gcc/gcc/lra-assigns.c
Bernd Schmidt 5da906ca43 re PR target/80160 (operand has impossible constraints)
PR rtl-optimization/80160
	PR rtl-optimization/80159
	* lra-assigns.c (must_not_spill_p): Tighten new test to also take
	reg_alternate_class into account.

	* gcc.target/i386/pr80160.c: New test.

From-SVN: r246473
2017-03-25 01:12:04 +00:00

1716 lines
62 KiB
C

/* Assign reload pseudos.
Copyright (C) 2010-2017 Free Software Foundation, Inc.
Contributed by Vladimir Makarov <vmakarov@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* This file's main objective is to assign hard registers to reload
pseudos. It also tries to allocate hard registers to other
pseudos, but at a lower priority than the reload pseudos. The pass
does not transform the RTL.
We must allocate a hard register to every reload pseudo. We try to
increase the chances of finding a viable allocation by assigning
the pseudos in order of fewest available hard registers first. If
we still fail to find a hard register, we spill other (non-reload)
pseudos in order to make room.
find_hard_regno_for finds hard registers for allocation without
spilling. spill_for does the same with spilling. Both functions
use a cost model to determine the most profitable choice of hard
and spill registers.
Once we have finished allocating reload pseudos, we also try to
assign registers to other (non-reload) pseudos. This is useful if
hard registers were freed up by the spilling just described.
We try to assign hard registers by collecting pseudos into threads.
These threads contain reload and inheritance pseudos that are
connected by copies (move insns). Doing this improves the chances
of pseudos in the thread getting the same hard register and, as a
result, of allowing some move insns to be deleted.
When we assign a hard register to a pseudo, we decrease the cost of
using the same hard register for pseudos that are connected by
copies.
If two hard registers have the same frequency-derived cost, we
prefer hard registers with higher priorities. The mapping of
registers to priorities is controlled by the register_priority
target hook. For example, x86-64 has a few register priorities:
hard registers with and without REX prefixes have different
priorities. This permits us to generate smaller code as insns
without REX prefixes are shorter.
If a few hard registers are still equally good for the assignment,
we choose the least used hard register. It is called leveling and
may be profitable for some targets.
Only insns with changed allocation pseudos are processed on the
next constraint pass.
The pseudo live-ranges are used to find conflicting pseudos.
For understanding the code, it is important to keep in mind that
inheritance, split, and reload pseudos created since last
constraint pass have regno >= lra_constraint_new_regno_start.
Inheritance and split pseudos created on any pass are in the
corresponding bitmaps. Inheritance and split pseudos since the
last constraint pass have also the corresponding non-negative
restore_regno. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "predict.h"
#include "df.h"
#include "memmodel.h"
#include "tm_p.h"
#include "insn-config.h"
#include "regs.h"
#include "ira.h"
#include "recog.h"
#include "rtl-error.h"
#include "sparseset.h"
#include "params.h"
#include "lra.h"
#include "lra-int.h"
/* Current iteration number of the pass and current iteration number
of the pass after the latest spill pass when any former reload
pseudo was spilled. */
int lra_assignment_iter;
int lra_assignment_iter_after_spill;
/* Flag of spilling former reload pseudos on this pass. */
static bool former_reload_pseudo_spill_p;
/* Array containing corresponding values of function
lra_get_allocno_class. It is used to speed up the code. */
static enum reg_class *regno_allocno_class_array;
/* Array containing lengths of pseudo live ranges. It is used to
speed up the code. */
static int *regno_live_length;
/* Information about the thread to which a pseudo belongs. Threads are
a set of connected reload and inheritance pseudos with the same set of
available hard registers. Lone registers belong to their own threads. */
struct regno_assign_info
{
/* First/next pseudo of the same thread. */
int first, next;
/* Frequency of the thread (execution frequency of only reload
pseudos in the thread when the thread contains a reload pseudo).
Defined only for the first thread pseudo. */
int freq;
};
/* Map regno to the corresponding regno assignment info. */
static struct regno_assign_info *regno_assign_info;
/* All inherited, subreg or optional pseudos created before last spill
sub-pass. Such pseudos are permitted to get memory instead of hard
regs. */
static bitmap_head non_reload_pseudos;
/* Process a pseudo copy with execution frequency COPY_FREQ connecting
REGNO1 and REGNO2 to form threads. */
static void
process_copy_to_form_thread (int regno1, int regno2, int copy_freq)
{
int last, regno1_first, regno2_first;
lra_assert (regno1 >= lra_constraint_new_regno_start
&& regno2 >= lra_constraint_new_regno_start);
regno1_first = regno_assign_info[regno1].first;
regno2_first = regno_assign_info[regno2].first;
if (regno1_first != regno2_first)
{
for (last = regno2_first;
regno_assign_info[last].next >= 0;
last = regno_assign_info[last].next)
regno_assign_info[last].first = regno1_first;
regno_assign_info[last].first = regno1_first;
regno_assign_info[last].next = regno_assign_info[regno1_first].next;
regno_assign_info[regno1_first].next = regno2_first;
regno_assign_info[regno1_first].freq
+= regno_assign_info[regno2_first].freq;
}
regno_assign_info[regno1_first].freq -= 2 * copy_freq;
lra_assert (regno_assign_info[regno1_first].freq >= 0);
}
/* Initialize REGNO_ASSIGN_INFO and form threads. */
static void
init_regno_assign_info (void)
{
int i, regno1, regno2, max_regno = max_reg_num ();
lra_copy_t cp;
regno_assign_info = XNEWVEC (struct regno_assign_info, max_regno);
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
{
regno_assign_info[i].first = i;
regno_assign_info[i].next = -1;
regno_assign_info[i].freq = lra_reg_info[i].freq;
}
/* Form the threads. */
for (i = 0; (cp = lra_get_copy (i)) != NULL; i++)
if ((regno1 = cp->regno1) >= lra_constraint_new_regno_start
&& (regno2 = cp->regno2) >= lra_constraint_new_regno_start
&& reg_renumber[regno1] < 0 && lra_reg_info[regno1].nrefs != 0
&& reg_renumber[regno2] < 0 && lra_reg_info[regno2].nrefs != 0
&& (ira_class_hard_regs_num[regno_allocno_class_array[regno1]]
== ira_class_hard_regs_num[regno_allocno_class_array[regno2]]))
process_copy_to_form_thread (regno1, regno2, cp->freq);
}
/* Free REGNO_ASSIGN_INFO. */
static void
finish_regno_assign_info (void)
{
free (regno_assign_info);
}
/* The function is used to sort *reload* and *inheritance* pseudos to
try to assign them hard registers. We put pseudos from the same
thread always nearby. */
static int
reload_pseudo_compare_func (const void *v1p, const void *v2p)
{
int r1 = *(const int *) v1p, r2 = *(const int *) v2p;
enum reg_class cl1 = regno_allocno_class_array[r1];
enum reg_class cl2 = regno_allocno_class_array[r2];
int diff;
lra_assert (r1 >= lra_constraint_new_regno_start
&& r2 >= lra_constraint_new_regno_start);
/* Prefer to assign reload registers with smaller classes first to
guarantee assignment to all reload registers. */
if ((diff = (ira_class_hard_regs_num[cl1]
- ira_class_hard_regs_num[cl2])) != 0)
return diff;
if ((diff
= (ira_reg_class_max_nregs[cl2][lra_reg_info[r2].biggest_mode]
- ira_reg_class_max_nregs[cl1][lra_reg_info[r1].biggest_mode])) != 0
/* The code below executes rarely as nregs == 1 in most cases.
