9602b6a1b8
2010-04-13 Andreas Krebbel <Andreas.Krebbel@de.ibm.com> Ulrich Weigand <Ulrich.Weigand@de.ibm.com> * gcc/config/s390/s390.md: Replace TARGET_64BIT with TARGET_ZARCH. * gcc/config/s390/s390.c: Replace UNTIS_PER_WORD with UNITS_PER_LONG where it is ABI relevant. (s390_return_addr_rtx): Likewise. (s390_back_chain_rtx): Likewise. (s390_frame_area): Likewise. (s390_frame_info): Likewise. (s390_initial_elimination_offset): Likewise. (save_gprs): Likewise. (s390_emit_prologue): Likewise. (s390_emit_epilogue): Likewise. (s390_function_arg_advance): Likewise. (s390_function_arg): Likewise. (s390_va_start): Likewise. (s390_gimplify_va_arg): Likewise. (s390_function_profiler): Likewise. (s390_optimize_prologue): Likewise. (s390_rtx_costs): Likewise. (s390_secondary_reload): Likewise. (s390_promote_function_mode): Likewise. (s390_hard_regno_mode_ok): Replace TARGET_64BIT with TARGET_ZARCH. (s390_scalar_mode_supported_p): Disallow TImode if no 64 bit registers available. (s390_unwind_word_mode): New function. (s390_function_value): Split 64 bit values into register pair if used as return value. (s390_call_saved_register_used): Don't use HARD_REGNO_NREGS for function call parameters. Handle parallels. (TARGET_SCALAR_MODE_SUPPORTED_P): New macro. (HARD_REGNO_CALL_PART_CLOBBERED): New macro. (DWARF_CIE_DATA_ALIGNMENT): New macro. (s390_expand_setmem): Remove unused variable src_addr. * gcc/longlong.h: Make smul_ppmm and sdiv_qrnnd inline asms to deal with 64 bit registers. * gcc/config/s390/s390.h: Define __zarch__ predefined macro. Replace UNITS_PER_WORD with UNITS_PER_LONG where it is ABI relevant. (UNITS_PER_LONG): New macro. * libjava/include/s390-signal.h: Define extended ucontext structure containing the upper halfs of the 64 bit registers. Co-Authored-By: Ulrich Weigand <uweigand@de.ibm.com> From-SVN: r158257
289 lines
9.4 KiB
C
289 lines
9.4 KiB
C
// s390-signal.h - Catch runtime signals and turn them into exceptions
|
|
// on an s390 based Linux system.
|
|
|
|
/* Copyright (C) 2002 Free Software Foundation
|
|
|
|
This file is part of libgcj.
|
|
|
|
This software is copyrighted work licensed under the terms of the
|
|
Libgcj License. Please consult the file "LIBGCJ_LICENSE" for
|
|
details. */
|
|
|
|
|
|
#ifndef JAVA_SIGNAL_H
|
|
#define JAVA_SIGNAL_H 1
|
|
|
|
#include <signal.h>
|
|
#include <sys/syscall.h>
|
|
#include <ucontext.h>
|
|
#include <limits.h>
|
|
|
|
#define HANDLE_SEGV 1
|
|
#define HANDLE_FPE 1
|
|
|
|
#define SIGNAL_HANDLER(_name) \
|
|
static void _name (int, siginfo_t *_si __attribute__((unused)), \
|
|
ucontext_t *_uc __attribute__((unused)))
|
|
|
|
/* We no longer need to fiddle with the PSW address in the signal handler;
|
|
this is now all handled correctly in MD_FALLBACK_FRAME_STATE_FOR. */
|
|
#define MAKE_THROW_FRAME(_exception)
|
|
|
|
|
|
/* According to the JVM spec, "if the dividend is the negative integer
|
|
of the smallest magnitude and the divisor is -1, then overflow occurs
|
|
and the result is equal to the dividend. Despite the overflow, no
|
|
exception occurs".
