5624e564d2
From-SVN: r219188
361 lines
9.2 KiB
C
361 lines
9.2 KiB
C
/* Implementation of the RESHAPE intrinsic
|
|
Copyright (C) 2002-2015 Free Software Foundation, Inc.
|
|
Contributed by Paul Brook <paul@nowt.org>
|
|
|
|
This file is part of the GNU Fortran runtime library (libgfortran).
|
|
|
|
Libgfortran is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 3 of the License, or (at your option) any later version.
|
|
|
|
Libgfortran is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
Under Section 7 of GPL version 3, you are granted additional
|
|
permissions described in the GCC Runtime Library Exception, version
|
|
3.1, as published by the Free Software Foundation.
|
|
|
|
You should have received a copy of the GNU General Public License and
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "libgfortran.h"
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
|
|
|
|
#if defined (HAVE_GFC_COMPLEX_10)
|
|
|
|
typedef GFC_ARRAY_DESCRIPTOR(1, index_type) shape_type;
|
|
|
|
|
|
extern void reshape_c10 (gfc_array_c10 * const restrict,
|
|
gfc_array_c10 * const restrict,
|
|
shape_type * const restrict,
|
|
gfc_array_c10 * const restrict,
|
|
shape_type * const restrict);
|
|
export_proto(reshape_c10);
|
|
|
|
void
|
|
reshape_c10 (gfc_array_c10 * const restrict ret,
|
|
gfc_array_c10 * const restrict source,
|
|
shape_type * const restrict shape,
|
|
gfc_array_c10 * const restrict pad,
|
|
shape_type * const restrict order)
|
|
{
|
|
/* r.* indicates the return array. */
|
|
index_type rcount[GFC_MAX_DIMENSIONS];
|
|
index_type rextent[GFC_MAX_DIMENSIONS];
|
|
index_type rstride[GFC_MAX_DIMENSIONS];
|
|
index_type rstride0;
|
|
index_type rdim;
|
|
index_type rsize;
|
|
index_type rs;
|
|
index_type rex;
|
|
GFC_COMPLEX_10 *rptr;
|
|
/* s.* indicates the source array. */
|
|
index_type scount[GFC_MAX_DIMENSIONS];
|
|
index_type sextent[GFC_MAX_DIMENSIONS];
|
|
index_type sstride[GFC_MAX_DIMENSIONS];
|
|
index_type sstride0;
|
|
index_type sdim;
|
|
index_type ssize;
|
|
const GFC_COMPLEX_10 *sptr;
|
|
/* p.* indicates the pad array. */
|
|
index_type pcount[GFC_MAX_DIMENSIONS];
|
|
index_type pextent[GFC_MAX_DIMENSIONS];
|
|
index_type pstride[GFC_MAX_DIMENSIONS];
|
|
index_type pdim;
|
|
index_type psize;
|
|
const GFC_COMPLEX_10 *pptr;
|
|
|
|
const GFC_COMPLEX_10 *src;
|
|
int n;
|
|
int dim;
|
|
int sempty, pempty, shape_empty;
|
|
index_type shape_data[GFC_MAX_DIMENSIONS];
|
|
|
|
rdim = GFC_DESCRIPTOR_EXTENT(shape,0);
|
|
if (rdim != GFC_DESCRIPTOR_RANK(ret))
|
|
runtime_error("rank of return array incorrect in RESHAPE intrinsic");
|
|
|
|
shape_empty = 0;
|
|
|
|
for (n = 0; n < rdim; n++)
|
|
{
|
|
shape_data[n] = shape->base_addr[n * GFC_DESCRIPTOR_STRIDE(shape,0)];
|
|
if (shape_data[n] <= 0)
|
|
{
|
|
shape_data[n] = 0;
|
|
shape_empty = 1;
|
|
}
|
|
}
|
|
|
|
if (ret->base_addr == NULL)
|
|
{
|
|
index_type alloc_size;
|
|
|
|
rs = 1;
|
|