So we should not worry about using faster data structures to
check reload pseudos. */
&& ! bitmap_bit_p (&non_reload_pseudos, r1)
&& ! bitmap_bit_p (&non_reload_pseudos, r2))
return diff;
if ((diff = (regno_assign_info[regno_assign_info[r2].first].freq
- regno_assign_info[regno_assign_info[r1].first].freq)) != 0)
return diff;
/* Allocate bigger pseudos first to avoid register file
fragmentation. */
if ((diff
= (ira_reg_class_max_nregs[cl2][lra_reg_info[r2].biggest_mode]
- ira_reg_class_max_nregs[cl1][lra_reg_info[r1].biggest_mode])) != 0)
return diff;
/* Put pseudos from the thread nearby. */
if ((diff = regno_assign_info[r1].first - regno_assign_info[r2].first) != 0)
return diff;
/* Prefer pseudos with longer live ranges. It sets up better
prefered hard registers for the thread pseudos and decreases
register-register moves between the thread pseudos. */
if ((diff = regno_live_length[r2] - regno_live_length[r1]) != 0)
return diff;
/* If regs are equally good, sort by their numbers, so that the
results of qsort leave nothing to chance. */
return r1 - r2;
}
/* The function is used to sort *non-reload* pseudos to try to assign
them hard registers. The order calculation is simpler than in the
previous function and based on the pseudo frequency usage. */
static int
pseudo_compare_func (const void *v1p, const void *v2p)
{
int r1 = *(const int *) v1p, r2 = *(const int *) v2p;
int diff;
/* Assign hard reg to static chain pointer first pseudo when
non-local goto is used. */
if (non_spilled_static_chain_regno_p (r1))
return -1;
else if (non_spilled_static_chain_regno_p (r2))
return 1;
/* Prefer to assign more frequently used registers first. */
if ((diff = lra_reg_info[r2].freq - lra_reg_info[r1].freq) != 0)
return diff;
/* If regs are equally good, sort by their numbers, so that the
results of qsort leave nothing to chance. */
return r1 - r2;
}
/* Arrays of size LRA_LIVE_MAX_POINT mapping a program point to the
pseudo live ranges with given start point. We insert only live
ranges of pseudos interesting for assignment purposes. They are
reload pseudos and pseudos assigned to hard registers. */
static lra_live_range_t *start_point_ranges;
/* Used as a flag that a live range is not inserted in the start point
chain. */
static struct lra_live_range not_in_chain_mark;
/* Create and set up START_POINT_RANGES. */
static void
create_live_range_start_chains (void)
{
int i, max_regno;
lra_live_range_t r;
start_point_ranges = XCNEWVEC (lra_live_range_t, lra_live_max_point);
max_regno = max_reg_num ();
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
if (i >= lra_constraint_new_regno_start || reg_renumber[i] >= 0)
{
for (r = lra_reg_info[i].live_ranges; r != NULL; r = r->next)
{
r->start_next = start_point_ranges[r->start];
start_point_ranges[r->start] = r;
}
}
else
{
for (r = lra_reg_info[i].live_ranges; r != NULL; r = r->next)
r->start_next = &not_in_chain_mark;
}
}
/* Insert live ranges of pseudo REGNO into start chains if they are
not there yet. */
static void
insert_in_live_range_start_chain (int regno)
{
lra_live_range_t r = lra_reg_info[regno].live_ranges;
if (r->start_next != &not_in_chain_mark)
return;
for (; r != NULL; r = r->next)
{
r->start_next = start_point_ranges[r->start];
start_point_ranges[r->start] = r;
}
}
/* Free START_POINT_RANGES. */
static void
finish_live_range_start_chains (void)
{
gcc_assert (start_point_ranges != NULL);
free (start_point_ranges);
start_point_ranges = NULL;
}
/* Map: program point -> bitmap of all pseudos living at the point and
assigned to hard registers. */
static bitmap_head *live_hard_reg_pseudos;
static bitmap_obstack live_hard_reg_pseudos_bitmap_obstack;
/* reg_renumber corresponding to pseudos marked in
live_hard_reg_pseudos. reg_renumber might be not matched to
live_hard_reg_pseudos but live_pseudos_reg_renumber always reflects
live_hard_reg_pseudos. */
static int *live_pseudos_reg_renumber;
/* Sparseset used to calculate living hard reg pseudos for some program
point range. */
static sparseset live_range_hard_reg_pseudos;
/* Sparseset used to calculate living reload/inheritance pseudos for
some program point range. */
static sparseset live_range_reload_inheritance_pseudos;
/* Allocate and initialize the data about living pseudos at program
points. */
static void
init_lives (void)
{
int i, max_regno = max_reg_num ();
live_range_hard_reg_pseudos = sparseset_alloc (max_regno);
live_range_reload_inheritance_pseudos = sparseset_alloc (max_regno);
live_hard_reg_pseudos = XNEWVEC (bitmap_head, lra_live_max_point);
bitmap_obstack_initialize (&live_hard_reg_pseudos_bitmap_obstack);
for (i = 0; i < lra_live_max_point; i++)
bitmap_initialize (&live_hard_reg_pseudos[i],
&live_hard_reg_pseudos_bitmap_obstack);
live_pseudos_reg_renumber = XNEWVEC (int, max_regno);
for (i = 0; i < max_regno; i++)
live_pseudos_reg_renumber[i] = -1;
}
/* Free the data about living pseudos at program points. */
static void
finish_lives (void)
{
sparseset_free (live_range_hard_reg_pseudos);
sparseset_free (live_range_reload_inheritance_pseudos);
free (live_hard_reg_pseudos);
bitmap_obstack_release (&live_hard_reg_pseudos_bitmap_obstack);
free (live_pseudos_reg_renumber);
}
/* Update the LIVE_HARD_REG_PSEUDOS and LIVE_PSEUDOS_REG_RENUMBER
entries for pseudo REGNO. Assume that the register has been
spilled if FREE_P, otherwise assume that it has been assigned
reg_renumber[REGNO] (if >= 0). We also insert the pseudo live
ranges in the start chains when it is assumed to be assigned to a
hard register because we use the chains of pseudos assigned to hard
registers during allocation. */
static void
update_lives (int regno, bool free_p)
{
int p;
lra_live_range_t r;
if (reg_renumber[regno] < 0)
return;
live_pseudos_reg_renumber[regno] = free_p ? -1 : reg_renumber[regno];
for (r = lra_reg_info[regno].live_ranges; r != NULL; r = r->next)
{
for (p = r->start; p <= r->finish; p++)
if (free_p)
bitmap_clear_bit (&live_hard_reg_pseudos[p], regno);
else
{
bitmap_set_bit (&live_hard_reg_pseudos[p], regno);
insert_in_live_range_start_chain (regno);
}
}
}
/* Sparseset used to calculate reload pseudos conflicting with a given
pseudo when we are trying to find a hard register for the given
pseudo. */
static sparseset conflict_reload_and_inheritance_pseudos;
/* Map: program point -> bitmap of all reload and inheritance pseudos
living at the point. */
static bitmap_head *live_reload_and_inheritance_pseudos;
static bitmap_obstack live_reload_and_inheritance_pseudos_bitmap_obstack;
/* Allocate and initialize data about living reload pseudos at any
given program point. */
static void
init_live_reload_and_inheritance_pseudos (void)
{
int i, p, max_regno = max_reg_num ();
lra_live_range_t r;
conflict_reload_and_inheritance_pseudos = sparseset_alloc (max_regno);
live_reload_and_inheritance_pseudos = XNEWVEC (bitmap_head, lra_live_max_point);
bitmap_obstack_initialize (&live_reload_and_inheritance_pseudos_bitmap_obstack);
for (p = 0; p < lra_live_max_point; p++)
bitmap_initialize (&live_reload_and_inheritance_pseudos[p],
&live_reload_and_inheritance_pseudos_bitmap_obstack);
for (i = lra_constraint_new_regno_start; i < max_regno; i++)
{
for (r = lra_reg_info[i].live_ranges; r != NULL; r = r->next)
for (p = r->start; p <= r->finish; p++)
bitmap_set_bit (&live_reload_and_inheritance_pseudos[p], i);
}
}
/* Finalize data about living reload pseudos at any given program
point. */
static void
finish_live_reload_and_inheritance_pseudos (void)
{
sparseset_free (conflict_reload_and_inheritance_pseudos);
free (live_reload_and_inheritance_pseudos);
bitmap_obstack_release (&live_reload_and_inheritance_pseudos_bitmap_obstack);
}
/* The value used to check that cost of given hard reg is really
defined currently. */
static int curr_hard_regno_costs_check = 0;
/* Array used to check that cost of the corresponding hard reg (the
array element index) is really defined currently. */
static int hard_regno_costs_check[FIRST_PSEUDO_REGISTER];
/* The current costs of allocation of hard regs. Defined only if the
value of the corresponding element of the previous array is equal to
CURR_HARD_REGNO_COSTS_CHECK. */
static int hard_regno_costs[FIRST_PSEUDO_REGISTER];
/* Adjust cost of HARD_REGNO by INCR. Reset the cost first if it is
not defined yet. */
static inline void
adjust_hard_regno_cost (int hard_regno, int incr)
{
if (hard_regno_costs_check[hard_regno] != curr_hard_regno_costs_check)
hard_regno_costs[hard_regno] = 0;
hard_regno_costs_check[hard_regno] = curr_hard_regno_costs_check;
hard_regno_costs[hard_regno] += incr;
}
/* Try to find a free hard register for pseudo REGNO. Return the
hard register on success and set *COST to the cost of using
that register. (If several registers have equal cost, the one with
the highest priority wins.) Return -1 on failure.
