96592eeda1
PR target/78102 * optabs.def (vcondeq_optab, vec_cmpeq_optab): New optabs. * optabs.c (expand_vec_cond_expr): For comparison codes EQ_EXPR and NE_EXPR, attempt vcondeq_optab as fallback. (expand_vec_cmp_expr): For comparison codes EQ_EXPR and NE_EXPR, attempt vec_cmpeq_optab as fallback. * optabs-tree.h (expand_vec_cmp_expr_p, expand_vec_cond_expr_p): Add enum tree_code argument. * optabs-query.h (get_vec_cmp_eq_icode, get_vcond_eq_icode): New inline functions. * optabs-tree.c (expand_vec_cmp_expr_p): Add CODE argument. For CODE EQ_EXPR or NE_EXPR, attempt to use vec_cmpeq_optab as fallback. (expand_vec_cond_expr_p): Add CODE argument. For CODE EQ_EXPR or NE_EXPR, attempt to use vcondeq_optab as fallback. * tree-vect-generic.c (expand_vector_comparison, expand_vector_divmod, expand_vector_condition): Adjust expand_vec_cmp_expr_p and expand_vec_cond_expr_p callers. * tree-vect-stmts.c (vectorizable_condition, vectorizable_comparison): Likewise. * tree-vect-patterns.c (vect_recog_mixed_size_cond_pattern, check_bool_pattern, search_type_for_mask_1): Likewise. * expr.c (do_store_flag): Likewise. * doc/md.texi (@code{vec_cmpeq@var{m}@var{n}}, @code{vcondeq@var{m}@var{n}}): Document. * config/i386/sse.md (vec_cmpeqv2div2di, vcondeq<VI8F_128:mode>v2di): New expanders. testsuite/ * gcc.target/i386/pr78102.c: New test. From-SVN: r241525
4382 lines
134 KiB
C
4382 lines
134 KiB
C
/* Analysis Utilities for Loop Vectorization.
|
|
Copyright (C) 2006-2016 Free Software Foundation, Inc.
|
|
Contributed by Dorit Nuzman <dorit@il.ibm.com>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "backend.h"
|
|
#include "rtl.h"
|
|
#include "tree.h"
|
|
#include "gimple.h"
|
|
#include "ssa.h"
|
|
#include "expmed.h"
|
|
#include "optabs-tree.h"
|
|
#include "insn-config.h"
|
|
#include "recog.h" /* FIXME: for insn_data */
|
|
#include "fold-const.h"
|
|
#include "stor-layout.h"
|
|
#include "tree-eh.h"
|
|
#include "gimplify.h"
|
|
#include "gimple-iterator.h"
|
|
#include "cfgloop.h"
|
|
#include "tree-vectorizer.h"
|
|
#include "dumpfile.h"
|
|
#include "builtins.h"
|
|
#include "internal-fn.h"
|
|
#include "case-cfn-macros.h"
|
|
|
|
/* Pattern recognition functions */
|
|
static gimple *vect_recog_widen_sum_pattern (vec<gimple *> *, tree *,
|
|
tree *);
|
|
static gimple *vect_recog_widen_mult_pattern (vec<gimple *> *, tree *,
|
|
tree *);
|
|
static gimple *vect_recog_dot_prod_pattern (vec<gimple *> *, tree *,
|
|
tree *);
|
|
static gimple *vect_recog_sad_pattern (vec<gimple *> *, tree *,
|
|
tree *);
|
|
static gimple *vect_recog_pow_pattern (vec<gimple *> *, tree *, tree *);
|
|
static gimple *vect_recog_over_widening_pattern (vec<gimple *> *, tree *,
|
|
tree *);
|
|
static gimple *vect_recog_widen_shift_pattern (vec<gimple *> *,
|
|
tree *, tree *);
|
|
static gimple *vect_recog_rotate_pattern (vec<gimple *> *, tree *, tree *);
|
|
static gimple *vect_recog_vector_vector_shift_pattern (vec<gimple *> *,
|
|
tree *, tree *);
|
|
static gimple *vect_recog_divmod_pattern (vec<gimple *> *,
|
|
tree *, tree *);
|
|
|
|
static gimple *vect_recog_mult_pattern (vec<gimple *> *,
|
|
tree *, tree *);
|
|
|
|
static gimple *vect_recog_mixed_size_cond_pattern (vec<gimple *> *,
|
|
tree *, tree *);
|
|
static gimple *vect_recog_bool_pattern (vec<gimple *> *, tree *, tree *);
|
|
static gimple *vect_recog_mask_conversion_pattern (vec<gimple *> *, tree *, tree *);
|
|
|
|
struct vect_recog_func
|
|
{
|
|
vect_recog_func_ptr fn;
|
|
const char *name;
|
|
};
|
|
|
|
/* Note that ordering matters - the first pattern matching on a stmt
|
|
is taken which means usually the more complex one needs to preceed
|
|
the less comples onex (widen_sum only after dot_prod or sad for example). */
|
|
static vect_recog_func vect_vect_recog_func_ptrs[NUM_PATTERNS] = {
|
|
{ vect_recog_widen_mult_pattern, "widen_mult" },
|
|
{ vect_recog_dot_prod_pattern, "dot_prod" },
|
|
{ vect_recog_sad_pattern, "sad" },
|
|
{ vect_recog_widen_sum_pattern, "widen_sum" },
|
|
{ vect_recog_pow_pattern, "pow" },
|
|
{ vect_recog_widen_shift_pattern, "widen_shift" },
|
|
{ vect_recog_over_widening_pattern, "over_widening" },
|
|
{ vect_recog_rotate_pattern, "rotate" },
|
|
{ vect_recog_vector_vector_shift_pattern, "vector_vector_shift" },
|
|
{ vect_recog_divmod_pattern, "divmod" },
|
|
{ vect_recog_mult_pattern, "mult" },
|
|
{ vect_recog_mixed_size_cond_pattern, "mixed_size_cond" },
|
|
{ vect_recog_bool_pattern, "bool" },
|
|
{ vect_recog_mask_conversion_pattern, "mask_conversion" }
|
|
};
|
|
|
|
static inline void
|
|
append_pattern_def_seq (stmt_vec_info stmt_info, gimple *stmt)
|
|
{
|
|
gimple_seq_add_stmt_without_update (&STMT_VINFO_PATTERN_DEF_SEQ (stmt_info),
|
|
stmt);
|
|
}
|
|
|
|
static inline void
|
|
new_pattern_def_seq (stmt_vec_info stmt_info, gimple *stmt)
|
|
{
|
|
STMT_VINFO_PATTERN_DEF_SEQ (stmt_info) = NULL;
|
|
append_pattern_def_seq (stmt_info, stmt);
|
|
}
|
|
|
|
/* Check whether STMT2 is in the same loop or basic block as STMT1.
|
|
Which of the two applies depends on whether we're currently doing
|
|
loop-based or basic-block-based vectorization, as determined by
|
|
the vinfo_for_stmt for STMT1 (which must be defined).
|
|
|
|
If this returns true, vinfo_for_stmt for STMT2 is guaranteed
|
|
to be defined as well. */
|
|
|
|
static bool
|
|
vect_same_loop_or_bb_p (gimple *stmt1, gimple *stmt2)
|
|
{
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt1);
|
|
return vect_stmt_in_region_p (stmt_vinfo->vinfo, stmt2);
|
|
}
|
|
|
|
/* If the LHS of DEF_STMT has a single use, and that statement is
|
|
in the same loop or basic block, return it. */
|
|
|
|
static gimple *
|
|
vect_single_imm_use (gimple *def_stmt)
|
|
{
|
|
tree lhs = gimple_assign_lhs (def_stmt);
|
|
use_operand_p use_p;
|
|
gimple *use_stmt;
|
|
|
|
if (!single_imm_use (lhs, &use_p, &use_stmt))
|
|
return NULL;
|
|
|
|
if (!vect_same_loop_or_bb_p (def_stmt, use_stmt))
|
|
return NULL;
|
|
|
|
return use_stmt;
|
|
}
|
|
|
|
/* Check whether NAME, an ssa-name used in USE_STMT,
|
|
is a result of a type promotion, such that:
|
|
DEF_STMT: NAME = NOP (name0)
|
|
If CHECK_SIGN is TRUE, check that either both types are signed or both are
|
|
unsigned. */
|
|
|
|
static bool
|
|
type_conversion_p (tree name, gimple *use_stmt, bool check_sign,
|
|
tree *orig_type, gimple **def_stmt, bool *promotion)
|
|
{
|
|
gimple *dummy_gimple;
|
|
stmt_vec_info stmt_vinfo;
|
|
tree type = TREE_TYPE (name);
|
|
tree oprnd0;
|
|
enum vect_def_type dt;
|
|
|
|
stmt_vinfo = vinfo_for_stmt (use_stmt);
|
|
if (!vect_is_simple_use (name, stmt_vinfo->vinfo, def_stmt, &dt))
|
|
return false;
|
|
|
|
if (dt != vect_internal_def
|
|
&& dt != vect_external_def && dt != vect_constant_def)
|
|
return false;
|
|
|
|
if (!*def_stmt)
|
|
return false;
|
|
|
|
if (dt == vect_internal_def)
|
|
{
|
|
stmt_vec_info def_vinfo = vinfo_for_stmt (*def_stmt);
|
|
if (STMT_VINFO_IN_PATTERN_P (def_vinfo))
|
|
return false;
|
|
}
|
|
|
|
if (!is_gimple_assign (*def_stmt))
|
|
return false;
|
|
|
|
if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (*def_stmt)))
|
|
return false;
|
|
|
|
oprnd0 = gimple_assign_rhs1 (*def_stmt);
|
|
|
|
*orig_type = TREE_TYPE (oprnd0);
|
|
if (!INTEGRAL_TYPE_P (type) || !INTEGRAL_TYPE_P (*orig_type)
|
|
|| ((TYPE_UNSIGNED (type) != TYPE_UNSIGNED (*orig_type)) && check_sign))
|
|
return false;
|
|
|
|
if (TYPE_PRECISION (type) >= (TYPE_PRECISION (*orig_type) * 2))
|
|
*promotion = true;
|
|
else
|
|
*promotion = false;
|
|
|
|
if (!vect_is_simple_use (oprnd0, stmt_vinfo->vinfo, &dummy_gimple, &dt))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Helper to return a new temporary for pattern of TYPE for STMT. If STMT
|
|
is NULL, the caller must set SSA_NAME_DEF_STMT for the returned SSA var. */
|
|
|
|
static tree
|
|
vect_recog_temp_ssa_var (tree type, gimple *stmt)
|
|
{
|
|
return make_temp_ssa_name (type, stmt, "patt");
|
|
}
|
|
|
|
/* Function vect_recog_dot_prod_pattern
|
|
|
|
Try to find the following pattern:
|
|
|
|
type x_t, y_t;
|
|
TYPE1 prod;
|
|
TYPE2 sum = init;
|
|
loop:
|
|
sum_0 = phi <init, sum_1>
|
|
S1 x_t = ...
|
|
S2 y_t = ...
|
|
S3 x_T = (TYPE1) x_t;
|
|
S4 y_T = (TYPE1) y_t;
|
|
S5 prod = x_T * y_T;
|
|
[S6 prod = (TYPE2) prod; #optional]
|
|
S7 sum_1 = prod + sum_0;
|
|
|
|
where 'TYPE1' is exactly double the size of type 'type', and 'TYPE2' is the
|
|
same size of 'TYPE1' or bigger. This is a special case of a reduction
|
|
computation.
|
|
|
|
Input:
|
|
|
|
* STMTS: Contains a stmt from which the pattern search begins. In the
|
|
example, when this function is called with S7, the pattern {S3,S4,S5,S6,S7}
|
|
will be detected.
|
|
|
|
Output:
|
|
|
|
* TYPE_IN: The type of the input arguments to the pattern.
|
|
|
|
* TYPE_OUT: The type of the output of this pattern.
|
|
|
|
* Return value: A new stmt that will be used to replace the sequence of
|
|
stmts that constitute the pattern. In this case it will be:
|
|
WIDEN_DOT_PRODUCT <x_t, y_t, sum_0>
|
|
|
|
Note: The dot-prod idiom is a widening reduction pattern that is
|
|
vectorized without preserving all the intermediate results. It
|
|
produces only N/2 (widened) results (by summing up pairs of
|
|
intermediate results) rather than all N results. Therefore, we
|
|
cannot allow this pattern when we want to get all the results and in
|
|
the correct order (as is the case when this computation is in an
|
|
inner-loop nested in an outer-loop that us being vectorized). */
|
|
|
|
static gimple *
|
|
vect_recog_dot_prod_pattern (vec<gimple *> *stmts, tree *type_in,
|
|
tree *type_out)
|
|
{
|
|
gimple *stmt, *last_stmt = (*stmts)[0];
|
|
tree oprnd0, oprnd1;
|
|
tree oprnd00, oprnd01;
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
|
|
tree type, half_type;
|
|
gimple *pattern_stmt;
|
|
tree prod_type;
|
|
loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
|
|
struct loop *loop;
|
|
tree var;
|
|
bool promotion;
|
|
|
|
if (!loop_info)
|
|
return NULL;
|
|
|
|
loop = LOOP_VINFO_LOOP (loop_info);
|
|
|
|
/* We don't allow changing the order of the computation in the inner-loop
|
|
when doing outer-loop vectorization. */
|
|
if (loop && nested_in_vect_loop_p (loop, last_stmt))
|
|
return NULL;
|
|
|
|
if (!is_gimple_assign (last_stmt))
|
|
return NULL;
|
|
|
|
type = gimple_expr_type (last_stmt);
|
|
|
|
/* Look for the following pattern
|
|
DX = (TYPE1) X;
|
|
DY = (TYPE1) Y;
|
|
DPROD = DX * DY;
|
|
DDPROD = (TYPE2) DPROD;
|
|
sum_1 = DDPROD + sum_0;
|
|
In which
|
|
- DX is double the size of X
|
|
- DY is double the size of Y
|
|
- DX, DY, DPROD all have the same type
|
|
- sum is the same size of DPROD or bigger
|
|
- sum has been recognized as a reduction variable.
|
|
|
|
This is equivalent to:
|
|
DPROD = X w* Y; #widen mult
|
|
sum_1 = DPROD w+ sum_0; #widen summation
|
|
or
|
|
DPROD = X w* Y; #widen mult
|
|
sum_1 = DPROD + sum_0; #summation
|
|
*/
|
|
|
|
/* Starting from LAST_STMT, follow the defs of its uses in search
|
|
of the above pattern. */
|
|
|
|
if (gimple_assign_rhs_code (last_stmt) != PLUS_EXPR)
|
|
return NULL;
|
|
|
|
if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
|
|
{
|
|
/* Has been detected as widening-summation? */
|
|
|
|
stmt = STMT_VINFO_RELATED_STMT (stmt_vinfo);
|
|
type = gimple_expr_type (stmt);
|
|
if (gimple_assign_rhs_code (stmt) != WIDEN_SUM_EXPR)
|
|
return NULL;
|
|
oprnd0 = gimple_assign_rhs1 (stmt);
|
|
oprnd1 = gimple_assign_rhs2 (stmt);
|
|
half_type = TREE_TYPE (oprnd0);
|
|
}
|
|
else
|
|
{
|
|
gimple *def_stmt;
|
|
|
|
if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def
|
|
&& ! STMT_VINFO_GROUP_FIRST_ELEMENT (stmt_vinfo))
|
|
return NULL;
|
|
oprnd0 = gimple_assign_rhs1 (last_stmt);
|
|
oprnd1 = gimple_assign_rhs2 (last_stmt);
|
|
if (!types_compatible_p (TREE_TYPE (oprnd0), type)
|
|
|| !types_compatible_p (TREE_TYPE (oprnd1), type))
|
|
return NULL;
|
|
stmt = last_stmt;
|
|
|
|
if (type_conversion_p (oprnd0, stmt, true, &half_type, &def_stmt,
|
|
&promotion)
|
|
&& promotion)
|
|
{
|
|
stmt = def_stmt;
|
|
oprnd0 = gimple_assign_rhs1 (stmt);
|
|
}
|
|
else
|
|
half_type = type;
|
|
}
|
|
|
|
/* So far so good. Since last_stmt was detected as a (summation) reduction,
|
|
we know that oprnd1 is the reduction variable (defined by a loop-header
|
|
phi), and oprnd0 is an ssa-name defined by a stmt in the loop body.
|
|
Left to check that oprnd0 is defined by a (widen_)mult_expr */
|
|
if (TREE_CODE (oprnd0) != SSA_NAME)
|
|
return NULL;
|
|
|
|
prod_type = half_type;
|
|
stmt = SSA_NAME_DEF_STMT (oprnd0);
|
|
|
|
/* It could not be the dot_prod pattern if the stmt is outside the loop. */
|
|
if (!gimple_bb (stmt) || !flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
|
|
return NULL;
|
|
|
|
/* FORNOW. Can continue analyzing the def-use chain when this stmt in a phi
|
|
inside the loop (in case we are analyzing an outer-loop). */
|
|
if (!is_gimple_assign (stmt))
|
|
return NULL;
|
|
stmt_vinfo = vinfo_for_stmt (stmt);
|
|
gcc_assert (stmt_vinfo);
|
|
if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_internal_def)
|
|
return NULL;
|
|
if (gimple_assign_rhs_code (stmt) != MULT_EXPR)
|
|
return NULL;
|
|
if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
|
|
{
|
|
/* Has been detected as a widening multiplication? */
|
|
|
|
stmt = STMT_VINFO_RELATED_STMT (stmt_vinfo);
|
|
if (gimple_assign_rhs_code (stmt) != WIDEN_MULT_EXPR)
|
|
return NULL;
|
|
stmt_vinfo = vinfo_for_stmt (stmt);
|
|
gcc_assert (stmt_vinfo);
|
|
gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_internal_def);
|
|
oprnd00 = gimple_assign_rhs1 (stmt);
|
|
oprnd01 = gimple_assign_rhs2 (stmt);
|
|
STMT_VINFO_PATTERN_DEF_SEQ (vinfo_for_stmt (last_stmt))
|
|
= STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo);
|
|
}
|
|
else
|
|
{
|
|
tree half_type0, half_type1;
|
|
gimple *def_stmt;
|
|
tree oprnd0, oprnd1;
|
|
|
|
oprnd0 = gimple_assign_rhs1 (stmt);
|
|
oprnd1 = gimple_assign_rhs2 (stmt);
|
|
if (!types_compatible_p (TREE_TYPE (oprnd0), prod_type)
|
|
|| !types_compatible_p (TREE_TYPE (oprnd1), prod_type))
|
|
return NULL;
|
|
if (!type_conversion_p (oprnd0, stmt, true, &half_type0, &def_stmt,
|
|
&promotion)
|
|
|| !promotion)
|
|
return NULL;
|
|
oprnd00 = gimple_assign_rhs1 (def_stmt);
|
|
if (!type_conversion_p (oprnd1, stmt, true, &half_type1, &def_stmt,
|
|
&promotion)
|
|
|| !promotion)
|
|
return NULL;
|
|
oprnd01 = gimple_assign_rhs1 (def_stmt);
|
|
if (!types_compatible_p (half_type0, half_type1))
|
|
return NULL;
|
|
if (TYPE_PRECISION (prod_type) != TYPE_PRECISION (half_type0) * 2)
|
|
return NULL;
|
|
}
|
|
|
|
half_type = TREE_TYPE (oprnd00);
|
|
*type_in = half_type;
|
|
*type_out = type;
|
|
|
|
/* Pattern detected. Create a stmt to be used to replace the pattern: */
|
|
var = vect_recog_temp_ssa_var (type, NULL);
|
|
pattern_stmt = gimple_build_assign (var, DOT_PROD_EXPR,
|
|
oprnd00, oprnd01, oprnd1);
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"vect_recog_dot_prod_pattern: detected: ");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
|
|
}
|
|
|
|
return pattern_stmt;
|
|
}
|
|
|
|
|
|
/* Function vect_recog_sad_pattern
|
|
|
|
Try to find the following Sum of Absolute Difference (SAD) pattern:
|
|
|
|
type x_t, y_t;
|
|
signed TYPE1 diff, abs_diff;
|
|
TYPE2 sum = init;
|
|
loop:
|
|
sum_0 = phi <init, sum_1>
|
|
S1 x_t = ...
|
|
S2 y_t = ...
|
|
S3 x_T = (TYPE1) x_t;
|
|
S4 y_T = (TYPE1) y_t;
|
|
S5 diff = x_T - y_T;
|
|
S6 abs_diff = ABS_EXPR <diff>;
|
|
[S7 abs_diff = (TYPE2) abs_diff; #optional]
|
|
S8 sum_1 = abs_diff + sum_0;
|
|
|
|
where 'TYPE1' is at least double the size of type 'type', and 'TYPE2' is the
|
|
same size of 'TYPE1' or bigger. This is a special case of a reduction
|
|
computation.
|
|
|
|
Input:
|
|
|
|
* STMTS: Contains a stmt from which the pattern search begins. In the
|
|
example, when this function is called with S8, the pattern
|
|
{S3,S4,S5,S6,S7,S8} will be detected.
|
|
|
|
Output:
|
|
|
|
* TYPE_IN: The type of the input arguments to the pattern.
|
|
|
|
* TYPE_OUT: The type of the output of this pattern.
|
|
|
|
* Return value: A new stmt that will be used to replace the sequence of
|
|
stmts that constitute the pattern. In this case it will be:
|
|
SAD_EXPR <x_t, y_t, sum_0>
|
|
*/
|
|
|
|
static gimple *
|
|
vect_recog_sad_pattern (vec<gimple *> *stmts, tree *type_in,
|
|
tree *type_out)
|
|
{
|
|
gimple *last_stmt = (*stmts)[0];
|
|
tree sad_oprnd0, sad_oprnd1;
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
|
|
tree half_type;
|
|
loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
|
|
struct loop *loop;
|
|
bool promotion;
|
|
|
|
if (!loop_info)
|
|
return NULL;
|
|
|
|
loop = LOOP_VINFO_LOOP (loop_info);
|
|
|
|
/* We don't allow changing the order of the computation in the inner-loop
|
|
when doing outer-loop vectorization. */
|
|
if (loop && nested_in_vect_loop_p (loop, last_stmt))
|
|
return NULL;
|
|
|
|
if (!is_gimple_assign (last_stmt))
|
|
return NULL;
|
|
|
|
tree sum_type = gimple_expr_type (last_stmt);
|
|
|
|
/* Look for the following pattern
|
|
DX = (TYPE1) X;
|
|
DY = (TYPE1) Y;
|
|
DDIFF = DX - DY;
|
|
DAD = ABS_EXPR <DDIFF>;
|
|
DDPROD = (TYPE2) DPROD;
|
|
sum_1 = DAD + sum_0;
|
|
In which
|
|
- DX is at least double the size of X
|
|
- DY is at least double the size of Y
|
|
- DX, DY, DDIFF, DAD all have the same type
|
|
- sum is the same size of DAD or bigger
|
|
- sum has been recognized as a reduction variable.