for (n = 0; n < rdim; n++)
|
|
{
|
|
rex = shape_data[n];
|
|
|
|
GFC_DIMENSION_SET(ret->dim[n], 0, rex - 1, rs);
|
|
|
|
rs *= rex;
|
|
}
|
|
ret->offset = 0;
|
|
|
|
if (unlikely (rs < 1))
|
|
alloc_size = 0;
|
|
else
|
|
alloc_size = rs;
|
|
|
|
ret->base_addr = xmallocarray (alloc_size, sizeof (GFC_COMPLEX_10));
|
|
ret->dtype = (source->dtype & ~GFC_DTYPE_RANK_MASK) | rdim;
|
|
}
|
|
|
|
if (shape_empty)
|
|
return;
|
|
|
|
if (pad)
|
|
{
|
|
pdim = GFC_DESCRIPTOR_RANK (pad);
|
|
psize = 1;
|
|
pempty = 0;
|
|
for (n = 0; n < pdim; n++)
|
|
{
|
|
pcount[n] = 0;
|
|
pstride[n] = GFC_DESCRIPTOR_STRIDE(pad,n);
|
|
pextent[n] = GFC_DESCRIPTOR_EXTENT(pad,n);
|
|
if (pextent[n] <= 0)
|
|
{
|
|
pempty = 1;
|
|
pextent[n] = 0;
|
|
}
|
|
|
|
if (psize == pstride[n])
|
|
psize *= pextent[n];
|
|
else
|
|
psize = 0;
|
|
}
|
|
pptr = pad->base_addr;
|
|
}
|
|
else
|
|
{
|
|
pdim = 0;
|
|
psize = 1;
|
|
pempty = 1;
|
|
pptr = NULL;
|
|
}
|
|
|
|
if (unlikely (compile_options.bounds_check))
|
|
{
|
|
index_type ret_extent, source_extent;
|
|
|
|
rs = 1;
|
|
for (n = 0; n < rdim; n++)
|
|
{
|
|
rs *= shape_data[n];
|
|
ret_extent = GFC_DESCRIPTOR_EXTENT(ret,n);
|
|
if (ret_extent != shape_data[n])
|
|
runtime_error("Incorrect extent in return value of RESHAPE"
|
|
" intrinsic in dimension %ld: is %ld,"
|
|
" should be %ld", (long int) n+1,
|
|
(long int) ret_extent, (long int) shape_data[n]);
|
|
}
|
|
|
|
source_extent = 1;
|
|
sdim = GFC_DESCRIPTOR_RANK (source);
|
|
for (n = 0; n < sdim; n++)
|
|
{
|
|
index_type se;
|
|
se = GFC_DESCRIPTOR_EXTENT(source,n);
|
|
source_extent *= se > 0 ? se : 0;
|
|
}
|
|
|
|
if (rs > source_extent && (!pad || pempty))
|
|
runtime_error("Incorrect size in SOURCE argument to RESHAPE"
|
|
" intrinsic: is %ld, should be %ld",
|
|
(long int) source_extent, (long int) rs);
|
|
|
|
if (order)
|
|
{
|
|
int seen[GFC_MAX_DIMENSIONS];
|
|
index_type v;
|
|
|
|
for (n = 0; n < rdim; n++)
|
|
seen[n] = 0;
|
|
|
|
for (n = 0; n < rdim; n++)
|
|
{
|
|
v = order->base_addr[n * GFC_DESCRIPTOR_STRIDE(order,0)] - 1;
|
|
|
|
if (v < 0 || v >= rdim)
|
|
runtime_error("Value %ld out of range in ORDER argument"
|
|
" to RESHAPE intrinsic", (long int) v + 1);
|
|
|
|
if (seen[v] != 0)
|
|
runtime_error("Duplicate value %ld in ORDER argument to"
|
|
" RESHAPE intrinsic", (long int) v + 1);
|
|
|
|
seen[v] = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
rsize = 1;
|
|
for (n = 0; n < rdim; n++)
|
|
{
|
|
if (order)
|
|
dim = order->base_addr[n * GFC_DESCRIPTOR_STRIDE(order,0)] - 1;
|
|
else
|
|
dim = n;
|
|
|
|
rcount[n] = 0;
|
|
rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,dim);
|
|
rextent[n] = GFC_DESCRIPTOR_EXTENT(ret,dim);
|
|
if (rextent[n] < 0)
|
|
rextent[n] = 0;
|
|
|
|
if (rextent[n] != shape_data[dim])
|
|
runtime_error ("shape and target do not conform");
|
|
|
|
if (rsize == rstride[n])
|
|
rsize *= rextent[n];
|
|
else
|
|
rsize = 0;
|
|