If FIRST_P, return the first available hard reg ignoring other
criteria, e.g. allocation cost. This approach results in less hard
reg pool fragmentation and permit to allocate hard regs to reload
pseudos in complicated situations where pseudo sizes are different.
If TRY_ONLY_HARD_REGNO >= 0, consider only that hard register,
otherwise consider all hard registers in REGNO's class.
If REGNO_SET is not empty, only hard registers from the set are
considered. */
static int
find_hard_regno_for_1 (int regno, int *cost, int try_only_hard_regno,
bool first_p, HARD_REG_SET regno_set)
{
HARD_REG_SET conflict_set;
int best_cost = INT_MAX, best_priority = INT_MIN, best_usage = INT_MAX;
lra_live_range_t r;
int p, i, j, rclass_size, best_hard_regno, priority, hard_regno;
int hr, conflict_hr, nregs;
machine_mode biggest_mode;
unsigned int k, conflict_regno;
int offset, val, biggest_nregs, nregs_diff;
enum reg_class rclass;
bitmap_iterator bi;
bool *rclass_intersect_p;
HARD_REG_SET impossible_start_hard_regs, available_regs;
if (hard_reg_set_empty_p (regno_set))
COPY_HARD_REG_SET (conflict_set, lra_no_alloc_regs);
else
{
COMPL_HARD_REG_SET (conflict_set, regno_set);
IOR_HARD_REG_SET (conflict_set, lra_no_alloc_regs);
}
rclass = regno_allocno_class_array[regno];
rclass_intersect_p = ira_reg_classes_intersect_p[rclass];
curr_hard_regno_costs_check++;
sparseset_clear (conflict_reload_and_inheritance_pseudos);
sparseset_clear (live_range_hard_reg_pseudos);
IOR_HARD_REG_SET (conflict_set, lra_reg_info[regno].conflict_hard_regs);
biggest_mode = lra_reg_info[regno].biggest_mode;
for (r = lra_reg_info[regno].live_ranges; r != NULL; r = r->next)
{
EXECUTE_IF_SET_IN_BITMAP (&live_hard_reg_pseudos[r->start], 0, k, bi)
if (rclass_intersect_p[regno_allocno_class_array[k]])
sparseset_set_bit (live_range_hard_reg_pseudos, k);
EXECUTE_IF_SET_IN_BITMAP (&live_reload_and_inheritance_pseudos[r->start],
0, k, bi)
if (lra_reg_info[k].preferred_hard_regno1 >= 0
&& live_pseudos_reg_renumber[k] < 0
&& rclass_intersect_p[regno_allocno_class_array[k]])
sparseset_set_bit (conflict_reload_and_inheritance_pseudos, k);
for (p = r->start + 1; p <= r->finish; p++)
{
lra_live_range_t r2;
for (r2 = start_point_ranges[p];
r2 != NULL;
r2 = r2->start_next)
{
if (r2->regno >= lra_constraint_new_regno_start
&& lra_reg_info[r2->regno].preferred_hard_regno1 >= 0
&& live_pseudos_reg_renumber[r2->regno] < 0
&& rclass_intersect_p[regno_allocno_class_array[r2->regno]])
sparseset_set_bit (conflict_reload_and_inheritance_pseudos,
r2->regno);
if (live_pseudos_reg_renumber[r2->regno] >= 0
&& rclass_intersect_p[regno_allocno_class_array[r2->regno]])
sparseset_set_bit (live_range_hard_reg_pseudos, r2->regno);
}
}
}
if ((hard_regno = lra_reg_info[regno].preferred_hard_regno1) >= 0)
{
adjust_hard_regno_cost
(hard_regno, -lra_reg_info[regno].preferred_hard_regno_profit1);
if ((hard_regno = lra_reg_info[regno].preferred_hard_regno2) >= 0)
adjust_hard_regno_cost
(hard_regno, -lra_reg_info[regno].preferred_hard_regno_profit2);
}
#ifdef STACK_REGS
if (lra_reg_info[regno].no_stack_p)
for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
SET_HARD_REG_BIT (conflict_set, i);
#endif
sparseset_clear_bit (conflict_reload_and_inheritance_pseudos, regno);
val = lra_reg_info[regno].val;
offset = lra_reg_info[regno].offset;
CLEAR_HARD_REG_SET (impossible_start_hard_regs);
EXECUTE_IF_SET_IN_SPARSESET (live_range_hard_reg_pseudos, conflict_regno)
{
conflict_hr = live_pseudos_reg_renumber[conflict_regno];
if (lra_reg_val_equal_p (conflict_regno, val, offset))
{
conflict_hr = live_pseudos_reg_renumber[conflict_regno];
nregs = (hard_regno_nregs[conflict_hr]
[lra_reg_info[conflict_regno].biggest_mode]);
/* Remember about multi-register pseudos. For example, 2
hard register pseudos can start on the same hard register
but can not start on HR and HR+1/HR-1. */
for (hr = conflict_hr + 1;
hr < FIRST_PSEUDO_REGISTER && hr < conflict_hr + nregs;
hr++)
SET_HARD_REG_BIT (impossible_start_hard_regs, hr);
for (hr = conflict_hr - 1;
hr >= 0 && hr + hard_regno_nregs[hr][biggest_mode] > conflict_hr;
hr--)
SET_HARD_REG_BIT (impossible_start_hard_regs, hr);
}
else
{
enum machine_mode biggest_conflict_mode
= lra_reg_info[conflict_regno].biggest_mode;
int biggest_conflict_nregs
= hard_regno_nregs[conflict_hr][biggest_conflict_mode];
nregs_diff = (biggest_conflict_nregs
- (hard_regno_nregs
[conflict_hr]
[PSEUDO_REGNO_MODE (conflict_regno)]));
add_to_hard_reg_set (&conflict_set,
biggest_conflict_mode,
conflict_hr
- (WORDS_BIG_ENDIAN ? nregs_diff : 0));
if (hard_reg_set_subset_p (reg_class_contents[rclass],
conflict_set))
return -1;
}
}
EXECUTE_IF_SET_IN_SPARSESET (conflict_reload_and_inheritance_pseudos,
conflict_regno)
if (!lra_reg_val_equal_p (conflict_regno, val, offset))
{
lra_assert (live_pseudos_reg_renumber[conflict_regno] < 0);
if ((hard_regno
= lra_reg_info[conflict_regno].preferred_hard_regno1) >= 0)
{
adjust_hard_regno_cost
(hard_regno,
lra_reg_info[conflict_regno].preferred_hard_regno_profit1);
if ((hard_regno
= lra_reg_info[conflict_regno].preferred_hard_regno2) >= 0)
adjust_hard_regno_cost
(hard_regno,
lra_reg_info[conflict_regno].preferred_hard_regno_profit2);
}
}
/* Make sure that all registers in a multi-word pseudo belong to the
required class. */
IOR_COMPL_HARD_REG_SET (conflict_set, reg_class_contents[rclass]);
lra_assert (rclass != NO_REGS);
rclass_size = ira_class_hard_regs_num[rclass];
best_hard_regno = -1;
hard_regno = ira_class_hard_regs[rclass][0];
biggest_nregs = hard_regno_nregs[hard_regno][biggest_mode];
nregs_diff = (biggest_nregs
- hard_regno_nregs[hard_regno][PSEUDO_REGNO_MODE (regno)]);
COPY_HARD_REG_SET (available_regs, reg_class_contents[rclass]);
AND_COMPL_HARD_REG_SET (available_regs, lra_no_alloc_regs);
for (i = 0; i < rclass_size; i++)
{
if (try_only_hard_regno >= 0)
hard_regno = try_only_hard_regno;
else
hard_regno = ira_class_hard_regs[rclass][i];
if (! overlaps_hard_reg_set_p (conflict_set,
PSEUDO_REGNO_MODE (regno), hard_regno)
&& HARD_REGNO_MODE_OK (hard_regno, PSEUDO_REGNO_MODE (regno))
/* We can not use prohibited_class_mode_regs for all classes
because it is not defined for all classes. */
&& (ira_allocno_class_translate[rclass] != rclass
|| ! TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs
[rclass][PSEUDO_REGNO_MODE (regno)],
hard_regno))
&& ! TEST_HARD_REG_BIT (impossible_start_hard_regs, hard_regno)
&& (nregs_diff == 0
|| (WORDS_BIG_ENDIAN
? (hard_regno - nregs_diff >= 0
&& TEST_HARD_REG_BIT (available_regs,
hard_regno - nregs_diff))
: TEST_HARD_REG_BIT (available_regs,
hard_regno + nregs_diff))))
{
if (hard_regno_costs_check[hard_regno]
!= curr_hard_regno_costs_check)
{
hard_regno_costs_check[hard_regno] = curr_hard_regno_costs_check;
hard_regno_costs[hard_regno] = 0;
}
for (j = 0;
j < hard_regno_nregs[hard_regno][PSEUDO_REGNO_MODE (regno)];
j++)
if (! TEST_HARD_REG_BIT (call_used_reg_set, hard_regno + j)
&& ! df_regs_ever_live_p (hard_regno + j))
/* It needs save restore. */
hard_regno_costs[hard_regno]
+= (2
* REG_FREQ_FROM_BB (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb)
+ 1);
priority = targetm.register_priority (hard_regno);