|
|
|
|
This is equivalent to:
|
|
DDIFF = X w- Y; #widen sub
|
|
DAD = ABS_EXPR <DDIFF>;
|
|
sum_1 = DAD w+ sum_0; #widen summation
|
|
or
|
|
DDIFF = X w- Y; #widen sub
|
|
DAD = ABS_EXPR <DDIFF>;
|
|
sum_1 = DAD + sum_0; #summation
|
|
*/
|
|
|
|
/* Starting from LAST_STMT, follow the defs of its uses in search
|
|
of the above pattern. */
|
|
|
|
if (gimple_assign_rhs_code (last_stmt) != PLUS_EXPR)
|
|
return NULL;
|
|
|
|
tree plus_oprnd0, plus_oprnd1;
|
|
|
|
if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
|
|
{
|
|
/* Has been detected as widening-summation? */
|
|
|
|
gimple *stmt = STMT_VINFO_RELATED_STMT (stmt_vinfo);
|
|
sum_type = gimple_expr_type (stmt);
|
|
if (gimple_assign_rhs_code (stmt) != WIDEN_SUM_EXPR)
|
|
return NULL;
|
|
plus_oprnd0 = gimple_assign_rhs1 (stmt);
|
|
plus_oprnd1 = gimple_assign_rhs2 (stmt);
|
|
half_type = TREE_TYPE (plus_oprnd0);
|
|
}
|
|
else
|
|
{
|
|
gimple *def_stmt;
|
|
|
|
if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def
|
|
&& ! STMT_VINFO_GROUP_FIRST_ELEMENT (stmt_vinfo))
|
|
return NULL;
|
|
plus_oprnd0 = gimple_assign_rhs1 (last_stmt);
|
|
plus_oprnd1 = gimple_assign_rhs2 (last_stmt);
|
|
if (!types_compatible_p (TREE_TYPE (plus_oprnd0), sum_type)
|
|
|| !types_compatible_p (TREE_TYPE (plus_oprnd1), sum_type))
|
|
return NULL;
|
|
|
|
/* The type conversion could be promotion, demotion,
|
|
or just signed -> unsigned. */
|
|
if (type_conversion_p (plus_oprnd0, last_stmt, false,
|
|
&half_type, &def_stmt, &promotion))
|
|
plus_oprnd0 = gimple_assign_rhs1 (def_stmt);
|
|
else
|
|
half_type = sum_type;
|
|
}
|
|
|
|
/* So far so good. Since last_stmt was detected as a (summation) reduction,
|
|
we know that plus_oprnd1 is the reduction variable (defined by a loop-header
|
|
phi), and plus_oprnd0 is an ssa-name defined by a stmt in the loop body.
|
|
Then check that plus_oprnd0 is defined by an abs_expr. */
|
|
|
|
if (TREE_CODE (plus_oprnd0) != SSA_NAME)
|
|
return NULL;
|
|
|
|
tree abs_type = half_type;
|
|
gimple *abs_stmt = SSA_NAME_DEF_STMT (plus_oprnd0);
|
|
|
|
/* It could not be the sad pattern if the abs_stmt is outside the loop. */
|
|
if (!gimple_bb (abs_stmt) || !flow_bb_inside_loop_p (loop, gimple_bb (abs_stmt)))
|
|
return NULL;
|
|
|
|
/* FORNOW. Can continue analyzing the def-use chain when this stmt in a phi
|
|
inside the loop (in case we are analyzing an outer-loop). */
|
|
if (!is_gimple_assign (abs_stmt))
|
|
return NULL;
|
|
|
|
stmt_vec_info abs_stmt_vinfo = vinfo_for_stmt (abs_stmt);
|
|
gcc_assert (abs_stmt_vinfo);
|
|
if (STMT_VINFO_DEF_TYPE (abs_stmt_vinfo) != vect_internal_def)
|
|
return NULL;
|
|
if (gimple_assign_rhs_code (abs_stmt) != ABS_EXPR)
|
|
return NULL;
|
|
|
|
tree abs_oprnd = gimple_assign_rhs1 (abs_stmt);
|
|
if (!types_compatible_p (TREE_TYPE (abs_oprnd), abs_type))
|
|
return NULL;
|
|
if (TYPE_UNSIGNED (abs_type))
|
|
return NULL;
|
|
|
|
/* We then detect if the operand of abs_expr is defined by a minus_expr. */
|
|
|
|
if (TREE_CODE (abs_oprnd) != SSA_NAME)
|
|
return NULL;
|
|
|
|
gimple *diff_stmt = SSA_NAME_DEF_STMT (abs_oprnd);
|
|
|
|
/* It could not be the sad pattern if the diff_stmt is outside the loop. */
|
|
if (!gimple_bb (diff_stmt)
|
|
|| !flow_bb_inside_loop_p (loop, gimple_bb (diff_stmt)))
|
|
return NULL;
|
|
|
|
/* FORNOW. Can continue analyzing the def-use chain when this stmt in a phi
|
|
inside the loop (in case we are analyzing an outer-loop). */
|
|
if (!is_gimple_assign (diff_stmt))
|
|
return NULL;
|
|
|
|
stmt_vec_info diff_stmt_vinfo = vinfo_for_stmt (diff_stmt);
|
|
gcc_assert (diff_stmt_vinfo);
|
|
if (STMT_VINFO_DEF_TYPE (diff_stmt_vinfo) != vect_internal_def)
|
|
return NULL;
|
|
if (gimple_assign_rhs_code (diff_stmt) != MINUS_EXPR)
|
|
return NULL;
|
|
|
|
tree half_type0, half_type1;
|
|
gimple *def_stmt;
|
|
|
|
tree minus_oprnd0 = gimple_assign_rhs1 (diff_stmt);
|
|
tree minus_oprnd1 = gimple_assign_rhs2 (diff_stmt);
|
|
|
|
if (!types_compatible_p (TREE_TYPE (minus_oprnd0), abs_type)
|
|
|| !types_compatible_p (TREE_TYPE (minus_oprnd1), abs_type))
|
|
return NULL;
|
|
if (!type_conversion_p (minus_oprnd0, diff_stmt, false,
|
|
&half_type0, &def_stmt, &promotion)
|
|
|| !promotion)
|
|
return NULL;
|
|
sad_oprnd0 = gimple_assign_rhs1 (def_stmt);
|
|
|
|
if (!type_conversion_p (minus_oprnd1, diff_stmt, false,
|
|
&half_type1, &def_stmt, &promotion)
|
|
|| !promotion)
|
|
return NULL;
|
|
sad_oprnd1 = gimple_assign_rhs1 (def_stmt);
|
|
|
|
if (!types_compatible_p (half_type0, half_type1))
|
|
return NULL;
|
|
if (TYPE_PRECISION (abs_type) < TYPE_PRECISION (half_type0) * 2
|
|
|| TYPE_PRECISION (sum_type) < TYPE_PRECISION (half_type0) * 2)
|
|
return NULL;
|
|
|
|
*type_in = TREE_TYPE (sad_oprnd0);
|
|
*type_out = sum_type;
|
|
|
|
/* Pattern detected. Create a stmt to be used to replace the pattern: */
|
|
tree var = vect_recog_temp_ssa_var (sum_type, NULL);
|
|
gimple *pattern_stmt = gimple_build_assign (var, SAD_EXPR, sad_oprnd0,
|
|
sad_oprnd1, plus_oprnd1);
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"vect_recog_sad_pattern: detected: ");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
|
|
}
|
|
|
|
return pattern_stmt;
|
|
}
|
|
|
|
|
|
/* Handle widening operation by a constant. At the moment we support MULT_EXPR
|
|
and LSHIFT_EXPR.
|
|
|
|
For MULT_EXPR we check that CONST_OPRND fits HALF_TYPE, and for LSHIFT_EXPR
|
|
we check that CONST_OPRND is less or equal to the size of HALF_TYPE.
|
|
|
|
Otherwise, if the type of the result (TYPE) is at least 4 times bigger than
|
|
HALF_TYPE, and there is an intermediate type (2 times smaller than TYPE)
|
|
that satisfies the above restrictions, we can perform a widening opeartion
|
|
from the intermediate type to TYPE and replace a_T = (TYPE) a_t;
|
|
with a_it = (interm_type) a_t; Store such operation in *WSTMT. */
|
|
|
|
static bool
|
|
vect_handle_widen_op_by_const (gimple *stmt, enum tree_code code,
|
|
tree const_oprnd, tree *oprnd,
|
|
gimple **wstmt, tree type,
|
|
tree *half_type, gimple *def_stmt)
|
|
{
|
|
tree new_type, new_oprnd;
|
|
|
|
if (code != MULT_EXPR && code != LSHIFT_EXPR)
|
|
return false;
|
|
|
|
if (((code == MULT_EXPR && int_fits_type_p (const_oprnd, *half_type))
|
|
|| (code == LSHIFT_EXPR
|
|
&& compare_tree_int (const_oprnd, TYPE_PRECISION (*half_type))
|
|
!= 1))
|
|
&& TYPE_PRECISION (type) == (TYPE_PRECISION (*half_type) * 2))
|
|
{
|
|
/* CONST_OPRND is a constant of HALF_TYPE. */
|
|
*oprnd = gimple_assign_rhs1 (def_stmt);
|
|
return true;
|
|
}
|
|
|
|
if (TYPE_PRECISION (type) < (TYPE_PRECISION (*half_type) * 4))
|
|
return false;
|
|
|
|
if (!vect_same_loop_or_bb_p (stmt, def_stmt))
|
|
return false;
|
|
|
|
/* TYPE is 4 times bigger than HALF_TYPE, try widening operation for
|
|
a type 2 times bigger than HALF_TYPE. */
|
|
new_type = build_nonstandard_integer_type (TYPE_PRECISION (type) / 2,
|
|
TYPE_UNSIGNED (type));
|
|
if ((code == MULT_EXPR && !int_fits_type_p (const_oprnd, new_type))
|
|
|| (code == LSHIFT_EXPR
|
|
&& compare_tree_int (const_oprnd, TYPE_PRECISION (new_type)) == 1))
|
|
return false;
|
|
|
|
/* Use NEW_TYPE for widening operation and create a_T = (NEW_TYPE) a_t; */
|
|
*oprnd = gimple_assign_rhs1 (def_stmt);
|
|
new_oprnd = make_ssa_name (new_type);
|
|
*wstmt = gimple_build_assign (new_oprnd, NOP_EXPR, *oprnd);
|
|
*oprnd = new_oprnd;
|
|
|
|
*half_type = new_type;
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Function vect_recog_widen_mult_pattern
|
|
|
|
Try to find the following pattern:
|
|
|
|
type1 a_t;
|
|
type2 b_t;
|
|
TYPE a_T, b_T, prod_T;
|
|
|
|
S1 a_t = ;
|
|
S2 b_t = ;
|
|
S3 a_T = (TYPE) a_t;
|
|
S4 b_T = (TYPE) b_t;
|
|
S5 prod_T = a_T * b_T;
|
|
|
|
where type 'TYPE' is at least double the size of type 'type1' and 'type2'.
|
|
|
|
Also detect unsigned cases:
|
|
|
|
unsigned type1 a_t;
|
|
unsigned type2 b_t;
|
|
unsigned TYPE u_prod_T;
|
|
TYPE a_T, b_T, prod_T;
|
|
|
|
S1 a_t = ;
|
|
S2 b_t = ;
|
|
S3 a_T = (TYPE) a_t;
|
|
S4 b_T = (TYPE) b_t;
|
|
S5 prod_T = a_T * b_T;
|
|
S6 u_prod_T = (unsigned TYPE) prod_T;
|
|
|
|
and multiplication by constants:
|
|
|
|
type a_t;
|
|
TYPE a_T, prod_T;
|
|
|
|
S1 a_t = ;
|
|
S3 a_T = (TYPE) a_t;
|
|
S5 prod_T = a_T * CONST;
|
|
|
|
A special case of multiplication by constants is when 'TYPE' is 4 times
|
|
bigger than 'type', but CONST fits an intermediate type 2 times smaller
|
|
than 'TYPE'. In that case we create an additional pattern stmt for S3
|
|
to create a variable of the intermediate type, and perform widen-mult
|
|
on the intermediate type as well:
|
|
|
|
type a_t;
|
|
interm_type a_it;
|
|
TYPE a_T, prod_T, prod_T';
|
|
|
|
S1 a_t = ;
|
|
S3 a_T = (TYPE) a_t;
|
|
'--> a_it = (interm_type) a_t;
|
|
S5 prod_T = a_T * CONST;
|
|
'--> prod_T' = a_it w* CONST;
|
|
|
|
Input/Output:
|
|
|
|
* STMTS: Contains a stmt from which the pattern search begins. In the
|
|
example, when this function is called with S5, the pattern {S3,S4,S5,(S6)}
|
|
is detected. In case of unsigned widen-mult, the original stmt (S5) is
|
|
replaced with S6 in STMTS. In case of multiplication by a constant
|
|
of an intermediate type (the last case above), STMTS also contains S3
|
|
(inserted before S5).
|
|
|
|
Output:
|
|
|
|
* TYPE_IN: The type of the input arguments to the pattern.
|
|
|
|
* TYPE_OUT: The type of the output of this pattern.
|
|
|
|
* Return value: A new stmt that will be used to replace the sequence of
|
|
stmts that constitute the pattern. In this case it will be:
|
|
WIDEN_MULT <a_t, b_t>
|
|
If the result of WIDEN_MULT needs to be converted to a larger type, the
|
|
returned stmt will be this type conversion stmt.
|
|
*/
|
|
|
|
static gimple *
|
|
vect_recog_widen_mult_pattern (vec<gimple *> *stmts,
|
|
tree *type_in, tree *type_out)
|
|
{
|
|
gimple *last_stmt = stmts->pop ();
|
|
gimple *def_stmt0, *def_stmt1;
|
|
tree oprnd0, oprnd1;
|
|
tree type, half_type0, half_type1;
|
|
gimple *new_stmt = NULL, *pattern_stmt = NULL;
|
|
tree vectype, vecitype;
|
|
tree var;
|
|
enum tree_code dummy_code;
|
|
int dummy_int;
|
|
vec<tree> dummy_vec;
|
|
bool op1_ok;
|
|
bool promotion;
|
|
|
|
if (!is_gimple_assign (last_stmt))
|
|
return NULL;
|
|
|
|
type = gimple_expr_type (last_stmt);
|
|
|
|
/* Starting from LAST_STMT, follow the defs of its uses in search
|
|
of the above pattern. */
|
|
|
|
if (gimple_assign_rhs_code (last_stmt) != MULT_EXPR)
|
|
return NULL;
|
|
|
|
oprnd0 = gimple_assign_rhs1 (last_stmt);
|
|
oprnd1 = gimple_assign_rhs2 (last_stmt);
|
|
if (!types_compatible_p (TREE_TYPE (oprnd0), type)
|
|
|| !types_compatible_p (TREE_TYPE (oprnd1), type))
|
|
return NULL;
|
|
|
|
/* Check argument 0. */
|
|
if (!type_conversion_p (oprnd0, last_stmt, false, &half_type0, &def_stmt0,
|
|
&promotion)
|
|
|| !promotion)
|
|
return NULL;
|
|
/* Check argument 1. */
|
|
op1_ok = type_conversion_p (oprnd1, last_stmt, false, &half_type1,
|
|
&def_stmt1, &promotion);
|
|
|
|
if (op1_ok && promotion)
|
|
{
|
|
oprnd0 = gimple_assign_rhs1 (def_stmt0);
|
|
oprnd1 = gimple_assign_rhs1 (def_stmt1);
|
|
}
|
|
else
|
|
{
|
|
if (TREE_CODE (oprnd1) == INTEGER_CST
|
|
&& TREE_CODE (half_type0) == INTEGER_TYPE
|
|
&& vect_handle_widen_op_by_const (last_stmt, MULT_EXPR, oprnd1,
|
|
&oprnd0, &new_stmt, type,
|
|
&half_type0, def_stmt0))
|
|
{
|
|
half_type1 = half_type0;
|
|
oprnd1 = fold_convert (half_type1, oprnd1);
|
|
}
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
/* If the two arguments have different sizes, convert the one with
|
|
the smaller type into the larger type. */
|
|
if (TYPE_PRECISION (half_type0) != TYPE_PRECISION (half_type1))
|
|
{
|
|
/* If we already used up the single-stmt slot give up. */
|
|
if (new_stmt)
|
|
return NULL;
|
|
|
|
tree* oprnd = NULL;
|
|
gimple *def_stmt = NULL;
|
|
|
|
if (TYPE_PRECISION (half_type0) < TYPE_PRECISION (half_type1))
|
|
{
|
|
def_stmt = def_stmt0;
|
|
half_type0 = half_type1;
|
|
oprnd = &oprnd0;
|
|
}
|
|
else
|
|
{
|
|
def_stmt = def_stmt1;
|
|
half_type1 = half_type0;
|
|
oprnd = &oprnd1;
|
|
}
|
|
|
|
tree old_oprnd = gimple_assign_rhs1 (def_stmt);
|
|
tree new_oprnd = make_ssa_name (half_type0);
|
|
new_stmt = gimple_build_assign (new_oprnd, NOP_EXPR, old_oprnd);
|
|
*oprnd = new_oprnd;
|
|
}
|
|
|
|
/* Handle unsigned case. Look for
|
|
S6 u_prod_T = (unsigned TYPE) prod_T;
|
|
Use unsigned TYPE as the type for WIDEN_MULT_EXPR. */
|
|
if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (half_type0))
|
|
{
|
|
gimple *use_stmt;
|
|
tree use_lhs;
|
|
tree use_type;
|
|
|
|
if (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (half_type1))
|
|
return NULL;
|
|
|
|
use_stmt = vect_single_imm_use (last_stmt);
|
|
if (!use_stmt || !is_gimple_assign (use_stmt)
|
|
|| !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (use_stmt)))
|
|
return NULL;
|
|
|
|
use_lhs = gimple_assign_lhs (use_stmt);
|
|
use_type = TREE_TYPE (use_lhs);
|
|
if (!INTEGRAL_TYPE_P (use_type)
|
|
|| (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (use_type))
|
|
|| (TYPE_PRECISION (type) != TYPE_PRECISION (use_type)))
|
|
return NULL;
|
|
|
|
type = use_type;
|
|
last_stmt = use_stmt;
|
|
}
|
|
|
|
if (!types_compatible_p (half_type0, half_type1))
|
|
return NULL;
|
|
|
|
/* If TYPE is more than twice larger than HALF_TYPE, we use WIDEN_MULT
|
|
to get an intermediate result of type ITYPE. In this case we need
|
|
to build a statement to convert this intermediate result to type TYPE. */
|
|
tree itype = type;
|
|
if (TYPE_PRECISION (type) > TYPE_PRECISION (half_type0) * 2)
|
|
itype = build_nonstandard_integer_type
|
|
(GET_MODE_BITSIZE (TYPE_MODE (half_type0)) * 2,
|
|
TYPE_UNSIGNED (type));
|
|
|
|
/* Pattern detected. */
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"vect_recog_widen_mult_pattern: detected:\n");
|
|
|
|
/* Check target support */
|
|
vectype = get_vectype_for_scalar_type (half_type0);
|
|
vecitype = get_vectype_for_scalar_type (itype);
|
|
if (!vectype
|
|
|| !vecitype
|
|
|| !supportable_widening_operation (WIDEN_MULT_EXPR, last_stmt,
|
|
vecitype, vectype,
|
|
&dummy_code, &dummy_code,
|
|
&dummy_int, &dummy_vec))
|
|
return NULL;
|
|
|
|
*type_in = vectype;
|
|
*type_out = get_vectype_for_scalar_type (type);
|
|
|
|
/* Pattern supported. Create a stmt to be used to replace the pattern: */
|
|
var = vect_recog_temp_ssa_var (itype, NULL);
|
|
pattern_stmt = gimple_build_assign (var, WIDEN_MULT_EXPR, oprnd0, oprnd1);
|
|
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
|
|
STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo) = NULL;
|
|
|
|
/* If the original two operands have different sizes, we may need to convert
|
|
the smaller one into the larget type. If this is the case, at this point
|
|
the new stmt is already built. */
|
|
if (new_stmt)
|
|
{
|
|
append_pattern_def_seq (stmt_vinfo, new_stmt);
|
|
stmt_vec_info new_stmt_info
|
|
= new_stmt_vec_info (new_stmt, stmt_vinfo->vinfo);
|
|
set_vinfo_for_stmt (new_stmt, new_stmt_info);
|
|
STMT_VINFO_VECTYPE (new_stmt_info) = vectype;
|
|
}
|
|
|
|
/* If ITYPE is not TYPE, we need to build a type convertion stmt to convert
|
|
the result of the widen-mult operation into type TYPE. */
|
|
if (itype != type)
|
|
{
|
|
append_pattern_def_seq (stmt_vinfo, pattern_stmt);
|
|
stmt_vec_info pattern_stmt_info
|
|
= new_stmt_vec_info (pattern_stmt, stmt_vinfo->vinfo);
|
|
set_vinfo_for_stmt (pattern_stmt, pattern_stmt_info);
|
|
STMT_VINFO_VECTYPE (pattern_stmt_info) = vecitype;
|
|
pattern_stmt = gimple_build_assign (vect_recog_temp_ssa_var (type, NULL),
|
|
NOP_EXPR,
|
|
gimple_assign_lhs (pattern_stmt));
|
|
}
|
|
|
|
if (dump_enabled_p ())
|
|
dump_gimple_stmt_loc (MSG_NOTE, vect_location, TDF_SLIM, pattern_stmt, 0);
|
|
|
|
stmts->safe_push (last_stmt);
|
|
return pattern_stmt;
|
|
}
|
|
|
|
|
|
/* Function vect_recog_pow_pattern
|
|
|
|
Try to find the following pattern:
|
|
|
|
x = POW (y, N);
|
|
|
|
with POW being one of pow, powf, powi, powif and N being
|
|
either 2 or 0.5.
|
|
|
|
Input:
|
|
|
|
* LAST_STMT: A stmt from which the pattern search begins.
|
|
|
|
Output:
|
|
|
|
* TYPE_IN: The type of the input arguments to the pattern.
|
|
|
|
* TYPE_OUT: The type of the output of this pattern.
|
|
|
|
* Return value: A new stmt that will be used to replace the sequence of
|
|
stmts that constitute the pattern. In this case it will be:
|
|
x = x * x
|
|
or
|
|
x = sqrt (x)
|
|
*/
|
|
|
|
static gimple *
|
|
vect_recog_pow_pattern (vec<gimple *> *stmts, tree *type_in,
|
|
tree *type_out)
|
|
{
|
|
gimple *last_stmt = (*stmts)[0];
|
|
tree base, exp = NULL;
|
|
gimple *stmt;
|
|
tree var;
|
|
|
|
if (!is_gimple_call (last_stmt) || gimple_call_lhs (last_stmt) == NULL)
|
|
return NULL;
|
|
|
|
switch (gimple_call_combined_fn (last_stmt))
|
|
{
|
|
CASE_CFN_POW:
|
|
CASE_CFN_POWI:
|
|
base = gimple_call_arg (last_stmt, 0);
|
|
exp = gimple_call_arg (last_stmt, 1);
|
|
if (TREE_CODE (exp) != REAL_CST
|
|
&& TREE_CODE (exp) != INTEGER_CST)
|
|
return NULL;
|
|
break;
|
|
|
|
default:
|
|
return NULL;
|
|
}
|
|
|
|
/* We now have a pow or powi builtin function call with a constant
|
|
exponent. */
|
|
|
|
*type_out = NULL_TREE;
|
|
|
|
/* Catch squaring. */
|
|
if ((tree_fits_shwi_p (exp)
|
|
&& tree_to_shwi (exp) == 2)
|
|
|| (TREE_CODE (exp) == REAL_CST
|
|
&& real_equal (&TREE_REAL_CST (exp), &dconst2)))
|
|
{
|
|
*type_in = TREE_TYPE (base);
|
|
|
|
var = vect_recog_temp_ssa_var (TREE_TYPE (base), NULL);
|
|
stmt = gimple_build_assign (var, MULT_EXPR, base, base);
|
|
return stmt;
|
|
}
|
|
|
|
/* Catch square root. */
|
|
if (TREE_CODE (exp) == REAL_CST
|
|
&& real_equal (&TREE_REAL_CST (exp), &dconsthalf))
|
|
{
|
|
*type_in = get_vectype_for_scalar_type (TREE_TYPE (base));
|
|
if (*type_in
|
|
&& direct_internal_fn_supported_p (IFN_SQRT, *type_in,
|
|
OPTIMIZE_FOR_SPEED))
|
|
{
|
|
gcall *stmt = gimple_build_call_internal (IFN_SQRT, 1, base);
|
|
var = vect_recog_temp_ssa_var (TREE_TYPE (base), stmt);
|
|
gimple_call_set_lhs (stmt, var);
|
|
return stmt;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* Function vect_recog_widen_sum_pattern
|
|
|
|
Try to find the following pattern:
|
|
|
|
type x_t;
|
|
TYPE x_T, sum = init;
|
|
loop:
|
|
sum_0 = phi <init, sum_1>
|
|
S1 x_t = *p;
|
|
S2 x_T = (TYPE) x_t;
|
|
S3 sum_1 = x_T + sum_0;
|
|
|
|
where type 'TYPE' is at least double the size of type 'type', i.e - we're
|
|
summing elements of type 'type' into an accumulator of type 'TYPE'. This is
|
|
a special case of a reduction computation.
