x, C.struct_x or C.union_x without C definition.
|
|
// GCC won't raise an error when using pointers to such unknown types.
|
|
error_(r.Pos(), "type C.%s: undefined C type '%s'", fixGo(r.Name.Go), r.Name.C)
|
|
} else {
|
|
expr = r.Name.Type.Go
|
|
}
|
|
default:
|
|
if r.Name.Kind == "func" {
|
|
error_(r.Pos(), "must call C.%s", fixGo(r.Name.Go))
|
|
}
|
|
}
|
|
if *godefs {
|
|
// Substitute definition for mangled type name.
|
|
if id, ok := expr.(*ast.Ident); ok {
|
|
if t := typedef[id.Name]; t != nil {
|
|
expr = t.Go
|
|
}
|
|
if id.Name == r.Name.Mangle && r.Name.Const != "" {
|
|
expr = ast.NewIdent(r.Name.Const)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Copy position information from old expr into new expr,
|
|
// in case expression being replaced is first on line.
|
|
// See golang.org/issue/6563.
|
|
pos := (*r.Expr).Pos()
|
|
switch x := expr.(type) {
|
|
case *ast.Ident:
|
|
expr = &ast.Ident{NamePos: pos, Name: x.Name}
|
|
}
|
|
|
|
*r.Expr = expr
|
|
}
|
|
|
|
// Remove functions only used as expressions, so their respective
|
|
// bridge functions are not generated.
|
|
for name, used := range functions {
|
|
if !used {
|
|
delete(f.Name, name)
|
|
}
|
|
}
|
|
}
|
|
|
|
// gccBaseCmd returns the start of the compiler command line.
|
|
// It uses $CC if set, or else $GCC, or else the compiler recorded
|
|
// during the initial build as defaultCC.
|
|
// defaultCC is defined in zdefaultcc.go, written by cmd/dist.
|
|
func (p *Package) gccBaseCmd() []string {
|
|
// Use $CC if set, since that's what the build uses.
|
|
if ret := strings.Fields(os.Getenv("CC")); len(ret) > 0 {
|
|
return ret
|
|
}
|
|
// Try $GCC if set, since that's what we used to use.
|
|
if ret := strings.Fields(os.Getenv("GCC")); len(ret) > 0 {
|
|
return ret
|
|
}
|
|
return strings.Fields(defaultCC)
|
|
}
|
|
|
|
// gccMachine returns the gcc -m flag to use, either "-m32", "-m64" or "-marm".
|
|
func (p *Package) gccMachine() []string {
|
|
switch goarch {
|
|
case "amd64":
|
|
return []string{"-m64"}
|
|
case "386":
|
|
return []string{"-m32"}
|
|
case "arm":
|
|
return []string{"-marm"} // not thumb
|
|
case "s390":
|
|
return []string{"-m31"}
|
|
case "s390x":
|
|
return []string{"-m64"}
|
|
case "mips64", "mips64le":
|
|
return []string{"-mabi=64"}
|
|
case "mips", "mipsle":
|
|
return []string{"-mabi=32"}
|
|
case "ppc64":
|
|
if goos == "aix" {
|
|
return []string{"-maix64"}
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func gccTmp() string {
|
|
return *objDir + "_cgo_.o"
|
|
}
|
|
|
|
// gccCmd returns the gcc command line to use for compiling
|
|
// the input.
|
|
func (p *Package) gccCmd() []string {
|
|
c := append(p.gccBaseCmd(),
|
|
"-w", // no warnings
|
|
"-Wno-error", // warnings are not errors
|
|
"-o"+gccTmp(), // write object to tmp
|
|
"-gdwarf-2", // generate DWARF v2 debugging symbols
|
|
"-c", // do not link
|
|
"-xc", // input language is C
|
|
)
|
|
if p.GccIsClang {
|
|
c = append(c,
|
|
"-ferror-limit=0",
|
|
// Apple clang version 1.7 (tags/Apple/clang-77) (based on LLVM 2.9svn)
|
|
// doesn't have -Wno-unneeded-internal-declaration, so we need yet another
|
|
// flag to disable the warning. Yes, really good diagnostics, clang.
|
|
"-Wno-unknown-warning-option",
|
|
"-Wno-unneeded-internal-declaration",
|
|
"-Wno-unused-function",
|
|
"-Qunused-arguments",
|
|
// Clang embeds prototypes for some builtin functions,
|
|
// like malloc and calloc, but all size_t parameters are
|
|
// incorrectly typed unsigned long. We work around that
|
|
// by disabling the builtin functions (this is safe as
|
|
// it won't affect the actual compilation of the C code).
|
|
// See: https://golang.org/issue/6506.
|
|
"-fno-builtin",
|
|
)
|
|
}
|
|
|
|
c = append(c, p.GccOptions...)
|
|
c = append(c, p.gccMachine()...)
|
|
c = append(c, "-") //read input from standard input
|
|
return c
|
|
}
|
|
|
|
// gccDebug runs gcc -gdwarf-2 over the C program stdin and
|
|
// returns the corresponding DWARF data and, if present, debug data block.
|
|
func (p *Package) gccDebug(stdin []byte, nnames int) (d *dwarf.Data, ints []int64, floats []float64, strs []string) {
|
|
runGcc(stdin, p.gccCmd())
|
|
|
|
isDebugInts := func(s string) bool {
|
|
// Some systems use leading _ to denote non-assembly symbols.
|
|
return s == "__cgodebug_ints" || s == "___cgodebug_ints"
|
|
}
|
|
isDebugFloats := func(s string) bool {
|
|
// Some systems use leading _ to denote non-assembly symbols.
|
|
return s == "__cgodebug_floats" || s == "___cgodebug_floats"
|
|
}
|
|
indexOfDebugStr := func(s string) int {
|
|
// Some systems use leading _ to denote non-assembly symbols.
|
|
if strings.HasPrefix(s, "___") {
|
|
s = s[1:]
|
|
}
|
|
if strings.HasPrefix(s, "__cgodebug_str__") {
|
|
if n, err := strconv.Atoi(s[len("__cgodebug_str__"):]); err == nil {
|
|
return n
|
|
}
|
|
}
|
|
return -1
|
|
}
|
|
indexOfDebugStrlen := func(s string) int {
|
|
// Some systems use leading _ to denote non-assembly symbols.
|
|
if strings.HasPrefix(s, "___") {
|
|
s = s[1:]
|
|
}
|
|
if strings.HasPrefix(s, "__cgodebug_strlen__") {
|
|
if n, err := strconv.Atoi(s[len("__cgodebug_strlen__"):]); err == nil {
|
|
return n
|
|
}
|
|
}
|
|
return -1
|
|
}
|
|
|
|
strs = make([]string, nnames)
|
|
|
|
strdata := make(map[int]string, nnames)
|
|
strlens := make(map[int]int, nnames)
|
|
|
|
buildStrings := func() {
|
|
for n, strlen := range strlens {
|
|
data := strdata[n]
|
|
if len(data) <= strlen {
|
|
fatalf("invalid string literal")
|
|
}
|
|
strs[n] = string(data[:strlen])
|
|
}
|
|
}
|
|
|
|
if f, err := macho.Open(gccTmp()); err == nil {
|
|
defer f.Close()
|
|
d, err := f.DWARF()
|
|
if err != nil {
|
|
fatalf("cannot load DWARF output from %s: %v", gccTmp(), err)
|
|
}
|
|
bo := f.ByteOrder
|
|
if f.Symtab != nil {
|
|
for i := range f.Symtab.Syms {
|
|
s := &f.Symtab.Syms[i]
|
|
switch {
|
|
case isDebugInts(s.Name):
|
|
// Found it. Now find data section.