if (best_hard_regno < 0 || hard_regno_costs[hard_regno] < best_cost
|| (hard_regno_costs[hard_regno] == best_cost
&& (priority > best_priority
|| (targetm.register_usage_leveling_p ()
&& priority == best_priority
&& best_usage > lra_hard_reg_usage[hard_regno]))))
{
best_hard_regno = hard_regno;
best_cost = hard_regno_costs[hard_regno];
best_priority = priority;
best_usage = lra_hard_reg_usage[hard_regno];
}
}
if (try_only_hard_regno >= 0 || (first_p && best_hard_regno >= 0))
break;
}
if (best_hard_regno >= 0)
*cost = best_cost - lra_reg_info[regno].freq;
return best_hard_regno;
}
/* A wrapper for find_hard_regno_for_1 (see comments for that function
description). This function tries to find a hard register for
preferred class first if it is worth. */
static int
find_hard_regno_for (int regno, int *cost, int try_only_hard_regno, bool first_p)
{
int hard_regno;
HARD_REG_SET regno_set;
/* Only original pseudos can have a different preferred class. */
if (try_only_hard_regno < 0 && regno < lra_new_regno_start)
{
enum reg_class pref_class = reg_preferred_class (regno);
if (regno_allocno_class_array[regno] != pref_class)
{
hard_regno = find_hard_regno_for_1 (regno, cost, -1, first_p,
reg_class_contents[pref_class]);
if (hard_regno >= 0)
return hard_regno;
}
}
CLEAR_HARD_REG_SET (regno_set);
return find_hard_regno_for_1 (regno, cost, try_only_hard_regno, first_p,
regno_set);
}
/* Current value used for checking elements in
update_hard_regno_preference_check. */
static int curr_update_hard_regno_preference_check;
/* If an element value is equal to the above variable value, then the
corresponding regno has been processed for preference
propagation. */
static int *update_hard_regno_preference_check;
/* Update the preference for using HARD_REGNO for pseudos that are
connected directly or indirectly with REGNO. Apply divisor DIV
to any preference adjustments.
The more indirectly a pseudo is connected, the smaller its effect
should be. We therefore increase DIV on each "hop". */
static void
update_hard_regno_preference (int regno, int hard_regno, int div)
{
int another_regno, cost;
lra_copy_t cp, next_cp;
/* Search depth 5 seems to be enough. */
if (div > (1 << 5))
return;
for (cp = lra_reg_info[regno].copies; cp != NULL; cp = next_cp)
{
if (cp->regno1 == regno)
{
next_cp = cp->regno1_next;
another_regno = cp->regno2;
}
else if (cp->regno2 == regno)
{
next_cp = cp->regno2_next;
another_regno = cp->regno1;
}
else
gcc_unreachable ();
if (reg_renumber[another_regno] < 0
&& (update_hard_regno_preference_check[another_regno]
!= curr_update_hard_regno_preference_check))
{
update_hard_regno_preference_check[another_regno]
= curr_update_hard_regno_preference_check;
cost = cp->freq < div ? 1 : cp->freq / div;
lra_setup_reload_pseudo_preferenced_hard_reg
(another_regno, hard_regno, cost);
update_hard_regno_preference (another_regno, hard_regno, div * 2);
}
}
}
/* Return prefix title for pseudo REGNO. */
static const char *
pseudo_prefix_title (int regno)
{
return
(regno < lra_constraint_new_regno_start ? ""
: bitmap_bit_p (&lra_inheritance_pseudos, regno) ? "inheritance "
: bitmap_bit_p (&lra_split_regs, regno) ? "split "
: bitmap_bit_p (&lra_optional_reload_pseudos, regno) ? "optional reload "
: bitmap_bit_p (&lra_subreg_reload_pseudos, regno) ? "subreg reload "
: "reload ");
}
/* Update REG_RENUMBER and other pseudo preferences by assignment of
HARD_REGNO to pseudo REGNO and print about it if PRINT_P. */
void
lra_setup_reg_renumber (int regno, int hard_regno, bool print_p)
{
int i, hr;
/* We can not just reassign hard register. */
lra_assert (hard_regno < 0 || reg_renumber[regno] < 0);
if ((hr = hard_regno) < 0)
hr = reg_renumber[regno];
reg_renumber[regno] = hard_regno;
lra_assert (hr >= 0);
for (i = 0; i < hard_regno_nregs[hr][PSEUDO_REGNO_MODE (regno)]; i++)
if (hard_regno < 0)
lra_hard_reg_usage[hr + i] -= lra_reg_info[regno].freq;
else
lra_hard_reg_usage[hr + i] += lra_reg_info[regno].freq;
if (print_p && lra_dump_file != NULL)
fprintf (lra_dump_file, " Assign %d to %sr%d (freq=%d)\n",
reg_renumber[regno], pseudo_prefix_title (regno),
regno, lra_reg_info[regno].freq);
if (hard_regno >= 0)
{
curr_update_hard_regno_preference_check++;
update_hard_regno_preference (regno, hard_regno, 1);
}
}
/* Pseudos which occur in insns containing a particular pseudo. */
static bitmap_head insn_conflict_pseudos;
/* Bitmaps used to contain spill pseudos for given pseudo hard regno
and best spill pseudos for given pseudo (and best hard regno). */
static bitmap_head spill_pseudos_bitmap, best_spill_pseudos_bitmap;
/* Current pseudo check for validity of elements in
TRY_HARD_REG_PSEUDOS. */
static int curr_pseudo_check;
/* Array used for validity of elements in TRY_HARD_REG_PSEUDOS. */
static int try_hard_reg_pseudos_check[FIRST_PSEUDO_REGISTER];
/* Pseudos who hold given hard register at the considered points. */
static bitmap_head try_hard_reg_pseudos[FIRST_PSEUDO_REGISTER];
/* Set up try_hard_reg_pseudos for given program point P and class
RCLASS. Those are pseudos living at P and assigned to a hard
register of RCLASS. In other words, those are pseudos which can be
spilled to assign a hard register of RCLASS to a pseudo living at
P. */
static void
setup_try_hard_regno_pseudos (int p, enum reg_class rclass)
{
int i, hard_regno;
machine_mode mode;
unsigned int spill_regno;
bitmap_iterator bi;
/* Find what pseudos could be spilled. */
EXECUTE_IF_SET_IN_BITMAP (&live_hard_reg_pseudos[p], 0, spill_regno, bi)
{
mode = PSEUDO_REGNO_MODE (spill_regno);
hard_regno = live_pseudos_reg_renumber[spill_regno];
if (overlaps_hard_reg_set_p (reg_class_contents[rclass],
mode, hard_regno))
{
for (i = hard_regno_nregs[hard_regno][mode] - 1; i >= 0; i--)
{
if (try_hard_reg_pseudos_check[hard_regno + i]
!= curr_pseudo_check)
{
try_hard_reg_pseudos_check[hard_regno + i]
= curr_pseudo_check;
bitmap_clear (&try_hard_reg_pseudos[hard_regno + i]);
}
bitmap_set_bit (&try_hard_reg_pseudos[hard_regno + i],
spill_regno);
}
}
}
}
/* Assign temporarily HARD_REGNO to pseudo REGNO. Temporary
assignment means that we might undo the data change. */
static void
assign_temporarily (int regno, int hard_regno)
{
int p;
lra_live_range_t r;
for (r = lra_reg_info[regno].live_ranges; r != NULL; r = r->next)
{
for (p = r->start; p <= r->finish; p++)
if (hard_regno < 0)
bitmap_clear_bit (&live_hard_reg_pseudos[p], regno);
else
{
bitmap_set_bit (&live_hard_reg_pseudos[p], regno);
insert_in_live_range_start_chain (regno);
}
}
live_pseudos_reg_renumber[regno] = hard_regno;
}
/* Return true iff there is a reason why pseudo SPILL_REGNO should not
be spilled. */
static bool
must_not_spill_p (unsigned spill_regno)
{
if ((pic_offset_table_rtx != NULL
&& spill_regno == REGNO (pic_offset_table_rtx))
|| ((int) spill_regno >= lra_constraint_new_regno_start
&& ! bitmap_bit_p (&lra_inheritance_pseudos, spill_regno)
&& ! bitmap_bit_p (&lra_split_regs, spill_regno)
&& ! bitmap_bit_p (&lra_subreg_reload_pseudos, spill_regno)
&& ! bitmap_bit_p (&lra_optional_reload_pseudos, spill_regno)))
return true;
/* A reload pseudo that requires a singleton register class should
not be spilled.