|
|
|
|
We handle this by inspecting the instruction which generated the signal,
|
|
and if dividend and divisor are as above, we simply return from the signal
|
|
handler. This causes execution to continue after the instruction.
|
|
Before returning, we the set result registers as expected. */
|
|
#define UC_EXTENDED 0x00000001
|
|
|
|
#define HANDLE_DIVIDE_OVERFLOW \
|
|
do \
|
|
{ \
|
|
unsigned char *_eip = (unsigned char *) \
|
|
__builtin_extract_return_addr (_si->si_addr); \
|
|
unsigned long *_regs = _uc->uc_mcontext.gregs; \
|
|
int _r1, _r2, _d2, _x2, _b2; \
|
|
struct \
|
|
{ \
|
|
unsigned long int uc_flags; \
|
|
struct ucontext *uc_link; \
|
|
stack_t uc_stack; \
|
|
mcontext_t uc_mcontext; \
|
|
unsigned long sigmask[2]; \
|
|
unsigned long ext_regs[16]; \
|
|
} *_uc_ext = (typeof(_uc_ext))_uc; \
|
|
\
|
|
/* First, a couple of helper routines to decode instructions. */ \
|
|
struct _decode \
|
|
{ \
|
|
/* Decode RR instruction format. */ \
|
|
static inline int _is_rr (unsigned char *_eip, \
|
|
unsigned char _op, \
|
|
int *_r1, int *_r2) \
|
|
{ \
|
|
if (_eip[0] == _op) \
|
|
{ \
|
|
*_r1 = _eip[1] >> 4; \
|
|
*_r2 = _eip[1] & 0xf; \
|
|
return 1; \
|
|
} \
|
|
return 0; \
|
|
} \
|
|
\
|
|
/* Decode RX instruction format. */ \
|
|
static inline int _is_rx (unsigned char *_eip, \
|
|
unsigned char _op, \
|
|
int *_r1, int *_d2, int *_x2, int *_b2) \
|
|
{ \
|
|
if (_eip[0] == _op) \
|
|
{ \
|
|
*_r1 = _eip[1] >> 4; \
|
|
*_x2 = _eip[1] & 0xf; \
|
|
*_b2 = _eip[2] >> 4; \
|
|
*_d2 = ((_eip[2] & 0xf) << 8) + _eip[3]; \
|
|
return 1; \
|
|
} \
|
|
return 0; \
|
|
} \
|
|
\
|
|
/* Decode RRE instruction format. */ \
|
|
static inline int _is_rre (unsigned char *_eip, \
|
|
unsigned char _op1, unsigned char _op2,\
|
|
int *_r1, int *_r2) \
|
|
{ \
|
|
if (_eip[0] == _op1 && _eip[1] == _op2) \
|
|
{ \
|
|
*_r1 = _eip[3] >> 4; \
|
|
*_r2 = _eip[3] & 0xf; \
|
|
return 1; \
|
|
} \
|
|
return 0; \
|
|
} \
|
|
\
|
|
/* Decode RXY instruction format. */ \
|
|
static inline int _is_rxy (unsigned char *_eip, \
|
|
unsigned char _op1, unsigned char _op2,\
|
|
int *_r1, int *_d2, int *_x2, int *_b2)\
|
|
{ \
|
|
if (_eip[0] == _op1 && _eip[5] == _op2) \
|
|
{ \
|
|
*_r1 = _eip[1] >> 4; \
|
|
*_x2 = _eip[1] & 0xf; \
|
|
*_b2 = _eip[2] >> 4; \
|
|
*_d2 = ((_eip[2] & 0xf) << 8) + _eip[3] + (_eip[4] << 12); \
|
|
