62869a1ca1
2016-10-18 Richard Biener <rguenther@suse.de> * tree-ssa-propagate.h (substitute_and_fold): Adjust prototype. * tree-ssa-propagate.c (ssa_prop_fini): Remove final BB_VISITED clearing. (substitute_and_fold_dom_walker): Adjust constructor. (substitute_and_fold_dom_walker::before_dom_children): Remove do_dce flag and handling (always true). (substitute_and_fold): Likewise. * tree-vrp.c (vrp_finalize): Adjust. (execute_early_vrp): Remove final BB_VISITED clearing. * tree-ssa-ccp.c (ccp_finalize): Adjust. * tree-ssa-copy.c (fini_copy_prop): Likewise. * ira.c (ira): Call clear_bb_flags. From-SVN: r241296
1457 lines
42 KiB
C
1457 lines
42 KiB
C
/* Generic SSA value propagation engine.
|
|
Copyright (C) 2004-2016 Free Software Foundation, Inc.
|
|
Contributed by Diego Novillo <dnovillo@redhat.com>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation; either version 3, or (at your option) any
|
|
later version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "backend.h"
|
|
#include "tree.h"
|
|
#include "gimple.h"
|
|
#include "ssa.h"
|
|
#include "gimple-pretty-print.h"
|
|
#include "dumpfile.h"
|
|
#include "gimple-fold.h"
|
|
#include "tree-eh.h"
|
|
#include "gimplify.h"
|
|
#include "gimple-iterator.h"
|
|
#include "tree-cfg.h"
|
|
#include "tree-ssa.h"
|
|
#include "tree-ssa-propagate.h"
|
|
#include "domwalk.h"
|
|
#include "cfgloop.h"
|
|
#include "tree-cfgcleanup.h"
|
|
#include "cfganal.h"
|
|
|
|
/* This file implements a generic value propagation engine based on
|
|
the same propagation used by the SSA-CCP algorithm [1].
|
|
|
|
Propagation is performed by simulating the execution of every
|
|
statement that produces the value being propagated. Simulation
|
|
proceeds as follows:
|
|
|
|
1- Initially, all edges of the CFG are marked not executable and
|
|
the CFG worklist is seeded with all the statements in the entry
|
|
basic block (block 0).
|
|
|
|
2- Every statement S is simulated with a call to the call-back
|
|
function SSA_PROP_VISIT_STMT. This evaluation may produce 3
|
|
results:
|
|
|
|
SSA_PROP_NOT_INTERESTING: Statement S produces nothing of
|
|
interest and does not affect any of the work lists.
|
|
The statement may be simulated again if any of its input
|
|
operands change in future iterations of the simulator.
|
|
|
|
SSA_PROP_VARYING: The value produced by S cannot be determined
|
|
at compile time. Further simulation of S is not required.
|
|
If S is a conditional jump, all the outgoing edges for the
|
|
block are considered executable and added to the work
|
|
list.
|
|
|
|
SSA_PROP_INTERESTING: S produces a value that can be computed
|
|
at compile time. Its result can be propagated into the
|
|
statements that feed from S. Furthermore, if S is a
|
|
conditional jump, only the edge known to be taken is added
|
|
to the work list. Edges that are known not to execute are
|
|
never simulated.
|
|
|
|
3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI. The
|
|
return value from SSA_PROP_VISIT_PHI has the same semantics as
|
|
described in #2.
|
|
|
|
4- Three work lists are kept. Statements are only added to these
|
|
lists if they produce one of SSA_PROP_INTERESTING or
|
|
SSA_PROP_VARYING.
|
|
|
|
CFG_BLOCKS contains the list of blocks to be simulated.
|
|
Blocks are added to this list if their incoming edges are
|
|
found executable.
|
|
|
|
SSA_EDGE_WORKLIST contains the list of statements that we
|
|
need to revisit.
|
|
|
|
5- Simulation terminates when all three work lists are drained.
|
|
|
|
Before calling ssa_propagate, it is important to clear
|
|
prop_simulate_again_p for all the statements in the program that
|
|
should be simulated. This initialization allows an implementation
|
|
to specify which statements should never be simulated.
|
|
|
|
It is also important to compute def-use information before calling
|
|
ssa_propagate.
|
|
|
|
References:
|
|
|
|
[1] Constant propagation with conditional branches,
|
|
Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
|
|
|
|
[2] Building an Optimizing Compiler,
|
|
Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
|
|
|
|
[3] Advanced Compiler Design and Implementation,
|
|
Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
|
|
|
|
/* Function pointers used to parameterize the propagation engine. */
|
|
static ssa_prop_visit_stmt_fn ssa_prop_visit_stmt;
|
|
static ssa_prop_visit_phi_fn ssa_prop_visit_phi;
|
|
|
|
/* Worklist of control flow edge destinations. This contains
|
|
the CFG order number of the blocks so we can iterate in CFG
|
|
order by visiting in bit-order. */
|
|
static bitmap cfg_blocks;
|
|
static int *bb_to_cfg_order;
|
|
static int *cfg_order_to_bb;
|
|
|
|
/* Worklist of SSA edges which will need reexamination as their
|
|
definition has changed. SSA edges are def-use edges in the SSA
|
|
web. For each D-U edge, we store the target statement or PHI node
|
|
UID in a bitmap. UIDs order stmts in execution order. */
|
|
static bitmap ssa_edge_worklist;
|
|
static vec<gimple *> uid_to_stmt;
|
|
|
|
/* Return true if the block worklist empty. */
|
|
|
|
static inline bool
|
|
cfg_blocks_empty_p (void)
|
|
{
|
|
return bitmap_empty_p (cfg_blocks);
|
|
}
|
|
|
|
|
|
/* Add a basic block to the worklist. The block must not be the ENTRY
|
|
or EXIT block. */
|
|
|
|
static void
|
|
cfg_blocks_add (basic_block bb)
|
|
{
|
|
gcc_assert (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun)
|
|
&& bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
|
|
bitmap_set_bit (cfg_blocks, bb_to_cfg_order[bb->index]);
|
|
}
|
|
|
|
|
|
/* Remove a block from the worklist. */
|
|
|
|
static basic_block
|
|
cfg_blocks_get (void)
|
|
{
|
|
gcc_assert (!cfg_blocks_empty_p ());
|
|
int order_index = bitmap_first_set_bit (cfg_blocks);
|
|
bitmap_clear_bit (cfg_blocks, order_index);
|
|
return BASIC_BLOCK_FOR_FN (cfun, cfg_order_to_bb [order_index]);
|
|
}
|
|
|
|
|
|
/* We have just defined a new value for VAR. If IS_VARYING is true,
|
|
add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add
|
|
them to INTERESTING_SSA_EDGES. */
|
|
|
|
static void
|
|
add_ssa_edge (tree var)
|
|
{
|
|
imm_use_iterator iter;
|
|
use_operand_p use_p;
|
|
|
|
FOR_EACH_IMM_USE_FAST (use_p, iter, var)
|
|
{
|
|
gimple *use_stmt = USE_STMT (use_p);
