d5a752ebc3
gcc/ChangeLog: 2016-12-09 Andre Vieira <andre.simoesdiasvieira@arm.com> PR rtl-optimization/78255 * gcc/postreload.c (reload_cse_simplify): Do not CSE a function if NO_FUNCTION_CSE is true. gcc/testsuite/ChangeLog: 2016-12-09 Andre Vieira <andre.simoesdiasvieira@arm.com> PR rtl-optimization/78255 * gcc.target/aarch64/pr78255.c: New. * gcc.target/arm/pr78255-1.c: New. * gcc.target/arm/pr78255-2.c: New. From-SVN: r243494
2359 lines
69 KiB
C
2359 lines
69 KiB
C
/* Perform simple optimizations to clean up the result of reload.
|
||
Copyright (C) 1987-2016 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "backend.h"
|
||
#include "target.h"
|
||
#include "rtl.h"
|
||
#include "tree.h"
|
||
#include "predict.h"
|
||
#include "df.h"
|
||
#include "memmodel.h"
|
||
#include "tm_p.h"
|
||
#include "optabs.h"
|
||
#include "regs.h"
|
||
#include "emit-rtl.h"
|
||
#include "recog.h"
|
||
|
||
#include "cfgrtl.h"
|
||
#include "cfgbuild.h"
|
||
#include "cfgcleanup.h"
|
||
#include "reload.h"
|
||
#include "cselib.h"
|
||
#include "tree-pass.h"
|
||
#include "dbgcnt.h"
|
||
|
||
static int reload_cse_noop_set_p (rtx);
|
||
static bool reload_cse_simplify (rtx_insn *, rtx);
|
||
static void reload_cse_regs_1 (void);
|
||
static int reload_cse_simplify_set (rtx, rtx_insn *);
|
||
static int reload_cse_simplify_operands (rtx_insn *, rtx);
|
||
|
||
static void reload_combine (void);
|
||
static void reload_combine_note_use (rtx *, rtx_insn *, int, rtx);
|
||
static void reload_combine_note_store (rtx, const_rtx, void *);
|
||
|
||
static bool reload_cse_move2add (rtx_insn *);
|
||
static void move2add_note_store (rtx, const_rtx, void *);
|
||
|
||
/* Call cse / combine like post-reload optimization phases.
|
||
FIRST is the first instruction. */
|
||
|
||
static void
|
||
reload_cse_regs (rtx_insn *first ATTRIBUTE_UNUSED)
|
||
{
|
||
bool moves_converted;
|
||
reload_cse_regs_1 ();
|
||
reload_combine ();
|
||
moves_converted = reload_cse_move2add (first);
|
||
if (flag_expensive_optimizations)
|
||
{
|
||
if (moves_converted)
|
||
reload_combine ();
|
||
reload_cse_regs_1 ();
|
||
}
|
||
}
|
||
|
||
/* See whether a single set SET is a noop. */
|
||
static int
|
||
reload_cse_noop_set_p (rtx set)
|
||
{
|
||
if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
|
||
return 0;
|
||
|
||
return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
|
||
}
|
||
|
||
/* Try to simplify INSN. Return true if the CFG may have changed. */
|
||
static bool
|
||
reload_cse_simplify (rtx_insn *insn, rtx testreg)
|
||
{
|
||
rtx body = PATTERN (insn);
|
||
basic_block insn_bb = BLOCK_FOR_INSN (insn);
|
||
unsigned insn_bb_succs = EDGE_COUNT (insn_bb->succs);
|
||
|
||
/* If NO_FUNCTION_CSE has been set by the target, then we should not try
|
||
to cse function calls. */
|
||
if (NO_FUNCTION_CSE && CALL_P (insn))
|
||
return false;
|
||
|
||
if (GET_CODE (body) == SET)
|
||
{
|
||
int count = 0;
|
||
|
||
/* Simplify even if we may think it is a no-op.
|
||
We may think a memory load of a value smaller than WORD_SIZE
|
||
is redundant because we haven't taken into account possible
|
||
implicit extension. reload_cse_simplify_set() will bring
|
||
this out, so it's safer to simplify before we delete. */
|
||
count += reload_cse_simplify_set (body, insn);
|
||
|
||
if (!count && reload_cse_noop_set_p (body))
|
||
{
|
||
if (check_for_inc_dec (insn))
|
||
delete_insn_and_edges (insn);
|
||
/* We're done with this insn. */
|
||
goto done;
|
||
}
|
||
|
||
if (count > 0)
|
||
apply_change_group ();
|
||
else
|
||
reload_cse_simplify_operands (insn, testreg);
|
||
}
|
||
else if (GET_CODE (body) == PARALLEL)
|
||
{
|
||
int i;
|
||
int count = 0;
|
||
rtx value = NULL_RTX;
|
||
|
||
/* Registers mentioned in the clobber list for an asm cannot be reused
|
||
within the body of the asm. Invalidate those registers now so that
|
||
we don't try to substitute values for them. */
|
||
if (asm_noperands (body) >= 0)
|
||
{
|
||
for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
|
||
{
|
||
rtx part = XVECEXP (body, 0, i);
|
||
if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
|
||
cselib_invalidate_rtx (XEXP (part, 0));
|
||
}
|
||
}
|
||
|
||
/* If every action in a PARALLEL is a noop, we can delete
|
||
the entire PARALLEL. */
|
||
for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
|
||
{
|
||
rtx part = XVECEXP (body, 0, i);
|
||
if (GET_CODE (part) == SET)
|
||
{
|
||
if (! reload_cse_noop_set_p (part))
|
||
break;
|
||
if (REG_P (SET_DEST (part))
|
||
&& REG_FUNCTION_VALUE_P (SET_DEST (part)))
|
||
{
|
||
if (value)
|
||
break;
|
||
value = SET_DEST (part);
|
||
}
|
||
}
|
||
else if (GET_CODE (part) != CLOBBER
|
||
&& GET_CODE (part) != USE)
|
||
break;
|
||
}
|
||
|
||
if (i < 0)
|
||
{
|
||
if (check_for_inc_dec (insn))
|
||
delete_insn_and_edges (insn);
|
||
/* We're done with this insn. */
|
||
goto done;
|
||
}
|
||
|
||
/* It's not a no-op, but we can try to simplify it. */
|
||
for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
|
||
if (GET_CODE (XVECEXP (body, 0, i)) == SET)
|
||
count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
|
||
|
||
if (count > 0)
|
||
apply_change_group ();
|
||
else
|
||
reload_cse_simplify_operands (insn, testreg);
|
||
}
|
||
|
||
done:
|
||
return (EDGE_COUNT (insn_bb->succs) != insn_bb_succs);
|
||
}
|
||
|
||
/* Do a very simple CSE pass over the hard registers.
|
||
|
||
This function detects no-op moves where we happened to assign two
|
||
different pseudo-registers to the same hard register, and then
|
||
copied one to the other. Reload will generate a useless
|
||
instruction copying a register to itself.
|
||
|
||
This function also detects cases where we load a value from memory
|
||
into two different registers, and (if memory is more expensive than
|
||
registers) changes it to simply copy the first register into the
|
||
second register.
|
||
|
||
Another optimization is performed that scans the operands of each
|
||
instruction to see whether the value is already available in a
|
||
hard register. It then replaces the operand with the hard register
|
||
if possible, much like an optional reload would. */
|
||
|
||
static void
|
||
reload_cse_regs_1 (void)
|
||
{
|
||
bool cfg_changed = false;
|
||
basic_block bb;
|
||
rtx_insn *insn;
|
||
rtx testreg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
|
||
|
||
cselib_init (CSELIB_RECORD_MEMORY);
|
||
init_alias_analysis ();
|
||
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
FOR_BB_INSNS (bb, insn)
|
||
{
|
||
if (INSN_P (insn))
|
||
cfg_changed |= reload_cse_simplify (insn, testreg);
|
||
|
||
cselib_process_insn (insn);
|
||
}
|
||
|
||
/* Clean up. */
|
||
end_alias_analysis ();
|
||
cselib_finish ();
|
||
if (cfg_changed)
|
||
cleanup_cfg (0);
|
||
}
|
||
|
||
/* Try to simplify a single SET instruction. SET is the set pattern.
|
||
INSN is the instruction it came from.
|
||
This function only handles one case: if we set a register to a value
|
||
which is not a register, we try to find that value in some other register
|
||
and change the set into a register copy. */
|
||
|
||
static int
|
||
reload_cse_simplify_set (rtx set, rtx_insn *insn)
|
||
{
|
||
int did_change = 0;
|
||
int dreg;
|
||
rtx src;
|
||
reg_class_t dclass;
|
||
int old_cost;
|
||
cselib_val *val;
|
||
struct elt_loc_list *l;
|
||
enum rtx_code extend_op = UNKNOWN;
|
||
bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
|
||
|
||
dreg = true_regnum (SET_DEST (set));
|
||
if (dreg < 0)
|
||
return 0;
|
||
|
||
src = SET_SRC (set);
|
||
if (side_effects_p (src) || true_regnum (src) >= 0)
|
||
return 0;
|
||
|
||
dclass = REGNO_REG_CLASS (dreg);
|
||
|
||
/* When replacing a memory with a register, we need to honor assumptions
|
||
that combine made wrt the contents of sign bits. We'll do this by
|
||
generating an extend instruction instead of a reg->reg copy. Thus
|
||
the destination must be a register that we can widen. */
|
||
if (MEM_P (src)
|
||
&& (extend_op = load_extend_op (GET_MODE (src))) != UNKNOWN
|
||
&& !REG_P (SET_DEST (set)))
|
||
return 0;
|
||
|
||
val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
|
||
if (! val)
|
||
return 0;
|
||
|
||
/* If memory loads are cheaper than register copies, don't change them. */
|
||
if (MEM_P (src))
|
||
old_cost = memory_move_cost (GET_MODE (src), dclass, true);
|
||
else if (REG_P (src))
|
||
old_cost = register_move_cost (GET_MODE (src),
|
||
REGNO_REG_CLASS (REGNO (src)), dclass);
|
||
else
|
||
old_cost = set_src_cost (src, GET_MODE (SET_DEST (set)), speed);
|
||
|
||
for (l = val->locs; l; l = l->next)
|
||
{
|
||
rtx this_rtx = l->loc;
|
||
int this_cost;
|
||
|
||
if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
|
||
{
|
||
if (extend_op != UNKNOWN)
|
||
{
|
||
wide_int result;
|
||
|
||
if (!CONST_SCALAR_INT_P (this_rtx))
|
||
continue;
|
||
|
||
switch (extend_op)
|
||
{
|
||
case ZERO_EXTEND:
|
||
result = wide_int::from (rtx_mode_t (this_rtx,
|
||
GET_MODE (src)),
|
||
BITS_PER_WORD, UNSIGNED);
|
||
break;
|
||
case SIGN_EXTEND:
|
||
result = wide_int::from (rtx_mode_t (this_rtx,
|
||
GET_MODE (src)),
|
||
BITS_PER_WORD, SIGNED);
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
this_rtx = immed_wide_int_const (result, word_mode);
|
||
}
|
||
|
||
this_cost = set_src_cost (this_rtx, GET_MODE (SET_DEST (set)), speed);
|
||
}
|
||
else if (REG_P (this_rtx))
|
||
{
|
||
if (extend_op != UNKNOWN)
|
||
{
|
||
this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
|
||
this_cost = set_src_cost (this_rtx, word_mode, speed);
|
||
}
|
||
else
|
||
this_cost = register_move_cost (GET_MODE (this_rtx),
|
||
REGNO_REG_CLASS (REGNO (this_rtx)),
|
||
dclass);
|
||
}
|
||
else
|
||
continue;
|
||
|
||
/* If equal costs, prefer registers over anything else. That
|
||
tends to lead to smaller instructions on some machines. */
|
||
if (this_cost < old_cost
|
||
|| (this_cost == old_cost
|
||
&& REG_P (this_rtx)
|
||
&& !REG_P (SET_SRC (set))))
|
||
{
|
||
if (extend_op != UNKNOWN
|
||
#ifdef CANNOT_CHANGE_MODE_CLASS
|
||
&& !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
|
||
word_mode,
|
||
REGNO_REG_CLASS (REGNO (SET_DEST (set))))
|
||
#endif
|
||
)
|
||
{
|
||
rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
|
||
ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
|
||
validate_change (insn, &SET_DEST (set), wide_dest, 1);
|
||
}
|
||
|
||
validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
|
||
old_cost = this_cost, did_change = 1;
|
||
}
|
||
}
|
||
|
||
return did_change;
|
||
}
|
||
|
||
/* Try to replace operands in INSN with equivalent values that are already
|
||
in registers. This can be viewed as optional reloading.