|
|
|
|
Input:
|
|
|
|
* LAST_STMT: A stmt from which the pattern search begins. In the example,
|
|
when this function is called with S3, the pattern {S2,S3} will be detected.
|
|
|
|
Output:
|
|
|
|
* TYPE_IN: The type of the input arguments to the pattern.
|
|
|
|
* TYPE_OUT: The type of the output of this pattern.
|
|
|
|
* Return value: A new stmt that will be used to replace the sequence of
|
|
stmts that constitute the pattern. In this case it will be:
|
|
WIDEN_SUM <x_t, sum_0>
|
|
|
|
Note: The widening-sum idiom is a widening reduction pattern that is
|
|
vectorized without preserving all the intermediate results. It
|
|
produces only N/2 (widened) results (by summing up pairs of
|
|
intermediate results) rather than all N results. Therefore, we
|
|
cannot allow this pattern when we want to get all the results and in
|
|
the correct order (as is the case when this computation is in an
|
|
inner-loop nested in an outer-loop that us being vectorized). */
|
|
|
|
static gimple *
|
|
vect_recog_widen_sum_pattern (vec<gimple *> *stmts, tree *type_in,
|
|
tree *type_out)
|
|
{
|
|
gimple *stmt, *last_stmt = (*stmts)[0];
|
|
tree oprnd0, oprnd1;
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
|
|
tree type, half_type;
|
|
gimple *pattern_stmt;
|
|
loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
|
|
struct loop *loop;
|
|
tree var;
|
|
bool promotion;
|
|
|
|
if (!loop_info)
|
|
return NULL;
|
|
|
|
loop = LOOP_VINFO_LOOP (loop_info);
|
|
|
|
/* We don't allow changing the order of the computation in the inner-loop
|
|
when doing outer-loop vectorization. */
|
|
if (loop && nested_in_vect_loop_p (loop, last_stmt))
|
|
return NULL;
|
|
|
|
if (!is_gimple_assign (last_stmt))
|
|
return NULL;
|
|
|
|
type = gimple_expr_type (last_stmt);
|
|
|
|
/* Look for the following pattern
|
|
DX = (TYPE) X;
|
|
sum_1 = DX + sum_0;
|
|
In which DX is at least double the size of X, and sum_1 has been
|
|
recognized as a reduction variable.
|
|
*/
|
|
|
|
/* Starting from LAST_STMT, follow the defs of its uses in search
|
|
of the above pattern. */
|
|
|
|
if (gimple_assign_rhs_code (last_stmt) != PLUS_EXPR)
|
|
return NULL;
|
|
|
|
if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def
|
|
&& ! STMT_VINFO_GROUP_FIRST_ELEMENT (stmt_vinfo))
|
|
return NULL;
|
|
|
|
oprnd0 = gimple_assign_rhs1 (last_stmt);
|
|
oprnd1 = gimple_assign_rhs2 (last_stmt);
|
|
if (!types_compatible_p (TREE_TYPE (oprnd0), type)
|
|
|| !types_compatible_p (TREE_TYPE (oprnd1), type))
|
|
return NULL;
|
|
|
|
/* So far so good. Since last_stmt was detected as a (summation) reduction,
|
|
we know that oprnd1 is the reduction variable (defined by a loop-header
|
|
phi), and oprnd0 is an ssa-name defined by a stmt in the loop body.
|
|
Left to check that oprnd0 is defined by a cast from type 'type' to type
|
|
'TYPE'. */
|
|
|
|
if (!type_conversion_p (oprnd0, last_stmt, true, &half_type, &stmt,
|
|
&promotion)
|
|
|| !promotion)
|
|
return NULL;
|
|
|
|
oprnd0 = gimple_assign_rhs1 (stmt);
|
|
*type_in = half_type;
|
|
*type_out = type;
|
|
|
|
/* Pattern detected. Create a stmt to be used to replace the pattern: */
|
|
var = vect_recog_temp_ssa_var (type, NULL);
|
|
pattern_stmt = gimple_build_assign (var, WIDEN_SUM_EXPR, oprnd0, oprnd1);
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"vect_recog_widen_sum_pattern: detected: ");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
|
|
}
|
|
|
|
return pattern_stmt;
|
|
}
|
|
|
|
|
|
/* Return TRUE if the operation in STMT can be performed on a smaller type.
|
|
|
|
Input:
|
|
STMT - a statement to check.
|
|
DEF - we support operations with two operands, one of which is constant.
|
|
The other operand can be defined by a demotion operation, or by a
|
|
previous statement in a sequence of over-promoted operations. In the
|
|
later case DEF is used to replace that operand. (It is defined by a
|
|
pattern statement we created for the previous statement in the
|
|
sequence).
|
|
|
|
Input/output:
|
|
NEW_TYPE - Output: a smaller type that we are trying to use. Input: if not
|
|
NULL, it's the type of DEF.
|
|
STMTS - additional pattern statements. If a pattern statement (type
|
|
conversion) is created in this function, its original statement is
|
|
added to STMTS.
|
|
|
|
Output:
|
|
OP0, OP1 - if the operation fits a smaller type, OP0 and OP1 are the new
|
|
operands to use in the new pattern statement for STMT (will be created
|
|
in vect_recog_over_widening_pattern ()).
|
|
NEW_DEF_STMT - in case DEF has to be promoted, we create two pattern
|
|
statements for STMT: the first one is a type promotion and the second
|
|
one is the operation itself. We return the type promotion statement
|
|
in NEW_DEF_STMT and further store it in STMT_VINFO_PATTERN_DEF_SEQ of
|
|
the second pattern statement. */
|
|
|
|
static bool
|
|
vect_operation_fits_smaller_type (gimple *stmt, tree def, tree *new_type,
|
|
tree *op0, tree *op1, gimple **new_def_stmt,
|
|
vec<gimple *> *stmts)
|
|
{
|
|
enum tree_code code;
|
|
tree const_oprnd, oprnd;
|
|
tree interm_type = NULL_TREE, half_type, new_oprnd, type;
|
|
gimple *def_stmt, *new_stmt;
|
|
bool first = false;
|
|
bool promotion;
|
|
|
|
*op0 = NULL_TREE;
|
|
*op1 = NULL_TREE;
|
|
*new_def_stmt = NULL;
|
|
|
|
if (!is_gimple_assign (stmt))
|
|
return false;
|
|
|
|
code = gimple_assign_rhs_code (stmt);
|
|
if (code != LSHIFT_EXPR && code != RSHIFT_EXPR
|
|
&& code != BIT_IOR_EXPR && code != BIT_XOR_EXPR && code != BIT_AND_EXPR)
|
|
return false;
|
|
|
|
oprnd = gimple_assign_rhs1 (stmt);
|
|
const_oprnd = gimple_assign_rhs2 (stmt);
|
|
type = gimple_expr_type (stmt);
|
|
|
|
if (TREE_CODE (oprnd) != SSA_NAME
|
|
|| TREE_CODE (const_oprnd) != INTEGER_CST)
|
|
return false;
|
|
|
|
/* If oprnd has other uses besides that in stmt we cannot mark it
|
|
as being part of a pattern only. */
|
|
if (!has_single_use (oprnd))
|
|
return false;
|
|
|
|
/* If we are in the middle of a sequence, we use DEF from a previous
|
|
statement. Otherwise, OPRND has to be a result of type promotion. */
|
|
if (*new_type)
|
|
{
|
|
half_type = *new_type;
|
|
oprnd = def;
|
|
}
|
|
else
|
|
{
|
|
first = true;
|
|
if (!type_conversion_p (oprnd, stmt, false, &half_type, &def_stmt,
|
|
&promotion)
|
|
|| !promotion
|
|
|| !vect_same_loop_or_bb_p (stmt, def_stmt))
|
|
return false;
|
|
}
|
|
|
|
/* Can we perform the operation on a smaller type? */
|
|
switch (code)
|
|
{
|
|
case BIT_IOR_EXPR:
|
|
case BIT_XOR_EXPR:
|
|
case BIT_AND_EXPR:
|
|
if (!int_fits_type_p (const_oprnd, half_type))
|
|
{
|
|
/* HALF_TYPE is not enough. Try a bigger type if possible. */
|
|
if (TYPE_PRECISION (type) < (TYPE_PRECISION (half_type) * 4))
|
|
return false;
|
|
|
|
interm_type = build_nonstandard_integer_type (
|
|
TYPE_PRECISION (half_type) * 2, TYPE_UNSIGNED (type));
|
|
if (!int_fits_type_p (const_oprnd, interm_type))
|
|
return false;
|
|
}
|
|
|
|
break;
|
|
|
|
case LSHIFT_EXPR:
|
|
/* Try intermediate type - HALF_TYPE is not enough for sure. */
|
|
if (TYPE_PRECISION (type) < (TYPE_PRECISION (half_type) * 4))
|
|
return false;
|
|
|
|
/* Check that HALF_TYPE size + shift amount <= INTERM_TYPE size.
|
|
(e.g., if the original value was char, the shift amount is at most 8
|
|
if we want to use short). */
|
|
if (compare_tree_int (const_oprnd, TYPE_PRECISION (half_type)) == 1)
|
|
return false;
|
|
|
|
interm_type = build_nonstandard_integer_type (
|
|
TYPE_PRECISION (half_type) * 2, TYPE_UNSIGNED (type));
|
|
|
|
if (!vect_supportable_shift (code, interm_type))
|
|
return false;
|
|
|
|
break;
|
|
|
|
case RSHIFT_EXPR:
|
|
if (vect_supportable_shift (code, half_type))
|
|
break;
|
|
|
|
/* Try intermediate type - HALF_TYPE is not supported. */
|
|
if (TYPE_PRECISION (type) < (TYPE_PRECISION (half_type) * 4))
|
|
return false;
|
|
|
|
interm_type = build_nonstandard_integer_type (
|
|
TYPE_PRECISION (half_type) * 2, TYPE_UNSIGNED (type));
|
|
|
|
if (!vect_supportable_shift (code, interm_type))
|
|
return false;
|
|
|
|
break;
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* There are four possible cases:
|
|
1. OPRND is defined by a type promotion (in that case FIRST is TRUE, it's
|
|
the first statement in the sequence)
|
|
a. The original, HALF_TYPE, is not enough - we replace the promotion
|
|
from HALF_TYPE to TYPE with a promotion to INTERM_TYPE.
|
|
b. HALF_TYPE is sufficient, OPRND is set as the RHS of the original
|
|
promotion.
|
|
2. OPRND is defined by a pattern statement we created.
|
|
a. Its type is not sufficient for the operation, we create a new stmt:
|
|
a type conversion for OPRND from HALF_TYPE to INTERM_TYPE. We store
|
|
this statement in NEW_DEF_STMT, and it is later put in
|
|
STMT_VINFO_PATTERN_DEF_SEQ of the pattern statement for STMT.
|
|
b. OPRND is good to use in the new statement. */
|
|
if (first)
|
|
{
|
|
if (interm_type)
|
|
{
|
|
/* Replace the original type conversion HALF_TYPE->TYPE with
|
|
HALF_TYPE->INTERM_TYPE. */
|
|
if (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (def_stmt)))
|
|
{
|
|
new_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (def_stmt));
|
|
/* Check if the already created pattern stmt is what we need. */
|
|
if (!is_gimple_assign (new_stmt)
|
|
|| !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (new_stmt))
|
|
|| TREE_TYPE (gimple_assign_lhs (new_stmt)) != interm_type)
|
|
return false;
|
|
|
|
stmts->safe_push (def_stmt);
|
|
oprnd = gimple_assign_lhs (new_stmt);
|
|
}
|
|
else
|
|
{
|
|
/* Create NEW_OPRND = (INTERM_TYPE) OPRND. */
|
|
oprnd = gimple_assign_rhs1 (def_stmt);
|
|
new_oprnd = make_ssa_name (interm_type);
|
|
new_stmt = gimple_build_assign (new_oprnd, NOP_EXPR, oprnd);
|
|
STMT_VINFO_RELATED_STMT (vinfo_for_stmt (def_stmt)) = new_stmt;
|
|
stmts->safe_push (def_stmt);
|
|
oprnd = new_oprnd;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Retrieve the operand before the type promotion. */
|
|
oprnd = gimple_assign_rhs1 (def_stmt);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (interm_type)
|
|
{
|
|
/* Create a type conversion HALF_TYPE->INTERM_TYPE. */
|
|
new_oprnd = make_ssa_name (interm_type);
|
|
new_stmt = gimple_build_assign (new_oprnd, NOP_EXPR, oprnd);
|
|
oprnd = new_oprnd;
|
|
*new_def_stmt = new_stmt;
|
|
}
|
|
|
|
/* Otherwise, OPRND is already set. */
|
|
}
|
|
|
|
if (interm_type)
|
|
*new_type = interm_type;
|
|
else
|
|
*new_type = half_type;
|
|
|
|
*op0 = oprnd;
|
|
*op1 = fold_convert (*new_type, const_oprnd);
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Try to find a statement or a sequence of statements that can be performed
|
|
on a smaller type:
|
|
|
|
type x_t;
|
|
TYPE x_T, res0_T, res1_T;
|
|
loop:
|
|
S1 x_t = *p;
|
|
S2 x_T = (TYPE) x_t;
|
|
S3 res0_T = op (x_T, C0);
|
|
S4 res1_T = op (res0_T, C1);
|
|
S5 ... = () res1_T; - type demotion
|
|
|
|
where type 'TYPE' is at least double the size of type 'type', C0 and C1 are
|
|
constants.
|
|
Check if S3 and S4 can be done on a smaller type than 'TYPE', it can either
|
|
be 'type' or some intermediate type. For now, we expect S5 to be a type
|
|
demotion operation. We also check that S3 and S4 have only one use. */
|
|
|
|
static gimple *
|
|
vect_recog_over_widening_pattern (vec<gimple *> *stmts,
|
|
tree *type_in, tree *type_out)
|
|
{
|
|
gimple *stmt = stmts->pop ();
|
|
gimple *pattern_stmt = NULL, *new_def_stmt, *prev_stmt = NULL,
|
|
*use_stmt = NULL;
|
|
tree op0, op1, vectype = NULL_TREE, use_lhs, use_type;
|
|
tree var = NULL_TREE, new_type = NULL_TREE, new_oprnd;
|
|
bool first;
|
|
tree type = NULL;
|
|
|
|
first = true;
|
|
while (1)
|
|
{
|
|
if (!vinfo_for_stmt (stmt)
|
|
|| STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (stmt)))
|
|
return NULL;
|
|
|
|
new_def_stmt = NULL;
|
|
if (!vect_operation_fits_smaller_type (stmt, var, &new_type,
|
|
&op0, &op1, &new_def_stmt,
|
|
stmts))
|
|
{
|
|
if (first)
|
|
return NULL;
|
|
else
|
|
break;
|
|
}
|
|
|
|
/* STMT can be performed on a smaller type. Check its uses. */
|
|
use_stmt = vect_single_imm_use (stmt);
|
|
if (!use_stmt || !is_gimple_assign (use_stmt))
|
|
return NULL;
|
|
|
|
/* Create pattern statement for STMT. */
|
|
vectype = get_vectype_for_scalar_type (new_type);
|
|
if (!vectype)
|
|
return NULL;
|
|
|
|
/* We want to collect all the statements for which we create pattern
|
|
statetments, except for the case when the last statement in the
|
|
sequence doesn't have a corresponding pattern statement. In such
|
|
case we associate the last pattern statement with the last statement
|
|
in the sequence. Therefore, we only add the original statement to
|
|
the list if we know that it is not the last. */
|
|
if (prev_stmt)
|
|
stmts->safe_push (prev_stmt);
|
|
|
|
var = vect_recog_temp_ssa_var (new_type, NULL);
|
|
pattern_stmt
|
|
= gimple_build_assign (var, gimple_assign_rhs_code (stmt), op0, op1);
|
|
STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt)) = pattern_stmt;
|
|
new_pattern_def_seq (vinfo_for_stmt (stmt), new_def_stmt);
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"created pattern stmt: ");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
|
|
}
|
|
|
|
type = gimple_expr_type (stmt);
|
|
prev_stmt = stmt;
|
|
stmt = use_stmt;
|
|
|
|
first = false;
|
|
}
|
|
|
|
/* We got a sequence. We expect it to end with a type demotion operation.
|
|
Otherwise, we quit (for now). There are three possible cases: the
|
|
conversion is to NEW_TYPE (we don't do anything), the conversion is to
|
|
a type bigger than NEW_TYPE and/or the signedness of USE_TYPE and
|
|
NEW_TYPE differs (we create a new conversion statement). */
|
|
if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (use_stmt)))
|
|
{
|
|
use_lhs = gimple_assign_lhs (use_stmt);
|
|
use_type = TREE_TYPE (use_lhs);
|
|
/* Support only type demotion or signedess change. */
|
|
if (!INTEGRAL_TYPE_P (use_type)
|
|
|| TYPE_PRECISION (type) <= TYPE_PRECISION (use_type))
|
|
return NULL;
|
|
|
|
/* Check that NEW_TYPE is not bigger than the conversion result. */
|
|
if (TYPE_PRECISION (new_type) > TYPE_PRECISION (use_type))
|
|
return NULL;
|
|
|
|
if (TYPE_UNSIGNED (new_type) != TYPE_UNSIGNED (use_type)
|
|
|| TYPE_PRECISION (new_type) != TYPE_PRECISION (use_type))
|
|
{
|
|
/* Create NEW_TYPE->USE_TYPE conversion. */
|
|
new_oprnd = make_ssa_name (use_type);
|
|
pattern_stmt = gimple_build_assign (new_oprnd, NOP_EXPR, var);
|
|
STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use_stmt)) = pattern_stmt;
|
|
|
|
*type_in = get_vectype_for_scalar_type (new_type);
|
|
*type_out = get_vectype_for_scalar_type (use_type);
|
|
|
|
/* We created a pattern statement for the last statement in the
|
|
sequence, so we don't need to associate it with the pattern
|
|
statement created for PREV_STMT. Therefore, we add PREV_STMT
|
|
to the list in order to mark it later in vect_pattern_recog_1. */
|
|
if (prev_stmt)
|
|
stmts->safe_push (prev_stmt);
|
|
}
|
|
else
|
|
{
|
|
if (prev_stmt)
|
|
STMT_VINFO_PATTERN_DEF_SEQ (vinfo_for_stmt (use_stmt))
|
|
= STMT_VINFO_PATTERN_DEF_SEQ (vinfo_for_stmt (prev_stmt));
|
|
|
|
*type_in = vectype;
|
|
*type_out = NULL_TREE;
|
|
}
|
|
|
|
stmts->safe_push (use_stmt);
|
|
}
|
|
else
|
|
/* TODO: support general case, create a conversion to the correct type. */
|
|
return NULL;
|
|
|
|
/* Pattern detected. */
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"vect_recog_over_widening_pattern: detected: ");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
|
|
}
|
|
|
|
return pattern_stmt;
|
|
}
|
|
|
|
/* Detect widening shift pattern:
|
|
|
|
type a_t;
|
|
TYPE a_T, res_T;
|
|
|
|
S1 a_t = ;
|
|
S2 a_T = (TYPE) a_t;
|
|
S3 res_T = a_T << CONST;
|
|
|
|
where type 'TYPE' is at least double the size of type 'type'.
|
|
|
|
Also detect cases where the shift result is immediately converted
|
|
to another type 'result_type' that is no larger in size than 'TYPE'.
|
|
In those cases we perform a widen-shift that directly results in
|
|
'result_type', to avoid a possible over-widening situation:
|
|
|
|
type a_t;
|
|
TYPE a_T, res_T;
|
|
result_type res_result;
|
|
|
|
S1 a_t = ;
|
|
S2 a_T = (TYPE) a_t;
|
|
S3 res_T = a_T << CONST;
|
|
S4 res_result = (result_type) res_T;
|
|
'--> res_result' = a_t w<< CONST;
|
|
|
|
And a case when 'TYPE' is 4 times bigger than 'type'. In that case we
|
|
create an additional pattern stmt for S2 to create a variable of an
|
|
intermediate type, and perform widen-shift on the intermediate type:
|
|
|
|
type a_t;
|
|
interm_type a_it;
|
|
TYPE a_T, res_T, res_T';
|
|
|
|
S1 a_t = ;
|
|
S2 a_T = (TYPE) a_t;
|
|
'--> a_it = (interm_type) a_t;
|
|
S3 res_T = a_T << CONST;
|
|
'--> res_T' = a_it <<* CONST;
|
|
|
|
Input/Output:
|
|
|
|
* STMTS: Contains a stmt from which the pattern search begins.
|
|
In case of unsigned widen-shift, the original stmt (S3) is replaced with S4
|
|
in STMTS. When an intermediate type is used and a pattern statement is
|
|
created for S2, we also put S2 here (before S3).
|
|
|
|
Output:
|
|
|
|
* TYPE_IN: The type of the input arguments to the pattern.
|
|
|
|
* TYPE_OUT: The type of the output of this pattern.