|
|
if i := int(s.Sect) - 1; 0 <= i && i < len(f.Sections) {
|
|
sect := f.Sections[i]
|
|
if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size {
|
|
if sdat, err := sect.Data(); err == nil {
|
|
data := sdat[s.Value-sect.Addr:]
|
|
ints = make([]int64, len(data)/8)
|
|
for i := range ints {
|
|
ints[i] = int64(bo.Uint64(data[i*8:]))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
case isDebugFloats(s.Name):
|
|
// Found it. Now find data section.
|
|
if i := int(s.Sect) - 1; 0 <= i && i < len(f.Sections) {
|
|
sect := f.Sections[i]
|
|
if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size {
|
|
if sdat, err := sect.Data(); err == nil {
|
|
data := sdat[s.Value-sect.Addr:]
|
|
floats = make([]float64, len(data)/8)
|
|
for i := range floats {
|
|
floats[i] = math.Float64frombits(bo.Uint64(data[i*8:]))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
default:
|
|
if n := indexOfDebugStr(s.Name); n != -1 {
|
|
// Found it. Now find data section.
|
|
if i := int(s.Sect) - 1; 0 <= i && i < len(f.Sections) {
|
|
sect := f.Sections[i]
|
|
if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size {
|
|
if sdat, err := sect.Data(); err == nil {
|
|
data := sdat[s.Value-sect.Addr:]
|
|
strdata[n] = string(data)
|
|
}
|
|
}
|
|
}
|
|
break
|
|
}
|
|
if n := indexOfDebugStrlen(s.Name); n != -1 {
|
|
// Found it. Now find data section.
|
|
if i := int(s.Sect) - 1; 0 <= i && i < len(f.Sections) {
|
|
sect := f.Sections[i]
|
|
if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size {
|
|
if sdat, err := sect.Data(); err == nil {
|
|
data := sdat[s.Value-sect.Addr:]
|
|
strlen := bo.Uint64(data[:8])
|
|
if strlen > (1<<(uint(p.IntSize*8)-1) - 1) { // greater than MaxInt?
|
|
fatalf("string literal too big")
|
|
}
|
|
strlens[n] = int(strlen)
|
|
}
|
|
}
|
|
}
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
buildStrings()
|
|
}
|
|
return d, ints, floats, strs
|
|
}
|
|
|
|
if f, err := elf.Open(gccTmp()); err == nil {
|
|
defer f.Close()
|
|
d, err := f.DWARF()
|
|
if err != nil {
|
|
fatalf("cannot load DWARF output from %s: %v", gccTmp(), err)
|
|
}
|
|
bo := f.ByteOrder
|
|
symtab, err := f.Symbols()
|
|
if err == nil {
|
|
for i := range symtab {
|
|
s := &symtab[i]
|
|
switch {
|
|
case isDebugInts(s.Name):
|
|
// Found it. Now find data section.
|
|
if i := int(s.Section); 0 <= i && i < len(f.Sections) {
|
|
sect := f.Sections[i]
|
|
if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size {
|
|
if sdat, err := sect.Data(); err == nil {
|
|
data := sdat[s.Value-sect.Addr:]
|
|
ints = make([]int64, len(data)/8)
|
|
for i := range ints {
|
|
ints[i] = int64(bo.Uint64(data[i*8:]))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
case isDebugFloats(s.Name):
|
|
// Found it. Now find data section.
|
|
if i := int(s.Section); 0 <= i && i < len(f.Sections) {
|
|
sect := f.Sections[i]
|
|
if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size {
|
|
if sdat, err := sect.Data(); err == nil {
|
|
data := sdat[s.Value-sect.Addr:]
|
|
floats = make([]float64, len(data)/8)
|
|
for i := range floats {
|
|
floats[i] = math.Float64frombits(bo.Uint64(data[i*8:]))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
default:
|
|
if n := indexOfDebugStr(s.Name); n != -1 {
|
|
// Found it. Now find data section.
|
|
if i := int(s.Section); 0 <= i && i < len(f.Sections) {
|
|
sect := f.Sections[i]
|
|
if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size {
|
|
if sdat, err := sect.Data(); err == nil {
|
|
data := sdat[s.Value-sect.Addr:]
|
|
strdata[n] = string(data)
|
|
}
|
|
}
|
|
}
|
|
break
|
|
}
|
|
if n := indexOfDebugStrlen(s.Name); n != -1 {
|
|
// Found it. Now find data section.
|
|
if i := int(s.Section); 0 <= i && i < len(f.Sections) {
|
|
sect := f.Sections[i]
|
|
if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size {
|
|
if sdat, err := sect.Data(); err == nil {
|
|
data := sdat[s.Value-sect.Addr:]
|
|
strlen := bo.Uint64(data[:8])
|
|
if strlen > (1<<(uint(p.IntSize*8)-1) - 1) { // greater than MaxInt?
|
|
fatalf("string literal too big")
|
|
}
|
|
strlens[n] = int(strlen)
|
|
}
|
|
}
|
|
}
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
buildStrings()
|
|
}
|
|
return d, ints, floats, strs
|
|
}
|
|
|
|
if f, err := pe.Open(gccTmp()); err == nil {
|
|
defer f.Close()
|
|
d, err := f.DWARF()
|
|
if err != nil {
|
|
fatalf("cannot load DWARF output from %s: %v", gccTmp(), err)
|
|
}
|
|
bo := binary.LittleEndian
|
|
for _, s := range f.Symbols {
|
|
switch {
|
|
case isDebugInts(s.Name):
|
|
if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) {
|
|
sect := f.Sections[i]
|
|
if s.Value < sect.Size {
|
|
if sdat, err := sect.Data(); err == nil {
|
|
data := sdat[s.Value:]
|
|
ints = make([]int64, len(data)/8)
|
|
for i := range ints {
|
|
ints[i] = int64(bo.Uint64(data[i*8:]))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
case isDebugFloats(s.Name):
|
|
if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) {
|
|
sect := f.Sections[i]
|
|
if s.Value < sect.Size {
|
|
if sdat, err := sect.Data(); err == nil {
|
|
data := sdat[s.Value:]
|
|
floats = make([]float64, len(data)/8)
|
|
for i := range floats {
|
|
floats[i] = math.Float64frombits(bo.Uint64(data[i*8:]))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
default:
|
|
if n := indexOfDebugStr(s.Name); n != -1 {
|
|
if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) {
|
|
sect := f.Sections[i]
|
|
if s.Value < sect.Size {
|
|
if sdat, err := sect.Data(); err == nil {
|
|
data := sdat[s.Value:]
|
|
strdata[n] = string(data)
|
|
}
|
|
}
|
|
}
|
|
break
|
|
}
|
|
if n := indexOfDebugStrlen(s.Name); n != -1 {
|
|
if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) {
|
|
sect := f.Sections[i]
|
|
if s.Value < sect.Size {
|
|
if sdat, err := sect.Data(); err == nil {
|
|
data := sdat[s.Value:]
|
|
strlen := bo.Uint64(data[:8])
|
|
if strlen > (1<<(uint(p.IntSize*8)-1) - 1) { // greater than MaxInt?