/* We have a 20-bit signed displacement. */ \
|
|
*_d2 = (*_d2 ^ 0x80000) - 0x80000; \
|
|
return 1; \
|
|
} \
|
|
return 0; \
|
|
} \
|
|
\
|
|
/* Compute effective address. */ \
|
|
static inline unsigned long _eff (unsigned long *_regs, \
|
|
long _d, int _x, int _b) \
|
|
{ \
|
|
return _d + (_x? _regs[_x] : 0) + (_b? _regs[_b] : 0); \
|
|
} \
|
|
\
|
|
static inline int is_long_long_min_p (unsigned long *_regs, \
|
|
unsigned long *_ext_regs, \
|
|
int _r) \
|
|
{ \
|
|
return ((long long)_regs[_r] \
|
|
| (long long)_ext_regs[_r] << 32) == \
|
|
LONG_LONG_MIN; \
|
|
} \
|
|
}; \
|
|
\
|
|
/* DR r1,r2 */ \
|
|
if (_decode::_is_rr (_eip, 0x1d, &_r1, &_r2) \
|
|
&& (int) _regs[_r1] == -1 && (int) _regs[_r1+1] == INT_MIN \
|
|
&& (int) _regs[_r2] == -1) \
|
|
{ \
|
|
_regs[_r1] &= ~0xffffffff; \
|
|
return; \
|
|
} \
|
|
\
|
|
/* D r1,d2(x2,b2) */ \
|
|
if (_decode::_is_rx (_eip, 0x5d, &_r1, &_d2, &_x2, &_b2) \
|
|
&& (int) _regs[_r1] == -1 && (int) _regs[_r1+1] == INT_MIN \
|
|
&& *(int *) _decode::_eff (_regs, _d2, _x2, _b2) == -1) \
|
|
{ \
|
|
_regs[_r1] &= ~0xffffffff; \
|
|
return; \
|
|
} \
|
|
\
|
|
/* DSGR r1,r2 */ \
|
|
if (_decode::_is_rre (_eip, 0xb9, 0x0d, &_r1, &_r2) \
|
|
&& (long) _regs[_r1+1] == LONG_MIN \
|
|
&& (long) _regs[_r2] == -1L) \
|
|
{ \
|
|
_regs[_r1] = 0; \
|
|
return; \
|
|
} \
|
|
\
|
|
/* DSGFR r1,r2 */ \
|
|
if (_decode::_is_rre (_eip, 0xb9, 0x1d, &_r1, &_r2) \
|
|
&& (long) _regs[_r1+1] == LONG_MIN \
|
|
&& (int) _regs[_r2] == -1) \
|
|
{ \
|
|
_regs[_r1] = 0; \
|
|
return; \
|
|
} \
|
|
\
|
|
/* DSG r1,d2(x2,b2) */ \
|
|
if (_decode::_is_rxy (_eip, 0xe3, 0x0d, &_r1, &_d2, &_x2, &_b2) \
|
|
&& (long) _regs[_r1+1] == LONG_MIN \
|
|
&& *(long *) _decode::_eff (_regs, _d2, _x2, _b2) == -1L) \
|
|
{ \
|
|
_regs[_r1] = 0; \
|
|
return; \
|
|
} \
|
|
\
|
|
/* DSGF r1,d2(x2,b2) */ \
|
|
if (_decode::_is_rxy (_eip, 0xe3, 0x1d, &_r1, &_d2, &_x2, &_b2) \
|
|
&& (long) _regs[_r1+1] == LONG_MIN \
|
|
&& *(int *) _decode::_eff (_regs, _d2, _x2, _b2) == -1) \
|
|
{ \
|
|
_regs[_r1] = 0; \
|
|
return; \
|
|
} \
|
|
\
|
|
/* The extended ucontext contains the upper halfs of the 64bit \
|
|
registers in 31bit applications. */ \
|
|
if (_uc->uc_flags & 1 == 1) \
|
|
{ \
|
|
/* DSGR r1,r2 */ \
|
|
if (_decode::_is_rre (_eip, 0xb9, 0x0d, &_r1, &_r2) \
|
|
&& (int) _regs[_r2] == -1 \
|
|
&& (int) _uc_ext->ext_regs[_r2] == -1 \