|
|
|
|
* Return value: A new stmt that will be used to replace the sequence of
|
|
stmts that constitute the pattern. In this case it will be:
|
|
WIDEN_LSHIFT_EXPR <a_t, CONST>. */
|
|
|
|
static gimple *
|
|
vect_recog_widen_shift_pattern (vec<gimple *> *stmts,
|
|
tree *type_in, tree *type_out)
|
|
{
|
|
gimple *last_stmt = stmts->pop ();
|
|
gimple *def_stmt0;
|
|
tree oprnd0, oprnd1;
|
|
tree type, half_type0;
|
|
gimple *pattern_stmt;
|
|
tree vectype, vectype_out = NULL_TREE;
|
|
tree var;
|
|
enum tree_code dummy_code;
|
|
int dummy_int;
|
|
vec<tree> dummy_vec;
|
|
gimple *use_stmt;
|
|
bool promotion;
|
|
|
|
if (!is_gimple_assign (last_stmt) || !vinfo_for_stmt (last_stmt))
|
|
return NULL;
|
|
|
|
if (STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (last_stmt)))
|
|
return NULL;
|
|
|
|
if (gimple_assign_rhs_code (last_stmt) != LSHIFT_EXPR)
|
|
return NULL;
|
|
|
|
oprnd0 = gimple_assign_rhs1 (last_stmt);
|
|
oprnd1 = gimple_assign_rhs2 (last_stmt);
|
|
if (TREE_CODE (oprnd0) != SSA_NAME || TREE_CODE (oprnd1) != INTEGER_CST)
|
|
return NULL;
|
|
|
|
/* Check operand 0: it has to be defined by a type promotion. */
|
|
if (!type_conversion_p (oprnd0, last_stmt, false, &half_type0, &def_stmt0,
|
|
&promotion)
|
|
|| !promotion)
|
|
return NULL;
|
|
|
|
/* Check operand 1: has to be positive. We check that it fits the type
|
|
in vect_handle_widen_op_by_const (). */
|
|
if (tree_int_cst_compare (oprnd1, size_zero_node) <= 0)
|
|
return NULL;
|
|
|
|
oprnd0 = gimple_assign_rhs1 (def_stmt0);
|
|
type = gimple_expr_type (last_stmt);
|
|
|
|
/* Check for subsequent conversion to another type. */
|
|
use_stmt = vect_single_imm_use (last_stmt);
|
|
if (use_stmt && is_gimple_assign (use_stmt)
|
|
&& CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (use_stmt))
|
|
&& !STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (use_stmt)))
|
|
{
|
|
tree use_lhs = gimple_assign_lhs (use_stmt);
|
|
tree use_type = TREE_TYPE (use_lhs);
|
|
|
|
if (INTEGRAL_TYPE_P (use_type)
|
|
&& TYPE_PRECISION (use_type) <= TYPE_PRECISION (type))
|
|
{
|
|
last_stmt = use_stmt;
|
|
type = use_type;
|
|
}
|
|
}
|
|
|
|
/* Check if this a widening operation. */
|
|
gimple *wstmt = NULL;
|
|
if (!vect_handle_widen_op_by_const (last_stmt, LSHIFT_EXPR, oprnd1,
|
|
&oprnd0, &wstmt,
|
|
type, &half_type0, def_stmt0))
|
|
return NULL;
|
|
|
|
/* Pattern detected. */
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"vect_recog_widen_shift_pattern: detected:\n");
|
|
|
|
/* Check target support. */
|
|
vectype = get_vectype_for_scalar_type (half_type0);
|
|
vectype_out = get_vectype_for_scalar_type (type);
|
|
|
|
if (!vectype
|
|
|| !vectype_out
|
|
|| !supportable_widening_operation (WIDEN_LSHIFT_EXPR, last_stmt,
|
|
vectype_out, vectype,
|
|
&dummy_code, &dummy_code,
|
|
&dummy_int, &dummy_vec))
|
|
return NULL;
|
|
|
|
*type_in = vectype;
|
|
*type_out = vectype_out;
|
|
|
|
/* Pattern supported. Create a stmt to be used to replace the pattern. */
|
|
var = vect_recog_temp_ssa_var (type, NULL);
|
|
pattern_stmt =
|
|
gimple_build_assign (var, WIDEN_LSHIFT_EXPR, oprnd0, oprnd1);
|
|
if (wstmt)
|
|
{
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
|
|
new_pattern_def_seq (stmt_vinfo, wstmt);
|
|
stmt_vec_info new_stmt_info
|
|
= new_stmt_vec_info (wstmt, stmt_vinfo->vinfo);
|
|
set_vinfo_for_stmt (wstmt, new_stmt_info);
|
|
STMT_VINFO_VECTYPE (new_stmt_info) = vectype;
|
|
}
|
|
|
|
if (dump_enabled_p ())
|
|
dump_gimple_stmt_loc (MSG_NOTE, vect_location, TDF_SLIM, pattern_stmt, 0);
|
|
|
|
stmts->safe_push (last_stmt);
|
|
return pattern_stmt;
|
|
}
|
|
|
|
/* Detect a rotate pattern wouldn't be otherwise vectorized:
|
|
|
|
type a_t, b_t, c_t;
|
|
|
|
S0 a_t = b_t r<< c_t;
|
|
|
|
Input/Output:
|
|
|
|
* STMTS: Contains a stmt from which the pattern search begins,
|
|
i.e. the shift/rotate stmt. The original stmt (S0) is replaced
|
|
with a sequence:
|
|
|
|
S1 d_t = -c_t;
|
|
S2 e_t = d_t & (B - 1);
|
|
S3 f_t = b_t << c_t;
|
|
S4 g_t = b_t >> e_t;
|
|
S0 a_t = f_t | g_t;
|
|
|
|
where B is element bitsize of type.
|
|
|
|
Output:
|
|
|
|
* TYPE_IN: The type of the input arguments to the pattern.
|
|
|
|
* TYPE_OUT: The type of the output of this pattern.
|
|
|
|
* Return value: A new stmt that will be used to replace the rotate
|
|
S0 stmt. */
|
|
|
|
static gimple *
|
|
vect_recog_rotate_pattern (vec<gimple *> *stmts, tree *type_in, tree *type_out)
|
|
{
|
|
gimple *last_stmt = stmts->pop ();
|
|
tree oprnd0, oprnd1, lhs, var, var1, var2, vectype, type, stype, def, def2;
|
|
gimple *pattern_stmt, *def_stmt;
|
|
enum tree_code rhs_code;
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
|
|
vec_info *vinfo = stmt_vinfo->vinfo;
|
|
enum vect_def_type dt;
|
|
optab optab1, optab2;
|
|
edge ext_def = NULL;
|
|
|
|
if (!is_gimple_assign (last_stmt))
|
|
return NULL;
|
|
|
|
rhs_code = gimple_assign_rhs_code (last_stmt);
|
|
switch (rhs_code)
|
|
{
|
|
case LROTATE_EXPR:
|
|
case RROTATE_EXPR:
|
|
break;
|
|
default:
|
|
return NULL;
|
|
}
|
|
|
|
if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
|
|
return NULL;
|
|
|
|
lhs = gimple_assign_lhs (last_stmt);
|
|
oprnd0 = gimple_assign_rhs1 (last_stmt);
|
|
type = TREE_TYPE (oprnd0);
|
|
oprnd1 = gimple_assign_rhs2 (last_stmt);
|
|
if (TREE_CODE (oprnd0) != SSA_NAME
|
|
|| TYPE_PRECISION (TREE_TYPE (lhs)) != TYPE_PRECISION (type)
|
|
|| !INTEGRAL_TYPE_P (type)
|
|
|| !TYPE_UNSIGNED (type))
|
|
return NULL;
|
|
|
|
if (!vect_is_simple_use (oprnd1, vinfo, &def_stmt, &dt))
|
|
return NULL;
|
|
|
|
if (dt != vect_internal_def
|
|
&& dt != vect_constant_def
|
|
&& dt != vect_external_def)
|
|
return NULL;
|
|
|
|
vectype = get_vectype_for_scalar_type (type);
|
|
if (vectype == NULL_TREE)
|
|
return NULL;
|
|
|
|
/* If vector/vector or vector/scalar rotate is supported by the target,
|
|
don't do anything here. */
|
|
optab1 = optab_for_tree_code (rhs_code, vectype, optab_vector);
|
|
if (optab1
|
|
&& optab_handler (optab1, TYPE_MODE (vectype)) != CODE_FOR_nothing)
|
|
return NULL;
|
|
|
|
if (is_a <bb_vec_info> (vinfo) || dt != vect_internal_def)
|
|
{
|
|
optab2 = optab_for_tree_code (rhs_code, vectype, optab_scalar);
|
|
if (optab2
|
|
&& optab_handler (optab2, TYPE_MODE (vectype)) != CODE_FOR_nothing)
|
|
return NULL;
|
|
}
|
|
|
|
/* If vector/vector or vector/scalar shifts aren't supported by the target,
|
|
don't do anything here either. */
|
|
optab1 = optab_for_tree_code (LSHIFT_EXPR, vectype, optab_vector);
|
|
optab2 = optab_for_tree_code (RSHIFT_EXPR, vectype, optab_vector);
|
|
if (!optab1
|
|
|| optab_handler (optab1, TYPE_MODE (vectype)) == CODE_FOR_nothing
|
|
|| !optab2
|
|
|| optab_handler (optab2, TYPE_MODE (vectype)) == CODE_FOR_nothing)
|
|
{
|
|
if (! is_a <bb_vec_info> (vinfo) && dt == vect_internal_def)
|
|
return NULL;
|
|
optab1 = optab_for_tree_code (LSHIFT_EXPR, vectype, optab_scalar);
|
|
optab2 = optab_for_tree_code (RSHIFT_EXPR, vectype, optab_scalar);
|
|
if (!optab1
|
|
|| optab_handler (optab1, TYPE_MODE (vectype)) == CODE_FOR_nothing
|
|
|| !optab2
|
|
|| optab_handler (optab2, TYPE_MODE (vectype)) == CODE_FOR_nothing)
|
|
return NULL;
|
|
}
|
|
|
|
*type_in = vectype;
|
|
*type_out = vectype;
|
|
if (*type_in == NULL_TREE)
|
|
return NULL;
|
|
|
|
if (dt == vect_external_def
|
|
&& TREE_CODE (oprnd1) == SSA_NAME
|
|
&& is_a <loop_vec_info> (vinfo))
|
|
{
|
|
struct loop *loop = as_a <loop_vec_info> (vinfo)->loop;
|
|
ext_def = loop_preheader_edge (loop);
|
|
if (!SSA_NAME_IS_DEFAULT_DEF (oprnd1))
|
|
{
|
|
basic_block bb = gimple_bb (SSA_NAME_DEF_STMT (oprnd1));
|
|
if (bb == NULL
|
|
|| !dominated_by_p (CDI_DOMINATORS, ext_def->dest, bb))
|
|
ext_def = NULL;
|
|
}
|
|
}
|
|
|
|
def = NULL_TREE;
|
|
if (TREE_CODE (oprnd1) == INTEGER_CST
|
|
|| TYPE_MODE (TREE_TYPE (oprnd1)) == TYPE_MODE (type))
|
|
def = oprnd1;
|
|
else if (def_stmt && gimple_assign_cast_p (def_stmt))
|
|
{
|
|
tree rhs1 = gimple_assign_rhs1 (def_stmt);
|
|
if (TYPE_MODE (TREE_TYPE (rhs1)) == TYPE_MODE (type)
|
|
&& TYPE_PRECISION (TREE_TYPE (rhs1))
|
|
== TYPE_PRECISION (type))
|
|
def = rhs1;
|
|
}
|
|
|
|
STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo) = NULL;
|
|
if (def == NULL_TREE)
|
|
{
|
|
def = vect_recog_temp_ssa_var (type, NULL);
|
|
def_stmt = gimple_build_assign (def, NOP_EXPR, oprnd1);
|
|
if (ext_def)
|
|
{
|
|
basic_block new_bb
|
|
= gsi_insert_on_edge_immediate (ext_def, def_stmt);
|
|
gcc_assert (!new_bb);
|
|
}
|
|
else
|
|
append_pattern_def_seq (stmt_vinfo, def_stmt);
|
|
}
|
|
stype = TREE_TYPE (def);
|
|
|
|
if (TREE_CODE (def) == INTEGER_CST)
|
|
{
|
|
if (!tree_fits_uhwi_p (def)
|
|
|| tree_to_uhwi (def) >= GET_MODE_PRECISION (TYPE_MODE (type))
|
|
|| integer_zerop (def))
|
|
return NULL;
|
|
def2 = build_int_cst (stype,
|
|
GET_MODE_PRECISION (TYPE_MODE (type))
|
|
- tree_to_uhwi (def));
|
|
}
|
|
else
|
|
{
|
|
tree vecstype = get_vectype_for_scalar_type (stype);
|
|
stmt_vec_info def_stmt_vinfo;
|
|
|
|
if (vecstype == NULL_TREE)
|
|
return NULL;
|
|
def2 = vect_recog_temp_ssa_var (stype, NULL);
|
|
def_stmt = gimple_build_assign (def2, NEGATE_EXPR, def);
|
|
if (ext_def)
|
|
{
|
|
basic_block new_bb
|
|
= gsi_insert_on_edge_immediate (ext_def, def_stmt);
|
|
gcc_assert (!new_bb);
|
|
}
|
|
else
|
|
{
|
|
def_stmt_vinfo = new_stmt_vec_info (def_stmt, vinfo);
|
|
set_vinfo_for_stmt (def_stmt, def_stmt_vinfo);
|
|
STMT_VINFO_VECTYPE (def_stmt_vinfo) = vecstype;
|
|
append_pattern_def_seq (stmt_vinfo, def_stmt);
|
|
}
|
|
|
|
def2 = vect_recog_temp_ssa_var (stype, NULL);
|
|
tree mask
|
|
= build_int_cst (stype, GET_MODE_PRECISION (TYPE_MODE (stype)) - 1);
|
|
def_stmt = gimple_build_assign (def2, BIT_AND_EXPR,
|
|
gimple_assign_lhs (def_stmt), mask);
|
|
if (ext_def)
|
|
{
|
|
basic_block new_bb
|
|
= gsi_insert_on_edge_immediate (ext_def, def_stmt);
|
|
gcc_assert (!new_bb);
|
|
}
|
|
else
|
|
{
|
|
def_stmt_vinfo = new_stmt_vec_info (def_stmt, vinfo);
|
|
set_vinfo_for_stmt (def_stmt, def_stmt_vinfo);
|
|
STMT_VINFO_VECTYPE (def_stmt_vinfo) = vecstype;
|
|
append_pattern_def_seq (stmt_vinfo, def_stmt);
|
|
}
|
|
}
|
|
|
|
var1 = vect_recog_temp_ssa_var (type, NULL);
|
|
def_stmt = gimple_build_assign (var1, rhs_code == LROTATE_EXPR
|
|
? LSHIFT_EXPR : RSHIFT_EXPR,
|
|
oprnd0, def);
|
|
append_pattern_def_seq (stmt_vinfo, def_stmt);
|
|
|
|
var2 = vect_recog_temp_ssa_var (type, NULL);
|
|
def_stmt = gimple_build_assign (var2, rhs_code == LROTATE_EXPR
|
|
? RSHIFT_EXPR : LSHIFT_EXPR,
|
|
oprnd0, def2);
|
|
append_pattern_def_seq (stmt_vinfo, def_stmt);
|
|
|
|
/* Pattern detected. */
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"vect_recog_rotate_pattern: detected:\n");
|
|
|
|
/* Pattern supported. Create a stmt to be used to replace the pattern. */
|
|
var = vect_recog_temp_ssa_var (type, NULL);
|
|
pattern_stmt = gimple_build_assign (var, BIT_IOR_EXPR, var1, var2);
|
|
|
|
if (dump_enabled_p ())
|
|
dump_gimple_stmt_loc (MSG_NOTE, vect_location, TDF_SLIM, pattern_stmt, 0);
|
|
|
|
stmts->safe_push (last_stmt);
|
|
return pattern_stmt;
|
|
}
|
|
|
|
/* Detect a vector by vector shift pattern that wouldn't be otherwise
|
|
vectorized:
|
|
|
|
type a_t;
|
|
TYPE b_T, res_T;
|
|
|
|
S1 a_t = ;
|
|
S2 b_T = ;
|
|
S3 res_T = b_T op a_t;
|
|
|
|
where type 'TYPE' is a type with different size than 'type',
|
|
and op is <<, >> or rotate.
|
|
|
|
Also detect cases:
|
|
|
|
type a_t;
|
|
TYPE b_T, c_T, res_T;
|
|
|
|
S0 c_T = ;
|
|
S1 a_t = (type) c_T;
|
|
S2 b_T = ;
|
|
S3 res_T = b_T op a_t;
|
|
|
|
Input/Output:
|
|
|
|
* STMTS: Contains a stmt from which the pattern search begins,
|
|
i.e. the shift/rotate stmt. The original stmt (S3) is replaced
|
|
with a shift/rotate which has same type on both operands, in the
|
|
second case just b_T op c_T, in the first case with added cast
|
|
from a_t to c_T in STMT_VINFO_PATTERN_DEF_SEQ.
|
|
|
|
Output:
|
|
|
|
* TYPE_IN: The type of the input arguments to the pattern.
|
|
|
|
* TYPE_OUT: The type of the output of this pattern.
|
|
|
|
* Return value: A new stmt that will be used to replace the shift/rotate
|
|
S3 stmt. */
|
|
|
|
static gimple *
|
|
vect_recog_vector_vector_shift_pattern (vec<gimple *> *stmts,
|
|
tree *type_in, tree *type_out)
|
|
{
|
|
gimple *last_stmt = stmts->pop ();
|
|
tree oprnd0, oprnd1, lhs, var;
|
|
gimple *pattern_stmt, *def_stmt;
|
|
enum tree_code rhs_code;
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
|
|
vec_info *vinfo = stmt_vinfo->vinfo;
|
|
enum vect_def_type dt;
|
|
|
|
if (!is_gimple_assign (last_stmt))
|
|
return NULL;
|
|
|
|
rhs_code = gimple_assign_rhs_code (last_stmt);
|
|
switch (rhs_code)
|
|
{
|
|
case LSHIFT_EXPR:
|
|
case RSHIFT_EXPR:
|
|
case LROTATE_EXPR:
|
|
case RROTATE_EXPR:
|
|
break;
|
|
default:
|
|
return NULL;
|
|
}
|
|
|
|
if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
|
|
return NULL;
|
|
|
|
lhs = gimple_assign_lhs (last_stmt);
|
|
oprnd0 = gimple_assign_rhs1 (last_stmt);
|
|
oprnd1 = gimple_assign_rhs2 (last_stmt);
|
|
if (TREE_CODE (oprnd0) != SSA_NAME
|
|
|| TREE_CODE (oprnd1) != SSA_NAME
|
|
|| TYPE_MODE (TREE_TYPE (oprnd0)) == TYPE_MODE (TREE_TYPE (oprnd1))
|
|
|| TYPE_PRECISION (TREE_TYPE (oprnd1))
|
|
!= GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (oprnd1)))
|
|
|| TYPE_PRECISION (TREE_TYPE (lhs))
|
|
!= TYPE_PRECISION (TREE_TYPE (oprnd0)))
|
|
return NULL;
|
|
|
|
if (!vect_is_simple_use (oprnd1, vinfo, &def_stmt, &dt))
|
|
return NULL;
|
|
|
|
if (dt != vect_internal_def)
|
|
return NULL;
|
|
|
|
*type_in = get_vectype_for_scalar_type (TREE_TYPE (oprnd0));
|
|
*type_out = *type_in;
|
|
if (*type_in == NULL_TREE)
|
|
return NULL;
|
|
|
|
tree def = NULL_TREE;
|
|
stmt_vec_info def_vinfo = vinfo_for_stmt (def_stmt);
|
|
if (!STMT_VINFO_IN_PATTERN_P (def_vinfo) && gimple_assign_cast_p (def_stmt))
|
|
{
|
|
tree rhs1 = gimple_assign_rhs1 (def_stmt);
|
|
if (TYPE_MODE (TREE_TYPE (rhs1)) == TYPE_MODE (TREE_TYPE (oprnd0))
|
|
&& TYPE_PRECISION (TREE_TYPE (rhs1))
|
|
== TYPE_PRECISION (TREE_TYPE (oprnd0)))
|
|
{
|
|
if (TYPE_PRECISION (TREE_TYPE (oprnd1))
|
|
>= TYPE_PRECISION (TREE_TYPE (rhs1)))
|
|
def = rhs1;
|
|
else
|
|
{
|
|
tree mask
|
|
= build_low_bits_mask (TREE_TYPE (rhs1),
|
|
TYPE_PRECISION (TREE_TYPE (oprnd1)));
|
|
def = vect_recog_temp_ssa_var (TREE_TYPE (rhs1), NULL);
|
|
def_stmt = gimple_build_assign (def, BIT_AND_EXPR, rhs1, mask);
|
|
new_pattern_def_seq (stmt_vinfo, def_stmt);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (def == NULL_TREE)
|
|
{
|
|
def = vect_recog_temp_ssa_var (TREE_TYPE (oprnd0), NULL);
|
|
def_stmt = gimple_build_assign (def, NOP_EXPR, oprnd1);
|
|
new_pattern_def_seq (stmt_vinfo, def_stmt);
|
|
}
|
|
|
|
/* Pattern detected. */
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"vect_recog_vector_vector_shift_pattern: detected:\n");
|
|
|
|
/* Pattern supported. Create a stmt to be used to replace the pattern. */
|
|
var = vect_recog_temp_ssa_var (TREE_TYPE (oprnd0), NULL);
|
|
pattern_stmt = gimple_build_assign (var, rhs_code, oprnd0, def);
|
|
|
|
if (dump_enabled_p ())
|
|
dump_gimple_stmt_loc (MSG_NOTE, vect_location, TDF_SLIM, pattern_stmt, 0);
|
|
|
|
stmts->safe_push (last_stmt);
|
|
return pattern_stmt;
|
|
}
|
|
|
|
/* Return true iff the target has a vector optab implementing the operation
|
|
CODE on type VECTYPE. */
|
|
|
|
static bool
|
|
target_has_vecop_for_code (tree_code code, tree vectype)
|
|
{
|
|
optab voptab = optab_for_tree_code (code, vectype, optab_vector);
|
|
return voptab
|
|
&& optab_handler (voptab, TYPE_MODE (vectype)) != CODE_FOR_nothing;
|
|
}
|
|
|
|
/* Verify that the target has optabs of VECTYPE to perform all the steps
|
|
needed by the multiplication-by-immediate synthesis algorithm described by
|
|
ALG and VAR. If SYNTH_SHIFT_P is true ensure that vector addition is
|
|
present. Return true iff the target supports all the steps. */
|
|
|
|
static bool
|
|
target_supports_mult_synth_alg (struct algorithm *alg, mult_variant var,
|
|
tree vectype, bool synth_shift_p)
|
|
{
|
|
if (alg->op[0] != alg_zero && alg->op[0] != alg_m)
|
|
return false;
|
|
|
|
bool supports_vminus = target_has_vecop_for_code (MINUS_EXPR, vectype);
|
|
bool supports_vplus = target_has_vecop_for_code (PLUS_EXPR, vectype);
|
|
|
|
if (var == negate_variant
|
|
&& !target_has_vecop_for_code (NEGATE_EXPR, vectype))
|
|
return false;
|
|
|
|
/* If we must synthesize shifts with additions make sure that vector
|
|
addition is available. */
|
|
if ((var == add_variant || synth_shift_p) && !supports_vplus)
|
|
return false;
|
|
|
|
for (int i = 1; i < alg->ops; i++)
|
|
{
|
|
switch (alg->op[i])
|
|
{
|
|
case alg_shift:
|
|
break;
|
|
case alg_add_t_m2:
|
|
case alg_add_t2_m:
|
|
case alg_add_factor:
|
|
if (!supports_vplus)
|
|
return false;
|
|
break;
|
|
case alg_sub_t_m2:
|
|
case alg_sub_t2_m:
|
|
case alg_sub_factor:
|
|
if (!supports_vminus)
|
|
return false;
|
|
break;
|
|
case alg_unknown:
|
|
case alg_m:
|
|
case alg_zero:
|
|
case alg_impossible:
|
|
return false;
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Synthesize a left shift of OP by AMNT bits using a series of additions and
|
|
putting the final result in DEST. Append all statements but the last into
|
|
VINFO. Return the last statement. */
|
|
|
|
static gimple *
|
|
synth_lshift_by_additions (tree dest, tree op, HOST_WIDE_INT amnt,
|
|
stmt_vec_info vinfo)
|
|
{
|
|
HOST_WIDE_INT i;
|
|
tree itype = TREE_TYPE (op);
|
|
tree prev_res = op;
|
|
gcc_assert (amnt >= 0);
|
|
for (i = 0; i < amnt; i++)
|
|
{
|
|
tree tmp_var = (i < amnt - 1) ? vect_recog_temp_ssa_var (itype, NULL)
|
|
: dest;
|
|
gimple *stmt
|
|
= gimple_build_assign (tmp_var, PLUS_EXPR, prev_res, prev_res);
|
|
prev_res = tmp_var;
|
|
if (i < amnt - 1)
|
|
append_pattern_def_seq (vinfo, stmt);
|
|
else
|
|
return stmt;
|
|
}
|
|
gcc_unreachable ();
|
|
return NULL;
|
|
}
|
|
|
|
/* Helper for vect_synth_mult_by_constant. Apply a binary operation
|
|
CODE to operands OP1 and OP2, creating a new temporary SSA var in
|
|
the process if necessary. Append the resulting assignment statements
|
|
to the sequence in STMT_VINFO. Return the SSA variable that holds the
|
|
result of the binary operation. If SYNTH_SHIFT_P is true synthesize
|
|
left shifts using additions. */
|
|
|
|
static tree
|
|
apply_binop_and_append_stmt (tree_code code, tree op1, tree op2,
|
|
stmt_vec_info stmt_vinfo, bool synth_shift_p)
|
|
{
|
|
if (integer_zerop (op2)
|
|
&& (code == LSHIFT_EXPR
|
|
|| code == PLUS_EXPR))
|
|
{
|
|
gcc_assert (TREE_CODE (op1) == SSA_NAME);
|
|
return op1;
|
|
}
|
|
|
|
gimple *stmt;
|
|
tree itype = TREE_TYPE (op1);
|
|
tree tmp_var = vect_recog_temp_ssa_var (itype, NULL);
|
|
|
|
if (code == LSHIFT_EXPR
|
|
&& synth_shift_p)
|
|
{
|
|
stmt = synth_lshift_by_additions (tmp_var, op1, TREE_INT_CST_LOW (op2),
|
|
stmt_vinfo);
|
|
append_pattern_def_seq (stmt_vinfo, stmt);
|
|
return tmp_var;
|
|
}
|
|
|
|
stmt = gimple_build_assign (tmp_var, code, op1, op2);
|
|
append_pattern_def_seq (stmt_vinfo, stmt);
|
|
return tmp_var;
|
|
}
|
|
|
|
/* Synthesize a multiplication of OP by an INTEGER_CST VAL using shifts
|
|
and simple arithmetic operations to be vectorized. Record the statements
|
|
produced in STMT_VINFO and return the last statement in the sequence or
|
|
NULL if it's not possible to synthesize such a multiplication.