|
|
fatalf("string literal too big")
|
|
}
|
|
strlens[n] = int(strlen)
|
|
}
|
|
}
|
|
}
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
buildStrings()
|
|
|
|
return d, ints, floats, strs
|
|
}
|
|
|
|
if f, err := xcoff.Open(gccTmp()); err == nil {
|
|
defer f.Close()
|
|
d, err := f.DWARF()
|
|
if err != nil {
|
|
fatalf("cannot load DWARF output from %s: %v", gccTmp(), err)
|
|
}
|
|
bo := binary.BigEndian
|
|
for _, s := range f.Symbols {
|
|
switch {
|
|
case isDebugInts(s.Name):
|
|
if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) {
|
|
sect := f.Sections[i]
|
|
if s.Value < sect.Size {
|
|
if sdat, err := sect.Data(); err == nil {
|
|
data := sdat[s.Value:]
|
|
ints = make([]int64, len(data)/8)
|
|
for i := range ints {
|
|
ints[i] = int64(bo.Uint64(data[i*8:]))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
case isDebugFloats(s.Name):
|
|
if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) {
|
|
sect := f.Sections[i]
|
|
if s.Value < sect.Size {
|
|
if sdat, err := sect.Data(); err == nil {
|
|
data := sdat[s.Value:]
|
|
floats = make([]float64, len(data)/8)
|
|
for i := range floats {
|
|
floats[i] = math.Float64frombits(bo.Uint64(data[i*8:]))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
default:
|
|
if n := indexOfDebugStr(s.Name); n != -1 {
|
|
if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) {
|
|
sect := f.Sections[i]
|
|
if s.Value < sect.Size {
|
|
if sdat, err := sect.Data(); err == nil {
|
|
data := sdat[s.Value:]
|
|
strdata[n] = string(data)
|
|
}
|
|
}
|
|
}
|
|
break
|
|
}
|
|
if n := indexOfDebugStrlen(s.Name); n != -1 {
|
|
if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) {
|
|
sect := f.Sections[i]
|
|
if s.Value < sect.Size {
|
|
if sdat, err := sect.Data(); err == nil {
|
|
data := sdat[s.Value:]
|
|
strlen := bo.Uint64(data[:8])
|
|
if strlen > (1<<(uint(p.IntSize*8)-1) - 1) { // greater than MaxInt?
|
|
fatalf("string literal too big")
|
|
}
|
|
strlens[n] = int(strlen)
|
|
}
|
|
}
|
|
}
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
buildStrings()
|
|
|
|
return d, ints, floats, strs
|
|
}
|
|
|
|
fatalf("cannot parse gcc output %s as ELF, Mach-O, PE, XCOFF object", gccTmp())
|
|
panic("not reached")
|
|
}
|
|
|
|
// gccDefines runs gcc -E -dM -xc - over the C program stdin
|
|
// and returns the corresponding standard output, which is the
|
|
// #defines that gcc encountered while processing the input
|
|
// and its included files.
|
|
func (p *Package) gccDefines(stdin []byte) string {
|
|
base := append(p.gccBaseCmd(), "-E", "-dM", "-xc")
|
|
base = append(base, p.gccMachine()...)
|
|
stdout, _ := runGcc(stdin, append(append(base, p.GccOptions...), "-"))
|
|
return stdout
|
|
}
|
|
|
|
// gccErrors runs gcc over the C program stdin and returns
|
|
// the errors that gcc prints. That is, this function expects
|
|
// gcc to fail.
|
|
func (p *Package) gccErrors(stdin []byte) string {
|
|
// TODO(rsc): require failure
|
|
args := p.gccCmd()
|
|
|
|
// Optimization options can confuse the error messages; remove them.
|
|
nargs := make([]string, 0, len(args))
|
|
for _, arg := range args {
|
|
if !strings.HasPrefix(arg, "-O") {
|
|
nargs = append(nargs, arg)
|
|
}
|
|
}
|
|
|
|
if *debugGcc {
|
|
fmt.Fprintf(os.Stderr, "$ %s <<EOF\n", strings.Join(nargs, " "))
|
|
os.Stderr.Write(stdin)
|
|
fmt.Fprint(os.Stderr, "EOF\n")
|
|
}
|
|
stdout, stderr, _ := run(stdin, nargs)
|
|
if *debugGcc {
|
|
os.Stderr.Write(stdout)
|
|
os.Stderr.Write(stderr)
|
|
}
|
|
return string(stderr)
|
|
}
|
|
|
|
// runGcc runs the gcc command line args with stdin on standard input.
|
|
// If the command exits with a non-zero exit status, runGcc prints
|
|
// details about what was run and exits.
|
|
// Otherwise runGcc returns the data written to standard output and standard error.
|
|
// Note that for some of the uses we expect useful data back
|
|
// on standard error, but for those uses gcc must still exit 0.
|
|
func runGcc(stdin []byte, args []string) (string, string) {
|
|
if *debugGcc {
|
|
fmt.Fprintf(os.Stderr, "$ %s <<EOF\n", strings.Join(args, " "))
|
|
os.Stderr.Write(stdin)
|
|
fmt.Fprint(os.Stderr, "EOF\n")
|
|
}
|
|
stdout, stderr, ok := run(stdin, args)
|
|
if *debugGcc {
|
|
os.Stderr.Write(stdout)
|
|
os.Stderr.Write(stderr)
|
|
}
|
|
if !ok {
|
|
os.Stderr.Write(stderr)
|
|
os.Exit(2)
|
|
}
|
|
return string(stdout), string(stderr)
|
|
}
|
|
|
|
// A typeConv is a translator from dwarf types to Go types
|
|
// with equivalent memory layout.
|
|
type typeConv struct {
|
|
// Cache of already-translated or in-progress types.
|
|
m map[dwarf.Type]*Type
|
|
|
|
// Map from types to incomplete pointers to those types.
|
|
ptrs map[dwarf.Type][]*Type
|
|
// Keys of ptrs in insertion order (deterministic worklist)
|
|
ptrKeys []dwarf.Type
|
|
|
|
// Predeclared types.
|
|
bool ast.Expr
|
|
byte ast.Expr // denotes padding
|
|
int8, int16, int32, int64 ast.Expr
|
|
uint8, uint16, uint32, uint64, uintptr ast.Expr
|
|
float32, float64 ast.Expr
|
|
complex64, complex128 ast.Expr
|
|
void ast.Expr
|
|
string ast.Expr
|
|
goVoid ast.Expr // _Ctype_void, denotes C's void
|
|
goVoidPtr ast.Expr // unsafe.Pointer or *byte
|
|
|
|
ptrSize int64
|
|
intSize int64
|
|
}
|
|
|
|
var tagGen int
|
|
var typedef = make(map[string]*Type)
|
|
var goIdent = make(map[string]*ast.Ident)
|
|
|
|
// unionWithPointer is true for a Go type that represents a C union (or class)
|
|
// that may contain a pointer. This is used for cgo pointer checking.