FIXME: this mitigates the issue on certain i386 patterns, but
does not solve the general case where existing reloads fully
cover a limited register class. */
if (!bitmap_bit_p (&non_reload_pseudos, spill_regno)
&& reg_class_size [reg_preferred_class (spill_regno)] == 1
&& reg_alternate_class (spill_regno) == NO_REGS)
return true;
return false;
}
/* Array used for sorting reload pseudos for subsequent allocation
after spilling some pseudo. */
static int *sorted_reload_pseudos;
/* Spill some pseudos for a reload pseudo REGNO and return hard
register which should be used for pseudo after spilling. The
function adds spilled pseudos to SPILLED_PSEUDO_BITMAP. When we
choose hard register (and pseudos occupying the hard registers and
to be spilled), we take into account not only how REGNO will
benefit from the spills but also how other reload pseudos not yet
assigned to hard registers benefit from the spills too. In very
rare cases, the function can fail and return -1.
If FIRST_P, return the first available hard reg ignoring other
criteria, e.g. allocation cost and cost of spilling non-reload
pseudos. This approach results in less hard reg pool fragmentation
and permit to allocate hard regs to reload pseudos in complicated
situations where pseudo sizes are different. */
static int
spill_for (int regno, bitmap spilled_pseudo_bitmap, bool first_p)
{
int i, j, n, p, hard_regno, best_hard_regno, cost, best_cost, rclass_size;
int reload_hard_regno, reload_cost;
bool static_p, best_static_p;
machine_mode mode;
enum reg_class rclass;
unsigned int spill_regno, reload_regno, uid;
int insn_pseudos_num, best_insn_pseudos_num;
int bad_spills_num, smallest_bad_spills_num;
lra_live_range_t r;
bitmap_iterator bi;
rclass = regno_allocno_class_array[regno];
lra_assert (reg_renumber[regno] < 0 && rclass != NO_REGS);
bitmap_clear (&insn_conflict_pseudos);
bitmap_clear (&best_spill_pseudos_bitmap);
EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi)
{
struct lra_insn_reg *ir;
for (ir = lra_get_insn_regs (uid); ir != NULL; ir = ir->next)
if (ir->regno >= FIRST_PSEUDO_REGISTER)
bitmap_set_bit (&insn_conflict_pseudos, ir->regno);
}
best_hard_regno = -1;
best_cost = INT_MAX;
best_static_p = TRUE;
best_insn_pseudos_num = INT_MAX;
smallest_bad_spills_num = INT_MAX;
rclass_size = ira_class_hard_regs_num[rclass];
mode = PSEUDO_REGNO_MODE (regno);
/* Invalidate try_hard_reg_pseudos elements. */
curr_pseudo_check++;
for (r = lra_reg_info[regno].live_ranges; r != NULL; r = r->next)
for (p = r->start; p <= r->finish; p++)
setup_try_hard_regno_pseudos (p, rclass);
for (i = 0; i < rclass_size; i++)
{
hard_regno = ira_class_hard_regs[rclass][i];
bitmap_clear (&spill_pseudos_bitmap);
for (j = hard_regno_nregs[hard_regno][mode] - 1; j >= 0; j--)
{
if (try_hard_reg_pseudos_check[hard_regno + j] != curr_pseudo_check)
continue;
lra_assert (!bitmap_empty_p (&try_hard_reg_pseudos[hard_regno + j]));
bitmap_ior_into (&spill_pseudos_bitmap,
&try_hard_reg_pseudos[hard_regno + j]);
}
/* Spill pseudos. */
static_p = false;
EXECUTE_IF_SET_IN_BITMAP (&spill_pseudos_bitmap, 0, spill_regno, bi)
if (must_not_spill_p (spill_regno))
goto fail;
else if (non_spilled_static_chain_regno_p (spill_regno))
static_p = true;
insn_pseudos_num = 0;
bad_spills_num = 0;
if (lra_dump_file != NULL)
fprintf (lra_dump_file, " Trying %d:", hard_regno);
sparseset_clear (live_range_reload_inheritance_pseudos);
EXECUTE_IF_SET_IN_BITMAP (&spill_pseudos_bitmap, 0, spill_regno, bi)
{
if (bitmap_bit_p (&insn_conflict_pseudos, spill_regno))
insn_pseudos_num++;
if (spill_regno >= (unsigned int) lra_bad_spill_regno_start)
bad_spills_num++;
for (r = lra_reg_info[spill_regno].live_ranges;
r != NULL;
r = r->next)
{
for (p = r->start; p <= r->finish; p++)
{
lra_live_range_t r2;
for (r2 = start_point_ranges[p];
r2 != NULL;
r2 = r2->start_next)
if (r2->regno >= lra_constraint_new_regno_start)
sparseset_set_bit (live_range_reload_inheritance_pseudos,
r2->regno);
}
}
}
n = 0;
if (sparseset_cardinality (live_range_reload_inheritance_pseudos)
<= (unsigned)LRA_MAX_CONSIDERED_RELOAD_PSEUDOS)
EXECUTE_IF_SET_IN_SPARSESET (live_range_reload_inheritance_pseudos,
reload_regno)
if ((int) reload_regno != regno
&& (ira_reg_classes_intersect_p
[rclass][regno_allocno_class_array[reload_regno]])
&& live_pseudos_reg_renumber[reload_regno] < 0
&& find_hard_regno_for (reload_regno, &cost, -1, first_p) < 0)
sorted_reload_pseudos[n++] = reload_regno;
EXECUTE_IF_SET_IN_BITMAP (&spill_pseudos_bitmap, 0, spill_regno, bi)
{
update_lives (spill_regno, true);
if (lra_dump_file != NULL)
fprintf (lra_dump_file, " spill %d(freq=%d)",
spill_regno, lra_reg_info[spill_regno].freq);
}
hard_regno = find_hard_regno_for (regno, &cost, -1, first_p);
if (hard_regno >= 0)
{
assign_temporarily (regno, hard_regno);
qsort (sorted_reload_pseudos, n, sizeof (int),
reload_pseudo_compare_func);
for (j = 0; j < n; j++)
{
reload_regno = sorted_reload_pseudos[j];
lra_assert (live_pseudos_reg_renumber[reload_regno] < 0);
if ((reload_hard_regno
= find_hard_regno_for (reload_regno,
&reload_cost, -1, first_p)) >= 0)
{
if (lra_dump_file != NULL)
fprintf (lra_dump_file, " assign %d(cost=%d)",
reload_regno, reload_cost);
assign_temporarily (reload_regno, reload_hard_regno);
cost += reload_cost;
}
}
EXECUTE_IF_SET_IN_BITMAP (&spill_pseudos_bitmap, 0, spill_regno, bi)
{
rtx_insn_list *x;
cost += lra_reg_info[spill_regno].freq;
if (ira_reg_equiv[spill_regno].memory != NULL
|| ira_reg_equiv[spill_regno].constant != NULL)
for (x = ira_reg_equiv[spill_regno].init_insns;
x != NULL;
x = x->next ())
cost -= REG_FREQ_FROM_BB (BLOCK_FOR_INSN (x->insn ()));
}
/* Avoid spilling static chain pointer pseudo when non-local
goto is used. */
if ((! static_p && best_static_p)
|| (static_p == best_static_p
&& (best_insn_pseudos_num > insn_pseudos_num