|
|
|
|
/* If we did not yet simulate the block wait for this to happen
|
|
and do not add the stmt to the SSA edge worklist. */
|
|
if (! (gimple_bb (use_stmt)->flags & BB_VISITED))
|
|
continue;
|
|
|
|
if (prop_simulate_again_p (use_stmt)
|
|
&& bitmap_set_bit (ssa_edge_worklist, gimple_uid (use_stmt)))
|
|
{
|
|
uid_to_stmt[gimple_uid (use_stmt)] = use_stmt;
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "ssa_edge_worklist: adding SSA use in ");
|
|
print_gimple_stmt (dump_file, use_stmt, 0, TDF_SLIM);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Add edge E to the control flow worklist. */
|
|
|
|
static void
|
|
add_control_edge (edge e)
|
|
{
|
|
basic_block bb = e->dest;
|
|
if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
|
return;
|
|
|
|
/* If the edge had already been executed, skip it. */
|
|
if (e->flags & EDGE_EXECUTABLE)
|
|
return;
|
|
|
|
e->flags |= EDGE_EXECUTABLE;
|
|
|
|
cfg_blocks_add (bb);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "Adding destination of edge (%d -> %d) to worklist\n",
|
|
e->src->index, e->dest->index);
|
|
}
|
|
|
|
|
|
/* Simulate the execution of STMT and update the work lists accordingly. */
|
|
|
|
static void
|
|
simulate_stmt (gimple *stmt)
|
|
{
|
|
enum ssa_prop_result val = SSA_PROP_NOT_INTERESTING;
|
|
edge taken_edge = NULL;
|
|
tree output_name = NULL_TREE;
|
|
|
|
/* Pull the stmt off the SSA edge worklist. */
|
|
bitmap_clear_bit (ssa_edge_worklist, gimple_uid (stmt));
|
|
|
|
/* Don't bother visiting statements that are already
|
|
considered varying by the propagator. */
|
|
if (!prop_simulate_again_p (stmt))
|
|
return;
|
|
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
|
{
|
|
val = ssa_prop_visit_phi (as_a <gphi *> (stmt));
|
|
output_name = gimple_phi_result (stmt);
|
|
}
|
|
else
|
|
val = ssa_prop_visit_stmt (stmt, &taken_edge, &output_name);
|
|
|
|
if (val == SSA_PROP_VARYING)
|
|
{
|
|
prop_set_simulate_again (stmt, false);
|
|
|
|
/* If the statement produced a new varying value, add the SSA
|
|
edges coming out of OUTPUT_NAME. */
|
|
if (output_name)
|
|
add_ssa_edge (output_name);
|
|
|
|
/* If STMT transfers control out of its basic block, add
|
|
all outgoing edges to the work list. */
|
|
if (stmt_ends_bb_p (stmt))
|
|
{
|
|
edge e;
|
|
edge_iterator ei;
|
|
basic_block bb = gimple_bb (stmt);
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
|
add_control_edge (e);
|
|
}
|
|
return;
|
|
}
|
|
else if (val == SSA_PROP_INTERESTING)
|
|
{
|
|
/* If the statement produced new value, add the SSA edges coming
|
|
out of OUTPUT_NAME. */
|
|
if (output_name)
|
|
add_ssa_edge (output_name);
|
|
|
|
/* If we know which edge is going to be taken out of this block,
|
|
add it to the CFG work list. */
|
|
if (taken_edge)
|
|
add_control_edge (taken_edge);
|
|
}
|
|
|
|
/* If there are no SSA uses on the stmt whose defs are simulated
|
|
again then this stmt will be never visited again. */
|
|
bool has_simulate_again_uses = false;
|
|
use_operand_p use_p;
|
|
ssa_op_iter iter;
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
|
{
|
|
edge_iterator ei;
|
|
edge e;
|
|
tree arg;
|
|
FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->preds)
|
|
if (!(e->flags & EDGE_EXECUTABLE)
|
|
|| ((arg = PHI_ARG_DEF_FROM_EDGE (stmt, e))
|
|
&& TREE_CODE (arg) == SSA_NAME
|
|
&& !SSA_NAME_IS_DEFAULT_DEF (arg)
|
|
&& prop_simulate_again_p (SSA_NAME_DEF_STMT (arg))))
|
|
{
|
|
has_simulate_again_uses = true;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
|
|
{
|
|
gimple *def_stmt = SSA_NAME_DEF_STMT (USE_FROM_PTR (use_p));
|
|
if (!gimple_nop_p (def_stmt)
|
|
&& prop_simulate_again_p (def_stmt))
|
|
{
|
|
has_simulate_again_uses = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!has_simulate_again_uses)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "marking stmt to be not simulated again\n");
|
|
prop_set_simulate_again (stmt, false);
|
|
}
|
|
}
|
|
|
|
/* Process an SSA edge worklist. WORKLIST is the SSA edge worklist to
|
|
drain. This pops statements off the given WORKLIST and processes
|
|
them until one statement was simulated or there are no more statements
|
|
on WORKLIST. We take a pointer to WORKLIST because it may be reallocated
|
|
when an SSA edge is added to it in simulate_stmt. Return true if a stmt
|
|
was simulated. */
|
|
|
|
static void
|
|
process_ssa_edge_worklist ()
|
|
{
|
|
/* Process the next entry from the worklist. */
|
|
unsigned stmt_uid = bitmap_first_set_bit (ssa_edge_worklist);
|
|
bitmap_clear_bit (ssa_edge_worklist, stmt_uid);
|
|
gimple *stmt = uid_to_stmt[stmt_uid];
|
|
|
|
/* We should not have stmts in not yet simulated BBs on the worklist. */
|
|
gcc_assert (gimple_bb (stmt)->flags & BB_VISITED);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "\nSimulating statement: ");
|
|
print_gimple_stmt (dump_file, stmt, 0, dump_flags);
|
|
}
|
|
|
|
simulate_stmt (stmt);
|
|
}
|
|
|
|
|
|
/* Simulate the execution of BLOCK. Evaluate the statement associated
|
|
with each variable reference inside the block. */
|
|
|
|
static void
|
|
simulate_block (basic_block block)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
|
|
/* There is nothing to do for the exit block. */
|
|
if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
|
return;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "\nSimulating block %d\n", block->index);
|
|
|
|
/* Always simulate PHI nodes, even if we have simulated this block
|
|
before. */
|
|
for (gsi = gsi_start_phis (block); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
simulate_stmt (gsi_stmt (gsi));
|
|
|
|
/* If this is the first time we've simulated this block, then we
|
|
must simulate each of its statements. */
|
|
if (! (block->flags & BB_VISITED))
|
|
{
|
|
gimple_stmt_iterator j;
|
|
unsigned int normal_edge_count;
|
|
edge e, normal_edge;
|
|
edge_iterator ei;
|
|
|
|
for (j = gsi_start_bb (block); !gsi_end_p (j); gsi_next (&j))
|
|
simulate_stmt (gsi_stmt (j));
|
|
|
|
/* Note that we have simulated this block. */
|
|
block->flags |= BB_VISITED;
|
|
|
|
/* We can not predict when abnormal and EH edges will be executed, so
|
|
once a block is considered executable, we consider any
|
|
outgoing abnormal edges as executable.