|
|
This function mirrors the behavior of expand_mult_const in expmed.c but
|
|
works on tree-ssa form. */
|
|
|
|
static gimple *
|
|
vect_synth_mult_by_constant (tree op, tree val,
|
|
stmt_vec_info stmt_vinfo)
|
|
{
|
|
tree itype = TREE_TYPE (op);
|
|
machine_mode mode = TYPE_MODE (itype);
|
|
struct algorithm alg;
|
|
mult_variant variant;
|
|
if (!tree_fits_shwi_p (val))
|
|
return NULL;
|
|
|
|
/* Multiplication synthesis by shifts, adds and subs can introduce
|
|
signed overflow where the original operation didn't. Perform the
|
|
operations on an unsigned type and cast back to avoid this.
|
|
In the future we may want to relax this for synthesis algorithms
|
|
that we can prove do not cause unexpected overflow. */
|
|
bool cast_to_unsigned_p = !TYPE_OVERFLOW_WRAPS (itype);
|
|
|
|
tree multtype = cast_to_unsigned_p ? unsigned_type_for (itype) : itype;
|
|
|
|
/* Targets that don't support vector shifts but support vector additions
|
|
can synthesize shifts that way. */
|
|
bool synth_shift_p = !vect_supportable_shift (LSHIFT_EXPR, multtype);
|
|
|
|
HOST_WIDE_INT hwval = tree_to_shwi (val);
|
|
/* Use MAX_COST here as we don't want to limit the sequence on rtx costs.
|
|
The vectorizer's benefit analysis will decide whether it's beneficial
|
|
to do this. */
|
|
bool possible = choose_mult_variant (mode, hwval, &alg,
|
|
&variant, MAX_COST);
|
|
if (!possible)
|
|
return NULL;
|
|
|
|
tree vectype = get_vectype_for_scalar_type (multtype);
|
|
|
|
if (!vectype
|
|
|| !target_supports_mult_synth_alg (&alg, variant,
|
|
vectype, synth_shift_p))
|
|
return NULL;
|
|
|
|
tree accumulator;
|
|
|
|
/* Clear out the sequence of statements so we can populate it below. */
|
|
STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo) = NULL;
|
|
gimple *stmt = NULL;
|
|
|
|
if (cast_to_unsigned_p)
|
|
{
|
|
tree tmp_op = vect_recog_temp_ssa_var (multtype, NULL);
|
|
stmt = gimple_build_assign (tmp_op, CONVERT_EXPR, op);
|
|
append_pattern_def_seq (stmt_vinfo, stmt);
|
|
op = tmp_op;
|
|
}
|
|
|
|
if (alg.op[0] == alg_zero)
|
|
accumulator = build_int_cst (multtype, 0);
|
|
else
|
|
accumulator = op;
|
|
|
|
bool needs_fixup = (variant == negate_variant)
|
|
|| (variant == add_variant);
|
|
|
|
for (int i = 1; i < alg.ops; i++)
|
|
{
|
|
tree shft_log = build_int_cst (multtype, alg.log[i]);
|
|
tree accum_tmp = vect_recog_temp_ssa_var (multtype, NULL);
|
|
tree tmp_var = NULL_TREE;
|
|
|
|
switch (alg.op[i])
|
|
{
|
|
case alg_shift:
|
|
if (synth_shift_p)
|
|
stmt
|
|
= synth_lshift_by_additions (accum_tmp, accumulator, alg.log[i],
|
|
stmt_vinfo);
|
|
else
|
|
stmt = gimple_build_assign (accum_tmp, LSHIFT_EXPR, accumulator,
|
|
shft_log);
|
|
break;
|
|
case alg_add_t_m2:
|
|
tmp_var
|
|
= apply_binop_and_append_stmt (LSHIFT_EXPR, op, shft_log,
|
|
stmt_vinfo, synth_shift_p);
|
|
stmt = gimple_build_assign (accum_tmp, PLUS_EXPR, accumulator,
|
|
tmp_var);
|
|
break;
|
|
case alg_sub_t_m2:
|
|
tmp_var = apply_binop_and_append_stmt (LSHIFT_EXPR, op,
|
|
shft_log, stmt_vinfo,
|
|
synth_shift_p);
|
|
/* In some algorithms the first step involves zeroing the
|
|
accumulator. If subtracting from such an accumulator
|
|
just emit the negation directly. */
|
|
if (integer_zerop (accumulator))
|
|
stmt = gimple_build_assign (accum_tmp, NEGATE_EXPR, tmp_var);
|
|
else
|
|
stmt = gimple_build_assign (accum_tmp, MINUS_EXPR, accumulator,
|
|
tmp_var);
|
|
break;
|
|
case alg_add_t2_m:
|
|
tmp_var
|
|
= apply_binop_and_append_stmt (LSHIFT_EXPR, accumulator, shft_log,
|
|
stmt_vinfo, synth_shift_p);
|
|
stmt = gimple_build_assign (accum_tmp, PLUS_EXPR, tmp_var, op);
|
|
break;
|
|
case alg_sub_t2_m:
|
|
tmp_var
|
|
= apply_binop_and_append_stmt (LSHIFT_EXPR, accumulator, shft_log,
|
|
stmt_vinfo, synth_shift_p);
|
|
stmt = gimple_build_assign (accum_tmp, MINUS_EXPR, tmp_var, op);
|
|
break;
|
|
case alg_add_factor:
|
|
tmp_var
|
|
= apply_binop_and_append_stmt (LSHIFT_EXPR, accumulator, shft_log,
|
|
stmt_vinfo, synth_shift_p);
|
|
stmt = gimple_build_assign (accum_tmp, PLUS_EXPR, accumulator,
|
|
tmp_var);
|
|
break;
|
|
case alg_sub_factor:
|
|
tmp_var
|
|
= apply_binop_and_append_stmt (LSHIFT_EXPR, accumulator, shft_log,
|
|
stmt_vinfo, synth_shift_p);
|
|
stmt = gimple_build_assign (accum_tmp, MINUS_EXPR, tmp_var,
|
|
accumulator);
|
|
break;
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
/* We don't want to append the last stmt in the sequence to stmt_vinfo
|
|
but rather return it directly. */
|
|
|
|
if ((i < alg.ops - 1) || needs_fixup || cast_to_unsigned_p)
|
|
append_pattern_def_seq (stmt_vinfo, stmt);
|
|
accumulator = accum_tmp;
|
|
}
|
|
if (variant == negate_variant)
|
|
{
|
|
tree accum_tmp = vect_recog_temp_ssa_var (multtype, NULL);
|
|
stmt = gimple_build_assign (accum_tmp, NEGATE_EXPR, accumulator);
|
|
accumulator = accum_tmp;
|
|
if (cast_to_unsigned_p)
|
|
append_pattern_def_seq (stmt_vinfo, stmt);
|
|
}
|
|
else if (variant == add_variant)
|
|
{
|
|
tree accum_tmp = vect_recog_temp_ssa_var (multtype, NULL);
|
|
stmt = gimple_build_assign (accum_tmp, PLUS_EXPR, accumulator, op);
|
|
accumulator = accum_tmp;
|
|
if (cast_to_unsigned_p)
|
|
append_pattern_def_seq (stmt_vinfo, stmt);
|
|
}
|
|
/* Move back to a signed if needed. */
|
|
if (cast_to_unsigned_p)
|
|
{
|
|
tree accum_tmp = vect_recog_temp_ssa_var (itype, NULL);
|
|
stmt = gimple_build_assign (accum_tmp, CONVERT_EXPR, accumulator);
|
|
}
|
|
|
|
return stmt;
|
|
}
|
|
|
|
/* Detect multiplication by constant and convert it into a sequence of
|
|
shifts and additions, subtractions, negations. We reuse the
|
|
choose_mult_variant algorithms from expmed.c
|
|
|
|
Input/Output:
|
|
|
|
STMTS: Contains a stmt from which the pattern search begins,
|
|
i.e. the mult stmt.
|
|
|
|
Output:
|
|
|
|
* TYPE_IN: The type of the input arguments to the pattern.
|
|
|
|
* TYPE_OUT: The type of the output of this pattern.
|
|
|
|
* Return value: A new stmt that will be used to replace
|
|
the multiplication. */
|
|
|
|
static gimple *
|
|
vect_recog_mult_pattern (vec<gimple *> *stmts,
|
|
tree *type_in, tree *type_out)
|
|
{
|
|
gimple *last_stmt = stmts->pop ();
|
|
tree oprnd0, oprnd1, vectype, itype;
|
|
gimple *pattern_stmt;
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
|
|
|
|
if (!is_gimple_assign (last_stmt))
|
|
return NULL;
|
|
|
|
if (gimple_assign_rhs_code (last_stmt) != MULT_EXPR)
|
|
return NULL;
|
|
|
|
oprnd0 = gimple_assign_rhs1 (last_stmt);
|
|
oprnd1 = gimple_assign_rhs2 (last_stmt);
|
|
itype = TREE_TYPE (oprnd0);
|
|
|
|
if (TREE_CODE (oprnd0) != SSA_NAME
|
|
|| TREE_CODE (oprnd1) != INTEGER_CST
|
|
|| !INTEGRAL_TYPE_P (itype)
|
|
|| TYPE_PRECISION (itype) != GET_MODE_PRECISION (TYPE_MODE (itype)))
|
|
return NULL;
|
|
|
|
vectype = get_vectype_for_scalar_type (itype);
|
|
if (vectype == NULL_TREE)
|
|
return NULL;
|
|
|
|
/* If the target can handle vectorized multiplication natively,
|
|
don't attempt to optimize this. */
|
|
optab mul_optab = optab_for_tree_code (MULT_EXPR, vectype, optab_default);
|
|
if (mul_optab != unknown_optab)
|
|
{
|
|
machine_mode vec_mode = TYPE_MODE (vectype);
|
|
int icode = (int) optab_handler (mul_optab, vec_mode);
|
|
if (icode != CODE_FOR_nothing)
|
|
return NULL;
|
|
}
|
|
|
|
pattern_stmt = vect_synth_mult_by_constant (oprnd0, oprnd1, stmt_vinfo);
|
|
if (!pattern_stmt)
|
|
return NULL;
|
|
|
|
/* Pattern detected. */
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"vect_recog_mult_pattern: detected:\n");
|
|
|
|
if (dump_enabled_p ())
|
|
dump_gimple_stmt_loc (MSG_NOTE, vect_location, TDF_SLIM,
|
|
pattern_stmt,0);
|
|
|
|
stmts->safe_push (last_stmt);
|
|
*type_in = vectype;
|
|
*type_out = vectype;
|
|
|
|
return pattern_stmt;
|
|
}
|
|
|
|
/* Detect a signed division by a constant that wouldn't be
|
|
otherwise vectorized:
|
|
|
|
type a_t, b_t;
|
|
|
|
S1 a_t = b_t / N;
|
|
|
|
where type 'type' is an integral type and N is a constant.
|
|
|
|
Similarly handle modulo by a constant:
|
|
|
|
S4 a_t = b_t % N;
|
|
|
|
Input/Output:
|
|
|
|
* STMTS: Contains a stmt from which the pattern search begins,
|
|
i.e. the division stmt. S1 is replaced by if N is a power
|
|
of two constant and type is signed:
|
|
S3 y_t = b_t < 0 ? N - 1 : 0;
|
|
S2 x_t = b_t + y_t;
|
|
S1' a_t = x_t >> log2 (N);
|
|
|
|
S4 is replaced if N is a power of two constant and
|
|
type is signed by (where *_T temporaries have unsigned type):
|
|
S9 y_T = b_t < 0 ? -1U : 0U;
|
|
S8 z_T = y_T >> (sizeof (type_t) * CHAR_BIT - log2 (N));
|
|
S7 z_t = (type) z_T;
|
|
S6 w_t = b_t + z_t;
|
|
S5 x_t = w_t & (N - 1);
|
|
S4' a_t = x_t - z_t;
|
|
|
|
Output:
|
|
|
|
* TYPE_IN: The type of the input arguments to the pattern.
|
|
|
|
* TYPE_OUT: The type of the output of this pattern.
|
|
|
|
* Return value: A new stmt that will be used to replace the division
|
|
S1 or modulo S4 stmt. */
|
|
|
|
static gimple *
|
|
vect_recog_divmod_pattern (vec<gimple *> *stmts,
|
|
tree *type_in, tree *type_out)
|
|
{
|
|
gimple *last_stmt = stmts->pop ();
|
|
tree oprnd0, oprnd1, vectype, itype, cond;
|
|
gimple *pattern_stmt, *def_stmt;
|
|
enum tree_code rhs_code;
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
|
|
vec_info *vinfo = stmt_vinfo->vinfo;
|
|
optab optab;
|
|
tree q;
|
|
int dummy_int, prec;
|
|
stmt_vec_info def_stmt_vinfo;
|
|
|
|
if (!is_gimple_assign (last_stmt))
|
|
return NULL;
|
|
|
|
rhs_code = gimple_assign_rhs_code (last_stmt);
|
|
switch (rhs_code)
|
|
{
|
|
case TRUNC_DIV_EXPR:
|
|
case TRUNC_MOD_EXPR:
|
|
break;
|
|
default:
|
|
return NULL;
|
|
}
|
|
|
|
if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
|
|
return NULL;
|
|
|
|
oprnd0 = gimple_assign_rhs1 (last_stmt);
|
|
oprnd1 = gimple_assign_rhs2 (last_stmt);
|
|
itype = TREE_TYPE (oprnd0);
|
|
if (TREE_CODE (oprnd0) != SSA_NAME
|
|
|| TREE_CODE (oprnd1) != INTEGER_CST
|
|
|| TREE_CODE (itype) != INTEGER_TYPE
|
|
|| TYPE_PRECISION (itype) != GET_MODE_PRECISION (TYPE_MODE (itype)))
|
|
return NULL;
|
|
|
|
vectype = get_vectype_for_scalar_type (itype);
|
|
if (vectype == NULL_TREE)
|
|
return NULL;
|
|
|
|
/* If the target can handle vectorized division or modulo natively,
|
|
don't attempt to optimize this. */
|
|
optab = optab_for_tree_code (rhs_code, vectype, optab_default);
|
|
if (optab != unknown_optab)
|
|
{
|
|
machine_mode vec_mode = TYPE_MODE (vectype);
|
|
int icode = (int) optab_handler (optab, vec_mode);
|
|
if (icode != CODE_FOR_nothing)
|
|
return NULL;
|
|
}
|
|
|
|
prec = TYPE_PRECISION (itype);
|
|
if (integer_pow2p (oprnd1))
|
|
{
|
|
if (TYPE_UNSIGNED (itype) || tree_int_cst_sgn (oprnd1) != 1)
|
|
return NULL;
|
|
|
|
/* Pattern detected. */
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"vect_recog_divmod_pattern: detected:\n");
|
|
|
|
cond = build2 (LT_EXPR, boolean_type_node, oprnd0,
|
|
build_int_cst (itype, 0));
|
|
if (rhs_code == TRUNC_DIV_EXPR)
|
|
{
|
|
tree var = vect_recog_temp_ssa_var (itype, NULL);
|
|
tree shift;
|
|
def_stmt
|
|
= gimple_build_assign (var, COND_EXPR, cond,
|
|
fold_build2 (MINUS_EXPR, itype, oprnd1,
|
|
build_int_cst (itype, 1)),
|
|
build_int_cst (itype, 0));
|
|
new_pattern_def_seq (stmt_vinfo, def_stmt);
|
|
var = vect_recog_temp_ssa_var (itype, NULL);
|
|
def_stmt
|
|
= gimple_build_assign (var, PLUS_EXPR, oprnd0,
|
|
gimple_assign_lhs (def_stmt));
|
|
append_pattern_def_seq (stmt_vinfo, def_stmt);
|
|
|
|
shift = build_int_cst (itype, tree_log2 (oprnd1));
|
|
pattern_stmt
|
|
= gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
|
|
RSHIFT_EXPR, var, shift);
|
|
}
|
|
else
|
|
{
|
|
tree signmask;
|
|
STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo) = NULL;
|
|
if (compare_tree_int (oprnd1, 2) == 0)
|
|
{
|
|
signmask = vect_recog_temp_ssa_var (itype, NULL);
|
|
def_stmt = gimple_build_assign (signmask, COND_EXPR, cond,
|
|
build_int_cst (itype, 1),
|
|
build_int_cst (itype, 0));
|
|
append_pattern_def_seq (stmt_vinfo, def_stmt);
|
|
}
|
|
else
|
|
{
|
|
tree utype
|
|
= build_nonstandard_integer_type (prec, 1);
|
|
tree vecutype = get_vectype_for_scalar_type (utype);
|
|
tree shift
|
|
= build_int_cst (utype, GET_MODE_BITSIZE (TYPE_MODE (itype))
|
|
- tree_log2 (oprnd1));
|
|
tree var = vect_recog_temp_ssa_var (utype, NULL);
|
|
|
|
def_stmt = gimple_build_assign (var, COND_EXPR, cond,
|
|
build_int_cst (utype, -1),
|
|
build_int_cst (utype, 0));
|
|
def_stmt_vinfo = new_stmt_vec_info (def_stmt, vinfo);
|
|
set_vinfo_for_stmt (def_stmt, def_stmt_vinfo);
|
|
STMT_VINFO_VECTYPE (def_stmt_vinfo) = vecutype;
|
|
append_pattern_def_seq (stmt_vinfo, def_stmt);
|
|
var = vect_recog_temp_ssa_var (utype, NULL);
|
|
def_stmt = gimple_build_assign (var, RSHIFT_EXPR,
|
|
gimple_assign_lhs (def_stmt),
|
|
shift);
|
|
def_stmt_vinfo = new_stmt_vec_info (def_stmt, vinfo);
|
|
set_vinfo_for_stmt (def_stmt, def_stmt_vinfo);
|
|
STMT_VINFO_VECTYPE (def_stmt_vinfo) = vecutype;
|
|
append_pattern_def_seq (stmt_vinfo, def_stmt);
|
|
signmask = vect_recog_temp_ssa_var (itype, NULL);
|
|
def_stmt
|
|
= gimple_build_assign (signmask, NOP_EXPR, var);
|
|
append_pattern_def_seq (stmt_vinfo, def_stmt);
|
|
}
|
|
def_stmt
|
|
= gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
|
|
PLUS_EXPR, oprnd0, signmask);
|
|
append_pattern_def_seq (stmt_vinfo, def_stmt);
|
|
def_stmt
|
|
= gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
|
|
BIT_AND_EXPR, gimple_assign_lhs (def_stmt),
|
|
fold_build2 (MINUS_EXPR, itype, oprnd1,
|
|
build_int_cst (itype, 1)));
|
|
append_pattern_def_seq (stmt_vinfo, def_stmt);
|
|
|
|
pattern_stmt
|
|
= gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
|
|
MINUS_EXPR, gimple_assign_lhs (def_stmt),
|
|
signmask);
|
|
}
|
|
|
|
if (dump_enabled_p ())
|
|
dump_gimple_stmt_loc (MSG_NOTE, vect_location, TDF_SLIM, pattern_stmt,
|
|
0);
|
|
|
|
stmts->safe_push (last_stmt);
|
|
|
|
*type_in = vectype;
|
|
*type_out = vectype;
|
|
return pattern_stmt;
|
|
}
|
|
|
|
if (prec > HOST_BITS_PER_WIDE_INT
|
|
|| integer_zerop (oprnd1))
|
|
return NULL;
|
|
|
|
if (!can_mult_highpart_p (TYPE_MODE (vectype), TYPE_UNSIGNED (itype)))
|
|
return NULL;
|
|
|
|
STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo) = NULL;
|
|
|
|
if (TYPE_UNSIGNED (itype))
|
|
{
|
|
unsigned HOST_WIDE_INT mh, ml;
|
|
int pre_shift, post_shift;
|
|
unsigned HOST_WIDE_INT d = (TREE_INT_CST_LOW (oprnd1)
|
|
& GET_MODE_MASK (TYPE_MODE (itype)));
|
|
tree t1, t2, t3, t4;
|
|
|
|
if (d >= (HOST_WIDE_INT_1U << (prec - 1)))
|
|
/* FIXME: Can transform this into oprnd0 >= oprnd1 ? 1 : 0. */
|
|
return NULL;
|
|
|
|
/* Find a suitable multiplier and right shift count
|
|
instead of multiplying with D. */
|
|
mh = choose_multiplier (d, prec, prec, &ml, &post_shift, &dummy_int);
|
|
|
|
/* If the suggested multiplier is more than SIZE bits, we can do better
|
|
for even divisors, using an initial right shift. */
|
|
if (mh != 0 && (d & 1) == 0)
|
|
{
|
|
pre_shift = ctz_or_zero (d);
|
|
mh = choose_multiplier (d >> pre_shift, prec, prec - pre_shift,
|
|
&ml, &post_shift, &dummy_int);
|
|
gcc_assert (!mh);
|
|
}
|
|
else
|
|
pre_shift = 0;
|
|
|
|
if (mh != 0)
|
|
{
|
|
if (post_shift - 1 >= prec)
|
|
return NULL;
|
|
|
|
/* t1 = oprnd0 h* ml;
|
|
t2 = oprnd0 - t1;
|
|
t3 = t2 >> 1;
|
|
t4 = t1 + t3;
|
|
q = t4 >> (post_shift - 1); */
|
|
t1 = vect_recog_temp_ssa_var (itype, NULL);
|
|
def_stmt = gimple_build_assign (t1, MULT_HIGHPART_EXPR, oprnd0,
|
|
build_int_cst (itype, ml));
|
|
append_pattern_def_seq (stmt_vinfo, def_stmt);
|
|
|
|
t2 = vect_recog_temp_ssa_var (itype, NULL);
|
|
def_stmt
|
|
= gimple_build_assign (t2, MINUS_EXPR, oprnd0, t1);
|
|
append_pattern_def_seq (stmt_vinfo, def_stmt);
|
|
|
|
t3 = vect_recog_temp_ssa_var (itype, NULL);
|
|
def_stmt
|
|
= gimple_build_assign (t3, RSHIFT_EXPR, t2, integer_one_node);
|
|
append_pattern_def_seq (stmt_vinfo, def_stmt);