|| (best_insn_pseudos_num == insn_pseudos_num
&& (bad_spills_num < smallest_bad_spills_num
|| (bad_spills_num == smallest_bad_spills_num
&& best_cost > cost))))))
{
best_insn_pseudos_num = insn_pseudos_num;
smallest_bad_spills_num = bad_spills_num;
best_static_p = static_p;
best_cost = cost;
best_hard_regno = hard_regno;
bitmap_copy (&best_spill_pseudos_bitmap, &spill_pseudos_bitmap);
if (lra_dump_file != NULL)
fprintf (lra_dump_file,
" Now best %d(cost=%d, bad_spills=%d, insn_pseudos=%d)\n",
hard_regno, cost, bad_spills_num, insn_pseudos_num);
}
assign_temporarily (regno, -1);
for (j = 0; j < n; j++)
{
reload_regno = sorted_reload_pseudos[j];
if (live_pseudos_reg_renumber[reload_regno] >= 0)
assign_temporarily (reload_regno, -1);
}
}
if (lra_dump_file != NULL)
fprintf (lra_dump_file, "\n");
/* Restore the live hard reg pseudo info for spilled pseudos. */
EXECUTE_IF_SET_IN_BITMAP (&spill_pseudos_bitmap, 0, spill_regno, bi)
update_lives (spill_regno, false);
fail:
;
}
/* Spill: */
EXECUTE_IF_SET_IN_BITMAP (&best_spill_pseudos_bitmap, 0, spill_regno, bi)
{
if ((int) spill_regno >= lra_constraint_new_regno_start)
former_reload_pseudo_spill_p = true;
if (lra_dump_file != NULL)
fprintf (lra_dump_file, " Spill %sr%d(hr=%d, freq=%d) for r%d\n",
pseudo_prefix_title (spill_regno),
spill_regno, reg_renumber[spill_regno],
lra_reg_info[spill_regno].freq, regno);
update_lives (spill_regno, true);
lra_setup_reg_renumber (spill_regno, -1, false);
}
bitmap_ior_into (spilled_pseudo_bitmap, &best_spill_pseudos_bitmap);
return best_hard_regno;
}
/* Assign HARD_REGNO to REGNO. */
static void
assign_hard_regno (int hard_regno, int regno)
{
int i;
lra_assert (hard_regno >= 0);
lra_setup_reg_renumber (regno, hard_regno, true);
update_lives (regno, false);
for (i = 0;
i < hard_regno_nregs[hard_regno][lra_reg_info[regno].biggest_mode];
i++)
df_set_regs_ever_live (hard_regno + i, true);
}
/* Array used for sorting different pseudos. */
static int *sorted_pseudos;
/* The constraints pass is allowed to create equivalences between
pseudos that make the current allocation "incorrect" (in the sense
that pseudos are assigned to hard registers from their own conflict
sets). The global variable lra_risky_transformations_p says
whether this might have happened.
Process pseudos assigned to hard registers (less frequently used
first), spill if a conflict is found, and mark the spilled pseudos
in SPILLED_PSEUDO_BITMAP. Set up LIVE_HARD_REG_PSEUDOS from
pseudos, assigned to hard registers. */
static void
setup_live_pseudos_and_spill_after_risky_transforms (bitmap
spilled_pseudo_bitmap)
{
int p, i, j, n, regno, hard_regno;
unsigned int k, conflict_regno;
int val, offset;
HARD_REG_SET conflict_set;
machine_mode mode;
lra_live_range_t r;
bitmap_iterator bi;
int max_regno = max_reg_num ();
if (! lra_risky_transformations_p)
{
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
if (reg_renumber[i] >= 0 && lra_reg_info[i].nrefs > 0)
update_lives (i, false);
return;
}
for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
if ((pic_offset_table_rtx == NULL_RTX
|| i != (int) REGNO (pic_offset_table_rtx))
&& reg_renumber[i] >= 0 && lra_reg_info[i].nrefs > 0)
sorted_pseudos[n++] = i;
qsort (sorted_pseudos, n, sizeof (int), pseudo_compare_func);
if (pic_offset_table_rtx != NULL_RTX
&& (regno = REGNO (pic_offset_table_rtx)) >= FIRST_PSEUDO_REGISTER
&& reg_renumber[regno] >= 0 && lra_reg_info[regno].nrefs > 0)
sorted_pseudos[n++] = regno;
for (i = n - 1; i >= 0; i--)
{
regno = sorted_pseudos[i];
hard_regno = reg_renumber[regno];
lra_assert (hard_regno >= 0);
mode = lra_reg_info[regno].biggest_mode;
sparseset_clear (live_range_hard_reg_pseudos);
for (r = lra_reg_info[regno].live_ranges; r != NULL; r = r->next)
{
EXECUTE_IF_SET_IN_BITMAP (&live_hard_reg_pseudos[r->start], 0, k, bi)
sparseset_set_bit (live_range_hard_reg_pseudos, k);
for (p = r->start + 1; p <= r->finish; p++)
{
lra_live_range_t r2;
for (r2 = start_point_ranges[p];
r2 != NULL;
r2 = r2->start_next)
if (live_pseudos_reg_renumber[r2->regno] >= 0)
sparseset_set_bit (live_range_hard_reg_pseudos, r2->regno);
}
}
COPY_HARD_REG_SET (conflict_set, lra_no_alloc_regs);
IOR_HARD_REG_SET (conflict_set, lra_reg_info[regno].conflict_hard_regs);
val = lra_reg_info[regno].val;
offset = lra_reg_info[regno].offset;
EXECUTE_IF_SET_IN_SPARSESET (live_range_hard_reg_pseudos, conflict_regno)
if (!lra_reg_val_equal_p (conflict_regno, val, offset)
/* If it is multi-register pseudos they should start on
the same hard register. */
|| hard_regno != reg_renumber[conflict_regno])
{
int conflict_hard_regno = reg_renumber[conflict_regno];
machine_mode biggest_mode = lra_reg_info[conflict_regno].biggest_mode;
int biggest_nregs = hard_regno_nregs[conflict_hard_regno][biggest_mode];
int nregs_diff = (biggest_nregs
- (hard_regno_nregs
[conflict_hard_regno]
[PSEUDO_REGNO_MODE (conflict_regno)]));
add_to_hard_reg_set (&conflict_set,
biggest_mode,
conflict_hard_regno
- (WORDS_BIG_ENDIAN ? nregs_diff : 0));
}
if (! overlaps_hard_reg_set_p (conflict_set, mode, hard_regno))
{
update_lives (regno, false);
continue;
}
bitmap_set_bit (spilled_pseudo_bitmap, regno);
for (j = 0;
j < hard_regno_nregs[hard_regno][PSEUDO_REGNO_MODE (regno)];
j++)
lra_hard_reg_usage[hard_regno + j] -= lra_reg_info[regno].freq;
reg_renumber[regno] = -1;
if (regno >= lra_constraint_new_regno_start)
former_reload_pseudo_spill_p = true;
if (lra_dump_file != NULL)
fprintf (lra_dump_file, " Spill r%d after risky transformations\n",
regno);
}
}
/* Improve allocation by assigning the same hard regno of inheritance
pseudos to the connected pseudos. We need this because inheritance
pseudos are allocated after reload pseudos in the thread and when
we assign a hard register to a reload pseudo we don't know yet that
the connected inheritance pseudos can get the same hard register.