|
|
|
|
TODO: This is not exactly true. Simplifying statement might
|
|
prove it non-throwing and also computed goto can be handled
|
|
when destination is known.
|
|
|
|
At the same time, if this block has only one successor that is
|
|
reached by non-abnormal edges, then add that successor to the
|
|
worklist. */
|
|
normal_edge_count = 0;
|
|
normal_edge = NULL;
|
|
FOR_EACH_EDGE (e, ei, block->succs)
|
|
{
|
|
if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
|
|
add_control_edge (e);
|
|
else
|
|
{
|
|
normal_edge_count++;
|
|
normal_edge = e;
|
|
}
|
|
}
|
|
|
|
if (normal_edge_count == 1)
|
|
add_control_edge (normal_edge);
|
|
}
|
|
}
|
|
|
|
|
|
/* Initialize local data structures and work lists. */
|
|
|
|
static void
|
|
ssa_prop_init (void)
|
|
{
|
|
edge e;
|
|
edge_iterator ei;
|
|
basic_block bb;
|
|
|
|
/* Worklists of SSA edges. */
|
|
ssa_edge_worklist = BITMAP_ALLOC (NULL);
|
|
|
|
/* Worklist of basic-blocks. */
|
|
bb_to_cfg_order = XNEWVEC (int, last_basic_block_for_fn (cfun) + 1);
|
|
cfg_order_to_bb = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
|
|
int n = pre_and_rev_post_order_compute_fn (cfun, NULL,
|
|
cfg_order_to_bb, false);
|
|
for (int i = 0; i < n; ++i)
|
|
bb_to_cfg_order[cfg_order_to_bb[i]] = i;
|
|
cfg_blocks = BITMAP_ALLOC (NULL);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
dump_immediate_uses (dump_file);
|
|
|
|
/* Initially assume that every edge in the CFG is not executable.
|
|
(including the edges coming out of the entry block). Mark blocks
|
|
as not visited, blocks not yet visited will have all their statements
|
|
simulated once an incoming edge gets executable. */
|
|
set_gimple_stmt_max_uid (cfun, 0);
|
|
for (int i = 0; i < n; ++i)
|
|
{
|
|
gimple_stmt_iterator si;
|
|
bb = BASIC_BLOCK_FOR_FN (cfun, cfg_order_to_bb[i]);
|
|
|
|
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
|
|
{
|
|
gimple *stmt = gsi_stmt (si);
|
|
gimple_set_uid (stmt, inc_gimple_stmt_max_uid (cfun));
|
|
}
|
|
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
|
{
|
|
gimple *stmt = gsi_stmt (si);
|
|
gimple_set_uid (stmt, inc_gimple_stmt_max_uid (cfun));
|
|
}
|
|
|
|
bb->flags &= ~BB_VISITED;
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
|
e->flags &= ~EDGE_EXECUTABLE;
|
|
}
|
|
uid_to_stmt.safe_grow (gimple_stmt_max_uid (cfun));
|
|
|
|
/* Seed the algorithm by adding the successors of the entry block to the
|
|
edge worklist. */
|
|
FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
|
|
{
|
|
e->flags &= ~EDGE_EXECUTABLE;
|
|
add_control_edge (e);
|
|
}
|
|
}
|
|
|
|
|
|
/* Free allocated storage. */
|
|
|
|
static void
|
|
ssa_prop_fini (void)
|
|
{
|
|
BITMAP_FREE (cfg_blocks);
|
|
free (bb_to_cfg_order);
|
|
free (cfg_order_to_bb);
|
|
BITMAP_FREE (ssa_edge_worklist);
|
|
uid_to_stmt.release ();
|
|
}
|
|
|
|
|
|
/* Return true if EXPR is an acceptable right-hand-side for a
|
|
GIMPLE assignment. We validate the entire tree, not just
|
|
the root node, thus catching expressions that embed complex
|
|
operands that are not permitted in GIMPLE. This function
|
|
is needed because the folding routines in fold-const.c
|
|
may return such expressions in some cases, e.g., an array
|
|
access with an embedded index addition. It may make more
|
|
sense to have folding routines that are sensitive to the
|
|
constraints on GIMPLE operands, rather than abandoning any
|
|
any attempt to fold if the usual folding turns out to be too
|
|
aggressive. */
|
|
|
|
bool
|
|
valid_gimple_rhs_p (tree expr)
|
|
{
|
|
enum tree_code code = TREE_CODE (expr);
|
|
|
|
switch (TREE_CODE_CLASS (code))
|
|
{
|
|
case tcc_declaration:
|
|
if (!is_gimple_variable (expr))
|
|
return false;
|
|
break;
|
|
|
|
case tcc_constant:
|
|
/* All constants are ok. */
|
|
break;
|
|
|
|
case tcc_comparison:
|
|
/* GENERIC allows comparisons with non-boolean types, reject
|
|
those for GIMPLE. Let vector-typed comparisons pass - rules
|
|
for GENERIC and GIMPLE are the same here. */
|
|
if (!(INTEGRAL_TYPE_P (TREE_TYPE (expr))
|
|
&& (TREE_CODE (TREE_TYPE (expr)) == BOOLEAN_TYPE
|
|
|| TYPE_PRECISION (TREE_TYPE (expr)) == 1))
|
|
&& ! VECTOR_TYPE_P (TREE_TYPE (expr)))
|
|
return false;
|
|
|
|
/* Fallthru. */
|
|
case tcc_binary:
|
|
if (!is_gimple_val (TREE_OPERAND (expr, 0))
|
|
|| !is_gimple_val (TREE_OPERAND (expr, 1)))
|
|
return false;
|
|
break;
|
|
|
|
case tcc_unary:
|
|
if (!is_gimple_val (TREE_OPERAND (expr, 0)))
|
|
return false;
|
|
break;
|
|
|
|
case tcc_expression:
|
|
switch (code)
|
|
{
|
|
case ADDR_EXPR:
|
|
{
|
|
tree t;
|
|
if (is_gimple_min_invariant (expr))
|
|
return true;
|
|
t = TREE_OPERAND (expr, 0);
|
|
while (handled_component_p (t))
|
|
{
|
|
/* ??? More checks needed, see the GIMPLE verifier. */
|
|
if ((TREE_CODE (t) == ARRAY_REF
|
|
|| TREE_CODE (t) == ARRAY_RANGE_REF)
|
|
&& !is_gimple_val (TREE_OPERAND (t, 1)))
|
|
return false;
|
|
t = TREE_OPERAND (t, 0);
|
|
}
|
|
if (!is_gimple_id (t))
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