|
|
var unionWithPointer = make(map[ast.Expr]bool)
|
|
|
|
func (c *typeConv) Init(ptrSize, intSize int64) {
|
|
c.ptrSize = ptrSize
|
|
c.intSize = intSize
|
|
c.m = make(map[dwarf.Type]*Type)
|
|
c.ptrs = make(map[dwarf.Type][]*Type)
|
|
c.bool = c.Ident("bool")
|
|
c.byte = c.Ident("byte")
|
|
c.int8 = c.Ident("int8")
|
|
c.int16 = c.Ident("int16")
|
|
c.int32 = c.Ident("int32")
|
|
c.int64 = c.Ident("int64")
|
|
c.uint8 = c.Ident("uint8")
|
|
c.uint16 = c.Ident("uint16")
|
|
c.uint32 = c.Ident("uint32")
|
|
c.uint64 = c.Ident("uint64")
|
|
c.uintptr = c.Ident("uintptr")
|
|
c.float32 = c.Ident("float32")
|
|
c.float64 = c.Ident("float64")
|
|
c.complex64 = c.Ident("complex64")
|
|
c.complex128 = c.Ident("complex128")
|
|
c.void = c.Ident("void")
|
|
c.string = c.Ident("string")
|
|
c.goVoid = c.Ident("_Ctype_void")
|
|
|
|
// Normally cgo translates void* to unsafe.Pointer,
|
|
// but for historical reasons -godefs uses *byte instead.
|
|
if *godefs {
|
|
c.goVoidPtr = &ast.StarExpr{X: c.byte}
|
|
} else {
|
|
c.goVoidPtr = c.Ident("unsafe.Pointer")
|
|
}
|
|
}
|
|
|
|
// base strips away qualifiers and typedefs to get the underlying type
|
|
func base(dt dwarf.Type) dwarf.Type {
|
|
for {
|
|
if d, ok := dt.(*dwarf.QualType); ok {
|
|
dt = d.Type
|
|
continue
|
|
}
|
|
if d, ok := dt.(*dwarf.TypedefType); ok {
|
|
dt = d.Type
|
|
continue
|
|
}
|
|
break
|
|
}
|
|
return dt
|
|
}
|
|
|
|
// unqual strips away qualifiers from a DWARF type.
|
|
// In general we don't care about top-level qualifiers.
|
|
func unqual(dt dwarf.Type) dwarf.Type {
|
|
for {
|
|
if d, ok := dt.(*dwarf.QualType); ok {
|
|
dt = d.Type
|
|
} else {
|
|
break
|
|
}
|
|
}
|
|
return dt
|
|
}
|
|
|
|
// Map from dwarf text names to aliases we use in package "C".
|
|
var dwarfToName = map[string]string{
|
|
"long int": "long",
|
|
"long unsigned int": "ulong",
|
|
"unsigned int": "uint",
|
|
"short unsigned int": "ushort",
|
|
"unsigned short": "ushort", // Used by Clang; issue 13129.
|
|
"short int": "short",
|
|
"long long int": "longlong",
|
|
"long long unsigned int": "ulonglong",
|
|
"signed char": "schar",
|
|
"unsigned char": "uchar",
|
|
}
|
|
|
|
const signedDelta = 64
|
|
|
|
// String returns the current type representation. Format arguments
|
|
// are assembled within this method so that any changes in mutable
|
|
// values are taken into account.
|
|
func (tr *TypeRepr) String() string {
|
|
if len(tr.Repr) == 0 {
|
|
return ""
|
|
}
|
|
if len(tr.FormatArgs) == 0 {
|
|
return tr.Repr
|
|
}
|
|
return fmt.Sprintf(tr.Repr, tr.FormatArgs...)
|
|
}
|
|
|
|
// Empty reports whether the result of String would be "".
|
|
func (tr *TypeRepr) Empty() bool {
|
|
return len(tr.Repr) == 0
|
|
}
|
|
|
|
// Set modifies the type representation.
|
|
// If fargs are provided, repr is used as a format for fmt.Sprintf.
|
|
// Otherwise, repr is used unprocessed as the type representation.
|
|
func (tr *TypeRepr) Set(repr string, fargs ...interface{}) {
|
|
tr.Repr = repr
|
|
tr.FormatArgs = fargs
|
|
}
|
|
|
|
// FinishType completes any outstanding type mapping work.
|
|
// In particular, it resolves incomplete pointer types.
|
|
func (c *typeConv) FinishType(pos token.Pos) {
|
|
// Completing one pointer type might produce more to complete.
|
|
// Keep looping until they're all done.
|
|
for len(c.ptrKeys) > 0 {
|
|
dtype := c.ptrKeys[0]
|
|
c.ptrKeys = c.ptrKeys[1:]
|
|
|
|
// Note Type might invalidate c.ptrs[dtype].
|
|
t := c.Type(dtype, pos)
|
|
for _, ptr := range c.ptrs[dtype] {
|
|
ptr.Go.(*ast.StarExpr).X = t.Go
|
|
ptr.C.Set("%s*", t.C)
|
|
}
|
|
c.ptrs[dtype] = nil // retain the map key
|
|
}
|
|
}
|
|
|
|
// Type returns a *Type with the same memory layout as
|
|
// dtype when used as the type of a variable or a struct field.
|
|
func (c *typeConv) Type(dtype dwarf.Type, pos token.Pos) *Type {
|
|
if t, ok := c.m[dtype]; ok {
|
|
if t.Go == nil {
|
|
fatalf("%s: type conversion loop at %s", lineno(pos), dtype)
|
|
}
|
|
return t
|
|
}
|
|
|
|
t := new(Type)
|
|
t.Size = dtype.Size() // note: wrong for array of pointers, corrected below
|
|
t.Align = -1
|
|
t.C = &TypeRepr{Repr: dtype.Common().Name}
|
|
c.m[dtype] = t
|
|
|
|
switch dt := dtype.(type) {
|
|
default:
|
|
fatalf("%s: unexpected type: %s", lineno(pos), dtype)
|
|
|
|
case *dwarf.AddrType:
|
|
if t.Size != c.ptrSize {
|
|
fatalf("%s: unexpected: %d-byte address type - %s", lineno(pos), t.Size, dtype)
|
|
}
|
|
t.Go = c.uintptr
|
|
t.Align = t.Size
|
|
|
|
case *dwarf.ArrayType:
|
|
if dt.StrideBitSize > 0 {
|
|
// Cannot represent bit-sized elements in Go.
|
|
t.Go = c.Opaque(t.Size)
|
|
break
|
|
}
|
|
count := dt.Count
|
|
if count == -1 {
|
|
// Indicates flexible array member, which Go doesn't support.
|
|
// Translate to zero-length array instead.
|
|
count = 0
|
|
}
|
|
sub := c.Type(dt.Type, pos)
|
|
t.Align = sub.Align
|
|
t.Go = &ast.ArrayType{
|
|
Len: c.intExpr(count),
|
|
Elt: sub.Go,
|
|
}
|
|
// Recalculate t.Size now that we know sub.Size.