|
||
|
||
For each non-register operand in the insn, see if any hard regs are
|
||
known to be equivalent to that operand. Record the alternatives which
|
||
can accept these hard registers. Among all alternatives, select the
|
||
ones which are better or equal to the one currently matching, where
|
||
"better" is in terms of '?' and '!' constraints. Among the remaining
|
||
alternatives, select the one which replaces most operands with
|
||
hard registers. */
|
||
|
||
static int
|
||
reload_cse_simplify_operands (rtx_insn *insn, rtx testreg)
|
||
{
|
||
int i, j;
|
||
|
||
/* For each operand, all registers that are equivalent to it. */
|
||
HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
|
||
|
||
const char *constraints[MAX_RECOG_OPERANDS];
|
||
|
||
/* Vector recording how bad an alternative is. */
|
||
int *alternative_reject;
|
||
/* Vector recording how many registers can be introduced by choosing
|
||
this alternative. */
|
||
int *alternative_nregs;
|
||
/* Array of vectors recording, for each operand and each alternative,
|
||
which hard register to substitute, or -1 if the operand should be
|
||
left as it is. */
|
||
int *op_alt_regno[MAX_RECOG_OPERANDS];
|
||
/* Array of alternatives, sorted in order of decreasing desirability. */
|
||
int *alternative_order;
|
||
|
||
extract_constrain_insn (insn);
|
||
|
||
if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
|
||
return 0;
|
||
|
||
alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
|
||
alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
|
||
alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
|
||
memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
|
||
memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
|
||
|
||
/* For each operand, find out which regs are equivalent. */
|
||
for (i = 0; i < recog_data.n_operands; i++)
|
||
{
|
||
cselib_val *v;
|
||
struct elt_loc_list *l;
|
||
rtx op;
|
||
|
||
CLEAR_HARD_REG_SET (equiv_regs[i]);
|
||
|
||
/* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
|
||
right, so avoid the problem here. Likewise if we have a constant
|
||
and the insn pattern doesn't tell us the mode we need. */
|
||
if (LABEL_P (recog_data.operand[i])
|
||
|| (CONSTANT_P (recog_data.operand[i])
|
||
&& recog_data.operand_mode[i] == VOIDmode))
|
||
continue;
|
||
|
||
op = recog_data.operand[i];
|
||
if (MEM_P (op) && load_extend_op (GET_MODE (op)) != UNKNOWN)
|
||
{
|
||
rtx set = single_set (insn);
|
||
|
||
/* We might have multiple sets, some of which do implicit
|
||
extension. Punt on this for now. */
|
||
if (! set)
|
||
continue;
|
||
/* If the destination is also a MEM or a STRICT_LOW_PART, no
|
||
extension applies.
|
||
Also, if there is an explicit extension, we don't have to
|
||
worry about an implicit one. */
|
||
else if (MEM_P (SET_DEST (set))
|
||
|| GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
|
||
|| GET_CODE (SET_SRC (set)) == ZERO_EXTEND
|
||
|| GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
|
||
; /* Continue ordinary processing. */
|
||
#ifdef CANNOT_CHANGE_MODE_CLASS
|
||
/* If the register cannot change mode to word_mode, it follows that
|
||
it cannot have been used in word_mode. */
|
||
else if (REG_P (SET_DEST (set))
|
||
&& CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
|
||
word_mode,
|
||
REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
|
||
; /* Continue ordinary processing. */
|
||
#endif
|
||
/* If this is a straight load, make the extension explicit. */
|
||
else if (REG_P (SET_DEST (set))
|
||
&& recog_data.n_operands == 2
|
||
&& SET_SRC (set) == op
|
||
&& SET_DEST (set) == recog_data.operand[1-i])
|
||
{
|
||
validate_change (insn, recog_data.operand_loc[i],
|
||
gen_rtx_fmt_e (load_extend_op (GET_MODE (op)),
|
||
word_mode, op),
|
||
1);
|
||
validate_change (insn, recog_data.operand_loc[1-i],
|
||
gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
|
||
1);
|
||
if (! apply_change_group ())
|
||
return 0;
|
||
return reload_cse_simplify_operands (insn, testreg);
|
||
}
|
||
else
|
||
/* ??? There might be arithmetic operations with memory that are
|
||
safe to optimize, but is it worth the trouble? */
|
||
continue;
|
||
}
|
||
|
||
if (side_effects_p (op))
|
||
continue;
|
||
v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
|
||
if (! v)
|
||
continue;
|
||
|
||
for (l = v->locs; l; l = l->next)
|
||
if (REG_P (l->loc))
|
||
SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
|
||
}
|
||
|
||
alternative_mask preferred = get_preferred_alternatives (insn);
|
||
for (i = 0; i < recog_data.n_operands; i++)
|
||
{
|
||
machine_mode mode;
|
||
int regno;
|
||
const char *p;
|
||
|
||
op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
|
||
for (j = 0; j < recog_data.n_alternatives; j++)
|
||
op_alt_regno[i][j] = -1;
|
||
|
||
p = constraints[i] = recog_data.constraints[i];
|
||
mode = recog_data.operand_mode[i];
|
||
|
||
/* Add the reject values for each alternative given by the constraints
|
||
for this operand. */
|
||
j = 0;
|
||
while (*p != '\0')
|
||
{
|
||
char c = *p++;
|
||
if (c == ',')
|
||
j++;
|
||
else if (c == '?')
|
||
alternative_reject[j] += 3;
|
||
else if (c == '!')
|
||
alternative_reject[j] += 300;
|
||
}
|
||
|
||
/* We won't change operands which are already registers. We
|
||
also don't want to modify output operands. */
|
||
regno = true_regnum (recog_data.operand[i]);
|
||
if (regno >= 0
|
||
|| constraints[i][0] == '='
|
||
|| constraints[i][0] == '+')
|
||
continue;
|
||
|
||
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
||
{
|
||
enum reg_class rclass = NO_REGS;
|
||
|
||
if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
|
||
continue;
|
||
|
||
set_mode_and_regno (testreg, mode, regno);
|
||
|
||
/* We found a register equal to this operand. Now look for all
|
||
alternatives that can accept this register and have not been
|
||
assigned a register they can use yet. */
|
||
j = 0;
|
||
p = constraints[i];
|
||
for (;;)
|
||
{
|
||
char c = *p;
|
||
|
||
switch (c)
|
||
{
|
||
case 'g':
|
||
rclass = reg_class_subunion[rclass][GENERAL_REGS];
|
||
break;
|
||
|
||
default:
|
||
rclass
|
||
= (reg_class_subunion
|
||
[rclass]
|
||
[reg_class_for_constraint (lookup_constraint (p))]);
|
||
break;
|
||
|
||
case ',': case '\0':
|
||
/* See if REGNO fits this alternative, and set it up as the
|
||
replacement register if we don't have one for this
|
||
alternative yet and the operand being replaced is not
|
||
a cheap CONST_INT. */
|
||
if (op_alt_regno[i][j] == -1
|
||
&& TEST_BIT (preferred, j)
|
||
&& reg_fits_class_p (testreg, rclass, 0, mode)
|
||
&& (!CONST_INT_P (recog_data.operand[i])
|
||
|| (set_src_cost (recog_data.operand[i], mode,
|
||
optimize_bb_for_speed_p
|
||
(BLOCK_FOR_INSN (insn)))
|
||
> set_src_cost (testreg, mode,
|
||
optimize_bb_for_speed_p
|
||
(BLOCK_FOR_INSN (insn))))))
|
||
{
|
||
alternative_nregs[j]++;
|
||
op_alt_regno[i][j] = regno;
|
||
}
|
||
j++;
|
||
rclass = NO_REGS;
|
||
break;
|
||
}
|
||
p += CONSTRAINT_LEN (c, p);
|
||
|
||
if (c == '\0')
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Record all alternatives which are better or equal to the currently
|
||
matching one in the alternative_order array. */
|
||
for (i = j = 0; i < recog_data.n_alternatives; i++)
|
||
if (alternative_reject[i] <= alternative_reject[which_alternative])
|
||
alternative_order[j++] = i;
|
||
recog_data.n_alternatives = j;
|
||
|
||
/* Sort it. Given a small number of alternatives, a dumb algorithm
|
||
won't hurt too much. */
|
||
for (i = 0; i < recog_data.n_alternatives - 1; i++)
|
||
{
|
||
int best = i;
|
||
int best_reject = alternative_reject[alternative_order[i]];
|
||
int best_nregs = alternative_nregs[alternative_order[i]];
|
||
|
||
for (j = i + 1; j < recog_data.n_alternatives; j++)
|
||
{
|
||
int this_reject = alternative_reject[alternative_order[j]];
|
||
int this_nregs = alternative_nregs[alternative_order[j]];
|
||
|
||
if (this_reject < best_reject
|
||
|| (this_reject == best_reject && this_nregs > best_nregs))
|
||
{
|
||
best = j;
|
||
best_reject = this_reject;
|
||
best_nregs = this_nregs;
|
||
}
|
||
}
|
||
|
||
std::swap (alternative_order[best], alternative_order[i]);
|
||
}
|
||
|
||
/* Substitute the operands as determined by op_alt_regno for the best
|
||
alternative. */
|
||
j = alternative_order[0];
|
||
|
||
for (i = 0; i < recog_data.n_operands; i++)
|
||
{
|
||
machine_mode mode = recog_data.operand_mode[i];
|
||
if (op_alt_regno[i][j] == -1)
|
||
continue;
|
||
|
||
validate_change (insn, recog_data.operand_loc[i],
|
||
gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
|
||
}
|
||
|
||
for (i = recog_data.n_dups - 1; i >= 0; i--)
|
||
{
|
||
int op = recog_data.dup_num[i];
|
||
machine_mode mode = recog_data.operand_mode[op];
|
||
|
||
if (op_alt_regno[op][j] == -1)
|
||
continue;
|
||
|
||
validate_change (insn, recog_data.dup_loc[i],
|
||
gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
|
||
}
|
||
|
||
return apply_change_group ();
|
||
}
|
||
|
||
/* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
|
||
addressing now.