if (get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS)
|
|
{
|
|
if (((code == VEC_COND_EXPR || code == COND_EXPR)
|
|
? !is_gimple_condexpr (TREE_OPERAND (expr, 0))
|
|
: !is_gimple_val (TREE_OPERAND (expr, 0)))
|
|
|| !is_gimple_val (TREE_OPERAND (expr, 1))
|
|
|| !is_gimple_val (TREE_OPERAND (expr, 2)))
|
|
return false;
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case tcc_vl_exp:
|
|
return false;
|
|
|
|
case tcc_exceptional:
|
|
if (code == CONSTRUCTOR)
|
|
{
|
|
unsigned i;
|
|
tree elt;
|
|
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (expr), i, elt)
|
|
if (!is_gimple_val (elt))
|
|
return false;
|
|
return true;
|
|
}
|
|
if (code != SSA_NAME)
|
|
return false;
|
|
break;
|
|
|
|
case tcc_reference:
|
|
if (code == BIT_FIELD_REF)
|
|
return is_gimple_val (TREE_OPERAND (expr, 0));
|
|
return false;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Return true if EXPR is a CALL_EXPR suitable for representation
|
|
as a single GIMPLE_CALL statement. If the arguments require
|
|
further gimplification, return false. */
|
|
|
|
static bool
|
|
valid_gimple_call_p (tree expr)
|
|
{
|
|
unsigned i, nargs;
|
|
|
|
if (TREE_CODE (expr) != CALL_EXPR)
|
|
return false;
|
|
|
|
nargs = call_expr_nargs (expr);
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
tree arg = CALL_EXPR_ARG (expr, i);
|
|
if (is_gimple_reg_type (TREE_TYPE (arg)))
|
|
{
|
|
if (!is_gimple_val (arg))
|
|
return false;
|
|
}
|
|
else
|
|
if (!is_gimple_lvalue (arg))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Make SSA names defined by OLD_STMT point to NEW_STMT
|
|
as their defining statement. */
|
|
|
|
void
|
|
move_ssa_defining_stmt_for_defs (gimple *new_stmt, gimple *old_stmt)
|
|
{
|
|
tree var;
|
|
ssa_op_iter iter;
|
|
|
|
if (gimple_in_ssa_p (cfun))
|
|
{
|
|
/* Make defined SSA_NAMEs point to the new
|
|
statement as their definition. */
|
|
FOR_EACH_SSA_TREE_OPERAND (var, old_stmt, iter, SSA_OP_ALL_DEFS)
|
|
{
|
|
if (TREE_CODE (var) == SSA_NAME)
|
|
SSA_NAME_DEF_STMT (var) = new_stmt;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Helper function for update_gimple_call and update_call_from_tree.
|
|
A GIMPLE_CALL STMT is being replaced with GIMPLE_CALL NEW_STMT. */
|
|
|
|
static void
|
|
finish_update_gimple_call (gimple_stmt_iterator *si_p, gimple *new_stmt,
|
|
gimple *stmt)
|
|
{
|
|
gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
|
|
move_ssa_defining_stmt_for_defs (new_stmt, stmt);
|
|
gimple_set_vuse (new_stmt, gimple_vuse (stmt));
|
|
gimple_set_vdef (new_stmt, gimple_vdef (stmt));
|
|
gimple_set_location (new_stmt, gimple_location (stmt));
|
|
if (gimple_block (new_stmt) == NULL_TREE)
|
|
gimple_set_block (new_stmt, gimple_block (stmt));
|
|
gsi_replace (si_p, new_stmt, false);
|
|
}
|
|
|
|
/* Update a GIMPLE_CALL statement at iterator *SI_P to call to FN
|
|
with number of arguments NARGS, where the arguments in GIMPLE form
|
|
follow NARGS argument. */
|
|
|
|
bool
|
|
update_gimple_call (gimple_stmt_iterator *si_p, tree fn, int nargs, ...)
|
|
{
|
|
va_list ap;
|
|
gcall *new_stmt, *stmt = as_a <gcall *> (gsi_stmt (*si_p));
|
|
|
|
gcc_assert (is_gimple_call (stmt));
|
|
va_start (ap, nargs);
|
|
new_stmt = gimple_build_call_valist (fn, nargs, ap);
|
|
finish_update_gimple_call (si_p, new_stmt, stmt);
|
|
va_end (ap);
|
|
return true;
|
|
}
|
|
|
|
/* Update a GIMPLE_CALL statement at iterator *SI_P to reflect the
|
|
value of EXPR, which is expected to be the result of folding the
|
|
call. This can only be done if EXPR is a CALL_EXPR with valid
|
|
GIMPLE operands as arguments, or if it is a suitable RHS expression
|
|
for a GIMPLE_ASSIGN. More complex expressions will require
|
|
gimplification, which will introduce additional statements. In this
|
|
event, no update is performed, and the function returns false.
|
|
Note that we cannot mutate a GIMPLE_CALL in-place, so we always
|
|
replace the statement at *SI_P with an entirely new statement.
|
|
The new statement need not be a call, e.g., if the original call
|
|
folded to a constant. */
|
|
|
|
bool
|
|
update_call_from_tree (gimple_stmt_iterator *si_p, tree expr)
|
|
{
|
|
gimple *stmt = gsi_stmt (*si_p);
|
|
|
|
if (valid_gimple_call_p (expr))
|
|
{
|
|
/* The call has simplified to another call. */
|
|
tree fn = CALL_EXPR_FN (expr);
|
|
unsigned i;
|
|
unsigned nargs = call_expr_nargs (expr);
|
|
vec<tree> args = vNULL;
|
|
gcall *new_stmt;
|
|
|
|
if (nargs > 0)
|
|
{
|
|
args.create (nargs);
|
|
args.safe_grow_cleared (nargs);
|
|
|
|
for (i = 0; i < nargs; i++)
|
|
args[i] = CALL_EXPR_ARG (expr, i);
|
|
}
|
|
|
|
new_stmt = gimple_build_call_vec (fn, args);
|
|
finish_update_gimple_call (si_p, new_stmt, stmt);
|
|
args.release ();
|
|
|
|
return true;
|
|
}
|
|
else if (valid_gimple_rhs_p (expr))
|
|
{
|
|
tree lhs = gimple_call_lhs (stmt);
|
|
gimple *new_stmt;
|
|
|
|
/* The call has simplified to an expression
|
|
that cannot be represented as a GIMPLE_CALL. */
|
|
if (lhs)
|
|
{
|
|
/* A value is expected.