|
|
t.Size = count * sub.Size
|
|
t.C.Set("__typeof__(%s[%d])", sub.C, dt.Count)
|
|
|
|
case *dwarf.BoolType:
|
|
t.Go = c.bool
|
|
t.Align = 1
|
|
|
|
case *dwarf.CharType:
|
|
if t.Size != 1 {
|
|
fatalf("%s: unexpected: %d-byte char type - %s", lineno(pos), t.Size, dtype)
|
|
}
|
|
t.Go = c.int8
|
|
t.Align = 1
|
|
|
|
case *dwarf.EnumType:
|
|
if t.Align = t.Size; t.Align >= c.ptrSize {
|
|
t.Align = c.ptrSize
|
|
}
|
|
t.C.Set("enum " + dt.EnumName)
|
|
signed := 0
|
|
t.EnumValues = make(map[string]int64)
|
|
for _, ev := range dt.Val {
|
|
t.EnumValues[ev.Name] = ev.Val
|
|
if ev.Val < 0 {
|
|
signed = signedDelta
|
|
}
|
|
}
|
|
switch t.Size + int64(signed) {
|
|
default:
|
|
fatalf("%s: unexpected: %d-byte enum type - %s", lineno(pos), t.Size, dtype)
|
|
case 1:
|
|
t.Go = c.uint8
|
|
case 2:
|
|
t.Go = c.uint16
|
|
case 4:
|
|
t.Go = c.uint32
|
|
case 8:
|
|
t.Go = c.uint64
|
|
case 1 + signedDelta:
|
|
t.Go = c.int8
|
|
case 2 + signedDelta:
|
|
t.Go = c.int16
|
|
case 4 + signedDelta:
|
|
t.Go = c.int32
|
|
case 8 + signedDelta:
|
|
t.Go = c.int64
|
|
}
|
|
|
|
case *dwarf.FloatType:
|
|
switch t.Size {
|
|
default:
|
|
fatalf("%s: unexpected: %d-byte float type - %s", lineno(pos), t.Size, dtype)
|
|
case 4:
|
|
t.Go = c.float32
|
|
case 8:
|
|
t.Go = c.float64
|
|
}
|
|
if t.Align = t.Size; t.Align >= c.ptrSize {
|
|
t.Align = c.ptrSize
|
|
}
|
|
|
|
case *dwarf.ComplexType:
|
|
switch t.Size {
|
|
default:
|
|
fatalf("%s: unexpected: %d-byte complex type - %s", lineno(pos), t.Size, dtype)
|
|
case 8:
|
|
t.Go = c.complex64
|
|
case 16:
|
|
t.Go = c.complex128
|
|
}
|
|
if t.Align = t.Size / 2; t.Align >= c.ptrSize {
|
|
t.Align = c.ptrSize
|
|
}
|
|
|
|
case *dwarf.FuncType:
|
|
// No attempt at translation: would enable calls
|
|
// directly between worlds, but we need to moderate those.
|
|
t.Go = c.uintptr
|
|
t.Align = c.ptrSize
|
|
|
|
case *dwarf.IntType:
|
|
if dt.BitSize > 0 {
|
|
fatalf("%s: unexpected: %d-bit int type - %s", lineno(pos), dt.BitSize, dtype)
|
|
}
|
|
switch t.Size {
|
|
default:
|
|
fatalf("%s: unexpected: %d-byte int type - %s", lineno(pos), t.Size, dtype)
|
|
case 1:
|
|
t.Go = c.int8
|
|
case 2:
|
|
t.Go = c.int16
|
|
case 4:
|
|
t.Go = c.int32
|
|
case 8:
|
|
t.Go = c.int64
|
|
case 16:
|
|
t.Go = &ast.ArrayType{
|
|
Len: c.intExpr(t.Size),
|
|
Elt: c.uint8,
|
|
}
|
|
}
|
|
if t.Align = t.Size; t.Align >= c.ptrSize {
|
|
t.Align = c.ptrSize
|
|
}
|
|
|
|
case *dwarf.PtrType:
|
|
// Clang doesn't emit DW_AT_byte_size for pointer types.
|
|
if t.Size != c.ptrSize && t.Size != -1 {
|
|
fatalf("%s: unexpected: %d-byte pointer type - %s", lineno(pos), t.Size, dtype)
|
|
}
|
|
t.Size = c.ptrSize
|
|
t.Align = c.ptrSize
|
|
|
|
if _, ok := base(dt.Type).(*dwarf.VoidType); ok {
|
|
t.Go = c.goVoidPtr
|
|
t.C.Set("void*")
|
|
dq := dt.Type
|
|
for {
|
|
if d, ok := dq.(*dwarf.QualType); ok {
|
|
t.C.Set(d.Qual + " " + t.C.String())
|
|
dq = d.Type
|
|
} else {
|
|
break
|
|
}
|
|
}
|
|
break
|
|
}
|
|
|
|
// Placeholder initialization; completed in FinishType.
|
|
t.Go = &ast.StarExpr{}
|
|
t.C.Set("<incomplete>*")
|
|
if _, ok := c.ptrs[dt.Type]; !ok {
|
|
c.ptrKeys = append(c.ptrKeys, dt.Type)
|
|
}
|
|
c.ptrs[dt.Type] = append(c.ptrs[dt.Type], t)
|
|
|
|
case *dwarf.QualType:
|
|
t1 := c.Type(dt.Type, pos)
|
|
t.Size = t1.Size
|
|
t.Align = t1.Align
|
|
t.Go = t1.Go
|
|
if unionWithPointer[t1.Go] {
|
|
unionWithPointer[t.Go] = true
|
|
}
|
|
t.EnumValues = nil
|
|
t.Typedef = ""
|
|
t.C.Set("%s "+dt.Qual, t1.C)
|
|
return t
|
|
|
|
case *dwarf.StructType:
|
|
// Convert to Go struct, being careful about alignment.
|
|
// Have to give it a name to simulate C "struct foo" references.
|
|
tag := dt.StructName
|
|
if dt.ByteSize < 0 && tag == "" { // opaque unnamed struct - should not be possible
|
|
break
|
|
}
|
|
if tag == "" {
|
|
tag = "__" + strconv.Itoa(tagGen)
|
|
tagGen++
|
|
} else if t.C.Empty() {
|
|
t.C.Set(dt.Kind + " " + tag)
|
|
}
|
|
name := c.Ident("_Ctype_" + dt.Kind + "_" + tag)
|
|
t.Go = name // publish before recursive calls
|
|
goIdent[name.Name] = name
|
|
if dt.ByteSize < 0 {
|
|
// Size calculation in c.Struct/c.Opaque will die with size=-1 (unknown),
|
|
// so execute the basic things that the struct case would do
|
|
// other than try to determine a Go representation.
|
|
tt := *t
|
|
tt.C = &TypeRepr{"%s %s", []interface{}{dt.Kind, tag}}
|
|
tt.Go = c.Ident("struct{}")
|
|
typedef[name.Name] = &tt
|
|
break
|
|
}
|
|
switch dt.Kind {
|
|
case "class", "union":
|
|
t.Go = c.Opaque(t.Size)
|
|
if c.dwarfHasPointer(dt, pos) {
|
|
unionWithPointer[t.Go] = true
|
|
}
|
|
if t.C.Empty() {
|
|
t.C.Set("__typeof__(unsigned char[%d])", t.Size)
|
|
}
|
|
t.Align = 1 // TODO: should probably base this on field alignment.