|
|
|
|
t4 = vect_recog_temp_ssa_var (itype, NULL);
|
|
def_stmt
|
|
= gimple_build_assign (t4, PLUS_EXPR, t1, t3);
|
|
|
|
if (post_shift != 1)
|
|
{
|
|
append_pattern_def_seq (stmt_vinfo, def_stmt);
|
|
|
|
q = vect_recog_temp_ssa_var (itype, NULL);
|
|
pattern_stmt
|
|
= gimple_build_assign (q, RSHIFT_EXPR, t4,
|
|
build_int_cst (itype, post_shift - 1));
|
|
}
|
|
else
|
|
{
|
|
q = t4;
|
|
pattern_stmt = def_stmt;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (pre_shift >= prec || post_shift >= prec)
|
|
return NULL;
|
|
|
|
/* t1 = oprnd0 >> pre_shift;
|
|
t2 = t1 h* ml;
|
|
q = t2 >> post_shift; */
|
|
if (pre_shift)
|
|
{
|
|
t1 = vect_recog_temp_ssa_var (itype, NULL);
|
|
def_stmt
|
|
= gimple_build_assign (t1, RSHIFT_EXPR, oprnd0,
|
|
build_int_cst (NULL, pre_shift));
|
|
append_pattern_def_seq (stmt_vinfo, def_stmt);
|
|
}
|
|
else
|
|
t1 = oprnd0;
|
|
|
|
t2 = vect_recog_temp_ssa_var (itype, NULL);
|
|
def_stmt = gimple_build_assign (t2, MULT_HIGHPART_EXPR, t1,
|
|
build_int_cst (itype, ml));
|
|
|
|
if (post_shift)
|
|
{
|
|
append_pattern_def_seq (stmt_vinfo, def_stmt);
|
|
|
|
q = vect_recog_temp_ssa_var (itype, NULL);
|
|
def_stmt
|
|
= gimple_build_assign (q, RSHIFT_EXPR, t2,
|
|
build_int_cst (itype, post_shift));
|
|
}
|
|
else
|
|
q = t2;
|
|
|
|
pattern_stmt = def_stmt;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
unsigned HOST_WIDE_INT ml;
|
|
int post_shift;
|
|
HOST_WIDE_INT d = TREE_INT_CST_LOW (oprnd1);
|
|
unsigned HOST_WIDE_INT abs_d;
|
|
bool add = false;
|
|
tree t1, t2, t3, t4;
|
|
|
|
/* Give up for -1. */
|
|
if (d == -1)
|
|
return NULL;
|
|
|
|
/* Since d might be INT_MIN, we have to cast to
|
|
unsigned HOST_WIDE_INT before negating to avoid
|
|
undefined signed overflow. */
|
|
abs_d = (d >= 0
|
|
? (unsigned HOST_WIDE_INT) d
|
|
: - (unsigned HOST_WIDE_INT) d);
|
|
|
|
/* n rem d = n rem -d */
|
|
if (rhs_code == TRUNC_MOD_EXPR && d < 0)
|
|
{
|
|
d = abs_d;
|
|
oprnd1 = build_int_cst (itype, abs_d);
|
|
}
|
|
else if (HOST_BITS_PER_WIDE_INT >= prec
|
|
&& abs_d == HOST_WIDE_INT_1U << (prec - 1))
|
|
/* This case is not handled correctly below. */
|
|
return NULL;
|
|
|
|
choose_multiplier (abs_d, prec, prec - 1, &ml, &post_shift, &dummy_int);
|
|
if (ml >= HOST_WIDE_INT_1U << (prec - 1))
|
|
{
|
|
add = true;
|
|
ml |= HOST_WIDE_INT_M1U << (prec - 1);
|
|
}
|
|
if (post_shift >= prec)
|
|
return NULL;
|
|
|
|
/* t1 = oprnd0 h* ml; */
|
|
t1 = vect_recog_temp_ssa_var (itype, NULL);
|
|
def_stmt = gimple_build_assign (t1, MULT_HIGHPART_EXPR, oprnd0,
|
|
build_int_cst (itype, ml));
|
|
|
|
if (add)
|
|
{
|
|
/* t2 = t1 + oprnd0; */
|
|
append_pattern_def_seq (stmt_vinfo, def_stmt);
|
|
t2 = vect_recog_temp_ssa_var (itype, NULL);
|
|
def_stmt = gimple_build_assign (t2, PLUS_EXPR, t1, oprnd0);
|
|
}
|
|
else
|
|
t2 = t1;
|
|
|
|
if (post_shift)
|
|
{
|
|
/* t3 = t2 >> post_shift; */
|
|
append_pattern_def_seq (stmt_vinfo, def_stmt);
|
|
t3 = vect_recog_temp_ssa_var (itype, NULL);
|
|
def_stmt = gimple_build_assign (t3, RSHIFT_EXPR, t2,
|
|
build_int_cst (itype, post_shift));
|
|
}
|
|
else
|
|
t3 = t2;
|
|
|
|
wide_int oprnd0_min, oprnd0_max;
|
|
int msb = 1;
|
|
if (get_range_info (oprnd0, &oprnd0_min, &oprnd0_max) == VR_RANGE)
|
|
{
|
|
if (!wi::neg_p (oprnd0_min, TYPE_SIGN (itype)))
|
|
msb = 0;
|
|
else if (wi::neg_p (oprnd0_max, TYPE_SIGN (itype)))
|
|
msb = -1;
|
|
}
|
|
|
|
if (msb == 0 && d >= 0)
|
|
{
|
|
/* q = t3; */
|
|
q = t3;
|
|
pattern_stmt = def_stmt;
|
|
}
|
|
else
|
|
{
|
|
/* t4 = oprnd0 >> (prec - 1);
|
|
or if we know from VRP that oprnd0 >= 0
|
|
t4 = 0;
|
|
or if we know from VRP that oprnd0 < 0
|
|
t4 = -1; */
|
|
append_pattern_def_seq (stmt_vinfo, def_stmt);
|
|
t4 = vect_recog_temp_ssa_var (itype, NULL);
|
|
if (msb != 1)
|
|
def_stmt = gimple_build_assign (t4, INTEGER_CST,
|
|
build_int_cst (itype, msb));
|
|
else
|
|
def_stmt = gimple_build_assign (t4, RSHIFT_EXPR, oprnd0,
|
|
build_int_cst (itype, prec - 1));
|
|
append_pattern_def_seq (stmt_vinfo, def_stmt);
|
|
|
|
/* q = t3 - t4; or q = t4 - t3; */
|
|
q = vect_recog_temp_ssa_var (itype, NULL);
|
|
pattern_stmt = gimple_build_assign (q, MINUS_EXPR, d < 0 ? t4 : t3,
|
|
d < 0 ? t3 : t4);
|
|
}
|
|
}
|
|
|
|
if (rhs_code == TRUNC_MOD_EXPR)
|
|
{
|
|
tree r, t1;
|
|
|
|
/* We divided. Now finish by:
|
|
t1 = q * oprnd1;
|
|
r = oprnd0 - t1; */
|
|
append_pattern_def_seq (stmt_vinfo, pattern_stmt);
|
|
|
|
t1 = vect_recog_temp_ssa_var (itype, NULL);
|
|
def_stmt = gimple_build_assign (t1, MULT_EXPR, q, oprnd1);
|
|
append_pattern_def_seq (stmt_vinfo, def_stmt);
|
|
|
|
r = vect_recog_temp_ssa_var (itype, NULL);
|
|
pattern_stmt = gimple_build_assign (r, MINUS_EXPR, oprnd0, t1);
|
|
}
|
|
|
|
/* Pattern detected. */
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"vect_recog_divmod_pattern: detected: ");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
|
|
}
|
|
|
|
stmts->safe_push (last_stmt);
|
|
|
|
*type_in = vectype;
|
|
*type_out = vectype;
|
|
return pattern_stmt;
|
|
}
|
|
|
|
/* Function vect_recog_mixed_size_cond_pattern
|
|
|
|
Try to find the following pattern:
|
|
|
|
type x_t, y_t;
|
|
TYPE a_T, b_T, c_T;
|
|
loop:
|
|
S1 a_T = x_t CMP y_t ? b_T : c_T;
|
|
|
|
where type 'TYPE' is an integral type which has different size
|
|
from 'type'. b_T and c_T are either constants (and if 'TYPE' is wider
|
|
than 'type', the constants need to fit into an integer type
|
|
with the same width as 'type') or results of conversion from 'type'.
|
|
|
|
Input:
|
|
|
|
* LAST_STMT: A stmt from which the pattern search begins.
|
|
|
|
Output:
|
|
|
|
* TYPE_IN: The type of the input arguments to the pattern.
|
|
|
|
* TYPE_OUT: The type of the output of this pattern.
|
|
|
|
* Return value: A new stmt that will be used to replace the pattern.
|
|
Additionally a def_stmt is added.
|
|
|
|
a_it = x_t CMP y_t ? b_it : c_it;
|
|
a_T = (TYPE) a_it; */
|
|
|
|
static gimple *
|
|
vect_recog_mixed_size_cond_pattern (vec<gimple *> *stmts, tree *type_in,
|
|
tree *type_out)
|
|
{
|
|
gimple *last_stmt = (*stmts)[0];
|
|
tree cond_expr, then_clause, else_clause;
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt), def_stmt_info;
|
|
tree type, vectype, comp_vectype, itype = NULL_TREE, vecitype;
|
|
gimple *pattern_stmt, *def_stmt;
|
|
vec_info *vinfo = stmt_vinfo->vinfo;
|
|
tree orig_type0 = NULL_TREE, orig_type1 = NULL_TREE;
|
|
gimple *def_stmt0 = NULL, *def_stmt1 = NULL;
|
|
bool promotion;
|
|
tree comp_scalar_type;
|
|
|
|
if (!is_gimple_assign (last_stmt)
|
|
|| gimple_assign_rhs_code (last_stmt) != COND_EXPR
|
|
|| STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_internal_def)
|
|
return NULL;
|
|
|
|
cond_expr = gimple_assign_rhs1 (last_stmt);
|
|
then_clause = gimple_assign_rhs2 (last_stmt);
|
|
else_clause = gimple_assign_rhs3 (last_stmt);
|
|
|
|
if (!COMPARISON_CLASS_P (cond_expr))
|
|
return NULL;
|
|
|
|
comp_scalar_type = TREE_TYPE (TREE_OPERAND (cond_expr, 0));
|
|
comp_vectype = get_vectype_for_scalar_type (comp_scalar_type);
|
|
if (comp_vectype == NULL_TREE)
|
|
return NULL;
|
|
|
|
type = gimple_expr_type (last_stmt);
|
|
if (types_compatible_p (type, comp_scalar_type)
|
|
|| ((TREE_CODE (then_clause) != INTEGER_CST
|
|
|| TREE_CODE (else_clause) != INTEGER_CST)
|
|
&& !INTEGRAL_TYPE_P (comp_scalar_type))
|
|
|| !INTEGRAL_TYPE_P (type))
|
|
return NULL;
|
|
|
|
if ((TREE_CODE (then_clause) != INTEGER_CST
|
|
&& !type_conversion_p (then_clause, last_stmt, false, &orig_type0,
|
|
&def_stmt0, &promotion))
|
|
|| (TREE_CODE (else_clause) != INTEGER_CST
|
|
&& !type_conversion_p (else_clause, last_stmt, false, &orig_type1,
|
|
&def_stmt1, &promotion)))
|
|
return NULL;
|
|
|
|
if (orig_type0 && orig_type1
|
|
&& !types_compatible_p (orig_type0, orig_type1))
|
|
return NULL;
|
|
|
|
if (orig_type0)
|
|
{
|
|
if (!types_compatible_p (orig_type0, comp_scalar_type))
|
|
return NULL;
|
|
then_clause = gimple_assign_rhs1 (def_stmt0);
|
|
itype = orig_type0;
|
|
}
|
|
|
|
if (orig_type1)
|
|
{
|
|
if (!types_compatible_p (orig_type1, comp_scalar_type))
|
|
return NULL;
|
|
else_clause = gimple_assign_rhs1 (def_stmt1);
|
|
itype = orig_type1;
|
|
}
|
|
|
|
|
|
HOST_WIDE_INT cmp_mode_size
|
|
= GET_MODE_UNIT_BITSIZE (TYPE_MODE (comp_vectype));
|
|
|
|
if (GET_MODE_BITSIZE (TYPE_MODE (type)) == cmp_mode_size)
|
|
return NULL;
|
|
|
|
vectype = get_vectype_for_scalar_type (type);
|
|
if (vectype == NULL_TREE)
|
|
return NULL;
|
|
|
|
if (expand_vec_cond_expr_p (vectype, comp_vectype, TREE_CODE (cond_expr)))
|
|
return NULL;
|
|
|
|
if (itype == NULL_TREE)
|
|
itype = build_nonstandard_integer_type (cmp_mode_size,
|
|
TYPE_UNSIGNED (type));
|
|
|
|
if (itype == NULL_TREE
|
|
|| GET_MODE_BITSIZE (TYPE_MODE (itype)) != cmp_mode_size)
|
|
return NULL;
|
|
|
|
vecitype = get_vectype_for_scalar_type (itype);
|
|
if (vecitype == NULL_TREE)
|
|
return NULL;
|
|
|
|
if (!expand_vec_cond_expr_p (vecitype, comp_vectype, TREE_CODE (cond_expr)))
|
|
return NULL;
|
|
|
|
if (GET_MODE_BITSIZE (TYPE_MODE (type)) > cmp_mode_size)
|
|
{
|
|
if ((TREE_CODE (then_clause) == INTEGER_CST
|
|
&& !int_fits_type_p (then_clause, itype))
|
|
|| (TREE_CODE (else_clause) == INTEGER_CST
|
|
&& !int_fits_type_p (else_clause, itype)))
|
|
return NULL;
|
|
}
|
|
|
|
def_stmt = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
|
|
COND_EXPR, unshare_expr (cond_expr),
|
|
fold_convert (itype, then_clause),
|
|
fold_convert (itype, else_clause));
|
|
pattern_stmt = gimple_build_assign (vect_recog_temp_ssa_var (type, NULL),
|
|
NOP_EXPR, gimple_assign_lhs (def_stmt));
|
|
|
|
new_pattern_def_seq (stmt_vinfo, def_stmt);
|
|
def_stmt_info = new_stmt_vec_info (def_stmt, vinfo);
|
|
set_vinfo_for_stmt (def_stmt, def_stmt_info);
|
|
STMT_VINFO_VECTYPE (def_stmt_info) = vecitype;
|
|
*type_in = vecitype;
|
|
*type_out = vectype;
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"vect_recog_mixed_size_cond_pattern: detected:\n");
|
|
|
|
return pattern_stmt;
|
|
}
|
|
|
|
|
|
/* Helper function of vect_recog_bool_pattern. Called recursively, return
|
|
true if bool VAR can and should be optimized that way. Assume it shouldn't
|
|
in case it's a result of a comparison which can be directly vectorized into
|
|
a vector comparison. Fills in STMTS with all stmts visited during the
|
|
walk. */
|
|
|
|
static bool
|
|
check_bool_pattern (tree var, vec_info *vinfo, hash_set<gimple *> &stmts)
|
|
{
|
|
gimple *def_stmt;
|
|
enum vect_def_type dt;
|
|
tree rhs1;
|
|
enum tree_code rhs_code;
|
|
|
|
if (!vect_is_simple_use (var, vinfo, &def_stmt, &dt))
|
|
return false;
|
|
|
|
if (dt != vect_internal_def)
|
|
return false;
|
|
|
|
if (!is_gimple_assign (def_stmt))
|
|
return false;
|
|
|
|
if (stmts.contains (def_stmt))
|
|
return true;
|
|
|
|
rhs1 = gimple_assign_rhs1 (def_stmt);
|
|
rhs_code = gimple_assign_rhs_code (def_stmt);
|
|
switch (rhs_code)
|
|
{
|
|
case SSA_NAME:
|
|
if (! check_bool_pattern (rhs1, vinfo, stmts))
|
|
return false;
|
|
break;
|
|
|
|
CASE_CONVERT:
|
|
if ((TYPE_PRECISION (TREE_TYPE (rhs1)) != 1
|
|
|| !TYPE_UNSIGNED (TREE_TYPE (rhs1)))
|
|
&& TREE_CODE (TREE_TYPE (rhs1)) != BOOLEAN_TYPE)
|
|
return false;
|
|
if (! check_bool_pattern (rhs1, vinfo, stmts))
|
|
return false;
|
|
break;
|
|
|
|
case BIT_NOT_EXPR:
|
|
if (! check_bool_pattern (rhs1, vinfo, stmts))
|
|
return false;
|
|
break;
|
|
|
|
case BIT_AND_EXPR:
|
|
case BIT_IOR_EXPR:
|
|
case BIT_XOR_EXPR:
|
|
if (! check_bool_pattern (rhs1, vinfo, stmts)
|
|
|| ! check_bool_pattern (gimple_assign_rhs2 (def_stmt), vinfo, stmts))
|
|
return false;
|
|
break;
|
|
|
|
default:
|
|
if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
|
|
{
|
|
tree vecitype, comp_vectype;
|
|
|
|
/* If the comparison can throw, then is_gimple_condexpr will be
|
|
false and we can't make a COND_EXPR/VEC_COND_EXPR out of it. */
|
|
if (stmt_could_throw_p (def_stmt))
|
|
return false;
|
|
|
|
comp_vectype = get_vectype_for_scalar_type (TREE_TYPE (rhs1));
|
|
if (comp_vectype == NULL_TREE)
|
|
return false;
|
|
|
|
tree mask_type = get_mask_type_for_scalar_type (TREE_TYPE (rhs1));
|
|
if (mask_type
|
|
&& expand_vec_cmp_expr_p (comp_vectype, mask_type, rhs_code))
|
|
return false;
|
|
|
|
if (TREE_CODE (TREE_TYPE (rhs1)) != INTEGER_TYPE)
|
|
{
|
|
machine_mode mode = TYPE_MODE (TREE_TYPE (rhs1));
|
|
tree itype
|
|
= build_nonstandard_integer_type (GET_MODE_BITSIZE (mode), 1);
|
|
vecitype = get_vectype_for_scalar_type (itype);
|
|
if (vecitype == NULL_TREE)
|
|
return false;
|
|
}
|
|
else
|
|
vecitype = comp_vectype;
|
|
if (! expand_vec_cond_expr_p (vecitype, comp_vectype, rhs_code))
|
|
return false;
|
|
}
|
|
else
|
|
return false;
|
|
break;
|
|
}
|
|
|
|
bool res = stmts.add (def_stmt);
|
|
/* We can't end up recursing when just visiting SSA defs but not PHIs. */
|
|
gcc_assert (!res);
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Helper function of adjust_bool_pattern. Add a cast to TYPE to a previous
|
|
stmt (SSA_NAME_DEF_STMT of VAR) adding a cast to STMT_INFOs
|
|
pattern sequence. */
|
|
|
|
static tree
|
|
adjust_bool_pattern_cast (tree type, tree var, stmt_vec_info stmt_info)
|
|
{
|
|
gimple *cast_stmt = gimple_build_assign (vect_recog_temp_ssa_var (type, NULL),
|
|
NOP_EXPR, var);
|
|
stmt_vec_info patt_vinfo = new_stmt_vec_info (cast_stmt, stmt_info->vinfo);
|
|
set_vinfo_for_stmt (cast_stmt, patt_vinfo);
|
|
STMT_VINFO_VECTYPE (patt_vinfo) = get_vectype_for_scalar_type (type);
|
|
append_pattern_def_seq (stmt_info, cast_stmt);
|
|
return gimple_assign_lhs (cast_stmt);
|
|
}
|
|
|
|
/* Helper function of vect_recog_bool_pattern. Do the actual transformations.
|
|
VAR is an SSA_NAME that should be transformed from bool to a wider integer
|
|
type, OUT_TYPE is the desired final integer type of the whole pattern.
|
|
STMT_INFO is the info of the pattern root and is where pattern stmts should
|
|
be associated with. DEFS is a map of pattern defs. */
|
|
|
|
static void
|
|
adjust_bool_pattern (tree var, tree out_type,
|
|
stmt_vec_info stmt_info, hash_map <tree, tree> &defs)
|
|
{
|
|
gimple *stmt = SSA_NAME_DEF_STMT (var);
|
|
enum tree_code rhs_code, def_rhs_code;
|
|
tree itype, cond_expr, rhs1, rhs2, irhs1, irhs2;
|
|
location_t loc;
|
|
gimple *pattern_stmt, *def_stmt;
|
|
tree trueval = NULL_TREE;
|
|
|
|
rhs1 = gimple_assign_rhs1 (stmt);
|
|
rhs2 = gimple_assign_rhs2 (stmt);
|
|
rhs_code = gimple_assign_rhs_code (stmt);
|
|
loc = gimple_location (stmt);
|
|
switch (rhs_code)
|
|
{
|
|
case SSA_NAME:
|
|
CASE_CONVERT:
|
|
irhs1 = *defs.get (rhs1);
|
|
itype = TREE_TYPE (irhs1);
|
|
pattern_stmt
|
|
= gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
|
|
SSA_NAME, irhs1);
|
|
break;
|
|
|
|
case BIT_NOT_EXPR:
|
|
irhs1 = *defs.get (rhs1);
|
|
itype = TREE_TYPE (irhs1);
|
|
pattern_stmt
|
|
= gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
|
|
BIT_XOR_EXPR, irhs1, build_int_cst (itype, 1));
|
|
break;
|
|
|
|
case BIT_AND_EXPR:
|
|
/* Try to optimize x = y & (a < b ? 1 : 0); into
|
|
x = (a < b ? y : 0);
|
|
|
|
E.g. for:
|
|
bool a_b, b_b, c_b;
|
|
TYPE d_T;
|
|
|
|
S1 a_b = x1 CMP1 y1;
|
|
S2 b_b = x2 CMP2 y2;
|
|
S3 c_b = a_b & b_b;
|
|
S4 d_T = (TYPE) c_b;
|
|
|
|
we would normally emit:
|
|
|
|
S1' a_T = x1 CMP1 y1 ? 1 : 0;
|
|
S2' b_T = x2 CMP2 y2 ? 1 : 0;
|
|
S3' c_T = a_T & b_T;
|
|
S4' d_T = c_T;
|
|
|
|
but we can save one stmt by using the
|
|
result of one of the COND_EXPRs in the other COND_EXPR and leave
|
|
BIT_AND_EXPR stmt out:
|
|
|
|
S1' a_T = x1 CMP1 y1 ? 1 : 0;
|
|
S3' c_T = x2 CMP2 y2 ? a_T : 0;
|
|
S4' f_T = c_T;
|
|
|
|
At least when VEC_COND_EXPR is implemented using masks
|
|
cond ? 1 : 0 is as expensive as cond ? var : 0, in both cases it
|
|
computes the comparison masks and ands it, in one case with
|
|
all ones vector, in the other case with a vector register.