|
|
Introduce a new GIMPLE_ASSIGN statement. */
|
|
STRIP_USELESS_TYPE_CONVERSION (expr);
|
|
new_stmt = gimple_build_assign (lhs, expr);
|
|
move_ssa_defining_stmt_for_defs (new_stmt, stmt);
|
|
gimple_set_vuse (new_stmt, gimple_vuse (stmt));
|
|
gimple_set_vdef (new_stmt, gimple_vdef (stmt));
|
|
}
|
|
else if (!TREE_SIDE_EFFECTS (expr))
|
|
{
|
|
/* No value is expected, and EXPR has no effect.
|
|
Replace it with an empty statement. */
|
|
new_stmt = gimple_build_nop ();
|
|
if (gimple_in_ssa_p (cfun))
|
|
{
|
|
unlink_stmt_vdef (stmt);
|
|
release_defs (stmt);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* No value is expected, but EXPR has an effect,
|
|
e.g., it could be a reference to a volatile
|
|
variable. Create an assignment statement
|
|
with a dummy (unused) lhs variable. */
|
|
STRIP_USELESS_TYPE_CONVERSION (expr);
|
|
if (gimple_in_ssa_p (cfun))
|
|
lhs = make_ssa_name (TREE_TYPE (expr));
|
|
else
|
|
lhs = create_tmp_var (TREE_TYPE (expr));
|
|
new_stmt = gimple_build_assign (lhs, expr);
|
|
gimple_set_vuse (new_stmt, gimple_vuse (stmt));
|
|
gimple_set_vdef (new_stmt, gimple_vdef (stmt));
|
|
move_ssa_defining_stmt_for_defs (new_stmt, stmt);
|
|
}
|
|
gimple_set_location (new_stmt, gimple_location (stmt));
|
|
gsi_replace (si_p, new_stmt, false);
|
|
return true;
|
|
}
|
|
else
|
|
/* The call simplified to an expression that is
|
|
not a valid GIMPLE RHS. */
|
|
return false;
|
|
}
|
|
|
|
|
|
/* Entry point to the propagation engine.
|
|
|
|
VISIT_STMT is called for every statement visited.
|
|
VISIT_PHI is called for every PHI node visited. */
|
|
|
|
void
|
|
ssa_propagate (ssa_prop_visit_stmt_fn visit_stmt,
|
|
ssa_prop_visit_phi_fn visit_phi)
|
|
{
|
|
ssa_prop_visit_stmt = visit_stmt;
|
|
ssa_prop_visit_phi = visit_phi;
|
|
|
|
ssa_prop_init ();
|
|
|
|
/* Iterate until the worklists are empty. */
|
|
while (! cfg_blocks_empty_p ()
|
|
|| ! bitmap_empty_p (ssa_edge_worklist))
|
|
{
|
|
/* First simulate whole blocks. */
|
|
if (! cfg_blocks_empty_p ())
|
|
{
|
|
/* Pull the next block to simulate off the worklist. */
|
|
basic_block dest_block = cfg_blocks_get ();
|
|
simulate_block (dest_block);
|
|
continue;
|
|
}
|
|
|
|
/* Then simulate from the SSA edge worklist. */
|
|
process_ssa_edge_worklist ();
|
|
}
|
|
|
|
ssa_prop_fini ();
|
|
}
|
|
|
|
|
|
/* Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref'
|
|
is a non-volatile pointer dereference, a structure reference or a
|
|
reference to a single _DECL. Ignore volatile memory references
|
|
because they are not interesting for the optimizers. */
|
|
|
|
bool
|
|
stmt_makes_single_store (gimple *stmt)
|
|
{
|
|
tree lhs;
|
|
|
|
if (gimple_code (stmt) != GIMPLE_ASSIGN
|
|
&& gimple_code (stmt) != GIMPLE_CALL)
|
|
return false;
|
|
|
|
if (!gimple_vdef (stmt))
|
|
return false;
|
|
|
|
lhs = gimple_get_lhs (stmt);
|
|
|
|
/* A call statement may have a null LHS. */
|
|
if (!lhs)
|
|
return false;
|
|
|
|
return (!TREE_THIS_VOLATILE (lhs)
|
|
&& (DECL_P (lhs)
|
|
|| REFERENCE_CLASS_P (lhs)));
|
|
}
|
|
|
|
|
|
/* Propagation statistics. */
|
|
struct prop_stats_d
|
|
{
|
|
long num_const_prop;
|
|
long num_copy_prop;
|
|
long num_stmts_folded;
|
|
long num_dce;
|
|
};
|
|
|
|
static struct prop_stats_d prop_stats;
|
|
|
|
/* Replace USE references in statement STMT with the values stored in
|
|
PROP_VALUE. Return true if at least one reference was replaced. */
|
|
|
|
bool
|
|
replace_uses_in (gimple *stmt, ssa_prop_get_value_fn get_value)
|
|
{
|
|
bool replaced = false;
|
|
use_operand_p use;
|
|
ssa_op_iter iter;
|
|
|
|
FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
|
|
{
|
|
tree tuse = USE_FROM_PTR (use);
|
|
tree val = (*get_value) (tuse);
|
|
|
|
if (val == tuse || val == NULL_TREE)
|
|
continue;
|
|
|
|
if (gimple_code (stmt) == GIMPLE_ASM
|
|
&& !may_propagate_copy_into_asm (tuse))
|
|
continue;
|
|
|
|
if (!may_propagate_copy (tuse, val))
|
|
continue;
|
|
|
|
if (TREE_CODE (val) != SSA_NAME)
|
|
prop_stats.num_const_prop++;
|
|
else
|
|
prop_stats.num_copy_prop++;
|
|
|
|
propagate_value (use, val);
|
|
|
|
replaced = true;
|
|
}
|
|
|
|
return replaced;
|
|
}
|
|
|
|
|
|
/* Replace propagated values into all the arguments for PHI using the
|
|
values from PROP_VALUE. */
|
|
|
|
static bool
|
|
replace_phi_args_in (gphi *phi, ssa_prop_get_value_fn get_value)
|
|
{
|
|
size_t i;
|
|
bool replaced = false;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Folding PHI node: ");
|
|
print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
|
|
}
|
|
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
|
{
|
|
tree arg = gimple_phi_arg_def (phi, i);
|
|
|
|
if (TREE_CODE (arg) == SSA_NAME)
|
|
{
|
|
tree val = (*get_value) (arg);
|
|
|
|
if (val && val != arg && may_propagate_copy (arg, val))
|
|
{
|
|
edge e = gimple_phi_arg_edge (phi, i);
|
|
|
|
if (TREE_CODE (val) != SSA_NAME)
|
|
prop_stats.num_const_prop++;
|
|
else
|
|
prop_stats.num_copy_prop++;
|
|
|
|
propagate_value (PHI_ARG_DEF_PTR (phi, i), val);
|
|
replaced = true;
|
|
|
|
/* If we propagated a copy and this argument flows
|
|
through an abnormal edge, update the replacement
|
|
accordingly. */
|
|
if (TREE_CODE (val) == SSA_NAME
|
|
&& e->flags & EDGE_ABNORMAL
|
|
&& !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val))
|
|
{
|
|
/* This can only occur for virtual operands, since
|
|
for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val))
|
|
would prevent replacement. */
|
|
gcc_checking_assert (virtual_operand_p (val));
|
|
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
if (!replaced)
|
|
fprintf (dump_file, "No folding possible\n");
|
|
else
|
|
{