|
|
typedef[name.Name] = t
|
|
case "struct":
|
|
g, csyntax, align := c.Struct(dt, pos)
|
|
if t.C.Empty() {
|
|
t.C.Set(csyntax)
|
|
}
|
|
t.Align = align
|
|
tt := *t
|
|
if tag != "" {
|
|
tt.C = &TypeRepr{"struct %s", []interface{}{tag}}
|
|
}
|
|
tt.Go = g
|
|
typedef[name.Name] = &tt
|
|
}
|
|
|
|
case *dwarf.TypedefType:
|
|
// Record typedef for printing.
|
|
if dt.Name == "_GoString_" {
|
|
// Special C name for Go string type.
|
|
// Knows string layout used by compilers: pointer plus length,
|
|
// which rounds up to 2 pointers after alignment.
|
|
t.Go = c.string
|
|
t.Size = c.ptrSize * 2
|
|
t.Align = c.ptrSize
|
|
break
|
|
}
|
|
if dt.Name == "_GoBytes_" {
|
|
// Special C name for Go []byte type.
|
|
// Knows slice layout used by compilers: pointer, length, cap.
|
|
t.Go = c.Ident("[]byte")
|
|
t.Size = c.ptrSize + 4 + 4
|
|
t.Align = c.ptrSize
|
|
break
|
|
}
|
|
name := c.Ident("_Ctype_" + dt.Name)
|
|
goIdent[name.Name] = name
|
|
sub := c.Type(dt.Type, pos)
|
|
t.Go = name
|
|
if unionWithPointer[sub.Go] {
|
|
unionWithPointer[t.Go] = true
|
|
}
|
|
t.Size = sub.Size
|
|
t.Align = sub.Align
|
|
oldType := typedef[name.Name]
|
|
if oldType == nil {
|
|
tt := *t
|
|
tt.Go = sub.Go
|
|
typedef[name.Name] = &tt
|
|
}
|
|
|
|
// If sub.Go.Name is "_Ctype_struct_foo" or "_Ctype_union_foo" or "_Ctype_class_foo",
|
|
// use that as the Go form for this typedef too, so that the typedef will be interchangeable
|
|
// with the base type.
|
|
// In -godefs mode, do this for all typedefs.
|
|
if isStructUnionClass(sub.Go) || *godefs {
|
|
t.Go = sub.Go
|
|
|
|
if isStructUnionClass(sub.Go) {
|
|
// Use the typedef name for C code.
|
|
typedef[sub.Go.(*ast.Ident).Name].C = t.C
|
|
}
|
|
|
|
// If we've seen this typedef before, and it
|
|
// was an anonymous struct/union/class before
|
|
// too, use the old definition.
|
|
// TODO: it would be safer to only do this if
|
|
// we verify that the types are the same.
|
|
if oldType != nil && isStructUnionClass(oldType.Go) {
|
|
t.Go = oldType.Go
|
|
}
|
|
}
|
|
|
|
case *dwarf.UcharType:
|
|
if t.Size != 1 {
|
|
fatalf("%s: unexpected: %d-byte uchar type - %s", lineno(pos), t.Size, dtype)
|
|
}
|
|
t.Go = c.uint8
|
|
t.Align = 1
|
|
|
|
case *dwarf.UintType:
|
|
if dt.BitSize > 0 {
|
|
fatalf("%s: unexpected: %d-bit uint type - %s", lineno(pos), dt.BitSize, dtype)
|
|
}
|
|
switch t.Size {
|
|
default:
|
|
fatalf("%s: unexpected: %d-byte uint type - %s", lineno(pos), t.Size, dtype)
|
|
case 1:
|
|
t.Go = c.uint8
|
|
case 2:
|
|
t.Go = c.uint16
|
|
case 4:
|
|
t.Go = c.uint32
|
|
case 8:
|
|
t.Go = c.uint64
|
|
case 16:
|
|
t.Go = &ast.ArrayType{
|
|
Len: c.intExpr(t.Size),
|
|
Elt: c.uint8,
|
|
}
|
|
}
|
|
if t.Align = t.Size; t.Align >= c.ptrSize {
|
|
t.Align = c.ptrSize
|
|
}
|
|
|
|
case *dwarf.VoidType:
|
|
t.Go = c.goVoid
|
|
t.C.Set("void")
|
|
t.Align = 1
|
|
}
|
|
|
|
switch dtype.(type) {
|
|
case *dwarf.AddrType, *dwarf.BoolType, *dwarf.CharType, *dwarf.ComplexType, *dwarf.IntType, *dwarf.FloatType, *dwarf.UcharType, *dwarf.UintType:
|
|
s := dtype.Common().Name
|
|
if s != "" {
|
|
if ss, ok := dwarfToName[s]; ok {
|
|
s = ss
|
|
}
|
|
s = strings.Join(strings.Split(s, " "), "") // strip spaces
|
|
name := c.Ident("_Ctype_" + s)
|
|
tt := *t
|
|
typedef[name.Name] = &tt
|
|
if !*godefs {
|
|
t.Go = name
|
|
}
|
|
}
|
|
}
|
|
|
|
if t.Size < 0 {
|
|
// Unsized types are [0]byte, unless they're typedefs of other types
|
|
// or structs with tags.
|
|
// if so, use the name we've already defined.
|
|
t.Size = 0
|
|
switch dt := dtype.(type) {
|
|
case *dwarf.TypedefType:
|
|
// ok
|
|
case *dwarf.StructType:
|
|
if dt.StructName != "" {
|
|
break
|
|
}
|
|
t.Go = c.Opaque(0)
|
|
default:
|
|
t.Go = c.Opaque(0)
|
|
}
|
|
if t.C.Empty() {
|
|
t.C.Set("void")
|
|
}
|
|
}
|
|
|
|
if t.C.Empty() {
|
|
fatalf("%s: internal error: did not create C name for %s", lineno(pos), dtype)
|
|
}
|
|
|
|
return t
|
|
}
|
|
|
|
// isStructUnionClass reports whether the type described by the Go syntax x
|
|
// is a struct, union, or class with a tag.
|
|
func isStructUnionClass(x ast.Expr) bool {
|
|
id, ok := x.(*ast.Ident)
|
|
if !ok {
|
|
return false
|
|
}
|
|
name := id.Name
|
|
return strings.HasPrefix(name, "_Ctype_struct_") ||
|
|
strings.HasPrefix(name, "_Ctype_union_") ||
|
|
strings.HasPrefix(name, "_Ctype_class_")
|
|
}
|
|
|
|
// FuncArg returns a Go type with the same memory layout as
|
|
// dtype when used as the type of a C function argument.
|
|
func (c *typeConv) FuncArg(dtype dwarf.Type, pos token.Pos) *Type {
|
|
t := c.Type(unqual(dtype), pos)
|
|
switch dt := dtype.(type) {
|
|
case *dwarf.ArrayType:
|
|
// Arrays are passed implicitly as pointers in C.