|
|
Don't do this for BIT_IOR_EXPR, because cond ? 1 : var; is
|
|
often more expensive. */
|
|
def_stmt = SSA_NAME_DEF_STMT (rhs2);
|
|
def_rhs_code = gimple_assign_rhs_code (def_stmt);
|
|
if (TREE_CODE_CLASS (def_rhs_code) == tcc_comparison)
|
|
{
|
|
irhs1 = *defs.get (rhs1);
|
|
tree def_rhs1 = gimple_assign_rhs1 (def_stmt);
|
|
if (TYPE_PRECISION (TREE_TYPE (irhs1))
|
|
== GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (def_rhs1))))
|
|
{
|
|
rhs_code = def_rhs_code;
|
|
rhs1 = def_rhs1;
|
|
rhs2 = gimple_assign_rhs2 (def_stmt);
|
|
trueval = irhs1;
|
|
goto do_compare;
|
|
}
|
|
else
|
|
irhs2 = *defs.get (rhs2);
|
|
goto and_ior_xor;
|
|
}
|
|
def_stmt = SSA_NAME_DEF_STMT (rhs1);
|
|
def_rhs_code = gimple_assign_rhs_code (def_stmt);
|
|
if (TREE_CODE_CLASS (def_rhs_code) == tcc_comparison)
|
|
{
|
|
irhs2 = *defs.get (rhs2);
|
|
tree def_rhs1 = gimple_assign_rhs1 (def_stmt);
|
|
if (TYPE_PRECISION (TREE_TYPE (irhs2))
|
|
== GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (def_rhs1))))
|
|
{
|
|
rhs_code = def_rhs_code;
|
|
rhs1 = def_rhs1;
|
|
rhs2 = gimple_assign_rhs2 (def_stmt);
|
|
trueval = irhs2;
|
|
goto do_compare;
|
|
}
|
|
else
|
|
irhs1 = *defs.get (rhs1);
|
|
goto and_ior_xor;
|
|
}
|
|
/* FALLTHRU */
|
|
case BIT_IOR_EXPR:
|
|
case BIT_XOR_EXPR:
|
|
irhs1 = *defs.get (rhs1);
|
|
irhs2 = *defs.get (rhs2);
|
|
and_ior_xor:
|
|
if (TYPE_PRECISION (TREE_TYPE (irhs1))
|
|
!= TYPE_PRECISION (TREE_TYPE (irhs2)))
|
|
{
|
|
int prec1 = TYPE_PRECISION (TREE_TYPE (irhs1));
|
|
int prec2 = TYPE_PRECISION (TREE_TYPE (irhs2));
|
|
int out_prec = TYPE_PRECISION (out_type);
|
|
if (absu_hwi (out_prec - prec1) < absu_hwi (out_prec - prec2))
|
|
irhs2 = adjust_bool_pattern_cast (TREE_TYPE (irhs1), irhs2,
|
|
stmt_info);
|
|
else if (absu_hwi (out_prec - prec1) > absu_hwi (out_prec - prec2))
|
|
irhs1 = adjust_bool_pattern_cast (TREE_TYPE (irhs2), irhs1,
|
|
stmt_info);
|
|
else
|
|
{
|
|
irhs1 = adjust_bool_pattern_cast (out_type, irhs1, stmt_info);
|
|
irhs2 = adjust_bool_pattern_cast (out_type, irhs2, stmt_info);
|
|
}
|
|
}
|
|
itype = TREE_TYPE (irhs1);
|
|
pattern_stmt
|
|
= gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
|
|
rhs_code, irhs1, irhs2);
|
|
break;
|
|
|
|
default:
|
|
do_compare:
|
|
gcc_assert (TREE_CODE_CLASS (rhs_code) == tcc_comparison);
|
|
if (TREE_CODE (TREE_TYPE (rhs1)) != INTEGER_TYPE
|
|
|| !TYPE_UNSIGNED (TREE_TYPE (rhs1))
|
|
|| (TYPE_PRECISION (TREE_TYPE (rhs1))
|
|
!= GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1)))))
|
|
{
|
|
machine_mode mode = TYPE_MODE (TREE_TYPE (rhs1));
|
|
itype
|
|
= build_nonstandard_integer_type (GET_MODE_BITSIZE (mode), 1);
|
|
}
|
|
else
|
|
itype = TREE_TYPE (rhs1);
|
|
cond_expr = build2_loc (loc, rhs_code, itype, rhs1, rhs2);
|
|
if (trueval == NULL_TREE)
|
|
trueval = build_int_cst (itype, 1);
|
|
else
|
|
gcc_checking_assert (useless_type_conversion_p (itype,
|
|
TREE_TYPE (trueval)));
|
|
pattern_stmt
|
|
= gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
|
|
COND_EXPR, cond_expr, trueval,
|
|
build_int_cst (itype, 0));
|
|
break;
|
|
}
|
|
|
|
gimple_set_location (pattern_stmt, loc);
|
|
/* ??? Why does vect_mark_pattern_stmts set the vector type on all
|
|
pattern def seq stmts instead of just letting auto-detection do
|
|
its work? */
|
|
stmt_vec_info patt_vinfo = new_stmt_vec_info (pattern_stmt, stmt_info->vinfo);
|
|
set_vinfo_for_stmt (pattern_stmt, patt_vinfo);
|
|
STMT_VINFO_VECTYPE (patt_vinfo) = get_vectype_for_scalar_type (itype);
|
|
append_pattern_def_seq (stmt_info, pattern_stmt);
|
|
defs.put (var, gimple_assign_lhs (pattern_stmt));
|
|
}
|
|
|
|
/* Comparison function to qsort a vector of gimple stmts after UID. */
|
|
|
|
static int
|
|
sort_after_uid (const void *p1, const void *p2)
|
|
{
|
|
const gimple *stmt1 = *(const gimple * const *)p1;
|
|
const gimple *stmt2 = *(const gimple * const *)p2;
|
|
return gimple_uid (stmt1) - gimple_uid (stmt2);
|
|
}
|
|
|
|
/* Create pattern stmts for all stmts participating in the bool pattern
|
|
specified by BOOL_STMT_SET and its root STMT with the desired type
|
|
OUT_TYPE. Return the def of the pattern root. */
|
|
|
|
static tree
|
|
adjust_bool_stmts (hash_set <gimple *> &bool_stmt_set,
|
|
tree out_type, gimple *stmt)
|
|
{
|
|
/* Gather original stmts in the bool pattern in their order of appearance
|
|
in the IL. */
|
|
auto_vec<gimple *> bool_stmts (bool_stmt_set.elements ());
|
|
for (hash_set <gimple *>::iterator i = bool_stmt_set.begin ();
|
|
i != bool_stmt_set.end (); ++i)
|
|
bool_stmts.quick_push (*i);
|
|
bool_stmts.qsort (sort_after_uid);
|
|
|
|
/* Now process them in that order, producing pattern stmts. */
|
|
hash_map <tree, tree> defs;
|
|
for (unsigned i = 0; i < bool_stmts.length (); ++i)
|
|
adjust_bool_pattern (gimple_assign_lhs (bool_stmts[i]),
|
|
out_type, vinfo_for_stmt (stmt), defs);
|
|
|
|
/* Pop the last pattern seq stmt and install it as pattern root for STMT. */
|
|
gimple *pattern_stmt
|
|
= gimple_seq_last_stmt (STMT_VINFO_PATTERN_DEF_SEQ (vinfo_for_stmt (stmt)));
|
|
return gimple_assign_lhs (pattern_stmt);
|
|
}
|
|
|
|
/* Helper for search_type_for_mask. */
|
|
|
|
static tree
|
|
search_type_for_mask_1 (tree var, vec_info *vinfo,
|
|
hash_map<gimple *, tree> &cache)
|
|
{
|
|
gimple *def_stmt;
|
|
enum vect_def_type dt;
|
|
tree rhs1;
|
|
enum tree_code rhs_code;
|
|
tree res = NULL_TREE, res2;
|
|
|
|
if (TREE_CODE (var) != SSA_NAME)
|
|
return NULL_TREE;
|
|
|
|
if ((TYPE_PRECISION (TREE_TYPE (var)) != 1
|
|
|| !TYPE_UNSIGNED (TREE_TYPE (var)))
|
|
&& TREE_CODE (TREE_TYPE (var)) != BOOLEAN_TYPE)
|
|
return NULL_TREE;
|
|
|
|
if (!vect_is_simple_use (var, vinfo, &def_stmt, &dt))
|
|
return NULL_TREE;
|
|
|
|
if (dt != vect_internal_def)
|
|
return NULL_TREE;
|
|
|
|
if (!is_gimple_assign (def_stmt))
|
|
return NULL_TREE;
|
|
|
|
tree *c = cache.get (def_stmt);
|
|
if (c)
|
|
return *c;
|
|
|
|
rhs_code = gimple_assign_rhs_code (def_stmt);
|
|
rhs1 = gimple_assign_rhs1 (def_stmt);
|
|
|
|
switch (rhs_code)
|
|
{
|
|
case SSA_NAME:
|
|
case BIT_NOT_EXPR:
|
|
CASE_CONVERT:
|
|
res = search_type_for_mask_1 (rhs1, vinfo, cache);
|
|
break;
|
|
|
|
case BIT_AND_EXPR:
|
|
case BIT_IOR_EXPR:
|
|
case BIT_XOR_EXPR:
|
|
res = search_type_for_mask_1 (rhs1, vinfo, cache);
|
|
res2 = search_type_for_mask_1 (gimple_assign_rhs2 (def_stmt), vinfo,
|
|
cache);
|
|
if (!res || (res2 && TYPE_PRECISION (res) > TYPE_PRECISION (res2)))
|
|
res = res2;
|
|
break;
|
|
|
|
default:
|
|
if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
|
|
{
|
|
tree comp_vectype, mask_type;
|
|
|
|
if (TREE_CODE (TREE_TYPE (rhs1)) == BOOLEAN_TYPE)
|
|
{
|
|
res = search_type_for_mask_1 (rhs1, vinfo, cache);
|
|
res2 = search_type_for_mask_1 (gimple_assign_rhs2 (def_stmt),
|
|
vinfo, cache);
|
|
if (!res || (res2 && TYPE_PRECISION (res) > TYPE_PRECISION (res2)))
|
|
res = res2;
|
|
break;
|
|
}
|
|
|
|
comp_vectype = get_vectype_for_scalar_type (TREE_TYPE (rhs1));
|
|
if (comp_vectype == NULL_TREE)
|
|
{
|
|
res = NULL_TREE;
|
|
break;
|
|
}
|
|
|
|
mask_type = get_mask_type_for_scalar_type (TREE_TYPE (rhs1));
|
|
if (!mask_type
|
|
|| !expand_vec_cmp_expr_p (comp_vectype, mask_type, rhs_code))
|
|
{
|
|
res = NULL_TREE;
|
|
break;
|
|
}
|
|
|
|
if (TREE_CODE (TREE_TYPE (rhs1)) != INTEGER_TYPE
|
|
|| !TYPE_UNSIGNED (TREE_TYPE (rhs1)))
|
|
{
|
|
machine_mode mode = TYPE_MODE (TREE_TYPE (rhs1));
|
|
res = build_nonstandard_integer_type (GET_MODE_BITSIZE (mode), 1);
|
|
}
|
|
else
|
|
res = TREE_TYPE (rhs1);
|
|
}
|
|
}
|
|
|
|
cache.put (def_stmt, res);
|
|
return res;
|
|
}
|
|
|
|
/* Return the proper type for converting bool VAR into
|
|
an integer value or NULL_TREE if no such type exists.
|
|
The type is chosen so that converted value has the
|
|
same number of elements as VAR's vector type. */
|
|
|
|
static tree
|
|
search_type_for_mask (tree var, vec_info *vinfo)
|
|
{
|
|
hash_map<gimple *, tree> cache;
|
|
return search_type_for_mask_1 (var, vinfo, cache);
|
|
}
|
|
|
|
/* Function vect_recog_bool_pattern
|
|
|
|
Try to find pattern like following:
|
|
|
|
bool a_b, b_b, c_b, d_b, e_b;
|
|
TYPE f_T;
|
|
loop:
|
|
S1 a_b = x1 CMP1 y1;
|
|
S2 b_b = x2 CMP2 y2;
|
|
S3 c_b = a_b & b_b;
|
|
S4 d_b = x3 CMP3 y3;
|
|
S5 e_b = c_b | d_b;
|
|
S6 f_T = (TYPE) e_b;
|
|
|
|
where type 'TYPE' is an integral type. Or a similar pattern
|
|
ending in
|
|
|
|
S6 f_Y = e_b ? r_Y : s_Y;
|
|
|
|
as results from if-conversion of a complex condition.
|
|
|
|
Input:
|
|
|
|
* LAST_STMT: A stmt at the end from which the pattern
|
|
search begins, i.e. cast of a bool to
|
|
an integer type.
|
|
|
|
Output:
|
|
|
|
* TYPE_IN: The type of the input arguments to the pattern.
|
|
|
|
* TYPE_OUT: The type of the output of this pattern.
|
|
|
|
* Return value: A new stmt that will be used to replace the pattern.
|
|
|
|
Assuming size of TYPE is the same as size of all comparisons
|
|
(otherwise some casts would be added where needed), the above
|
|
sequence we create related pattern stmts:
|
|
S1' a_T = x1 CMP1 y1 ? 1 : 0;
|
|
S3' c_T = x2 CMP2 y2 ? a_T : 0;
|
|
S4' d_T = x3 CMP3 y3 ? 1 : 0;
|
|
S5' e_T = c_T | d_T;
|
|
S6' f_T = e_T;
|
|
|
|
Instead of the above S3' we could emit:
|
|
S2' b_T = x2 CMP2 y2 ? 1 : 0;
|
|
S3' c_T = a_T | b_T;
|
|
but the above is more efficient. */
|
|
|
|
static gimple *
|
|
vect_recog_bool_pattern (vec<gimple *> *stmts, tree *type_in,
|
|
tree *type_out)
|
|
{
|
|
gimple *last_stmt = stmts->pop ();
|
|
enum tree_code rhs_code;
|
|
tree var, lhs, rhs, vectype;
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
|
|
stmt_vec_info new_stmt_info;
|
|
vec_info *vinfo = stmt_vinfo->vinfo;
|
|
gimple *pattern_stmt;
|
|
|
|
if (!is_gimple_assign (last_stmt))
|
|
return NULL;
|
|
|
|
var = gimple_assign_rhs1 (last_stmt);
|
|
lhs = gimple_assign_lhs (last_stmt);
|
|
|
|
if ((TYPE_PRECISION (TREE_TYPE (var)) != 1
|
|
|| !TYPE_UNSIGNED (TREE_TYPE (var)))
|
|
&& TREE_CODE (TREE_TYPE (var)) != BOOLEAN_TYPE)
|
|
return NULL;
|
|
|
|
hash_set<gimple *> bool_stmts;
|
|
|
|
rhs_code = gimple_assign_rhs_code (last_stmt);
|
|
if (CONVERT_EXPR_CODE_P (rhs_code))
|
|
{
|
|
if (TREE_CODE (TREE_TYPE (lhs)) != INTEGER_TYPE
|
|
|| TYPE_PRECISION (TREE_TYPE (lhs)) == 1)
|
|
return NULL;
|
|
vectype = get_vectype_for_scalar_type (TREE_TYPE (lhs));
|
|
if (vectype == NULL_TREE)
|
|
return NULL;
|
|
|
|
if (check_bool_pattern (var, vinfo, bool_stmts))
|
|
{
|
|
rhs = adjust_bool_stmts (bool_stmts, TREE_TYPE (lhs), last_stmt);
|
|
lhs = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
|
|
if (useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
|
|
pattern_stmt = gimple_build_assign (lhs, SSA_NAME, rhs);
|
|
else
|
|
pattern_stmt
|
|
= gimple_build_assign (lhs, NOP_EXPR, rhs);
|
|
}
|
|
else
|
|
{
|
|
tree type = search_type_for_mask (var, vinfo);
|
|
tree cst0, cst1, tmp;
|
|
|
|
if (!type)
|
|
return NULL;
|
|
|
|
/* We may directly use cond with narrowed type to avoid
|
|
multiple cond exprs with following result packing and
|
|
perform single cond with packed mask instead. In case
|
|
of widening we better make cond first and then extract
|
|
results. */
|
|
if (TYPE_MODE (type) == TYPE_MODE (TREE_TYPE (lhs)))
|
|
type = TREE_TYPE (lhs);
|
|
|
|
cst0 = build_int_cst (type, 0);
|
|
cst1 = build_int_cst (type, 1);
|
|
tmp = vect_recog_temp_ssa_var (type, NULL);
|
|
pattern_stmt = gimple_build_assign (tmp, COND_EXPR, var, cst1, cst0);
|
|
|
|
if (!useless_type_conversion_p (type, TREE_TYPE (lhs)))
|
|
{
|
|
tree new_vectype = get_vectype_for_scalar_type (type);
|
|
new_stmt_info = new_stmt_vec_info (pattern_stmt, vinfo);
|
|
set_vinfo_for_stmt (pattern_stmt, new_stmt_info);
|
|
STMT_VINFO_VECTYPE (new_stmt_info) = new_vectype;
|
|
new_pattern_def_seq (stmt_vinfo, pattern_stmt);
|
|
|
|
lhs = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
|
|
pattern_stmt = gimple_build_assign (lhs, CONVERT_EXPR, tmp);
|
|
}
|
|
}
|
|
|
|
*type_out = vectype;
|
|
*type_in = vectype;
|
|
stmts->safe_push (last_stmt);
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"vect_recog_bool_pattern: detected:\n");
|
|
|
|
return pattern_stmt;
|
|
}
|
|
else if (rhs_code == COND_EXPR
|
|
&& TREE_CODE (var) == SSA_NAME)
|
|
{
|
|
vectype = get_vectype_for_scalar_type (TREE_TYPE (lhs));
|
|
if (vectype == NULL_TREE)
|
|
return NULL;
|
|
|
|
/* Build a scalar type for the boolean result that when
|
|
vectorized matches the vector type of the result in
|
|
size and number of elements. */
|
|
unsigned prec
|
|
= wi::udiv_trunc (TYPE_SIZE (vectype),
|
|
TYPE_VECTOR_SUBPARTS (vectype)).to_uhwi ();
|
|
tree type
|
|
= build_nonstandard_integer_type (prec,
|
|
TYPE_UNSIGNED (TREE_TYPE (var)));
|
|
if (get_vectype_for_scalar_type (type) == NULL_TREE)
|
|
return NULL;
|
|
|
|
if (!check_bool_pattern (var, vinfo, bool_stmts))
|
|
return NULL;
|
|
|
|
rhs = adjust_bool_stmts (bool_stmts, type, last_stmt);
|
|
|
|
lhs = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
|
|
pattern_stmt
|
|
= gimple_build_assign (lhs, COND_EXPR,
|
|
build2 (NE_EXPR, boolean_type_node,
|
|
rhs, build_int_cst (type, 0)),
|
|
gimple_assign_rhs2 (last_stmt),
|
|
gimple_assign_rhs3 (last_stmt));
|
|
*type_out = vectype;
|
|
*type_in = vectype;
|
|
stmts->safe_push (last_stmt);
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"vect_recog_bool_pattern: detected:\n");
|
|
|
|
return pattern_stmt;
|
|
}
|
|
else if (rhs_code == SSA_NAME
|
|
&& STMT_VINFO_DATA_REF (stmt_vinfo))
|
|
{
|
|
stmt_vec_info pattern_stmt_info;
|
|
vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
|
|
gcc_assert (vectype != NULL_TREE);
|
|
if (!VECTOR_MODE_P (TYPE_MODE (vectype)))
|
|
return NULL;
|
|
|
|
if (check_bool_pattern (var, vinfo, bool_stmts))
|
|
rhs = adjust_bool_stmts (bool_stmts, TREE_TYPE (vectype), last_stmt);
|
|
else
|
|
{
|
|
tree type = search_type_for_mask (var, vinfo);
|
|
tree cst0, cst1, new_vectype;
|
|
|
|
if (!type)
|
|
return NULL;
|
|
|
|
if (TYPE_MODE (type) == TYPE_MODE (TREE_TYPE (vectype)))
|
|
type = TREE_TYPE (vectype);
|
|
|
|
cst0 = build_int_cst (type, 0);
|
|
cst1 = build_int_cst (type, 1);
|
|
new_vectype = get_vectype_for_scalar_type (type);
|
|
|
|
rhs = vect_recog_temp_ssa_var (type, NULL);
|
|
pattern_stmt = gimple_build_assign (rhs, COND_EXPR, var, cst1, cst0);
|
|
|
|
pattern_stmt_info = new_stmt_vec_info (pattern_stmt, vinfo);
|
|
set_vinfo_for_stmt (pattern_stmt, pattern_stmt_info);
|
|
STMT_VINFO_VECTYPE (pattern_stmt_info) = new_vectype;
|
|
append_pattern_def_seq (stmt_vinfo, pattern_stmt);
|
|
}
|
|
|
|
lhs = build1 (VIEW_CONVERT_EXPR, TREE_TYPE (vectype), lhs);
|
|
if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
|
|
{
|
|
tree rhs2 = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
|
|
gimple *cast_stmt = gimple_build_assign (rhs2, NOP_EXPR, rhs);
|
|
append_pattern_def_seq (stmt_vinfo, cast_stmt);
|
|
rhs = rhs2;
|
|
}
|
|
pattern_stmt = gimple_build_assign (lhs, SSA_NAME, rhs);
|
|
pattern_stmt_info = new_stmt_vec_info (pattern_stmt, vinfo);
|
|
set_vinfo_for_stmt (pattern_stmt, pattern_stmt_info);
|
|
STMT_VINFO_DATA_REF (pattern_stmt_info)
|
|
= STMT_VINFO_DATA_REF (stmt_vinfo);
|
|
STMT_VINFO_DR_BASE_ADDRESS (pattern_stmt_info)
|
|
= STMT_VINFO_DR_BASE_ADDRESS (stmt_vinfo);
|
|
STMT_VINFO_DR_INIT (pattern_stmt_info) = STMT_VINFO_DR_INIT (stmt_vinfo);
|
|
STMT_VINFO_DR_OFFSET (pattern_stmt_info)
|
|
= STMT_VINFO_DR_OFFSET (stmt_vinfo);
|
|
STMT_VINFO_DR_STEP (pattern_stmt_info) = STMT_VINFO_DR_STEP (stmt_vinfo);
|
|
STMT_VINFO_DR_ALIGNED_TO (pattern_stmt_info)
|
|
= STMT_VINFO_DR_ALIGNED_TO (stmt_vinfo);
|
|
DR_STMT (STMT_VINFO_DATA_REF (stmt_vinfo)) = pattern_stmt;
|
|
*type_out = vectype;
|
|
*type_in = vectype;
|
|
stmts->safe_push (last_stmt);
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"vect_recog_bool_pattern: detected:\n");
|
|
return pattern_stmt;
|
|
}
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* A helper for vect_recog_mask_conversion_pattern. Build
|
|
conversion of MASK to a type suitable for masking VECTYPE.