|
||
This code might also be useful when reload gave up on reg+reg addressing
|
||
because of clashes between the return register and INDEX_REG_CLASS. */
|
||
|
||
/* The maximum number of uses of a register we can keep track of to
|
||
replace them with reg+reg addressing. */
|
||
#define RELOAD_COMBINE_MAX_USES 16
|
||
|
||
/* Describes a recorded use of a register. */
|
||
struct reg_use
|
||
{
|
||
/* The insn where a register has been used. */
|
||
rtx_insn *insn;
|
||
/* Points to the memory reference enclosing the use, if any, NULL_RTX
|
||
otherwise. */
|
||
rtx containing_mem;
|
||
/* Location of the register within INSN. */
|
||
rtx *usep;
|
||
/* The reverse uid of the insn. */
|
||
int ruid;
|
||
};
|
||
|
||
/* If the register is used in some unknown fashion, USE_INDEX is negative.
|
||
If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
|
||
indicates where it is first set or clobbered.
|
||
Otherwise, USE_INDEX is the index of the last encountered use of the
|
||
register (which is first among these we have seen since we scan backwards).
|
||
USE_RUID indicates the first encountered, i.e. last, of these uses.
|
||
If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
|
||
with a constant offset; OFFSET contains this constant in that case.
|
||
STORE_RUID is always meaningful if we only want to use a value in a
|
||
register in a different place: it denotes the next insn in the insn
|
||
stream (i.e. the last encountered) that sets or clobbers the register.
|
||
REAL_STORE_RUID is similar, but clobbers are ignored when updating it. */
|
||
static struct
|
||
{
|
||
struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
|
||
rtx offset;
|
||
int use_index;
|
||
int store_ruid;
|
||
int real_store_ruid;
|
||
int use_ruid;
|
||
bool all_offsets_match;
|
||
} reg_state[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* Reverse linear uid. This is increased in reload_combine while scanning
|
||
the instructions from last to first. It is used to set last_label_ruid
|
||
and the store_ruid / use_ruid fields in reg_state. */
|
||
static int reload_combine_ruid;
|
||
|
||
/* The RUID of the last label we encountered in reload_combine. */
|
||
static int last_label_ruid;
|
||
|
||
/* The RUID of the last jump we encountered in reload_combine. */
|
||
static int last_jump_ruid;
|
||
|
||
/* The register numbers of the first and last index register. A value of
|
||
-1 in LAST_INDEX_REG indicates that we've previously computed these
|
||
values and found no suitable index registers. */
|
||
static int first_index_reg = -1;
|
||
static int last_index_reg;
|
||
|
||
#define LABEL_LIVE(LABEL) \
|
||
(label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
|
||
|
||
/* Subroutine of reload_combine_split_ruids, called to fix up a single
|
||
ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
|
||
|
||
static inline void
|
||
reload_combine_split_one_ruid (int *pruid, int split_ruid)
|
||
{
|
||
if (*pruid > split_ruid)
|
||
(*pruid)++;
|
||
}
|
||
|
||
/* Called when we insert a new insn in a position we've already passed in
|
||
the scan. Examine all our state, increasing all ruids that are higher
|
||
than SPLIT_RUID by one in order to make room for a new insn. */
|
||
|
||
static void
|
||
reload_combine_split_ruids (int split_ruid)
|
||
{
|
||
unsigned i;
|
||
|
||
reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
|
||
reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
|
||
reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
int j, idx = reg_state[i].use_index;
|
||
reload_combine_split_one_ruid (®_state[i].use_ruid, split_ruid);
|
||
reload_combine_split_one_ruid (®_state[i].store_ruid, split_ruid);
|
||
reload_combine_split_one_ruid (®_state[i].real_store_ruid,
|
||
split_ruid);
|
||
if (idx < 0)
|
||
continue;
|
||
for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
|
||
{
|
||
reload_combine_split_one_ruid (®_state[i].reg_use[j].ruid,
|
||
split_ruid);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Called when we are about to rescan a previously encountered insn with
|
||
reload_combine_note_use after modifying some part of it. This clears all
|
||
information about uses in that particular insn. */
|
||
|
||
static void
|
||
reload_combine_purge_insn_uses (rtx_insn *insn)
|
||
{
|
||
unsigned i;
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
int j, k, idx = reg_state[i].use_index;
|
||
if (idx < 0)
|
||
continue;
|
||
j = k = RELOAD_COMBINE_MAX_USES;
|
||
while (j-- > idx)
|
||
{
|
||
if (reg_state[i].reg_use[j].insn != insn)
|
||
{
|
||
k--;
|
||
if (k != j)
|
||
reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
|
||
}
|
||
}
|
||
reg_state[i].use_index = k;
|
||
}
|
||
}
|
||
|
||
/* Called when we need to forget about all uses of REGNO after an insn
|
||
which is identified by RUID. */
|
||
|
||
static void
|
||
reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
|
||
{
|
||
int j, k, idx = reg_state[regno].use_index;
|
||
if (idx < 0)
|
||
return;
|
||
j = k = RELOAD_COMBINE_MAX_USES;
|
||
while (j-- > idx)
|
||
{
|
||
if (reg_state[regno].reg_use[j].ruid >= ruid)
|
||
{
|
||
k--;
|
||
if (k != j)
|
||
reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
|
||
}
|
||
}
|
||
reg_state[regno].use_index = k;
|
||
}
|
||
|
||
/* Find the use of REGNO with the ruid that is highest among those
|
||
lower than RUID_LIMIT, and return it if it is the only use of this
|
||
reg in the insn. Return NULL otherwise. */
|
||
|
||
static struct reg_use *
|
||
reload_combine_closest_single_use (unsigned regno, int ruid_limit)
|
||
{
|
||
int i, best_ruid = 0;
|
||
int use_idx = reg_state[regno].use_index;
|
||
struct reg_use *retval;
|
||
|
||
if (use_idx < 0)
|
||
return NULL;
|
||
retval = NULL;
|
||
for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
|
||
{
|
||
struct reg_use *use = reg_state[regno].reg_use + i;
|
||
int this_ruid = use->ruid;
|
||
if (this_ruid >= ruid_limit)
|
||
continue;
|
||
if (this_ruid > best_ruid)
|
||
{
|
||
best_ruid = this_ruid;
|
||
retval = use;
|
||
}
|
||
else if (this_ruid == best_ruid)
|
||
retval = NULL;
|
||
}
|
||
if (last_label_ruid >= best_ruid)
|
||
return NULL;
|
||
return retval;
|
||
}
|
||
|
||
/* After we've moved an add insn, fix up any debug insns that occur
|
||
between the old location of the add and the new location. REG is
|
||
the destination register of the add insn; REPLACEMENT is the
|
||
SET_SRC of the add. FROM and TO specify the range in which we
|
||
should make this change on debug insns. */
|
||
|
||
static void
|
||
fixup_debug_insns (rtx reg, rtx replacement, rtx_insn *from, rtx_insn *to)
|
||
{
|
||
rtx_insn *insn;
|
||
for (insn = from; insn != to; insn = NEXT_INSN (insn))
|
||
{
|
||
rtx t;
|
||
|
||
if (!DEBUG_INSN_P (insn))
|
||
continue;
|
||
|
||
t = INSN_VAR_LOCATION_LOC (insn);
|
||
t = simplify_replace_rtx (t, reg, replacement);
|
||
validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
|
||
}
|
||
}
|
||
|
||
/* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
|
||
with SRC in the insn described by USE, taking costs into account. Return
|
||
true if we made the replacement. */
|
||
|
||
static bool
|
||
try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
|
||
{
|
||
rtx_insn *use_insn = use->insn;
|
||
rtx mem = use->containing_mem;
|
||
bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
|
||
|
||
if (mem != NULL_RTX)
|
||
{
|
||
addr_space_t as = MEM_ADDR_SPACE (mem);
|
||
rtx oldaddr = XEXP (mem, 0);
|
||
rtx newaddr = NULL_RTX;
|
||
int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
|
||
int new_cost;
|
||
|
||
newaddr = simplify_replace_rtx (oldaddr, reg, src);
|
||
if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
|
||
{
|
||
XEXP (mem, 0) = newaddr;
|
||
new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
|
||
XEXP (mem, 0) = oldaddr;
|
||
if (new_cost <= old_cost
|
||
&& validate_change (use_insn,
|
||
&XEXP (mem, 0), newaddr, 0))
|
||
return true;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
rtx new_set = single_set (use_insn);
|
||
if (new_set
|
||
&& REG_P (SET_DEST (new_set))
|
||
&& GET_CODE (SET_SRC (new_set)) == PLUS
|
||
&& REG_P (XEXP (SET_SRC (new_set), 0))
|
||
&& CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
|
||
{
|
||
rtx new_src;
|
||
machine_mode mode = GET_MODE (SET_DEST (new_set));
|
||
int old_cost = set_src_cost (SET_SRC (new_set), mode, speed);
|
||
|
||
gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
|
||
new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
|
||
|
||
if (set_src_cost (new_src, mode, speed) <= old_cost
|
||
&& validate_change (use_insn, &SET_SRC (new_set),
|
||
new_src, 0))
|
||
return true;
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Called by reload_combine when scanning INSN. This function tries to detect
|
||
patterns where a constant is added to a register, and the result is used
|
||
in an address.