Add pseudos with changed allocation to bitmap CHANGED_PSEUDOS. */
static void
improve_inheritance (bitmap changed_pseudos)
{
unsigned int k;
int regno, another_regno, hard_regno, another_hard_regno, cost, i, n;
lra_copy_t cp, next_cp;
bitmap_iterator bi;
if (lra_inheritance_iter > LRA_MAX_INHERITANCE_PASSES)
return;
n = 0;
EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, k, bi)
if (reg_renumber[k] >= 0 && lra_reg_info[k].nrefs != 0)
sorted_pseudos[n++] = k;
qsort (sorted_pseudos, n, sizeof (int), pseudo_compare_func);
for (i = 0; i < n; i++)
{
regno = sorted_pseudos[i];
hard_regno = reg_renumber[regno];
lra_assert (hard_regno >= 0);
for (cp = lra_reg_info[regno].copies; cp != NULL; cp = next_cp)
{
if (cp->regno1 == regno)
{
next_cp = cp->regno1_next;
another_regno = cp->regno2;
}
else if (cp->regno2 == regno)
{
next_cp = cp->regno2_next;
another_regno = cp->regno1;
}
else
gcc_unreachable ();
/* Don't change reload pseudo allocation. It might have
this allocation for a purpose and changing it can result
in LRA cycling. */
if ((another_regno < lra_constraint_new_regno_start
|| bitmap_bit_p (&lra_inheritance_pseudos, another_regno))
&& (another_hard_regno = reg_renumber[another_regno]) >= 0
&& another_hard_regno != hard_regno)
{
if (lra_dump_file != NULL)
fprintf
(lra_dump_file,
" Improving inheritance for %d(%d) and %d(%d)...\n",
regno, hard_regno, another_regno, another_hard_regno);
update_lives (another_regno, true);
lra_setup_reg_renumber (another_regno, -1, false);
if (hard_regno == find_hard_regno_for (another_regno, &cost,
hard_regno, false))
assign_hard_regno (hard_regno, another_regno);
else
assign_hard_regno (another_hard_regno, another_regno);
bitmap_set_bit (changed_pseudos, another_regno);
}
}
}
}
/* Bitmap finally containing all pseudos spilled on this assignment
pass. */
static bitmap_head all_spilled_pseudos;
/* All pseudos whose allocation was changed. */
static bitmap_head changed_pseudo_bitmap;
/* Add to LIVE_RANGE_HARD_REG_PSEUDOS all pseudos conflicting with
REGNO and whose hard regs can be assigned to REGNO. */
static void
find_all_spills_for (int regno)
{
int p;
lra_live_range_t r;
unsigned int k;
bitmap_iterator bi;
enum reg_class rclass;
bool *rclass_intersect_p;
rclass = regno_allocno_class_array[regno];
rclass_intersect_p = ira_reg_classes_intersect_p[rclass];
for (r = lra_reg_info[regno].live_ranges; r != NULL; r = r->next)
{
EXECUTE_IF_SET_IN_BITMAP (&live_hard_reg_pseudos[r->start], 0, k, bi)
if (rclass_intersect_p[regno_allocno_class_array[k]])
sparseset_set_bit (live_range_hard_reg_pseudos, k);
for (p = r->start + 1; p <= r->finish; p++)
{
lra_live_range_t r2;
for (r2 = start_point_ranges[p];
r2 != NULL;
r2 = r2->start_next)
{
if (live_pseudos_reg_renumber[r2->regno] >= 0
&& rclass_intersect_p[regno_allocno_class_array[r2->regno]])
sparseset_set_bit (live_range_hard_reg_pseudos, r2->regno);
}
}
}
}
/* Assign hard registers to reload pseudos and other pseudos. */
static void
assign_by_spills (void)
{
int i, n, nfails, iter, regno, hard_regno, cost;
rtx restore_rtx;
rtx_insn *insn;
bitmap_head changed_insns, do_not_assign_nonreload_pseudos;
unsigned int u, conflict_regno;
bitmap_iterator bi;
bool reload_p;
int max_regno = max_reg_num ();
for (n = 0, i = lra_constraint_new_regno_start; i < max_regno; i++)
if (reg_renumber[i] < 0 && lra_reg_info[i].nrefs != 0
&& regno_allocno_class_array[i] != NO_REGS)
sorted_pseudos[n++] = i;
bitmap_initialize (&insn_conflict_pseudos, &reg_obstack);
bitmap_initialize (&spill_pseudos_bitmap, &reg_obstack);
bitmap_initialize (&best_spill_pseudos_bitmap, &reg_obstack);
update_hard_regno_preference_check = XCNEWVEC (int, max_regno);
curr_update_hard_regno_preference_check = 0;
memset (try_hard_reg_pseudos_check, 0, sizeof (try_hard_reg_pseudos_check));
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
bitmap_initialize (&try_hard_reg_pseudos[i], &reg_obstack);
curr_pseudo_check = 0;
bitmap_initialize (&changed_insns, &reg_obstack);
bitmap_initialize (&non_reload_pseudos, &reg_obstack);
bitmap_ior (&non_reload_pseudos, &lra_inheritance_pseudos, &lra_split_regs);
bitmap_ior_into (&non_reload_pseudos, &lra_subreg_reload_pseudos);
bitmap_ior_into (&non_reload_pseudos, &lra_optional_reload_pseudos);
for (iter = 0; iter <= 1; iter++)
{
qsort (sorted_pseudos, n, sizeof (int), reload_pseudo_compare_func);
nfails = 0;
for (i = 0; i < n; i++)
{
regno = sorted_pseudos[i];
if (reg_renumber[regno] >= 0)
continue;
if (lra_dump_file != NULL)
fprintf (lra_dump_file, " Assigning to %d "
"(cl=%s, orig=%d, freq=%d, tfirst=%d, tfreq=%d)...\n",
regno, reg_class_names[regno_allocno_class_array[regno]],
ORIGINAL_REGNO (regno_reg_rtx[regno]),
lra_reg_info[regno].freq, regno_assign_info[regno].first,
regno_assign_info[regno_assign_info[regno].first].freq);
hard_regno = find_hard_regno_for (regno, &cost, -1, iter == 1);
reload_p = ! bitmap_bit_p (&non_reload_pseudos, regno);
if (hard_regno < 0 && reload_p)
hard_regno = spill_for (regno, &all_spilled_pseudos, iter == 1);
if (hard_regno < 0)
{
if (reload_p)
sorted_pseudos[nfails++] = regno;
}
else
{
/* This register might have been spilled by the previous
pass. Indicate that it is no longer spilled. */
bitmap_clear_bit (&all_spilled_pseudos, regno);
assign_hard_regno (hard_regno, regno);
if (! reload_p)
/* As non-reload pseudo assignment is changed we
should reconsider insns referring for the
pseudo. */
bitmap_set_bit (&changed_pseudo_bitmap, regno);
}
}
if (nfails == 0)
break;
if (iter > 0)
{
/* We did not assign hard regs to reload pseudos after two iterations.
Either it's an asm and something is wrong with the constraints, or
we have run out of spill registers; error out in either case. */
bool asm_p = false;
bitmap_head failed_reload_insns;
bitmap_initialize (&failed_reload_insns, &reg_obstack);
for (i = 0; i < nfails; i++)
{
regno = sorted_pseudos[i];
bitmap_ior_into (&failed_reload_insns,
&lra_reg_info[regno].insn_bitmap);
/* Assign an arbitrary hard register of regno class to
avoid further trouble with this insn. */
bitmap_clear_bit (&all_spilled_pseudos, regno);
assign_hard_regno
(ira_class_hard_regs[regno_allocno_class_array[regno]][0],
regno);
}
EXECUTE_IF_SET_IN_BITMAP (&failed_reload_insns, 0, u, bi)
{
insn = lra_insn_recog_data[u]->insn;
if (asm_noperands (PATTERN (insn)) >= 0)
{
asm_p = true;
error_for_asm (insn,
"%<asm%> operand has impossible constraints");
/* Avoid further trouble with this insn.
For asm goto, instead of fixing up all the edges
just clear the template and clear input operands
(asm goto doesn't have any output operands). */
if (JUMP_P (insn))
{
rtx asm_op = extract_asm_operands (PATTERN (insn));
ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
lra_update_insn_regno_info (insn);
}
else
{
PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
lra_set_insn_deleted (insn);
}
}
else if (!asm_p)
{
error ("unable to find a register to spill");
fatal_insn ("this is the insn:", insn);
}
}
break;
}
/* This is a very rare event. We can not assign a hard register
to reload pseudo because the hard register was assigned to
another reload pseudo on a previous assignment pass. For x86
example, on the 1st pass we assigned CX (although another
hard register could be used for this) to reload pseudo in an
insn, on the 2nd pass we need CX (and only this) hard
register for a new reload pseudo in the same insn. Another
possible situation may occur in assigning to multi-regs
reload pseudos when hard regs pool is too fragmented even
after spilling non-reload pseudos.