|
|
fprintf (dump_file, "Folded into: ");
|
|
print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
}
|
|
|
|
return replaced;
|
|
}
|
|
|
|
|
|
class substitute_and_fold_dom_walker : public dom_walker
|
|
{
|
|
public:
|
|
substitute_and_fold_dom_walker (cdi_direction direction,
|
|
ssa_prop_get_value_fn get_value_fn_,
|
|
ssa_prop_fold_stmt_fn fold_fn_)
|
|
: dom_walker (direction), get_value_fn (get_value_fn_),
|
|
fold_fn (fold_fn_), something_changed (false)
|
|
{
|
|
stmts_to_remove.create (0);
|
|
stmts_to_fixup.create (0);
|
|
need_eh_cleanup = BITMAP_ALLOC (NULL);
|
|
}
|
|
~substitute_and_fold_dom_walker ()
|
|
{
|
|
stmts_to_remove.release ();
|
|
stmts_to_fixup.release ();
|
|
BITMAP_FREE (need_eh_cleanup);
|
|
}
|
|
|
|
virtual edge before_dom_children (basic_block);
|
|
virtual void after_dom_children (basic_block) {}
|
|
|
|
ssa_prop_get_value_fn get_value_fn;
|
|
ssa_prop_fold_stmt_fn fold_fn;
|
|
bool something_changed;
|
|
vec<gimple *> stmts_to_remove;
|
|
vec<gimple *> stmts_to_fixup;
|
|
bitmap need_eh_cleanup;
|
|
};
|
|
|
|
edge
|
|
substitute_and_fold_dom_walker::before_dom_children (basic_block bb)
|
|
{
|
|
/* Propagate known values into PHI nodes. */
|
|
for (gphi_iterator i = gsi_start_phis (bb);
|
|
!gsi_end_p (i);
|
|
gsi_next (&i))
|
|
{
|
|
gphi *phi = i.phi ();
|
|
tree res = gimple_phi_result (phi);
|
|
if (virtual_operand_p (res))
|
|
continue;
|
|
if (res && TREE_CODE (res) == SSA_NAME)
|
|
{
|
|
tree sprime = get_value_fn (res);
|
|
if (sprime
|
|
&& sprime != res
|
|
&& may_propagate_copy (res, sprime))
|
|
{
|
|
stmts_to_remove.safe_push (phi);
|
|
continue;
|
|
}
|
|
}
|
|
something_changed |= replace_phi_args_in (phi, get_value_fn);
|
|
}
|
|
|
|
/* Propagate known values into stmts. In some case it exposes
|
|
more trivially deletable stmts to walk backward. */
|
|
for (gimple_stmt_iterator i = gsi_start_bb (bb);
|
|
!gsi_end_p (i);
|
|
gsi_next (&i))
|
|
{
|
|
bool did_replace;
|
|
gimple *stmt = gsi_stmt (i);
|
|
|
|
/* No point propagating into a stmt we have a value for we
|
|
can propagate into all uses. Mark it for removal instead. */
|
|
tree lhs = gimple_get_lhs (stmt);
|
|
if (lhs && TREE_CODE (lhs) == SSA_NAME)
|
|
{
|
|
tree sprime = get_value_fn (lhs);
|
|
if (sprime
|
|
&& sprime != lhs
|
|
&& may_propagate_copy (lhs, sprime)
|
|
&& !stmt_could_throw_p (stmt)
|
|
&& !gimple_has_side_effects (stmt)
|
|
/* We have to leave ASSERT_EXPRs around for jump-threading. */
|
|
&& (!is_gimple_assign (stmt)
|
|
|| gimple_assign_rhs_code (stmt) != ASSERT_EXPR))
|
|
{
|
|
stmts_to_remove.safe_push (stmt);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* Replace the statement with its folded version and mark it
|
|
folded. */
|
|
did_replace = false;
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Folding statement: ");
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
|
}
|
|
|
|
gimple *old_stmt = stmt;
|
|
bool was_noreturn = (is_gimple_call (stmt)
|
|
&& gimple_call_noreturn_p (stmt));
|
|
|
|
/* Replace real uses in the statement. */
|
|
did_replace |= replace_uses_in (stmt, get_value_fn);
|
|
|
|
/* If we made a replacement, fold the statement. */
|
|
if (did_replace)
|
|
{
|
|
fold_stmt (&i, follow_single_use_edges);
|
|
stmt = gsi_stmt (i);
|
|
gimple_set_modified (stmt, true);
|
|
}
|
|
|
|
/* Some statements may be simplified using propagator
|
|
specific information. Do this before propagating
|
|
into the stmt to not disturb pass specific information. */
|
|
if (fold_fn)
|
|
{
|
|
update_stmt_if_modified (stmt);
|
|
if ((*fold_fn)(&i))
|
|
{
|
|
did_replace = true;
|
|
prop_stats.num_stmts_folded++;
|
|
stmt = gsi_stmt (i);
|
|
gimple_set_modified (stmt, true);
|
|
}
|
|
}
|
|
|
|
/* If this is a control statement the propagator left edges
|
|
unexecuted on force the condition in a way consistent with
|
|
that. See PR66945 for cases where the propagator can end
|
|
up with a different idea of a taken edge than folding
|
|
(once undefined behavior is involved). */
|
|
if (gimple_code (stmt) == GIMPLE_COND)
|
|
{
|
|
if ((EDGE_SUCC (bb, 0)->flags & EDGE_EXECUTABLE)
|
|
^ (EDGE_SUCC (bb, 1)->flags & EDGE_EXECUTABLE))
|
|
{
|
|
if (((EDGE_SUCC (bb, 0)->flags & EDGE_TRUE_VALUE) != 0)
|
|
== ((EDGE_SUCC (bb, 0)->flags & EDGE_EXECUTABLE) != 0))
|
|
gimple_cond_make_true (as_a <gcond *> (stmt));
|
|
else
|
|
gimple_cond_make_false (as_a <gcond *> (stmt));
|
|
gimple_set_modified (stmt, true);
|
|
did_replace = true;
|
|
}
|
|
}
|
|
|
|
/* Now cleanup. */
|
|
if (did_replace)
|
|
{
|
|
/* If we cleaned up EH information from the statement,
|
|
remove EH edges. */
|
|
if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
|
|
bitmap_set_bit (need_eh_cleanup, bb->index);
|
|
|
|
/* If we turned a not noreturn call into a noreturn one
|
|
schedule it for fixup. */
|
|
if (!was_noreturn
|
|
&& is_gimple_call (stmt)
|
|
&& gimple_call_noreturn_p (stmt))
|
|
stmts_to_fixup.safe_push (stmt);
|
|
|
|
if (gimple_assign_single_p (stmt))
|
|
{
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
|
|
|
if (TREE_CODE (rhs) == ADDR_EXPR)
|
|
recompute_tree_invariant_for_addr_expr (rhs);
|
|
}
|
|
|
|
/* Determine what needs to be done to update the SSA form. */
|
|
update_stmt_if_modified (stmt);
|
|
if (!is_gimple_debug (stmt))
|
|
something_changed = true;
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
if (did_replace)
|
|
{
|
|
fprintf (dump_file, "Folded into: ");
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
else
|
|
fprintf (dump_file, "Not folded\n");
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
|
|
/* Perform final substitution and folding of propagated values.