|
||
Return true if no further processing is needed on INSN; false if it wasn't
|
||
recognized and should be handled normally. */
|
||
|
||
static bool
|
||
reload_combine_recognize_const_pattern (rtx_insn *insn)
|
||
{
|
||
int from_ruid = reload_combine_ruid;
|
||
rtx set, pat, reg, src, addreg;
|
||
unsigned int regno;
|
||
struct reg_use *use;
|
||
bool must_move_add;
|
||
rtx_insn *add_moved_after_insn = NULL;
|
||
int add_moved_after_ruid = 0;
|
||
int clobbered_regno = -1;
|
||
|
||
set = single_set (insn);
|
||
if (set == NULL_RTX)
|
||
return false;
|
||
|
||
reg = SET_DEST (set);
|
||
src = SET_SRC (set);
|
||
if (!REG_P (reg)
|
||
|| REG_NREGS (reg) != 1
|
||
|| GET_MODE (reg) != Pmode
|
||
|| reg == stack_pointer_rtx)
|
||
return false;
|
||
|
||
regno = REGNO (reg);
|
||
|
||
/* We look for a REG1 = REG2 + CONSTANT insn, followed by either
|
||
uses of REG1 inside an address, or inside another add insn. If
|
||
possible and profitable, merge the addition into subsequent
|
||
uses. */
|
||
if (GET_CODE (src) != PLUS
|
||
|| !REG_P (XEXP (src, 0))
|
||
|| !CONSTANT_P (XEXP (src, 1)))
|
||
return false;
|
||
|
||
addreg = XEXP (src, 0);
|
||
must_move_add = rtx_equal_p (reg, addreg);
|
||
|
||
pat = PATTERN (insn);
|
||
if (must_move_add && set != pat)
|
||
{
|
||
/* We have to be careful when moving the add; apart from the
|
||
single_set there may also be clobbers. Recognize one special
|
||
case, that of one clobber alongside the set (likely a clobber
|
||
of the CC register). */
|
||
gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
|
||
if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
|
||
|| GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
|
||
|| !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
|
||
return false;
|
||
clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
|
||
}
|
||
|
||
do
|
||
{
|
||
use = reload_combine_closest_single_use (regno, from_ruid);
|
||
|
||
if (use)
|
||
/* Start the search for the next use from here. */
|
||
from_ruid = use->ruid;
|
||
|
||
if (use && GET_MODE (*use->usep) == Pmode)
|
||
{
|
||
bool delete_add = false;
|
||
rtx_insn *use_insn = use->insn;
|
||
int use_ruid = use->ruid;
|
||
|
||
/* Avoid moving the add insn past a jump. */
|
||
if (must_move_add && use_ruid <= last_jump_ruid)
|
||
break;
|
||
|
||
/* If the add clobbers another hard reg in parallel, don't move
|
||
it past a real set of this hard reg. */
|
||
if (must_move_add && clobbered_regno >= 0
|
||
&& reg_state[clobbered_regno].real_store_ruid >= use_ruid)
|
||
break;
|
||
|
||
/* Do not separate cc0 setter and cc0 user on HAVE_cc0 targets. */
|
||
if (HAVE_cc0 && must_move_add && sets_cc0_p (PATTERN (use_insn)))
|
||
break;
|
||
|
||
gcc_assert (reg_state[regno].store_ruid <= use_ruid);
|
||
/* Avoid moving a use of ADDREG past a point where it is stored. */
|
||
if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
|
||
break;
|
||
|
||
/* We also must not move the addition past an insn that sets
|
||
the same register, unless we can combine two add insns. */
|
||
if (must_move_add && reg_state[regno].store_ruid == use_ruid)
|
||
{
|
||
if (use->containing_mem == NULL_RTX)
|
||
delete_add = true;
|
||
else
|
||
break;
|
||
}
|
||
|
||
if (try_replace_in_use (use, reg, src))
|
||
{
|
||
reload_combine_purge_insn_uses (use_insn);
|
||
reload_combine_note_use (&PATTERN (use_insn), use_insn,
|
||
use_ruid, NULL_RTX);
|
||
|
||
if (delete_add)
|
||
{
|
||
fixup_debug_insns (reg, src, insn, use_insn);
|
||
delete_insn (insn);
|
||
return true;
|
||
}
|
||
if (must_move_add)
|
||
{
|
||
add_moved_after_insn = use_insn;
|
||
add_moved_after_ruid = use_ruid;
|
||
}
|
||
continue;
|
||
}
|
||
}
|
||
/* If we get here, we couldn't handle this use. */
|
||
if (must_move_add)
|
||
break;
|
||
}
|
||
while (use);
|
||
|
||
if (!must_move_add || add_moved_after_insn == NULL_RTX)
|
||
/* Process the add normally. */
|
||
return false;
|
||
|
||
fixup_debug_insns (reg, src, insn, add_moved_after_insn);
|
||
|
||
reorder_insns (insn, insn, add_moved_after_insn);
|
||
reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
|
||
reload_combine_split_ruids (add_moved_after_ruid - 1);
|
||
reload_combine_note_use (&PATTERN (insn), insn,
|
||
add_moved_after_ruid, NULL_RTX);
|
||
reg_state[regno].store_ruid = add_moved_after_ruid;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Called by reload_combine when scanning INSN. Try to detect a pattern we
|
||
can handle and improve. Return true if no further processing is needed on
|
||
INSN; false if it wasn't recognized and should be handled normally. */
|
||
|
||
static bool
|
||
reload_combine_recognize_pattern (rtx_insn *insn)
|
||
{
|
||
rtx set, reg, src;
|
||
|
||
set = single_set (insn);
|
||
if (set == NULL_RTX)
|
||
return false;
|
||
|
||
reg = SET_DEST (set);
|
||
src = SET_SRC (set);
|
||
if (!REG_P (reg) || REG_NREGS (reg) != 1)
|
||
return false;
|
||
|
||
unsigned int regno = REGNO (reg);
|
||
machine_mode mode = GET_MODE (reg);
|
||
|
||
if (reg_state[regno].use_index < 0
|
||
|| reg_state[regno].use_index >= RELOAD_COMBINE_MAX_USES)
|
||
return false;
|
||
|
||
for (int i = reg_state[regno].use_index;
|
||
i < RELOAD_COMBINE_MAX_USES; i++)
|
||
{
|
||
struct reg_use *use = reg_state[regno].reg_use + i;
|
||
if (GET_MODE (*use->usep) != mode)
|
||
return false;
|
||
}
|
||
|
||
/* Look for (set (REGX) (CONST_INT))
|
||
(set (REGX) (PLUS (REGX) (REGY)))
|
||
...
|
||
... (MEM (REGX)) ...
|
||
and convert it to
|
||
(set (REGZ) (CONST_INT))
|
||
...
|
||
... (MEM (PLUS (REGZ) (REGY)))... .
|
||
|
||
First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
|
||
and that we know all uses of REGX before it dies.
|
||
Also, explicitly check that REGX != REGY; our life information
|
||
does not yet show whether REGY changes in this insn. */
|
||
|
||
if (GET_CODE (src) == PLUS
|
||
&& reg_state[regno].all_offsets_match
|
||
&& last_index_reg != -1
|
||
&& REG_P (XEXP (src, 1))
|
||
&& rtx_equal_p (XEXP (src, 0), reg)
|
||
&& !rtx_equal_p (XEXP (src, 1), reg)
|
||
&& last_label_ruid < reg_state[regno].use_ruid)
|
||
{
|
||
rtx base = XEXP (src, 1);
|
||
rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
|
||
rtx prev_set = prev ? single_set (prev) : NULL_RTX;
|
||
rtx index_reg = NULL_RTX;
|
||
rtx reg_sum = NULL_RTX;
|
||
int i;
|
||
|
||
/* Now we need to set INDEX_REG to an index register (denoted as
|
||
REGZ in the illustration above) and REG_SUM to the expression
|
||
register+register that we want to use to substitute uses of REG
|
||
(typically in MEMs) with. First check REG and BASE for being
|
||
index registers; we can use them even if they are not dead. */
|
||
if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
|
||
|| TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
|
||
REGNO (base)))
|
||
{
|
||
index_reg = reg;
|
||
reg_sum = src;
|
||
}
|
||
else
|
||
{
|
||
/* Otherwise, look for a free index register. Since we have
|
||
checked above that neither REG nor BASE are index registers,
|
||
if we find anything at all, it will be different from these
|
||
two registers. */
|
||
for (i = first_index_reg; i <= last_index_reg; i++)
|
||
{
|
||
if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
|
||
&& reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
|
||
&& reg_state[i].store_ruid <= reg_state[regno].use_ruid
|
||
&& (call_used_regs[i] || df_regs_ever_live_p (i))
|
||
&& (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
|
||
&& !fixed_regs[i] && !global_regs[i]
|
||
&& hard_regno_nregs[i][GET_MODE (reg)] == 1
|
||
&& targetm.hard_regno_scratch_ok (i))
|
||
{
|
||
index_reg = gen_rtx_REG (GET_MODE (reg), i);
|
||
reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
|
||
(REGY), i.e. BASE, is not clobbered before the last use we'll
|
||
create. */
|
||
if (reg_sum
|
||
&& prev_set
|
||
&& CONST_INT_P (SET_SRC (prev_set))
|
||
&& rtx_equal_p (SET_DEST (prev_set), reg)
|
||
&& (reg_state[REGNO (base)].store_ruid
|
||
<= reg_state[regno].use_ruid))
|
||
{
|
||
/* Change destination register and, if necessary, the constant
|
||
value in PREV, the constant loading instruction. */
|
||
validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
|
||
if (reg_state[regno].offset != const0_rtx)
|
||
validate_change (prev,
|
||
&SET_SRC (prev_set),
|
||
GEN_INT (INTVAL (SET_SRC (prev_set))
|
||
+ INTVAL (reg_state[regno].offset)),
|
||
1);
|
||
|
||
/* Now for every use of REG that we have recorded, replace REG
|
||
with REG_SUM. */
|
||
for (i = reg_state[regno].use_index;
|
||
i < RELOAD_COMBINE_MAX_USES; i++)
|
||
validate_unshare_change (reg_state[regno].reg_use[i].insn,
|
||
reg_state[regno].reg_use[i].usep,
|
||
/* Each change must have its own
|
||
replacement. */
|
||
reg_sum, 1);
|
||
|
||
if (apply_change_group ())
|
||
{
|
||
struct reg_use *lowest_ruid = NULL;
|
||
|
||
/* For every new use of REG_SUM, we have to record the use
|
||
of BASE therein, i.e. operand 1. */
|
||