if (rextent[n] <= 0)
|
|
return;
|
|
}
|
|
|
|
sdim = GFC_DESCRIPTOR_RANK (source);
|
|
ssize = 1;
|
|
sempty = 0;
|
|
for (n = 0; n < sdim; n++)
|
|
{
|
|
scount[n] = 0;
|
|
sstride[n] = GFC_DESCRIPTOR_STRIDE(source,n);
|
|
sextent[n] = GFC_DESCRIPTOR_EXTENT(source,n);
|
|
if (sextent[n] <= 0)
|
|
{
|
|
sempty = 1;
|
|
sextent[n] = 0;
|
|
}
|
|
|
|
if (ssize == sstride[n])
|
|
ssize *= sextent[n];
|
|
else
|
|
ssize = 0;
|
|
}
|
|
|
|
if (rsize != 0 && ssize != 0 && psize != 0)
|
|
{
|
|
rsize *= sizeof (GFC_COMPLEX_10);
|
|
ssize *= sizeof (GFC_COMPLEX_10);
|
|
psize *= sizeof (GFC_COMPLEX_10);
|
|
reshape_packed ((char *)ret->base_addr, rsize, (char *)source->base_addr,
|
|
ssize, pad ? (char *)pad->base_addr : NULL, psize);
|
|
return;
|
|
}
|
|
rptr = ret->base_addr;
|
|
src = sptr = source->base_addr;
|
|
rstride0 = rstride[0];
|
|
sstride0 = sstride[0];
|
|
|
|
if (sempty && pempty)
|
|
abort ();
|
|
|
|
if (sempty)
|
|
{
|
|
/* Pretend we are using the pad array the first time around, too. */
|
|
src = pptr;
|
|
sptr = pptr;
|
|
sdim = pdim;
|
|
for (dim = 0; dim < pdim; dim++)
|
|
{
|
|
scount[dim] = pcount[dim];
|
|
sextent[dim] = pextent[dim];
|
|
sstride[dim] = pstride[dim];
|
|
sstride0 = pstride[0];
|
|
}
|
|
}
|
|
|
|
while (rptr)
|
|
{
|
|
/* Select between the source and pad arrays. */
|
|
*rptr = *src;
|
|
/* Advance to the next element. */
|
|
rptr += rstride0;
|
|
src += sstride0;
|
|
rcount[0]++;
|
|
scount[0]++;
|
|
|
|
/* Advance to the next destination element. */
|
|
n = 0;
|
|
while (rcount[n] == rextent[n])
|
|
{
|
|
/* When we get to the end of a dimension, reset it and increment
|
|
the next dimension. */
|
|
rcount[n] = 0;
|
|
/* We could precalculate these products, but this is a less
|
|
frequently used path so probably not worth it. */
|
|
rptr -= rstride[n] * rextent[n];
|
|
n++;
|
|
if (n == rdim)
|
|
{
|
|
/* Break out of the loop. */
|
|
rptr = NULL;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
rcount[n]++;
|
|
rptr += rstride[n];
|
|
}
|
|
}
|
|
/* Advance to the next source element. */
|
|
n = 0;
|
|
while (scount[n] == sextent[n])
|
|
{
|
|
/* When we get to the end of a dimension, reset it and increment
|
|
the next dimension. */
|
|
scount[n] = 0;
|
|
/* We could precalculate these products, but this is a less
|
|
frequently used path so probably not worth it. */
|
|
src -= sstride[n] * sextent[n];
|
|
n++;
|
|
if (n == sdim)
|
|
{
|
|
if (sptr && pad)
|
|
{
|
|
/* Switch to the pad array. */
|
|
sptr = NULL;
|
|
sdim = pdim;
|
|
for (dim = 0; dim < pdim; dim++)
|
|
{
|
|
scount[dim] = pcount[dim];
|
|
sextent[dim] = pextent[dim];
|
|
sstride[dim] = pstride[dim];
|
|
sstride0 = sstride[0];
|
|
}
|
|
}
|
|
/* We now start again from the beginning of the pad array. */
|
|
src = pptr;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
scount[n]++;
|
|
src += sstride[n];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|