|
|
|
|
PROP_VALUE[I] contains the single value that should be substituted
|
|
at every use of SSA name N_I. If PROP_VALUE is NULL, no values are
|
|
substituted.
|
|
|
|
If FOLD_FN is non-NULL the function will be invoked on all statements
|
|
before propagating values for pass specific simplification.
|
|
|
|
DO_DCE is true if trivially dead stmts can be removed.
|
|
|
|
If DO_DCE is true, the statements within a BB are walked from
|
|
last to first element. Otherwise we scan from first to last element.
|
|
|
|
Return TRUE when something changed. */
|
|
|
|
bool
|
|
substitute_and_fold (ssa_prop_get_value_fn get_value_fn,
|
|
ssa_prop_fold_stmt_fn fold_fn)
|
|
{
|
|
gcc_assert (get_value_fn);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "\nSubstituting values and folding statements\n\n");
|
|
|
|
memset (&prop_stats, 0, sizeof (prop_stats));
|
|
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
|
substitute_and_fold_dom_walker walker(CDI_DOMINATORS,
|
|
get_value_fn, fold_fn);
|
|
walker.walk (ENTRY_BLOCK_PTR_FOR_FN (cfun));
|
|
|
|
/* We cannot remove stmts during the BB walk, especially not release
|
|
SSA names there as that destroys the lattice of our callers.
|
|
Remove stmts in reverse order to make debug stmt creation possible. */
|
|
while (!walker.stmts_to_remove.is_empty ())
|
|
{
|
|
gimple *stmt = walker.stmts_to_remove.pop ();
|
|
if (dump_file && dump_flags & TDF_DETAILS)
|
|
{
|
|
fprintf (dump_file, "Removing dead stmt ");
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
prop_stats.num_dce++;
|
|
gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
|
remove_phi_node (&gsi, true);
|
|
else
|
|
{
|
|
unlink_stmt_vdef (stmt);
|
|
gsi_remove (&gsi, true);
|
|
release_defs (stmt);
|
|
}
|
|
}
|
|
|
|
if (!bitmap_empty_p (walker.need_eh_cleanup))
|
|
gimple_purge_all_dead_eh_edges (walker.need_eh_cleanup);
|
|
|
|
/* Fixup stmts that became noreturn calls. This may require splitting
|
|
blocks and thus isn't possible during the dominator walk. Do this
|
|
in reverse order so we don't inadvertedly remove a stmt we want to
|
|
fixup by visiting a dominating now noreturn call first. */
|
|
while (!walker.stmts_to_fixup.is_empty ())
|
|
{
|
|
gimple *stmt = walker.stmts_to_fixup.pop ();
|
|
if (dump_file && dump_flags & TDF_DETAILS)
|
|
{
|
|
fprintf (dump_file, "Fixing up noreturn call ");
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
fixup_noreturn_call (stmt);
|
|
}
|
|
|
|
statistics_counter_event (cfun, "Constants propagated",
|
|
prop_stats.num_const_prop);
|
|
statistics_counter_event (cfun, "Copies propagated",
|
|
prop_stats.num_copy_prop);
|
|
statistics_counter_event (cfun, "Statements folded",
|
|
prop_stats.num_stmts_folded);
|
|
statistics_counter_event (cfun, "Statements deleted",
|
|
prop_stats.num_dce);
|
|
|
|
return walker.something_changed;
|
|
}
|
|
|
|
|
|
/* Return true if we may propagate ORIG into DEST, false otherwise. */
|
|
|
|
bool
|
|
may_propagate_copy (tree dest, tree orig)
|
|
{
|
|
tree type_d = TREE_TYPE (dest);
|
|
tree type_o = TREE_TYPE (orig);
|
|
|
|
/* If ORIG is a default definition which flows in from an abnormal edge
|
|
then the copy can be propagated. It is important that we do so to avoid
|
|
uninitialized copies. */
|
|
if (TREE_CODE (orig) == SSA_NAME
|
|
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (orig)
|
|
&& SSA_NAME_IS_DEFAULT_DEF (orig)
|
|
&& (SSA_NAME_VAR (orig) == NULL_TREE
|
|
|| TREE_CODE (SSA_NAME_VAR (orig)) == VAR_DECL))
|
|
;
|
|
/* Otherwise if ORIG just flows in from an abnormal edge then the copy cannot
|
|
be propagated. */
|
|
else if (TREE_CODE (orig) == SSA_NAME
|
|
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (orig))
|
|
return false;
|
|
/* Similarly if DEST flows in from an abnormal edge then the copy cannot be
|
|
propagated. */
|
|
else if (TREE_CODE (dest) == SSA_NAME
|
|
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (dest))
|
|
return false;
|
|
|
|
/* Do not copy between types for which we *do* need a conversion. */
|
|
if (!useless_type_conversion_p (type_d, type_o))
|
|
return false;
|
|
|
|
/* Generally propagating virtual operands is not ok as that may
|
|
create overlapping life-ranges. */
|
|
if (TREE_CODE (dest) == SSA_NAME && virtual_operand_p (dest))
|
|
return false;
|
|
|
|
/* Anything else is OK. */
|
|
return true;
|
|
}
|
|
|
|
/* Like may_propagate_copy, but use as the destination expression
|
|
the principal expression (typically, the RHS) contained in
|
|
statement DEST. This is more efficient when working with the
|
|
gimple tuples representation. */
|
|
|
|
bool
|
|
may_propagate_copy_into_stmt (gimple *dest, tree orig)
|
|
{
|
|
tree type_d;
|
|
tree type_o;
|
|
|
|
/* If the statement is a switch or a single-rhs assignment,
|
|
then the expression to be replaced by the propagation may
|
|
be an SSA_NAME. Fortunately, there is an explicit tree