for (i = reg_state[regno].use_index;
|
||
i < RELOAD_COMBINE_MAX_USES; i++)
|
||
{
|
||
struct reg_use *use = reg_state[regno].reg_use + i;
|
||
reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
|
||
use->ruid, use->containing_mem);
|
||
if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
|
||
lowest_ruid = use;
|
||
}
|
||
|
||
fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
|
||
|
||
/* Delete the reg-reg addition. */
|
||
delete_insn (insn);
|
||
|
||
if (reg_state[regno].offset != const0_rtx
|
||
/* Previous REG_EQUIV / REG_EQUAL notes for PREV
|
||
are now invalid. */
|
||
&& remove_reg_equal_equiv_notes (prev))
|
||
df_notes_rescan (prev);
|
||
|
||
reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
|
||
return true;
|
||
}
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
static void
|
||
reload_combine (void)
|
||
{
|
||
rtx_insn *insn, *prev;
|
||
basic_block bb;
|
||
unsigned int r;
|
||
int min_labelno, n_labels;
|
||
HARD_REG_SET ever_live_at_start, *label_live;
|
||
|
||
/* To avoid wasting too much time later searching for an index register,
|
||
determine the minimum and maximum index register numbers. */
|
||
if (INDEX_REG_CLASS == NO_REGS)
|
||
last_index_reg = -1;
|
||
else if (first_index_reg == -1 && last_index_reg == 0)
|
||
{
|
||
for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
|
||
if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
|
||
{
|
||
if (first_index_reg == -1)
|
||
first_index_reg = r;
|
||
|
||
last_index_reg = r;
|
||
}
|
||
|
||
/* If no index register is available, we can quit now. Set LAST_INDEX_REG
|
||
to -1 so we'll know to quit early the next time we get here. */
|
||
if (first_index_reg == -1)
|
||
{
|
||
last_index_reg = -1;
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
|
||
information is a bit fuzzy immediately after reload, but it's
|
||
still good enough to determine which registers are live at a jump
|
||
destination. */
|
||
min_labelno = get_first_label_num ();
|
||
n_labels = max_label_num () - min_labelno;
|
||
label_live = XNEWVEC (HARD_REG_SET, n_labels);
|
||
CLEAR_HARD_REG_SET (ever_live_at_start);
|
||
|
||
FOR_EACH_BB_REVERSE_FN (bb, cfun)
|
||
{
|
||
insn = BB_HEAD (bb);
|
||
if (LABEL_P (insn))
|
||
{
|
||
HARD_REG_SET live;
|
||
bitmap live_in = df_get_live_in (bb);
|
||
|
||
REG_SET_TO_HARD_REG_SET (live, live_in);
|
||
compute_use_by_pseudos (&live, live_in);
|
||
COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
|
||
IOR_HARD_REG_SET (ever_live_at_start, live);
|
||
}
|
||
}
|
||
|
||
/* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
|
||
last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
|
||
for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
|
||
{
|
||
reg_state[r].store_ruid = 0;
|
||
reg_state[r].real_store_ruid = 0;
|
||
if (fixed_regs[r])
|
||
reg_state[r].use_index = -1;
|
||
else
|
||
reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
|
||
}
|
||
|
||
for (insn = get_last_insn (); insn; insn = prev)
|
||
{
|
||
bool control_flow_insn;
|
||
rtx note;
|
||
|
||
prev = PREV_INSN (insn);
|
||
|
||
/* We cannot do our optimization across labels. Invalidating all the use
|
||
information we have would be costly, so we just note where the label
|
||
is and then later disable any optimization that would cross it. */
|
||
if (LABEL_P (insn))
|
||
last_label_ruid = reload_combine_ruid;
|
||
else if (BARRIER_P (insn))
|
||
{
|
||
/* Crossing a barrier resets all the use information. */
|
||
for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
|
||
if (! fixed_regs[r])
|
||
reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
|
||
}
|
||
else if (INSN_P (insn) && volatile_insn_p (PATTERN (insn)))
|
||
/* Optimizations across insns being marked as volatile must be
|
||
prevented. All the usage information is invalidated
|
||
here. */
|
||
for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
|
||
if (! fixed_regs[r]
|
||
&& reg_state[r].use_index != RELOAD_COMBINE_MAX_USES)
|
||
reg_state[r].use_index = -1;
|
||
|
||
if (! NONDEBUG_INSN_P (insn))
|
||
continue;
|
||
|
||
reload_combine_ruid++;
|
||
|
||
control_flow_insn = control_flow_insn_p (insn);
|
||
if (control_flow_insn)
|
||
last_jump_ruid = reload_combine_ruid;
|
||
|
||
if (reload_combine_recognize_const_pattern (insn)
|
||
|| reload_combine_recognize_pattern (insn))
|
||
continue;
|
||
|
||
note_stores (PATTERN (insn), reload_combine_note_store, NULL);
|
||
|
||
if (CALL_P (insn))
|
||
{
|
||
rtx link;
|
||
HARD_REG_SET used_regs;
|
||
|
||
get_call_reg_set_usage (insn, &used_regs, call_used_reg_set);
|
||
|
||
for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
|
||
if (TEST_HARD_REG_BIT (used_regs, r))
|
||
{
|
||
reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
|
||
reg_state[r].store_ruid = reload_combine_ruid;
|
||
}
|
||
|
||
for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
|
||
link = XEXP (link, 1))
|
||
{
|
||
rtx setuse = XEXP (link, 0);
|
||
rtx usage_rtx = XEXP (setuse, 0);
|
||
if ((GET_CODE (setuse) == USE || GET_CODE (setuse) == CLOBBER)
|
||
&& REG_P (usage_rtx))
|
||
{
|
||
unsigned int end_regno = END_REGNO (usage_rtx);
|
||
for (unsigned int i = REGNO (usage_rtx); i < end_regno; ++i)
|
||
if (GET_CODE (XEXP (link, 0)) == CLOBBER)
|
||
{
|
||
reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
|
||
reg_state[i].store_ruid = reload_combine_ruid;
|
||
}
|
||
else
|
||
reg_state[i].use_index = -1;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (control_flow_insn && !ANY_RETURN_P (PATTERN (insn)))
|
||
{
|
||
/* Non-spill registers might be used at the call destination in
|
||
some unknown fashion, so we have to mark the unknown use. */
|
||
HARD_REG_SET *live;
|
||
|
||
if ((condjump_p (insn) || condjump_in_parallel_p (insn))
|
||
&& JUMP_LABEL (insn))
|
||
{
|
||
if (ANY_RETURN_P (JUMP_LABEL (insn)))
|
||
live = NULL;
|
||
else
|
||
live = &LABEL_LIVE (JUMP_LABEL (insn));
|
||
}
|
||
else
|
||
live = &ever_live_at_start;
|
||
|
||
if (live)
|
||
for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
|
||
if (TEST_HARD_REG_BIT (*live, r))
|
||
reg_state[r].use_index = -1;
|
||
}
|
||
|
||
reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
|
||
NULL_RTX);
|
||
|
||
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
||
{
|
||
if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
|
||
{
|
||
int regno = REGNO (XEXP (note, 0));
|
||
reg_state[regno].store_ruid = reload_combine_ruid;
|
||
reg_state[regno].real_store_ruid = reload_combine_ruid;
|
||
reg_state[regno].use_index = -1;
|
||
}
|
||
}
|
||
}
|
||
|
||
free (label_live);
|
||
}
|
||
|
||
/* Check if DST is a register or a subreg of a register; if it is,
|
||
update store_ruid, real_store_ruid and use_index in the reg_state
|
||
structure accordingly. Called via note_stores from reload_combine. */
|
||
|
||
static void
|
||
reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
int regno = 0;
|
||
int i;
|
||
machine_mode mode = GET_MODE (dst);
|
||
|
||
if (GET_CODE (dst) == SUBREG)
|
||
{
|
||
regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
|
||
GET_MODE (SUBREG_REG (dst)),
|
||
SUBREG_BYTE (dst),
|
||
GET_MODE (dst));
|
||
dst = SUBREG_REG (dst);
|
||
}
|
||
|
||
/* Some targets do argument pushes without adding REG_INC notes. */
|
||
|
||
if (MEM_P (dst))
|
||
{
|
||
dst = XEXP (dst, 0);
|
||
if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
|
||
|| GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
|
||
|| GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
|
||
{
|
||
unsigned int end_regno = END_REGNO (XEXP (dst, 0));
|
||
for (unsigned int i = REGNO (XEXP (dst, 0)); i < end_regno; ++i)
|
||
{
|
||
/* We could probably do better, but for now mark the register
|
||
as used in an unknown fashion and set/clobbered at this
|
||
insn. */
|
||
reg_state[i].use_index = -1;
|
||
reg_state[i].store_ruid = reload_combine_ruid;
|
||
reg_state[i].real_store_ruid = reload_combine_ruid;
|
||
}
|
||
}
|
||
else
|
||
return;
|
||
}
|
||
|
||
if (!REG_P (dst))
|
||
return;
|
||
regno += REGNO (dst);
|
||
|
||
/* note_stores might have stripped a STRICT_LOW_PART, so we have to be
|
||
careful with registers / register parts that are not full words.
|
||
Similarly for ZERO_EXTRACT. */
|
||
if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
|
||
|| GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
|
||
{
|
||
for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
|
||
{
|
||
reg_state[i].use_index = -1;
|
||
reg_state[i].store_ruid = reload_combine_ruid;
|
||
reg_state[i].real_store_ruid = reload_combine_ruid;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
|
||
{
|
||
reg_state[i].store_ruid = reload_combine_ruid;
|
||
if (GET_CODE (set) == SET)
|
||
reg_state[i].real_store_ruid = reload_combine_ruid;
|
||
reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* XP points to a piece of rtl that has to be checked for any uses of
|
||
registers.
|
||
*XP is the pattern of INSN, or a part of it.