|
|
// In Go, we must be explicit.
|
|
tr := &TypeRepr{}
|
|
tr.Set("%s*", t.C)
|
|
return &Type{
|
|
Size: c.ptrSize,
|
|
Align: c.ptrSize,
|
|
Go: &ast.StarExpr{X: t.Go},
|
|
C: tr,
|
|
}
|
|
case *dwarf.TypedefType:
|
|
// C has much more relaxed rules than Go for
|
|
// implicit type conversions. When the parameter
|
|
// is type T defined as *X, simulate a little of the
|
|
// laxness of C by making the argument *X instead of T.
|
|
if ptr, ok := base(dt.Type).(*dwarf.PtrType); ok {
|
|
// Unless the typedef happens to point to void* since
|
|
// Go has special rules around using unsafe.Pointer.
|
|
if _, void := base(ptr.Type).(*dwarf.VoidType); void {
|
|
break
|
|
}
|
|
|
|
t = c.Type(ptr, pos)
|
|
if t == nil {
|
|
return nil
|
|
}
|
|
|
|
// For a struct/union/class, remember the C spelling,
|
|
// in case it has __attribute__((unavailable)).
|
|
// See issue 2888.
|
|
if isStructUnionClass(t.Go) {
|
|
t.Typedef = dt.Name
|
|
}
|
|
}
|
|
}
|
|
return t
|
|
}
|
|
|
|
// FuncType returns the Go type analogous to dtype.
|
|
// There is no guarantee about matching memory layout.
|
|
func (c *typeConv) FuncType(dtype *dwarf.FuncType, pos token.Pos) *FuncType {
|
|
p := make([]*Type, len(dtype.ParamType))
|
|
gp := make([]*ast.Field, len(dtype.ParamType))
|
|
for i, f := range dtype.ParamType {
|
|
// gcc's DWARF generator outputs a single DotDotDotType parameter for
|
|
// function pointers that specify no parameters (e.g. void
|
|
// (*__cgo_0)()). Treat this special case as void. This case is
|
|
// invalid according to ISO C anyway (i.e. void (*__cgo_1)(...) is not
|
|
// legal).
|
|
if _, ok := f.(*dwarf.DotDotDotType); ok && i == 0 {
|
|
p, gp = nil, nil
|
|
break
|
|
}
|
|
p[i] = c.FuncArg(f, pos)
|
|
gp[i] = &ast.Field{Type: p[i].Go}
|
|
}
|
|
var r *Type
|
|
var gr []*ast.Field
|
|
if _, ok := base(dtype.ReturnType).(*dwarf.VoidType); ok {
|
|
gr = []*ast.Field{{Type: c.goVoid}}
|
|
} else if dtype.ReturnType != nil {
|
|
r = c.Type(unqual(dtype.ReturnType), pos)
|
|
gr = []*ast.Field{{Type: r.Go}}
|
|
}
|
|
return &FuncType{
|
|
Params: p,
|
|
Result: r,
|
|
Go: &ast.FuncType{
|
|
Params: &ast.FieldList{List: gp},
|
|
Results: &ast.FieldList{List: gr},
|
|
},
|
|
}
|
|
}
|
|
|
|
// Identifier
|
|
func (c *typeConv) Ident(s string) *ast.Ident {
|
|
return ast.NewIdent(s)
|
|
}
|
|
|
|
// Opaque type of n bytes.
|
|
func (c *typeConv) Opaque(n int64) ast.Expr {
|
|
return &ast.ArrayType{
|
|
Len: c.intExpr(n),
|
|
Elt: c.byte,
|
|
}
|
|
}
|
|
|
|
// Expr for integer n.
|
|
func (c *typeConv) intExpr(n int64) ast.Expr {
|
|
return &ast.BasicLit{
|
|
Kind: token.INT,
|
|
Value: strconv.FormatInt(n, 10),
|
|
}
|
|
}
|
|
|
|
// Add padding of given size to fld.
|
|
func (c *typeConv) pad(fld []*ast.Field, sizes []int64, size int64) ([]*ast.Field, []int64) {
|
|
n := len(fld)
|
|
fld = fld[0 : n+1]
|
|
fld[n] = &ast.Field{Names: []*ast.Ident{c.Ident("_")}, Type: c.Opaque(size)}
|
|
sizes = sizes[0 : n+1]
|
|
sizes[n] = size
|
|
return fld, sizes
|
|
}
|
|
|
|
// Struct conversion: return Go and (gc) C syntax for type.
|
|
func (c *typeConv) Struct(dt *dwarf.StructType, pos token.Pos) (expr *ast.StructType, csyntax string, align int64) {
|
|
// Minimum alignment for a struct is 1 byte.
|
|
align = 1
|
|
|
|
var buf bytes.Buffer
|
|
buf.WriteString("struct {")
|
|
fld := make([]*ast.Field, 0, 2*len(dt.Field)+1) // enough for padding around every field
|
|
sizes := make([]int64, 0, 2*len(dt.Field)+1)
|
|
off := int64(0)
|
|
|
|
// Rename struct fields that happen to be named Go keywords into
|
|
// _{keyword}. Create a map from C ident -> Go ident. The Go ident will
|
|
// be mangled. Any existing identifier that already has the same name on
|
|
// the C-side will cause the Go-mangled version to be prefixed with _.
|
|
// (e.g. in a struct with fields '_type' and 'type', the latter would be
|
|
// rendered as '__type' in Go).
|
|
ident := make(map[string]string)
|
|
used := make(map[string]bool)
|
|
for _, f := range dt.Field {
|
|
ident[f.Name] = f.Name
|
|
used[f.Name] = true
|
|
}
|
|
|
|
if !*godefs {
|
|
for cid, goid := range ident {
|
|
if token.Lookup(goid).IsKeyword() {
|
|
// Avoid keyword
|
|
goid = "_" + goid
|
|
|
|
// Also avoid existing fields
|
|
for _, exist := used[goid]; exist; _, exist = used[goid] {
|
|
goid = "_" + goid
|
|
}
|
|
|
|
used[goid] = true
|
|
ident[cid] = goid
|
|
}
|
|
}
|
|
}
|
|
|
|
anon := 0
|
|
for _, f := range dt.Field {
|
|
if f.ByteOffset > off {
|
|
fld, sizes = c.pad(fld, sizes, f.ByteOffset-off)
|
|
off = f.ByteOffset
|
|
}
|
|
|
|
name := f.Name
|
|
ft := f.Type
|
|
|
|
// In godefs mode, if this field is a C11
|
|
// anonymous union then treat the first field in the
|
|
// union as the field in the struct. This handles
|
|
// cases like the glibc <sys/resource.h> file; see
|
|
// issue 6677.
|
|
if *godefs {
|
|
if st, ok := f.Type.(*dwarf.StructType); ok && name == "" && st.Kind == "union" && len(st.Field) > 0 && !used[st.Field[0].Name] {
|
|
name = st.Field[0].Name
|
|
ident[name] = name
|
|
ft = st.Field[0].Type
|
|
}
|
|
}
|
|
|
|
// TODO: Handle fields that are anonymous structs by
|
|
// promoting the fields of the inner struct.