We should do something radical here to succeed. Here we
spill *all* conflicting pseudos and reassign them. */
if (lra_dump_file != NULL)
fprintf (lra_dump_file, " 2nd iter for reload pseudo assignments:\n");
sparseset_clear (live_range_hard_reg_pseudos);
for (i = 0; i < nfails; i++)
{
if (lra_dump_file != NULL)
fprintf (lra_dump_file, " Reload r%d assignment failure\n",
sorted_pseudos[i]);
find_all_spills_for (sorted_pseudos[i]);
}
EXECUTE_IF_SET_IN_SPARSESET (live_range_hard_reg_pseudos, conflict_regno)
{
if ((int) conflict_regno >= lra_constraint_new_regno_start)
{
sorted_pseudos[nfails++] = conflict_regno;
former_reload_pseudo_spill_p = true;
}
else
/* It is better to do reloads before spilling as after the
spill-subpass we will reload memory instead of pseudos
and this will make reusing reload pseudos more
complicated. Going directly to the spill pass in such
case might result in worse code performance or even LRA
cycling if we have few registers. */
bitmap_set_bit (&all_spilled_pseudos, conflict_regno);
if (lra_dump_file != NULL)
fprintf (lra_dump_file, " Spill %s r%d(hr=%d, freq=%d)\n",
pseudo_prefix_title (conflict_regno), conflict_regno,
reg_renumber[conflict_regno],
lra_reg_info[conflict_regno].freq);
update_lives (conflict_regno, true);
lra_setup_reg_renumber (conflict_regno, -1, false);
}
n = nfails;
}
improve_inheritance (&changed_pseudo_bitmap);
bitmap_clear (&non_reload_pseudos);
bitmap_clear (&changed_insns);
if (! lra_simple_p)
{
/* We should not assign to original pseudos of inheritance
pseudos or split pseudos if any its inheritance pseudo did
not get hard register or any its split pseudo was not split
because undo inheritance/split pass will extend live range of
such inheritance or split pseudos. */
bitmap_initialize (&do_not_assign_nonreload_pseudos, &reg_obstack);
EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, u, bi)
if ((restore_rtx = lra_reg_info[u].restore_rtx) != NULL_RTX
&& REG_P (restore_rtx)
&& reg_renumber[u] < 0
&& bitmap_bit_p (&lra_inheritance_pseudos, u))
bitmap_set_bit (&do_not_assign_nonreload_pseudos, REGNO (restore_rtx));
EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, u, bi)
if ((restore_rtx = lra_reg_info[u].restore_rtx) != NULL_RTX
&& reg_renumber[u] >= 0)
{
lra_assert (REG_P (restore_rtx));
bitmap_set_bit (&do_not_assign_nonreload_pseudos, REGNO (restore_rtx));
}
for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
if (((i < lra_constraint_new_regno_start
&& ! bitmap_bit_p (&do_not_assign_nonreload_pseudos, i))
|| (bitmap_bit_p (&lra_inheritance_pseudos, i)
&& lra_reg_info[i].restore_rtx != NULL_RTX)
|| (bitmap_bit_p (&lra_split_regs, i)
&& lra_reg_info[i].restore_rtx != NULL_RTX)
|| bitmap_bit_p (&lra_subreg_reload_pseudos, i)
|| bitmap_bit_p (&lra_optional_reload_pseudos, i))
&& reg_renumber[i] < 0 && lra_reg_info[i].nrefs != 0
&& regno_allocno_class_array[i] != NO_REGS)
sorted_pseudos[n++] = i;
bitmap_clear (&do_not_assign_nonreload_pseudos);
if (n != 0 && lra_dump_file != NULL)
fprintf (lra_dump_file, " Reassigning non-reload pseudos\n");
qsort (sorted_pseudos, n, sizeof (int), pseudo_compare_func);
for (i = 0; i < n; i++)
{
regno = sorted_pseudos[i];
hard_regno = find_hard_regno_for (regno, &cost, -1, false);
if (hard_regno >= 0)
{
assign_hard_regno (hard_regno, regno);
/* We change allocation for non-reload pseudo on this
iteration -- mark the pseudo for invalidation of used
alternatives of insns containing the pseudo. */
bitmap_set_bit (&changed_pseudo_bitmap, regno);
}
else
{
enum reg_class rclass = lra_get_allocno_class (regno);
enum reg_class spill_class;
if (targetm.spill_class == NULL
|| lra_reg_info[regno].restore_rtx == NULL_RTX
|| ! bitmap_bit_p (&lra_inheritance_pseudos, regno)
|| (spill_class
= ((enum reg_class)
targetm.spill_class
((reg_class_t) rclass,
PSEUDO_REGNO_MODE (regno)))) == NO_REGS)
continue;
regno_allocno_class_array[regno] = spill_class;
hard_regno = find_hard_regno_for (regno, &cost, -1, false);
if (hard_regno < 0)
regno_allocno_class_array[regno] = rclass;
else
{
setup_reg_classes
(regno, spill_class, spill_class, spill_class);
assign_hard_regno (hard_regno, regno);
bitmap_set_bit (&changed_pseudo_bitmap, regno);
}
}
}
}
free (update_hard_regno_preference_check);
bitmap_clear (&best_spill_pseudos_bitmap);
bitmap_clear (&spill_pseudos_bitmap);
bitmap_clear (&insn_conflict_pseudos);
}
/* Entry function to assign hard registers to new reload pseudos
starting with LRA_CONSTRAINT_NEW_REGNO_START (by possible spilling
of old pseudos) and possibly to the old pseudos. The function adds
what insns to process for the next constraint pass. Those are all
insns who contains non-reload and non-inheritance pseudos with
changed allocation.
Return true if we did not spill any non-reload and non-inheritance
pseudos. */
bool
lra_assign (void)
{
int i;
unsigned int u;
bitmap_iterator bi;
bitmap_head insns_to_process;
bool no_spills_p;
int max_regno = max_reg_num ();
timevar_push (TV_LRA_ASSIGN);
lra_assignment_iter++;
if (lra_dump_file != NULL)
fprintf (lra_dump_file, "\n********** Assignment #%d: **********\n\n",
lra_assignment_iter);
init_lives ();
sorted_pseudos = XNEWVEC (int, max_regno);
sorted_reload_pseudos = XNEWVEC (int, max_regno);
regno_allocno_class_array = XNEWVEC (enum reg_class, max_regno);
regno_live_length = XNEWVEC (int, max_regno);
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
{
int l;
lra_live_range_t r;
regno_allocno_class_array[i] = lra_get_allocno_class (i);
for (l = 0, r = lra_reg_info[i].live_ranges; r != NULL; r = r->next)
l += r->finish - r->start + 1;
regno_live_length[i] = l;
}
former_reload_pseudo_spill_p = false;
init_regno_assign_info ();
bitmap_initialize (&all_spilled_pseudos, &reg_obstack);
create_live_range_start_chains ();
setup_live_pseudos_and_spill_after_risky_transforms (&all_spilled_pseudos);
if (flag_checking && !flag_ipa_ra)
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
if (lra_reg_info[i].nrefs != 0 && reg_renumber[i] >= 0
&& lra_reg_info[i].call_p
&& overlaps_hard_reg_set_p (call_used_reg_set,
PSEUDO_REGNO_MODE (i), reg_renumber[i]))
gcc_unreachable ();
/* Setup insns to process on the next constraint pass. */
bitmap_initialize (&changed_pseudo_bitmap, &reg_obstack);
init_live_reload_and_inheritance_pseudos ();
assign_by_spills ();
finish_live_reload_and_inheritance_pseudos ();
bitmap_ior_into (&changed_pseudo_bitmap, &all_spilled_pseudos);
no_spills_p = true;
EXECUTE_IF_SET_IN_BITMAP (&all_spilled_pseudos, 0, u, bi)
/* We ignore spilled pseudos created on last inheritance pass
because they will be removed. */
if (lra_reg_info[u].restore_rtx == NULL_RTX)
{
no_spills_p = false;
break;
}
finish_live_range_start_chains ();
bitmap_clear (&all_spilled_pseudos);
bitmap_initialize (&insns_to_process, &reg_obstack);
EXECUTE_IF_SET_IN_BITMAP (&changed_pseudo_bitmap, 0, u, bi)
bitmap_ior_into (&insns_to_process, &lra_reg_info[u].insn_bitmap);
bitmap_clear (&changed_pseudo_bitmap);
EXECUTE_IF_SET_IN_BITMAP (&insns_to_process, 0, u, bi)
{
lra_push_insn_by_uid (u);
/* Invalidate alternatives for insn should be processed. */
lra_set_used_insn_alternative_by_uid (u, -1);
}
bitmap_clear (&insns_to_process);
finish_regno_assign_info ();
free (regno_live_length);
free (regno_allocno_class_array);
free (sorted_pseudos);
free (sorted_reload_pseudos);
finish_lives ();
timevar_pop (TV_LRA_ASSIGN);
if (former_reload_pseudo_spill_p)
lra_assignment_iter_after_spill++;
/* This is conditional on flag_checking because valid code can take
more than this maximum number of iteration, but at the same time
the test can uncover errors in machine descriptions. */
if (flag_checking
&& (lra_assignment_iter_after_spill
> LRA_MAX_ASSIGNMENT_ITERATION_NUMBER))
internal_error
("Maximum number of LRA assignment passes is achieved (%d)\n",
LRA_MAX_ASSIGNMENT_ITERATION_NUMBER);
return no_spills_p;
}