|
||
Called from reload_combine, and recursively by itself. */
|
||
static void
|
||
reload_combine_note_use (rtx *xp, rtx_insn *insn, int ruid, rtx containing_mem)
|
||
{
|
||
rtx x = *xp;
|
||
enum rtx_code code = x->code;
|
||
const char *fmt;
|
||
int i, j;
|
||
rtx offset = const0_rtx; /* For the REG case below. */
|
||
|
||
switch (code)
|
||
{
|
||
case SET:
|
||
if (REG_P (SET_DEST (x)))
|
||
{
|
||
reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
|
||
return;
|
||
}
|
||
break;
|
||
|
||
case USE:
|
||
/* If this is the USE of a return value, we can't change it. */
|
||
if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
|
||
{
|
||
/* Mark the return register as used in an unknown fashion. */
|
||
rtx reg = XEXP (x, 0);
|
||
unsigned int end_regno = END_REGNO (reg);
|
||
for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
|
||
reg_state[regno].use_index = -1;
|
||
return;
|
||
}
|
||
break;
|
||
|
||
case CLOBBER:
|
||
if (REG_P (SET_DEST (x)))
|
||
{
|
||
/* No spurious CLOBBERs of pseudo registers may remain. */
|
||
gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
|
||
return;
|
||
}
|
||
break;
|
||
|
||
case PLUS:
|
||
/* We are interested in (plus (reg) (const_int)) . */
|
||
if (!REG_P (XEXP (x, 0))
|
||
|| !CONST_INT_P (XEXP (x, 1)))
|
||
break;
|
||
offset = XEXP (x, 1);
|
||
x = XEXP (x, 0);
|
||
/* Fall through. */
|
||
case REG:
|
||
{
|
||
int regno = REGNO (x);
|
||
int use_index;
|
||
int nregs;
|
||
|
||
/* No spurious USEs of pseudo registers may remain. */
|
||
gcc_assert (regno < FIRST_PSEUDO_REGISTER);
|
||
|
||
nregs = REG_NREGS (x);
|
||
|
||
/* We can't substitute into multi-hard-reg uses. */
|
||
if (nregs > 1)
|
||
{
|
||
while (--nregs >= 0)
|
||
reg_state[regno + nregs].use_index = -1;
|
||
return;
|
||
}
|
||
|
||
/* We may be called to update uses in previously seen insns.
|
||
Don't add uses beyond the last store we saw. */
|
||
if (ruid < reg_state[regno].store_ruid)
|
||
return;
|
||
|
||
/* If this register is already used in some unknown fashion, we
|
||
can't do anything.
|
||
If we decrement the index from zero to -1, we can't store more
|
||
uses, so this register becomes used in an unknown fashion. */
|
||
use_index = --reg_state[regno].use_index;
|
||
if (use_index < 0)
|
||
return;
|
||
|
||
if (use_index == RELOAD_COMBINE_MAX_USES - 1)
|
||
{
|
||
/* This is the first use of this register we have seen since we
|
||
marked it as dead. */
|
||
reg_state[regno].offset = offset;
|
||
reg_state[regno].all_offsets_match = true;
|
||
reg_state[regno].use_ruid = ruid;
|
||
}
|
||
else
|
||
{
|
||
if (reg_state[regno].use_ruid > ruid)
|
||
reg_state[regno].use_ruid = ruid;
|
||
|
||
if (! rtx_equal_p (offset, reg_state[regno].offset))
|
||
reg_state[regno].all_offsets_match = false;
|
||
}
|
||
|
||
reg_state[regno].reg_use[use_index].insn = insn;
|
||
reg_state[regno].reg_use[use_index].ruid = ruid;
|
||
reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
|
||
reg_state[regno].reg_use[use_index].usep = xp;
|
||
return;
|
||
}
|
||
|
||
case MEM:
|
||
containing_mem = x;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Recursively process the components of X. */
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
|
||
containing_mem);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* See if we can reduce the cost of a constant by replacing a move
|
||
with an add. We track situations in which a register is set to a
|
||
constant or to a register plus a constant. */
|
||
/* We cannot do our optimization across labels. Invalidating all the
|
||
information about register contents we have would be costly, so we
|
||
use move2add_last_label_luid to note where the label is and then
|
||
later disable any optimization that would cross it.
|
||
reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
|
||
are only valid if reg_set_luid[n] is greater than
|
||
move2add_last_label_luid.
|
||
For a set that established a new (potential) base register with
|
||
non-constant value, we use move2add_luid from the place where the
|
||
setting insn is encountered; registers based off that base then
|
||
get the same reg_set_luid. Constants all get
|
||
move2add_last_label_luid + 1 as their reg_set_luid. */
|
||
static int reg_set_luid[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* If reg_base_reg[n] is negative, register n has been set to
|
||
reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
|
||
If reg_base_reg[n] is non-negative, register n has been set to the
|
||
sum of reg_offset[n] and the value of register reg_base_reg[n]
|
||
before reg_set_luid[n], calculated in mode reg_mode[n] .
|
||
For multi-hard-register registers, all but the first one are
|
||
recorded as BLKmode in reg_mode. Setting reg_mode to VOIDmode
|
||
marks it as invalid. */
|
||
static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
|
||
static int reg_base_reg[FIRST_PSEUDO_REGISTER];
|
||
static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
|
||
static machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* move2add_luid is linearly increased while scanning the instructions
|
||
from first to last. It is used to set reg_set_luid in
|
||
reload_cse_move2add and move2add_note_store. */
|
||
static int move2add_luid;
|
||
|
||
/* move2add_last_label_luid is set whenever a label is found. Labels
|
||
invalidate all previously collected reg_offset data. */
|
||
static int move2add_last_label_luid;
|
||
|
||
/* ??? We don't know how zero / sign extension is handled, hence we
|
||
can't go from a narrower to a wider mode. */
|
||
#define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
|
||
(GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
|
||
|| (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
|
||
&& TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
|
||
|
||
/* Record that REG is being set to a value with the mode of REG. */
|
||
|
||
static void
|
||
move2add_record_mode (rtx reg)
|
||
{
|
||
int regno, nregs;
|
||
machine_mode mode = GET_MODE (reg);
|
||
|
||
if (GET_CODE (reg) == SUBREG)
|
||
{
|
||
regno = subreg_regno (reg);
|
||
nregs = subreg_nregs (reg);
|
||
}
|
||
else if (REG_P (reg))
|
||
{
|
||
regno = REGNO (reg);
|
||
nregs = REG_NREGS (reg);
|
||
}
|
||
else
|
||
gcc_unreachable ();
|
||
for (int i = nregs - 1; i > 0; i--)
|
||
reg_mode[regno + i] = BLKmode;
|
||
reg_mode[regno] = mode;
|
||
}
|
||
|
||
/* Record that REG is being set to the sum of SYM and OFF. */
|
||
|
||
static void
|
||
move2add_record_sym_value (rtx reg, rtx sym, rtx off)
|
||
{
|
||
int regno = REGNO (reg);
|
||
|
||
move2add_record_mode (reg);
|
||
reg_set_luid[regno] = move2add_luid;
|
||
reg_base_reg[regno] = -1;
|
||
reg_symbol_ref[regno] = sym;
|
||
reg_offset[regno] = INTVAL (off);
|
||
}
|
||
|
||
/* Check if REGNO contains a valid value in MODE. */
|
||
|
||
static bool
|
||
move2add_valid_value_p (int regno, machine_mode mode)
|
||
{
|
||
if (reg_set_luid[regno] <= move2add_last_label_luid)
|
||
return false;
|
||
|
||
if (mode != reg_mode[regno])
|
||
{
|
||
if (!MODES_OK_FOR_MOVE2ADD (mode, reg_mode[regno]))
|
||
return false;
|
||
/* The value loaded into regno in reg_mode[regno] is also valid in
|
||
mode after truncation only if (REG:mode regno) is the lowpart of
|
||
(REG:reg_mode[regno] regno). Now, for big endian, the starting
|
||
regno of the lowpart might be different. */
|
||
int s_off = subreg_lowpart_offset (mode, reg_mode[regno]);
|
||
s_off = subreg_regno_offset (regno, reg_mode[regno], s_off, mode);
|
||
if (s_off != 0)
|
||
/* We could in principle adjust regno, check reg_mode[regno] to be
|
||
BLKmode, and return s_off to the caller (vs. -1 for failure),
|
||
but we currently have no callers that could make use of this
|
||
information. */
|
||
return false;
|
||
}
|
||
|
||
for (int i = hard_regno_nregs[regno][mode] - 1; i > 0; i--)
|
||
if (reg_mode[regno + i] != BLKmode)
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
/* This function is called with INSN that sets REG to (SYM + OFF),
|
||
while REG is known to already have value (SYM + offset).
|
||
This function tries to change INSN into an add instruction
|
||
(set (REG) (plus (REG) (OFF - offset))) using the known value.
|
||
It also updates the information about REG's known value.
|
||
Return true if we made a change. */
|
||
|
||
static bool
|
||
move2add_use_add2_insn (rtx reg, rtx sym, rtx off, rtx_insn *insn)
|
||
{
|
||
rtx pat = PATTERN (insn);
|
||
rtx src = SET_SRC (pat);
|
||
int regno = REGNO (reg);
|
||
rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[regno],
|
||
GET_MODE (reg));
|
||
bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
|
||
bool changed = false;
|
||
|
||
/* (set (reg) (plus (reg) (const_int 0))) is not canonical;
|
||
use (set (reg) (reg)) instead.