|
|
|
|
t := c.Type(ft, pos)
|
|
tgo := t.Go
|
|
size := t.Size
|
|
talign := t.Align
|
|
if f.BitSize > 0 {
|
|
if f.BitSize%8 != 0 {
|
|
continue
|
|
}
|
|
size = f.BitSize / 8
|
|
name := tgo.(*ast.Ident).String()
|
|
if strings.HasPrefix(name, "int") {
|
|
name = "int"
|
|
} else {
|
|
name = "uint"
|
|
}
|
|
tgo = ast.NewIdent(name + fmt.Sprint(f.BitSize))
|
|
talign = size
|
|
}
|
|
|
|
if talign > 0 && f.ByteOffset%talign != 0 {
|
|
// Drop misaligned fields, the same way we drop integer bit fields.
|
|
// The goal is to make available what can be made available.
|
|
// Otherwise one bad and unneeded field in an otherwise okay struct
|
|
// makes the whole program not compile. Much of the time these
|
|
// structs are in system headers that cannot be corrected.
|
|
continue
|
|
}
|
|
n := len(fld)
|
|
fld = fld[0 : n+1]
|
|
if name == "" {
|
|
name = fmt.Sprintf("anon%d", anon)
|
|
anon++
|
|
ident[name] = name
|
|
}
|
|
fld[n] = &ast.Field{Names: []*ast.Ident{c.Ident(ident[name])}, Type: tgo}
|
|
sizes = sizes[0 : n+1]
|
|
sizes[n] = size
|
|
off += size
|
|
buf.WriteString(t.C.String())
|
|
buf.WriteString(" ")
|
|
buf.WriteString(name)
|
|
buf.WriteString("; ")
|
|
if talign > align {
|
|
align = talign
|
|
}
|
|
}
|
|
if off < dt.ByteSize {
|
|
fld, sizes = c.pad(fld, sizes, dt.ByteSize-off)
|
|
off = dt.ByteSize
|
|
}
|
|
|
|
// If the last field in a non-zero-sized struct is zero-sized
|
|
// the compiler is going to pad it by one (see issue 9401).
|
|
// We can't permit that, because then the size of the Go
|
|
// struct will not be the same as the size of the C struct.
|
|
// Our only option in such a case is to remove the field,
|
|
// which means that it cannot be referenced from Go.
|
|
for off > 0 && sizes[len(sizes)-1] == 0 {
|
|
n := len(sizes)
|
|
fld = fld[0 : n-1]
|
|
sizes = sizes[0 : n-1]
|
|
}
|
|
|
|
if off != dt.ByteSize {
|
|
fatalf("%s: struct size calculation error off=%d bytesize=%d", lineno(pos), off, dt.ByteSize)
|
|
}
|
|
buf.WriteString("}")
|
|
csyntax = buf.String()
|
|
|
|
if *godefs {
|
|
godefsFields(fld)
|
|
}
|
|
expr = &ast.StructType{Fields: &ast.FieldList{List: fld}}
|
|
return
|
|
}
|
|
|
|
// dwarfHasPointer returns whether the DWARF type dt contains a pointer.
|
|
func (c *typeConv) dwarfHasPointer(dt dwarf.Type, pos token.Pos) bool {
|
|
switch dt := dt.(type) {
|
|
default:
|
|
fatalf("%s: unexpected type: %s", lineno(pos), dt)
|
|
return false
|
|
|
|
case *dwarf.AddrType, *dwarf.BoolType, *dwarf.CharType, *dwarf.EnumType,
|
|
*dwarf.FloatType, *dwarf.ComplexType, *dwarf.FuncType,
|
|
*dwarf.IntType, *dwarf.UcharType, *dwarf.UintType, *dwarf.VoidType:
|
|
|
|
return false
|
|
|
|
case *dwarf.ArrayType:
|
|
return c.dwarfHasPointer(dt.Type, pos)
|
|
|
|
case *dwarf.PtrType:
|
|
return true
|
|
|
|
case *dwarf.QualType:
|
|
return c.dwarfHasPointer(dt.Type, pos)
|
|
|
|
case *dwarf.StructType:
|
|
for _, f := range dt.Field {
|
|
if c.dwarfHasPointer(f.Type, pos) {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
|
|
case *dwarf.TypedefType:
|
|
if dt.Name == "_GoString_" || dt.Name == "_GoBytes_" {
|
|
return true
|
|
}
|
|
return c.dwarfHasPointer(dt.Type, pos)
|
|
}
|
|
}
|
|
|
|
func upper(s string) string {
|
|
if s == "" {
|
|
return ""
|
|
}
|
|
r, size := utf8.DecodeRuneInString(s)
|
|
if r == '_' {
|
|
return "X" + s
|
|
}
|
|
return string(unicode.ToUpper(r)) + s[size:]
|
|
}
|
|
|
|
// godefsFields rewrites field names for use in Go or C definitions.
|
|
// It strips leading common prefixes (like tv_ in tv_sec, tv_usec)
|
|
// converts names to upper case, and rewrites _ into Pad_godefs_n,
|
|
// so that all fields are exported.
|
|
func godefsFields(fld []*ast.Field) {
|
|
prefix := fieldPrefix(fld)
|
|
npad := 0
|
|
for _, f := range fld {
|
|
for _, n := range f.Names {
|
|
if n.Name != prefix {
|
|
n.Name = strings.TrimPrefix(n.Name, prefix)
|
|
}
|
|
if n.Name == "_" {
|
|
// Use exported name instead.
|
|
n.Name = "Pad_cgo_" + strconv.Itoa(npad)
|
|
npad++
|
|
}
|
|
n.Name = upper(n.Name)
|
|
}
|
|
}
|
|
}
|
|
|
|
// fieldPrefix returns the prefix that should be removed from all the
|
|
// field names when generating the C or Go code. For generated
|
|
// C, we leave the names as is (tv_sec, tv_usec), since that's what
|
|
// people are used to seeing in C. For generated Go code, such as
|
|
// package syscall's data structures, we drop a common prefix
|
|
// (so sec, usec, which will get turned into Sec, Usec for exporting).
|
|
func fieldPrefix(fld []*ast.Field) string {
|
|
prefix := ""
|
|
for _, f := range fld {
|
|
for _, n := range f.Names {
|
|
// Ignore field names that don't have the prefix we're
|
|
// looking for. It is common in C headers to have fields
|
|
// named, say, _pad in an otherwise prefixed header.
|
|
// If the struct has 3 fields tv_sec, tv_usec, _pad1, then we
|
|
// still want to remove the tv_ prefix.
|
|
// The check for "orig_" here handles orig_eax in the
|
|
// x86 ptrace register sets, which otherwise have all fields
|
|
// with reg_ prefixes.
|
|
if strings.HasPrefix(n.Name, "orig_") || strings.HasPrefix(n.Name, "_") {
|
|
continue
|
|
}
|
|
i := strings.Index(n.Name, "_")
|
|
if i < 0 {
|
|
continue
|
|
}
|
|
if prefix == "" {
|
|
prefix = n.Name[:i+1]
|
|
} else if prefix != n.Name[:i+1] {
|
|
return ""
|
|
}
|
|
}
|
|
}
|
|
return prefix
|
|
}
|