|
|
&& _decode::is_long_long_min_p (_regs, _uc_ext->ext_regs, \
|
|
_r1 + 1)) \
|
|
{ \
|
|
_regs[_r1] = 0; \
|
|
_uc_ext->ext_regs[_r1] = 0; \
|
|
return; \
|
|
} \
|
|
\
|
|
/* DSGFR r1,r2 */ \
|
|
if (_decode::_is_rre (_eip, 0xb9, 0x1d, &_r1, &_r2) \
|
|
&& (int) _regs[_r2] == -1 \
|
|
&& _decode::is_long_long_min_p (_regs, _uc_ext->ext_regs, \
|
|
_r1 + 1)) \
|
|
{ \
|
|
_regs[_r1] = 0; \
|
|
_uc_ext->ext_regs[_r1] = 0; \
|
|
return; \
|
|
} \
|
|
\
|
|
/* DSG r1,d2(x2,b2) */ \
|
|
if (_decode::_is_rxy (_eip, 0xe3, 0x0d, &_r1, &_d2, &_x2, &_b2) \
|
|
&& *(int *) _decode::_eff (_regs, _d2, _x2, _b2) == -1 \
|
|
&& *(int *) _decode::_eff (_regs, _d2 + 4, _x2, _b2) == -1 \
|
|
&& _decode::is_long_long_min_p (_regs, _uc_ext->ext_regs, \
|
|
_r1 + 1)) \
|
|
{ \
|
|
_regs[_r1] = 0; \
|
|
_uc_ext->ext_regs[_r1] = 0; \
|
|
return; \
|
|
} \
|
|
\
|
|
/* DSGF r1,d2(x2,b2) */ \
|
|
if (_decode::_is_rxy (_eip, 0xe3, 0x1d, &_r1, &_d2, &_x2, &_b2) \
|
|
&& *(int *) _decode::_eff (_regs, _d2, _x2, _b2) == -1 \
|
|
&& _decode::is_long_long_min_p (_regs, _uc_ext->ext_regs, \
|
|
_r1 + 1)) \
|
|
{ \
|
|
_regs[_r1] = 0; \
|
|
_uc_ext->ext_regs[_r1] = 0; \
|
|
return; \
|
|
} \
|
|
} \
|
|
} \
|
|
while (0)
|
|
|
|
/* For an explanation why we cannot simply use sigaction to
|
|
install the handlers, see i386-signal.h. */
|
|
|
|
/* We use old_kernel_sigaction here because we're calling the kernel
|
|
directly rather than via glibc. The sigaction structure that the
|
|
syscall uses is a different shape from the one in userland and not
|
|
visible to us in a header file so we define it here. */
|
|
|
|
struct old_s390_kernel_sigaction {
|
|
void (*k_sa_handler) (int, siginfo_t *, ucontext_t *);
|
|
unsigned long k_sa_mask;
|
|
unsigned long k_sa_flags;
|
|
void (*sa_restorer) (void);
|
|
};
|
|
|
|
#define INIT_SEGV \
|
|
do \
|
|
{ \
|
|
struct old_s390_kernel_sigaction kact; \
|
|
kact.k_sa_handler = catch_segv; \
|
|
kact.k_sa_mask = 0; \
|
|
kact.k_sa_flags = SA_SIGINFO; \
|
|
syscall (SYS_sigaction, SIGSEGV, &kact, NULL); \
|
|
} \
|
|
while (0)
|
|
|
|
#define INIT_FPE \
|
|
do \
|
|
{ \
|
|
struct old_s390_kernel_sigaction kact; \
|
|
kact.k_sa_handler = catch_fpe; \
|
|
kact.k_sa_mask = 0; \
|
|
kact.k_sa_flags = SA_SIGINFO; \
|
|
syscall (SYS_sigaction, SIGFPE, &kact, NULL); \
|
|
} \
|
|
while (0)
|
|
|
|
#endif /* JAVA_SIGNAL_H */
|
|
|