|
||
We don't delete this insn, nor do we convert it into a
|
||
note, to avoid losing register notes or the return
|
||
value flag. jump2 already knows how to get rid of
|
||
no-op moves. */
|
||
if (new_src == const0_rtx)
|
||
{
|
||
/* If the constants are different, this is a
|
||
truncation, that, if turned into (set (reg)
|
||
(reg)), would be discarded. Maybe we should
|
||
try a truncMN pattern? */
|
||
if (INTVAL (off) == reg_offset [regno])
|
||
changed = validate_change (insn, &SET_SRC (pat), reg, 0);
|
||
}
|
||
else
|
||
{
|
||
struct full_rtx_costs oldcst, newcst;
|
||
rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
|
||
|
||
get_full_set_rtx_cost (pat, &oldcst);
|
||
SET_SRC (pat) = tem;
|
||
get_full_set_rtx_cost (pat, &newcst);
|
||
SET_SRC (pat) = src;
|
||
|
||
if (costs_lt_p (&newcst, &oldcst, speed)
|
||
&& have_add2_insn (reg, new_src))
|
||
changed = validate_change (insn, &SET_SRC (pat), tem, 0);
|
||
else if (sym == NULL_RTX && GET_MODE (reg) != BImode)
|
||
{
|
||
machine_mode narrow_mode;
|
||
for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
|
||
narrow_mode != VOIDmode
|
||
&& narrow_mode != GET_MODE (reg);
|
||
narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
|
||
{
|
||
if (have_insn_for (STRICT_LOW_PART, narrow_mode)
|
||
&& ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
|
||
== (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
|
||
{
|
||
rtx narrow_reg = gen_lowpart_common (narrow_mode, reg);
|
||
rtx narrow_src = gen_int_mode (INTVAL (off),
|
||
narrow_mode);
|
||
rtx new_set
|
||
= gen_rtx_SET (gen_rtx_STRICT_LOW_PART (VOIDmode,
|
||
narrow_reg),
|
||
narrow_src);
|
||
get_full_set_rtx_cost (new_set, &newcst);
|
||
if (costs_lt_p (&newcst, &oldcst, speed))
|
||
{
|
||
changed = validate_change (insn, &PATTERN (insn),
|
||
new_set, 0);
|
||
if (changed)
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
move2add_record_sym_value (reg, sym, off);
|
||
return changed;
|
||
}
|
||
|
||
|
||
/* This function is called with INSN that sets REG to (SYM + OFF),
|
||
but REG doesn't have known value (SYM + offset). This function
|
||
tries to find another register which is known to already have
|
||
value (SYM + offset) and change INSN into an add instruction
|
||
(set (REG) (plus (the found register) (OFF - offset))) if such
|
||
a register is found. It also updates the information about
|
||
REG's known value.
|
||
Return true iff we made a change. */
|
||
|
||
static bool
|
||
move2add_use_add3_insn (rtx reg, rtx sym, rtx off, rtx_insn *insn)
|
||
{
|
||
rtx pat = PATTERN (insn);
|
||
rtx src = SET_SRC (pat);
|
||
int regno = REGNO (reg);
|
||
int min_regno = 0;
|
||
bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
|
||
int i;
|
||
bool changed = false;
|
||
struct full_rtx_costs oldcst, newcst, mincst;
|
||
rtx plus_expr;
|
||
|
||
init_costs_to_max (&mincst);
|
||
get_full_set_rtx_cost (pat, &oldcst);
|
||
|
||
plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
|
||
SET_SRC (pat) = plus_expr;
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (move2add_valid_value_p (i, GET_MODE (reg))
|
||
&& reg_base_reg[i] < 0
|
||
&& reg_symbol_ref[i] != NULL_RTX
|
||
&& rtx_equal_p (sym, reg_symbol_ref[i]))
|
||
{
|
||
rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[i],
|
||
GET_MODE (reg));
|
||
/* (set (reg) (plus (reg) (const_int 0))) is not canonical;
|
||
use (set (reg) (reg)) instead.
|
||
We don't delete this insn, nor do we convert it into a
|
||
note, to avoid losing register notes or the return
|
||
value flag. jump2 already knows how to get rid of
|
||
no-op moves. */
|
||
if (new_src == const0_rtx)
|
||
{
|
||
init_costs_to_zero (&mincst);
|
||
min_regno = i;
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
XEXP (plus_expr, 1) = new_src;
|
||
get_full_set_rtx_cost (pat, &newcst);
|
||
|
||
if (costs_lt_p (&newcst, &mincst, speed))
|
||
{
|
||
mincst = newcst;
|
||
min_regno = i;
|
||
}
|
||
}
|
||
}
|
||
SET_SRC (pat) = src;
|
||
|
||
if (costs_lt_p (&mincst, &oldcst, speed))
|
||
{
|
||
rtx tem;
|
||
|
||
tem = gen_rtx_REG (GET_MODE (reg), min_regno);
|
||
if (i != min_regno)
|
||
{
|
||
rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[min_regno],
|
||
GET_MODE (reg));
|
||
tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
|
||
}
|
||
if (validate_change (insn, &SET_SRC (pat), tem, 0))
|
||
changed = true;
|
||
}
|
||
reg_set_luid[regno] = move2add_luid;
|
||
move2add_record_sym_value (reg, sym, off);
|
||
return changed;
|
||
}
|
||
|
||
/* Convert move insns with constant inputs to additions if they are cheaper.
|
||
Return true if any changes were made. */
|
||
static bool
|
||
reload_cse_move2add (rtx_insn *first)
|
||
{
|
||
int i;
|
||
rtx_insn *insn;
|
||
bool changed = false;
|
||
|
||
for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
|
||
{
|
||
reg_set_luid[i] = 0;
|
||
reg_offset[i] = 0;
|
||
reg_base_reg[i] = 0;
|
||
reg_symbol_ref[i] = NULL_RTX;
|
||
reg_mode[i] = VOIDmode;
|
||
}
|
||
|
||
move2add_last_label_luid = 0;
|
||
move2add_luid = 2;
|
||
for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
|
||
{
|
||
rtx pat, note;
|
||
|
||
if (LABEL_P (insn))
|
||
{
|
||
move2add_last_label_luid = move2add_luid;
|
||
/* We're going to increment move2add_luid twice after a
|
||
label, so that we can use move2add_last_label_luid + 1 as
|
||
the luid for constants. */
|
||
move2add_luid++;
|
||
continue;
|
||
}
|
||
if (! INSN_P (insn))
|
||
continue;
|
||
pat = PATTERN (insn);
|
||
/* For simplicity, we only perform this optimization on
|
||
straightforward SETs. */
|
||
if (GET_CODE (pat) == SET
|
||
&& REG_P (SET_DEST (pat)))
|
||
{
|
||
rtx reg = SET_DEST (pat);
|
||
int regno = REGNO (reg);
|
||
rtx src = SET_SRC (pat);
|
||
|
||
/* Check if we have valid information on the contents of this
|
||
register in the mode of REG. */
|
||
if (move2add_valid_value_p (regno, GET_MODE (reg))
|
||
&& dbg_cnt (cse2_move2add))
|
||
{
|
||
/* Try to transform (set (REGX) (CONST_INT A))
|
||
...
|
||
(set (REGX) (CONST_INT B))
|
||
to
|
||
(set (REGX) (CONST_INT A))
|
||
...
|
||
(set (REGX) (plus (REGX) (CONST_INT B-A)))
|
||
or
|
||
(set (REGX) (CONST_INT A))
|
||
...
|
||
(set (STRICT_LOW_PART (REGX)) (CONST_INT B))
|
||
*/
|
||
|
||
if (CONST_INT_P (src)
|
||
&& reg_base_reg[regno] < 0
|
||
&& reg_symbol_ref[regno] == NULL_RTX)
|
||
{
|
||
changed |= move2add_use_add2_insn (reg, NULL_RTX, src, insn);
|
||
continue;
|
||
}
|
||
|
||
/* Try to transform (set (REGX) (REGY))
|
||
(set (REGX) (PLUS (REGX) (CONST_INT A)))
|
||
...
|
||
(set (REGX) (REGY))
|
||
(set (REGX) (PLUS (REGX) (CONST_INT B)))
|
||
to
|
||
(set (REGX) (REGY))
|
||
(set (REGX) (PLUS (REGX) (CONST_INT A)))
|
||
...
|
||
(set (REGX) (plus (REGX) (CONST_INT B-A))) */
|
||
else if (REG_P (src)
|
||
&& reg_set_luid[regno] == reg_set_luid[REGNO (src)]
|
||
&& reg_base_reg[regno] == reg_base_reg[REGNO (src)]
|
||
&& move2add_valid_value_p (REGNO (src), GET_MODE (reg)))
|
||
{
|
||
rtx_insn *next = next_nonnote_nondebug_insn (insn);
|
||
rtx set = NULL_RTX;
|
||
if (next)
|
||
set = single_set (next);
|
||
if (set
|
||
&& SET_DEST (set) == reg
|
||
&& GET_CODE (SET_SRC (set)) == PLUS
|
||
&& XEXP (SET_SRC (set), 0) == reg
|
||
&& CONST_INT_P (XEXP (SET_SRC (set), 1)))
|
||
{
|
||
rtx src3 = XEXP (SET_SRC (set), 1);
|
||
unsigned HOST_WIDE_INT added_offset = UINTVAL (src3);
|
||
HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
|
||
HOST_WIDE_INT regno_offset = reg_offset[regno];
|
||
rtx new_src =
|
||
gen_int_mode (added_offset
|
||
+ base_offset
|
||
- regno_offset,
|
||
GET_MODE (reg));
|
||
bool success = false;
|
||
bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
|
||
|
||
if (new_src == const0_rtx)
|
||
/* See above why we create (set (reg) (reg)) here. */
|
||
success
|
||
= validate_change (next, &SET_SRC (set), reg, 0);
|
||
else
|
||
{
|
||
rtx old_src = SET_SRC (set);
|
||
struct full_rtx_costs oldcst, newcst;
|
||
rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
|
||
|
||
get_full_set_rtx_cost (set, &oldcst);
|
||
SET_SRC (set) = tem;
|
||
get_full_set_src_cost (tem, GET_MODE (reg), &newcst);
|
||
SET_SRC (set) = old_src;
|
||
costs_add_n_insns (&oldcst, 1);
|
||
|
||
if (costs_lt_p (&newcst, &oldcst, speed)
|
||
&& have_add2_insn (reg, new_src))
|
||
{
|
||
rtx newpat = gen_rtx_SET (reg, tem);
|
||
success
|
||
= validate_change (next, &PATTERN (next),
|
||
newpat, 0);
|
||
}
|
||
}
|
||
if (success)
|
||
delete_insn (insn);
|
||
changed |= success;
|
||
insn = next;
|
||
move2add_record_mode (reg);
|
||
reg_offset[regno]
|
||
= trunc_int_for_mode (added_offset + base_offset,
|
||
GET_MODE (reg));
|
||
continue;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Try to transform
|
||
(set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
|
||
...
|
||
(set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
|
||
to
|
||
(set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
|
||
...