|
|
for the expression, so we delegate to may_propagate_copy. */
|
|
|
|
if (gimple_assign_single_p (dest))
|
|
return may_propagate_copy (gimple_assign_rhs1 (dest), orig);
|
|
else if (gswitch *dest_swtch = dyn_cast <gswitch *> (dest))
|
|
return may_propagate_copy (gimple_switch_index (dest_swtch), orig);
|
|
|
|
/* In other cases, the expression is not materialized, so there
|
|
is no destination to pass to may_propagate_copy. On the other
|
|
hand, the expression cannot be an SSA_NAME, so the analysis
|
|
is much simpler. */
|
|
|
|
if (TREE_CODE (orig) == SSA_NAME
|
|
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (orig))
|
|
return false;
|
|
|
|
if (is_gimple_assign (dest))
|
|
type_d = TREE_TYPE (gimple_assign_lhs (dest));
|
|
else if (gimple_code (dest) == GIMPLE_COND)
|
|
type_d = boolean_type_node;
|
|
else if (is_gimple_call (dest)
|
|
&& gimple_call_lhs (dest) != NULL_TREE)
|
|
type_d = TREE_TYPE (gimple_call_lhs (dest));
|
|
else
|
|
gcc_unreachable ();
|
|
|
|
type_o = TREE_TYPE (orig);
|
|
|
|
if (!useless_type_conversion_p (type_d, type_o))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Similarly, but we know that we're propagating into an ASM_EXPR. */
|
|
|
|
bool
|
|
may_propagate_copy_into_asm (tree dest ATTRIBUTE_UNUSED)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Common code for propagate_value and replace_exp.
|
|
|
|
Replace use operand OP_P with VAL. FOR_PROPAGATION indicates if the
|
|
replacement is done to propagate a value or not. */
|
|
|
|
static void
|
|
replace_exp_1 (use_operand_p op_p, tree val,
|
|
bool for_propagation ATTRIBUTE_UNUSED)
|
|
{
|
|
if (flag_checking)
|
|
{
|
|
tree op = USE_FROM_PTR (op_p);
|
|
gcc_assert (!(for_propagation
|
|
&& TREE_CODE (op) == SSA_NAME
|
|
&& TREE_CODE (val) == SSA_NAME
|
|
&& !may_propagate_copy (op, val)));
|
|
}
|
|
|
|
if (TREE_CODE (val) == SSA_NAME)
|
|
SET_USE (op_p, val);
|
|
else
|
|
SET_USE (op_p, unshare_expr (val));
|
|
}
|
|
|
|
|
|
/* Propagate the value VAL (assumed to be a constant or another SSA_NAME)
|
|
into the operand pointed to by OP_P.
|
|
|
|
Use this version for const/copy propagation as it will perform additional
|
|
checks to ensure validity of the const/copy propagation. */
|
|
|
|
void
|
|
propagate_value (use_operand_p op_p, tree val)
|
|
{
|
|
replace_exp_1 (op_p, val, true);
|
|
}
|
|
|
|
/* Replace *OP_P with value VAL (assumed to be a constant or another SSA_NAME).
|
|
|
|
Use this version when not const/copy propagating values. For example,
|
|
PRE uses this version when building expressions as they would appear
|
|
in specific blocks taking into account actions of PHI nodes.
|
|
|
|
The statement in which an expression has been replaced should be
|
|
folded using fold_stmt_inplace. */
|
|
|
|
void
|
|
replace_exp (use_operand_p op_p, tree val)
|
|
{
|
|
replace_exp_1 (op_p, val, false);
|
|
}
|
|
|
|
|
|
/* Propagate the value VAL (assumed to be a constant or another SSA_NAME)
|
|
into the tree pointed to by OP_P.
|
|
|
|
Use this version for const/copy propagation when SSA operands are not
|
|
available. It will perform the additional checks to ensure validity of
|
|
the const/copy propagation, but will not update any operand information.
|
|
Be sure to mark the stmt as modified. */
|
|
|
|
void
|
|
propagate_tree_value (tree *op_p, tree val)
|
|
{
|
|
if (TREE_CODE (val) == SSA_NAME)
|
|
*op_p = val;
|
|
else
|
|
*op_p = unshare_expr (val);
|
|
}
|
|
|
|
|
|
/* Like propagate_tree_value, but use as the operand to replace
|
|
the principal expression (typically, the RHS) contained in the
|
|
statement referenced by iterator GSI. Note that it is not
|
|
always possible to update the statement in-place, so a new
|
|
statement may be created to replace the original. */
|
|
|
|
void
|
|
propagate_tree_value_into_stmt (gimple_stmt_iterator *gsi, tree val)
|
|
{
|
|
gimple *stmt = gsi_stmt (*gsi);
|
|
|
|
if (is_gimple_assign (stmt))
|
|
{
|
|
tree expr = NULL_TREE;
|
|
if (gimple_assign_single_p (stmt))
|
|
expr = gimple_assign_rhs1 (stmt);
|
|
propagate_tree_value (&expr, val);
|
|
gimple_assign_set_rhs_from_tree (gsi, expr);
|
|
}
|
|
else if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
|
|
{
|
|
tree lhs = NULL_TREE;
|
|
tree rhs = build_zero_cst (TREE_TYPE (val));
|
|
propagate_tree_value (&lhs, val);
|
|
gimple_cond_set_code (cond_stmt, NE_EXPR);
|
|
gimple_cond_set_lhs (cond_stmt, lhs);
|
|
gimple_cond_set_rhs (cond_stmt, rhs);
|
|
}
|
|
else if (is_gimple_call (stmt)
|
|
&& gimple_call_lhs (stmt) != NULL_TREE)
|
|
{
|
|
tree expr = NULL_TREE;
|
|
bool res;
|
|
propagate_tree_value (&expr, val);
|
|
res = update_call_from_tree (gsi, expr);
|
|
gcc_assert (res);
|
|
}
|
|
else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
|
|
propagate_tree_value (gimple_switch_index_ptr (swtch_stmt), val);
|
|
else
|
|
gcc_unreachable ();
|
|
}
|