gcc/libgo/go/math/exp.go
2021-08-12 20:23:07 -07:00

202 lines
5.4 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package math
// Exp returns e**x, the base-e exponential of x.
//
// Special cases are:
// Exp(+Inf) = +Inf
// Exp(NaN) = NaN
// Very large values overflow to 0 or +Inf.
// Very small values underflow to 1.
func Exp(x float64) float64 {
return libc_exp(x)
}
//extern exp
func libc_exp(float64) float64
// The original C code, the long comment, and the constants
// below are from FreeBSD's /usr/src/lib/msun/src/e_exp.c
// and came with this notice. The go code is a simplified
// version of the original C.
//
// ====================================================
// Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
//
// Permission to use, copy, modify, and distribute this
// software is freely granted, provided that this notice
// is preserved.
// ====================================================
//
//
// exp(x)
// Returns the exponential of x.
//
// Method
// 1. Argument reduction:
// Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
// Given x, find r and integer k such that
//
// x = k*ln2 + r, |r| <= 0.5*ln2.
//
// Here r will be represented as r = hi-lo for better
// accuracy.
//
// 2. Approximation of exp(r) by a special rational function on
// the interval [0,0.34658]:
// Write
// R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
// We use a special Remez algorithm on [0,0.34658] to generate
// a polynomial of degree 5 to approximate R. The maximum error
// of this polynomial approximation is bounded by 2**-59. In
// other words,
// R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
// (where z=r*r, and the values of P1 to P5 are listed below)
// and
// | 5 | -59
// | 2.0+P1*z+...+P5*z - R(z) | <= 2
// | |
// The computation of exp(r) thus becomes
// 2*r
// exp(r) = 1 + -------
// R - r
// r*R1(r)
// = 1 + r + ----------- (for better accuracy)
// 2 - R1(r)
// where
// 2 4 10
// R1(r) = r - (P1*r + P2*r + ... + P5*r ).
//
// 3. Scale back to obtain exp(x):
// From step 1, we have
// exp(x) = 2**k * exp(r)
//
// Special cases:
// exp(INF) is INF, exp(NaN) is NaN;
// exp(-INF) is 0, and
// for finite argument, only exp(0)=1 is exact.
//
// Accuracy:
// according to an error analysis, the error is always less than
// 1 ulp (unit in the last place).
//
// Misc. info.
// For IEEE double
// if x > 7.09782712893383973096e+02 then exp(x) overflow
// if x < -7.45133219101941108420e+02 then exp(x) underflow
//
// Constants:
// The hexadecimal values are the intended ones for the following
// constants. The decimal values may be used, provided that the
// compiler will convert from decimal to binary accurately enough
// to produce the hexadecimal values shown.
func exp(x float64) float64 {
const (
Ln2Hi = 6.93147180369123816490e-01
Ln2Lo = 1.90821492927058770002e-10
Log2e = 1.44269504088896338700e+00
Overflow = 7.09782712893383973096e+02
Underflow = -7.45133219101941108420e+02
NearZero = 1.0 / (1 << 28) // 2**-28
)
// special cases
switch {
case IsNaN(x) || IsInf(x, 1):
return x
case IsInf(x, -1):
return 0
case x > Overflow:
return Inf(1)
case x < Underflow:
return 0
case -NearZero < x && x < NearZero:
return 1 + x
}
// reduce; computed as r = hi - lo for extra precision.
var k int
switch {
case x < 0:
k = int(Log2e*x - 0.5)
case x > 0:
k = int(Log2e*x + 0.5)
}
hi := x - float64(k)*Ln2Hi
lo := float64(k) * Ln2Lo
// compute
return expmulti(hi, lo, k)
}
// Exp2 returns 2**x, the base-2 exponential of x.
//
// Special cases are the same as Exp.
func Exp2(x float64) float64 {
if haveArchExp2 {
return archExp2(x)
}
return exp2(x)
}
func exp2(x float64) float64 {
const (
Ln2Hi = 6.93147180369123816490e-01
Ln2Lo = 1.90821492927058770002e-10
Overflow = 1.0239999999999999e+03
Underflow = -1.0740e+03
)
// special cases
switch {
case IsNaN(x) || IsInf(x, 1):
return x
case IsInf(x, -1):
return 0
case x > Overflow:
return Inf(1)
case x < Underflow:
return 0
}
// argument reduction; x = r×lg(e) + k with |r| ≤ ln(2)/2.
// computed as r = hi - lo for extra precision.
var k int
switch {
case x > 0:
k = int(x + 0.5)
case x < 0:
k = int(x - 0.5)
}
t := x - float64(k)
hi := t * Ln2Hi
lo := -t * Ln2Lo
// compute
return expmulti(hi, lo, k)
}
// exp1 returns e**r × 2**k where r = hi - lo and |r| ≤ ln(2)/2.
func expmulti(hi, lo float64, k int) float64 {
const (
P1 = 1.66666666666666657415e-01 /* 0x3FC55555; 0x55555555 */
P2 = -2.77777777770155933842e-03 /* 0xBF66C16C; 0x16BEBD93 */
P3 = 6.61375632143793436117e-05 /* 0x3F11566A; 0xAF25DE2C */
P4 = -1.65339022054652515390e-06 /* 0xBEBBBD41; 0xC5D26BF1 */
P5 = 4.13813679705723846039e-08 /* 0x3E663769; 0x72BEA4D0 */
)
r := hi - lo
t := r * r
c := r - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))))
y := 1 - ((lo - (r*c)/(2-c)) - hi)
// TODO(rsc): make sure Ldexp can handle boundary k
return Ldexp(y, k)
}