|
||
(set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
|
||
if ((GET_CODE (src) == SYMBOL_REF
|
||
|| (GET_CODE (src) == CONST
|
||
&& GET_CODE (XEXP (src, 0)) == PLUS
|
||
&& GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
|
||
&& CONST_INT_P (XEXP (XEXP (src, 0), 1))))
|
||
&& dbg_cnt (cse2_move2add))
|
||
{
|
||
rtx sym, off;
|
||
|
||
if (GET_CODE (src) == SYMBOL_REF)
|
||
{
|
||
sym = src;
|
||
off = const0_rtx;
|
||
}
|
||
else
|
||
{
|
||
sym = XEXP (XEXP (src, 0), 0);
|
||
off = XEXP (XEXP (src, 0), 1);
|
||
}
|
||
|
||
/* If the reg already contains the value which is sum of
|
||
sym and some constant value, we can use an add2 insn. */
|
||
if (move2add_valid_value_p (regno, GET_MODE (reg))
|
||
&& reg_base_reg[regno] < 0
|
||
&& reg_symbol_ref[regno] != NULL_RTX
|
||
&& rtx_equal_p (sym, reg_symbol_ref[regno]))
|
||
changed |= move2add_use_add2_insn (reg, sym, off, insn);
|
||
|
||
/* Otherwise, we have to find a register whose value is sum
|
||
of sym and some constant value. */
|
||
else
|
||
changed |= move2add_use_add3_insn (reg, sym, off, insn);
|
||
|
||
continue;
|
||
}
|
||
}
|
||
|
||
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
||
{
|
||
if (REG_NOTE_KIND (note) == REG_INC
|
||
&& REG_P (XEXP (note, 0)))
|
||
{
|
||
/* Reset the information about this register. */
|
||
int regno = REGNO (XEXP (note, 0));
|
||
if (regno < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
move2add_record_mode (XEXP (note, 0));
|
||
reg_mode[regno] = VOIDmode;
|
||
}
|
||
}
|
||
}
|
||
note_stores (PATTERN (insn), move2add_note_store, insn);
|
||
|
||
/* If INSN is a conditional branch, we try to extract an
|
||
implicit set out of it. */
|
||
if (any_condjump_p (insn))
|
||
{
|
||
rtx cnd = fis_get_condition (insn);
|
||
|
||
if (cnd != NULL_RTX
|
||
&& GET_CODE (cnd) == NE
|
||
&& REG_P (XEXP (cnd, 0))
|
||
&& !reg_set_p (XEXP (cnd, 0), insn)
|
||
/* The following two checks, which are also in
|
||
move2add_note_store, are intended to reduce the
|
||
number of calls to gen_rtx_SET to avoid memory
|
||
allocation if possible. */
|
||
&& SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
|
||
&& REG_NREGS (XEXP (cnd, 0)) == 1
|
||
&& CONST_INT_P (XEXP (cnd, 1)))
|
||
{
|
||
rtx implicit_set =
|
||
gen_rtx_SET (XEXP (cnd, 0), XEXP (cnd, 1));
|
||
move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
|
||
}
|
||
}
|
||
|
||
/* If this is a CALL_INSN, all call used registers are stored with
|
||
unknown values. */
|
||
if (CALL_P (insn))
|
||
{
|
||
rtx link;
|
||
|
||
for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
|
||
{
|
||
if (call_used_regs[i])
|
||
/* Reset the information about this register. */
|
||
reg_mode[i] = VOIDmode;
|
||
}
|
||
|
||
for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
|
||
link = XEXP (link, 1))
|
||
{
|
||
rtx setuse = XEXP (link, 0);
|
||
rtx usage_rtx = XEXP (setuse, 0);
|
||
if (GET_CODE (setuse) == CLOBBER
|
||
&& REG_P (usage_rtx))
|
||
{
|
||
unsigned int end_regno = END_REGNO (usage_rtx);
|
||
for (unsigned int r = REGNO (usage_rtx); r < end_regno; ++r)
|
||
/* Reset the information about this register. */
|
||
reg_mode[r] = VOIDmode;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
return changed;
|
||
}
|
||
|
||
/* SET is a SET or CLOBBER that sets DST. DATA is the insn which
|
||
contains SET.
|
||
Update reg_set_luid, reg_offset and reg_base_reg accordingly.
|
||
Called from reload_cse_move2add via note_stores. */
|
||
|
||
static void
|
||
move2add_note_store (rtx dst, const_rtx set, void *data)
|
||
{
|
||
rtx_insn *insn = (rtx_insn *) data;
|
||
unsigned int regno = 0;
|
||
machine_mode mode = GET_MODE (dst);
|
||
|
||
/* Some targets do argument pushes without adding REG_INC notes. */
|
||
|
||
if (MEM_P (dst))
|
||
{
|
||
dst = XEXP (dst, 0);
|
||
if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
|
||
|| GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
|
||
reg_mode[REGNO (XEXP (dst, 0))] = VOIDmode;
|
||
return;
|
||
}
|
||
|
||
if (GET_CODE (dst) == SUBREG)
|
||
regno = subreg_regno (dst);
|
||
else if (REG_P (dst))
|
||
regno = REGNO (dst);
|
||
else
|
||
return;
|
||
|
||
if (SCALAR_INT_MODE_P (mode)
|
||
&& GET_CODE (set) == SET)
|
||
{
|
||
rtx note, sym = NULL_RTX;
|
||
rtx off;
|
||
|
||
note = find_reg_equal_equiv_note (insn);
|
||
if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
|
||
{
|
||
sym = XEXP (note, 0);
|
||
off = const0_rtx;
|
||
}
|
||
else if (note && GET_CODE (XEXP (note, 0)) == CONST
|
||
&& GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
|
||
&& GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
|
||
&& CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
|
||
{
|
||
sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
|
||
off = XEXP (XEXP (XEXP (note, 0), 0), 1);
|
||
}
|
||
|
||
if (sym != NULL_RTX)
|
||
{
|
||
move2add_record_sym_value (dst, sym, off);
|
||
return;
|
||
}
|
||
}
|
||
|
||
if (SCALAR_INT_MODE_P (mode)
|
||
&& GET_CODE (set) == SET
|
||
&& GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
|
||
&& GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
|
||
{
|
||
rtx src = SET_SRC (set);
|
||
rtx base_reg;
|
||
unsigned HOST_WIDE_INT offset;
|
||
int base_regno;
|
||
|
||
switch (GET_CODE (src))
|
||
{
|
||
case PLUS:
|
||
if (REG_P (XEXP (src, 0)))
|
||
{
|
||
base_reg = XEXP (src, 0);
|
||
|
||
if (CONST_INT_P (XEXP (src, 1)))
|
||
offset = UINTVAL (XEXP (src, 1));
|
||
else if (REG_P (XEXP (src, 1))
|
||
&& move2add_valid_value_p (REGNO (XEXP (src, 1)), mode))
|
||
{
|
||
if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
|
||
&& reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
|
||
offset = reg_offset[REGNO (XEXP (src, 1))];
|
||
/* Maybe the first register is known to be a
|
||
constant. */
|
||
else if (move2add_valid_value_p (REGNO (base_reg), mode)
|
||
&& reg_base_reg[REGNO (base_reg)] < 0
|
||
&& reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
|
||
{
|
||
offset = reg_offset[REGNO (base_reg)];
|
||
base_reg = XEXP (src, 1);
|
||
}
|
||
else
|
||
goto invalidate;
|
||
}
|
||
else
|
||
goto invalidate;
|
||
|
||
break;
|
||
}
|
||
|
||
goto invalidate;
|
||
|
||
case REG:
|
||
base_reg = src;
|
||
offset = 0;
|
||
break;
|
||
|
||
case CONST_INT:
|
||
/* Start tracking the register as a constant. */
|
||
reg_base_reg[regno] = -1;
|
||
reg_symbol_ref[regno] = NULL_RTX;
|
||
reg_offset[regno] = INTVAL (SET_SRC (set));
|
||
/* We assign the same luid to all registers set to constants. */
|
||
reg_set_luid[regno] = move2add_last_label_luid + 1;
|
||
move2add_record_mode (dst);
|
||
return;
|
||
|
||
default:
|
||
goto invalidate;
|
||
}
|
||
|
||
base_regno = REGNO (base_reg);
|
||
/* If information about the base register is not valid, set it
|
||
up as a new base register, pretending its value is known
|
||
starting from the current insn. */
|
||
if (!move2add_valid_value_p (base_regno, mode))
|
||
{
|
||
reg_base_reg[base_regno] = base_regno;
|
||
reg_symbol_ref[base_regno] = NULL_RTX;
|
||
reg_offset[base_regno] = 0;
|
||
reg_set_luid[base_regno] = move2add_luid;
|
||
gcc_assert (GET_MODE (base_reg) == mode);
|
||
move2add_record_mode (base_reg);
|
||
}
|
||
|
||
/* Copy base information from our base register. */
|
||
reg_set_luid[regno] = reg_set_luid[base_regno];
|
||
reg_base_reg[regno] = reg_base_reg[base_regno];
|
||
reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
|
||
|
||
/* Compute the sum of the offsets or constants. */
|
||
reg_offset[regno]
|
||
= trunc_int_for_mode (offset + reg_offset[base_regno], mode);
|
||
|
||
move2add_record_mode (dst);
|
||
}
|
||
else
|
||
{
|
||
invalidate:
|
||
/* Invalidate the contents of the register. */
|
||
move2add_record_mode (dst);
|
||
reg_mode[regno] = VOIDmode;
|
||
}
|
||
}
|
||
|
||
namespace {
|
||
|
||
const pass_data pass_data_postreload_cse =
|
||
{
|
||
RTL_PASS, /* type */
|
||
"postreload", /* name */
|
||
OPTGROUP_NONE, /* optinfo_flags */
|
||
TV_RELOAD_CSE_REGS, /* tv_id */
|
||
0, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_df_finish, /* todo_flags_finish */
|
||
};
|
||
|
||
class pass_postreload_cse : public rtl_opt_pass
|
||
{
|
||
public:
|
||
pass_postreload_cse (gcc::context *ctxt)
|
||
: rtl_opt_pass (pass_data_postreload_cse, ctxt)
|
||
{}
|
||
|
||
/* opt_pass methods: */
|
||
virtual bool gate (function *) { return (optimize > 0 && reload_completed); }
|
||
|
||
virtual unsigned int execute (function *);
|
||
|
||
}; // class pass_postreload_cse
|
||
|
||
unsigned int
|
||
pass_postreload_cse::execute (function *fun)
|
||
{
|
||
if (!dbg_cnt (postreload_cse))
|
||
return 0;
|
||
|
||
/* Do a very simple CSE pass over just the hard registers. */
|
||
reload_cse_regs (get_insns ());
|
||
/* Reload_cse_regs can eliminate potentially-trapping MEMs.
|
||
Remove any EH edges associated with them. */
|
||
if (fun->can_throw_non_call_exceptions
|
||
&& purge_all_dead_edges ())
|
||
cleanup_cfg (0);
|
||
|
||
return 0;
|
||
}
|
||
|
||
} // anon namespace
|
||
|
||
rtl_opt_pass *
|
||
make_pass_postreload_cse (gcc::context *ctxt)
|
||
{
|
||
return new pass_postreload_cse (ctxt);
|
||
}
|