|
|
Built statement gets required vectype and is appended to
|
|
a pattern sequence of STMT_VINFO.
|
|
|
|
Return converted mask. */
|
|
|
|
static tree
|
|
build_mask_conversion (tree mask, tree vectype, stmt_vec_info stmt_vinfo,
|
|
vec_info *vinfo)
|
|
{
|
|
gimple *stmt;
|
|
tree masktype, tmp;
|
|
stmt_vec_info new_stmt_info;
|
|
|
|
masktype = build_same_sized_truth_vector_type (vectype);
|
|
tmp = vect_recog_temp_ssa_var (TREE_TYPE (masktype), NULL);
|
|
stmt = gimple_build_assign (tmp, CONVERT_EXPR, mask);
|
|
new_stmt_info = new_stmt_vec_info (stmt, vinfo);
|
|
set_vinfo_for_stmt (stmt, new_stmt_info);
|
|
STMT_VINFO_VECTYPE (new_stmt_info) = masktype;
|
|
append_pattern_def_seq (stmt_vinfo, stmt);
|
|
|
|
return tmp;
|
|
}
|
|
|
|
|
|
/* Function vect_recog_mask_conversion_pattern
|
|
|
|
Try to find statements which require boolean type
|
|
converison. Additional conversion statements are
|
|
added to handle such cases. For example:
|
|
|
|
bool m_1, m_2, m_3;
|
|
int i_4, i_5;
|
|
double d_6, d_7;
|
|
char c_1, c_2, c_3;
|
|
|
|
S1 m_1 = i_4 > i_5;
|
|
S2 m_2 = d_6 < d_7;
|
|
S3 m_3 = m_1 & m_2;
|
|
S4 c_1 = m_3 ? c_2 : c_3;
|
|
|
|
Will be transformed into:
|
|
|
|
S1 m_1 = i_4 > i_5;
|
|
S2 m_2 = d_6 < d_7;
|
|
S3'' m_2' = (_Bool[bitsize=32])m_2
|
|
S3' m_3' = m_1 & m_2';
|
|
S4'' m_3'' = (_Bool[bitsize=8])m_3'
|
|
S4' c_1' = m_3'' ? c_2 : c_3; */
|
|
|
|
static gimple *
|
|
vect_recog_mask_conversion_pattern (vec<gimple *> *stmts, tree *type_in,
|
|
tree *type_out)
|
|
{
|
|
gimple *last_stmt = stmts->pop ();
|
|
enum tree_code rhs_code;
|
|
tree lhs = NULL_TREE, rhs1, rhs2, tmp, rhs1_type, rhs2_type;
|
|
tree vectype1, vectype2;
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
|
|
stmt_vec_info pattern_stmt_info;
|
|
vec_info *vinfo = stmt_vinfo->vinfo;
|
|
gimple *pattern_stmt;
|
|
|
|
/* Check for MASK_LOAD ans MASK_STORE calls requiring mask conversion. */
|
|
if (is_gimple_call (last_stmt)
|
|
&& gimple_call_internal_p (last_stmt)
|
|
&& (gimple_call_internal_fn (last_stmt) == IFN_MASK_STORE
|
|
|| gimple_call_internal_fn (last_stmt) == IFN_MASK_LOAD))
|
|
{
|
|
bool load = (gimple_call_internal_fn (last_stmt) == IFN_MASK_LOAD);
|
|
|
|
if (load)
|
|
{
|
|
lhs = gimple_call_lhs (last_stmt);
|
|
vectype1 = get_vectype_for_scalar_type (TREE_TYPE (lhs));
|
|
}
|
|
else
|
|
{
|
|
rhs2 = gimple_call_arg (last_stmt, 3);
|
|
vectype1 = get_vectype_for_scalar_type (TREE_TYPE (rhs2));
|
|
}
|
|
|
|
rhs1 = gimple_call_arg (last_stmt, 2);
|
|
rhs1_type = search_type_for_mask (rhs1, vinfo);
|
|
if (!rhs1_type)
|
|
return NULL;
|
|
vectype2 = get_mask_type_for_scalar_type (rhs1_type);
|
|
|
|
if (!vectype1 || !vectype2
|
|
|| TYPE_VECTOR_SUBPARTS (vectype1) == TYPE_VECTOR_SUBPARTS (vectype2))
|
|
return NULL;
|
|
|
|
tmp = build_mask_conversion (rhs1, vectype1, stmt_vinfo, vinfo);
|
|
|
|
if (load)
|
|
{
|
|
lhs = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
|
|
pattern_stmt
|
|
= gimple_build_call_internal (IFN_MASK_LOAD, 3,
|
|
gimple_call_arg (last_stmt, 0),
|
|
gimple_call_arg (last_stmt, 1),
|
|
tmp);
|
|
gimple_call_set_lhs (pattern_stmt, lhs);
|
|
}
|
|
else
|
|
pattern_stmt
|
|
= gimple_build_call_internal (IFN_MASK_STORE, 4,
|
|
gimple_call_arg (last_stmt, 0),
|
|
gimple_call_arg (last_stmt, 1),
|
|
tmp,
|
|
gimple_call_arg (last_stmt, 3));
|
|
|
|
|
|
pattern_stmt_info = new_stmt_vec_info (pattern_stmt, vinfo);
|
|
set_vinfo_for_stmt (pattern_stmt, pattern_stmt_info);
|
|
STMT_VINFO_DATA_REF (pattern_stmt_info)
|
|
= STMT_VINFO_DATA_REF (stmt_vinfo);
|
|
STMT_VINFO_DR_BASE_ADDRESS (pattern_stmt_info)
|
|
= STMT_VINFO_DR_BASE_ADDRESS (stmt_vinfo);
|
|
STMT_VINFO_DR_INIT (pattern_stmt_info) = STMT_VINFO_DR_INIT (stmt_vinfo);
|
|
STMT_VINFO_DR_OFFSET (pattern_stmt_info)
|
|
= STMT_VINFO_DR_OFFSET (stmt_vinfo);
|
|
STMT_VINFO_DR_STEP (pattern_stmt_info) = STMT_VINFO_DR_STEP (stmt_vinfo);
|
|
STMT_VINFO_DR_ALIGNED_TO (pattern_stmt_info)
|
|
= STMT_VINFO_DR_ALIGNED_TO (stmt_vinfo);
|
|
DR_STMT (STMT_VINFO_DATA_REF (stmt_vinfo)) = pattern_stmt;
|
|
|
|
*type_out = vectype1;
|
|
*type_in = vectype1;
|
|
stmts->safe_push (last_stmt);
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"vect_recog_mask_conversion_pattern: detected:\n");
|
|
|
|
return pattern_stmt;
|
|
}
|
|
|
|
if (!is_gimple_assign (last_stmt))
|
|
return NULL;
|
|
|
|
lhs = gimple_assign_lhs (last_stmt);
|
|
rhs1 = gimple_assign_rhs1 (last_stmt);
|
|
rhs_code = gimple_assign_rhs_code (last_stmt);
|
|
|
|
/* Check for cond expression requiring mask conversion. */
|
|
if (rhs_code == COND_EXPR)
|
|
{
|
|
/* vect_recog_mixed_size_cond_pattern could apply.
|
|
Do nothing then. */
|
|
if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
|
|
return NULL;
|
|
|
|
vectype1 = get_vectype_for_scalar_type (TREE_TYPE (lhs));
|
|
|
|
if (TREE_CODE (rhs1) == SSA_NAME)
|
|
{
|
|
rhs1_type = search_type_for_mask (rhs1, vinfo);
|
|
if (!rhs1_type)
|
|
return NULL;
|
|
}
|
|
else if (COMPARISON_CLASS_P (rhs1))
|
|
rhs1_type = TREE_TYPE (TREE_OPERAND (rhs1, 0));
|
|
else
|
|
return NULL;
|
|
|
|
vectype2 = get_mask_type_for_scalar_type (rhs1_type);
|
|
|
|
if (!vectype1 || !vectype2
|
|
|| TYPE_VECTOR_SUBPARTS (vectype1) == TYPE_VECTOR_SUBPARTS (vectype2))
|
|
return NULL;
|
|
|
|
/* If rhs1 is a comparison we need to move it into a
|
|
separate statement. */
|
|
if (TREE_CODE (rhs1) != SSA_NAME)
|
|
{
|
|
tmp = vect_recog_temp_ssa_var (TREE_TYPE (rhs1), NULL);
|
|
pattern_stmt = gimple_build_assign (tmp, rhs1);
|
|
rhs1 = tmp;
|
|
|
|
pattern_stmt_info = new_stmt_vec_info (pattern_stmt, vinfo);
|
|
set_vinfo_for_stmt (pattern_stmt, pattern_stmt_info);
|
|
STMT_VINFO_VECTYPE (pattern_stmt_info) = vectype2;
|
|
append_pattern_def_seq (stmt_vinfo, pattern_stmt);
|
|
}
|
|
|
|
tmp = build_mask_conversion (rhs1, vectype1, stmt_vinfo, vinfo);
|
|
|
|
lhs = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
|
|
pattern_stmt = gimple_build_assign (lhs, COND_EXPR, tmp,
|
|
gimple_assign_rhs2 (last_stmt),
|
|
gimple_assign_rhs3 (last_stmt));
|
|
|
|
*type_out = vectype1;
|
|
*type_in = vectype1;
|
|
stmts->safe_push (last_stmt);
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"vect_recog_mask_conversion_pattern: detected:\n");
|
|
|
|
return pattern_stmt;
|
|
}
|
|
|
|
/* Now check for binary boolean operations requiring conversion for
|
|
one of operands. */
|
|
if (TREE_CODE (TREE_TYPE (lhs)) != BOOLEAN_TYPE)
|
|
return NULL;
|
|
|
|
if (rhs_code != BIT_IOR_EXPR
|
|
&& rhs_code != BIT_XOR_EXPR
|
|
&& rhs_code != BIT_AND_EXPR
|
|
&& TREE_CODE_CLASS (rhs_code) != tcc_comparison)
|
|
return NULL;
|
|
|
|
rhs2 = gimple_assign_rhs2 (last_stmt);
|
|
|
|
rhs1_type = search_type_for_mask (rhs1, vinfo);
|
|
rhs2_type = search_type_for_mask (rhs2, vinfo);
|
|
|
|
if (!rhs1_type || !rhs2_type
|
|
|| TYPE_PRECISION (rhs1_type) == TYPE_PRECISION (rhs2_type))
|
|
return NULL;
|
|
|
|
if (TYPE_PRECISION (rhs1_type) < TYPE_PRECISION (rhs2_type))
|
|
{
|
|
vectype1 = get_mask_type_for_scalar_type (rhs1_type);
|
|
if (!vectype1)
|
|
return NULL;
|
|
rhs2 = build_mask_conversion (rhs2, vectype1, stmt_vinfo, vinfo);
|
|
}
|
|
else
|
|
{
|
|
vectype1 = get_mask_type_for_scalar_type (rhs2_type);
|
|
if (!vectype1)
|
|
return NULL;
|
|
rhs1 = build_mask_conversion (rhs1, vectype1, stmt_vinfo, vinfo);
|
|
}
|
|
|
|
lhs = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
|
|
pattern_stmt = gimple_build_assign (lhs, rhs_code, rhs1, rhs2);
|
|
|
|
*type_out = vectype1;
|
|
*type_in = vectype1;
|
|
stmts->safe_push (last_stmt);
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"vect_recog_mask_conversion_pattern: detected:\n");
|
|
|
|
return pattern_stmt;
|
|
}
|
|
|
|
|
|
/* Mark statements that are involved in a pattern. */
|
|
|
|
static inline void
|
|
vect_mark_pattern_stmts (gimple *orig_stmt, gimple *pattern_stmt,
|
|
tree pattern_vectype)
|
|
{
|
|
stmt_vec_info pattern_stmt_info, def_stmt_info;
|
|
stmt_vec_info orig_stmt_info = vinfo_for_stmt (orig_stmt);
|
|
vec_info *vinfo = orig_stmt_info->vinfo;
|
|
gimple *def_stmt;
|
|
|
|
pattern_stmt_info = vinfo_for_stmt (pattern_stmt);
|
|
if (pattern_stmt_info == NULL)
|
|
{
|
|
pattern_stmt_info = new_stmt_vec_info (pattern_stmt, vinfo);
|
|
set_vinfo_for_stmt (pattern_stmt, pattern_stmt_info);
|
|
}
|
|
gimple_set_bb (pattern_stmt, gimple_bb (orig_stmt));
|
|
|
|
STMT_VINFO_RELATED_STMT (pattern_stmt_info) = orig_stmt;
|
|
STMT_VINFO_DEF_TYPE (pattern_stmt_info)
|
|
= STMT_VINFO_DEF_TYPE (orig_stmt_info);
|
|
STMT_VINFO_VECTYPE (pattern_stmt_info) = pattern_vectype;
|
|
STMT_VINFO_IN_PATTERN_P (orig_stmt_info) = true;
|
|
STMT_VINFO_RELATED_STMT (orig_stmt_info) = pattern_stmt;
|
|
STMT_VINFO_PATTERN_DEF_SEQ (pattern_stmt_info)
|
|
= STMT_VINFO_PATTERN_DEF_SEQ (orig_stmt_info);
|
|
if (STMT_VINFO_PATTERN_DEF_SEQ (pattern_stmt_info))
|
|
{
|
|
gimple_stmt_iterator si;
|
|
for (si = gsi_start (STMT_VINFO_PATTERN_DEF_SEQ (pattern_stmt_info));
|
|
!gsi_end_p (si); gsi_next (&si))
|
|
{
|
|
def_stmt = gsi_stmt (si);
|
|
def_stmt_info = vinfo_for_stmt (def_stmt);
|
|
if (def_stmt_info == NULL)
|
|
{
|
|
def_stmt_info = new_stmt_vec_info (def_stmt, vinfo);
|
|
set_vinfo_for_stmt (def_stmt, def_stmt_info);
|
|
}
|
|
gimple_set_bb (def_stmt, gimple_bb (orig_stmt));
|
|
STMT_VINFO_RELATED_STMT (def_stmt_info) = orig_stmt;
|
|
STMT_VINFO_DEF_TYPE (def_stmt_info) = vect_internal_def;
|
|
if (STMT_VINFO_VECTYPE (def_stmt_info) == NULL_TREE)
|
|
STMT_VINFO_VECTYPE (def_stmt_info) = pattern_vectype;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Function vect_pattern_recog_1
|
|
|
|
Input:
|
|
PATTERN_RECOG_FUNC: A pointer to a function that detects a certain
|
|
computation pattern.
|
|
STMT: A stmt from which the pattern search should start.
|
|
|
|
If PATTERN_RECOG_FUNC successfully detected the pattern, it creates an
|
|
expression that computes the same functionality and can be used to
|
|
replace the sequence of stmts that are involved in the pattern.
|
|
|
|
Output:
|
|
This function checks if the expression returned by PATTERN_RECOG_FUNC is
|
|
supported in vector form by the target. We use 'TYPE_IN' to obtain the
|
|
relevant vector type. If 'TYPE_IN' is already a vector type, then this
|
|
indicates that target support had already been checked by PATTERN_RECOG_FUNC.
|
|
If 'TYPE_OUT' is also returned by PATTERN_RECOG_FUNC, we check that it fits
|
|
to the available target pattern.
|
|
|
|
This function also does some bookkeeping, as explained in the documentation
|
|
for vect_recog_pattern. */
|
|
|
|
static bool
|
|
vect_pattern_recog_1 (vect_recog_func *recog_func,
|
|
gimple_stmt_iterator si,
|
|
vec<gimple *> *stmts_to_replace)
|
|
{
|
|
gimple *stmt = gsi_stmt (si), *pattern_stmt;
|
|
stmt_vec_info stmt_info;
|
|
loop_vec_info loop_vinfo;
|
|
tree pattern_vectype;
|
|
tree type_in, type_out;
|
|
enum tree_code code;
|
|
int i;
|
|
gimple *next;
|
|
|
|
stmts_to_replace->truncate (0);
|
|
stmts_to_replace->quick_push (stmt);
|
|
pattern_stmt = recog_func->fn (stmts_to_replace, &type_in, &type_out);
|
|
if (!pattern_stmt)
|
|
return false;
|
|
|
|
stmt = stmts_to_replace->last ();
|
|
stmt_info = vinfo_for_stmt (stmt);
|
|
loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
|
|
|
if (VECTOR_BOOLEAN_TYPE_P (type_in)
|
|
|| VECTOR_MODE_P (TYPE_MODE (type_in)))
|
|
{
|
|
/* No need to check target support (already checked by the pattern
|
|
recognition function). */
|
|
pattern_vectype = type_out ? type_out : type_in;
|
|
}
|
|
else
|
|
{
|
|
machine_mode vec_mode;
|
|
enum insn_code icode;
|
|
optab optab;
|
|
|
|
/* Check target support */
|
|
type_in = get_vectype_for_scalar_type (type_in);
|
|
if (!type_in)
|
|
return false;
|
|
if (type_out)
|
|
type_out = get_vectype_for_scalar_type (type_out);
|
|
else
|
|
type_out = type_in;
|
|
if (!type_out)
|
|
return false;
|
|
pattern_vectype = type_out;
|
|
|
|
if (is_gimple_assign (pattern_stmt))
|
|
code = gimple_assign_rhs_code (pattern_stmt);
|
|
else
|
|
{
|
|
gcc_assert (is_gimple_call (pattern_stmt));
|
|
code = CALL_EXPR;
|
|
}
|
|
|
|
optab = optab_for_tree_code (code, type_in, optab_default);
|
|
vec_mode = TYPE_MODE (type_in);
|
|
if (!optab
|
|
|| (icode = optab_handler (optab, vec_mode)) == CODE_FOR_nothing
|
|
|| (insn_data[icode].operand[0].mode != TYPE_MODE (type_out)))
|
|
return false;
|
|
}
|
|
|
|
/* Found a vectorizable pattern. */
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"%s pattern recognized: ", recog_func->name);
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
|
|
}
|
|
|
|
/* Mark the stmts that are involved in the pattern. */
|
|
vect_mark_pattern_stmts (stmt, pattern_stmt, pattern_vectype);
|
|
|
|
/* Patterns cannot be vectorized using SLP, because they change the order of
|
|
computation. */
|
|
if (loop_vinfo)
|
|
FOR_EACH_VEC_ELT (LOOP_VINFO_REDUCTIONS (loop_vinfo), i, next)
|
|
if (next == stmt)
|
|
LOOP_VINFO_REDUCTIONS (loop_vinfo).ordered_remove (i);
|
|
|
|
/* It is possible that additional pattern stmts are created and inserted in
|
|
STMTS_TO_REPLACE. We create a stmt_info for each of them, and mark the
|
|
relevant statements. */
|
|
for (i = 0; stmts_to_replace->iterate (i, &stmt)
|
|
&& (unsigned) i < (stmts_to_replace->length () - 1);
|
|
i++)
|
|
{
|
|
stmt_info = vinfo_for_stmt (stmt);
|
|
pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"additional pattern stmt: ");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
|
|
}
|
|
|
|
vect_mark_pattern_stmts (stmt, pattern_stmt, NULL_TREE);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Function vect_pattern_recog
|
|
|
|
Input:
|
|
LOOP_VINFO - a struct_loop_info of a loop in which we want to look for
|
|
computation idioms.
|
|
|
|
Output - for each computation idiom that is detected we create a new stmt
|
|
that provides the same functionality and that can be vectorized. We
|
|
also record some information in the struct_stmt_info of the relevant
|
|
stmts, as explained below:
|
|
|
|
At the entry to this function we have the following stmts, with the
|
|
following initial value in the STMT_VINFO fields:
|
|
|
|
stmt in_pattern_p related_stmt vec_stmt
|
|
S1: a_i = .... - - -
|
|
S2: a_2 = ..use(a_i).. - - -
|
|
S3: a_1 = ..use(a_2).. - - -
|
|
S4: a_0 = ..use(a_1).. - - -
|
|
S5: ... = ..use(a_0).. - - -
|
|
|
|
Say the sequence {S1,S2,S3,S4} was detected as a pattern that can be
|
|
represented by a single stmt. We then:
|
|
- create a new stmt S6 equivalent to the pattern (the stmt is not
|
|
inserted into the code)
|
|
- fill in the STMT_VINFO fields as follows:
|
|
|
|
in_pattern_p related_stmt vec_stmt
|
|
S1: a_i = .... - - -
|
|
S2: a_2 = ..use(a_i).. - - -
|
|
S3: a_1 = ..use(a_2).. - - -
|
|
S4: a_0 = ..use(a_1).. true S6 -
|
|
'---> S6: a_new = .... - S4 -
|
|
S5: ... = ..use(a_0).. - - -
|
|
|
|
(the last stmt in the pattern (S4) and the new pattern stmt (S6) point
|
|
to each other through the RELATED_STMT field).
|
|
|
|
S6 will be marked as relevant in vect_mark_stmts_to_be_vectorized instead
|
|
of S4 because it will replace all its uses. Stmts {S1,S2,S3} will
|
|
remain irrelevant unless used by stmts other than S4.
|
|
|
|
If vectorization succeeds, vect_transform_stmt will skip over {S1,S2,S3}
|
|
(because they are marked as irrelevant). It will vectorize S6, and record
|
|
a pointer to the new vector stmt VS6 from S6 (as usual).
|
|
S4 will be skipped, and S5 will be vectorized as usual:
|
|
|
|
in_pattern_p related_stmt vec_stmt
|
|
S1: a_i = .... - - -
|
|
S2: a_2 = ..use(a_i).. - - -
|
|
S3: a_1 = ..use(a_2).. - - -
|
|
> VS6: va_new = .... - - -
|
|
S4: a_0 = ..use(a_1).. true S6 VS6
|
|
'---> S6: a_new = .... - S4 VS6
|
|
> VS5: ... = ..vuse(va_new).. - - -
|
|
S5: ... = ..use(a_0).. - - -
|
|
|
|
DCE could then get rid of {S1,S2,S3,S4,S5} (if their defs are not used
|
|
elsewhere), and we'll end up with:
|
|
|
|
VS6: va_new = ....
|
|
VS5: ... = ..vuse(va_new)..
|
|
|
|
In case of more than one pattern statements, e.g., widen-mult with
|
|
intermediate type:
|
|
|
|
S1 a_t = ;
|
|
S2 a_T = (TYPE) a_t;
|
|
'--> S3: a_it = (interm_type) a_t;
|
|
S4 prod_T = a_T * CONST;
|
|
'--> S5: prod_T' = a_it w* CONST;
|
|
|
|
there may be other users of a_T outside the pattern. In that case S2 will
|
|
be marked as relevant (as well as S3), and both S2 and S3 will be analyzed
|
|
and vectorized. The vector stmt VS2 will be recorded in S2, and VS3 will
|
|
be recorded in S3. */
|
|
|
|
void
|
|
vect_pattern_recog (vec_info *vinfo)
|
|
{
|
|
struct loop *loop;
|
|
basic_block *bbs;
|
|
unsigned int nbbs;
|
|
gimple_stmt_iterator si;
|
|
unsigned int i, j;
|
|
auto_vec<gimple *, 1> stmts_to_replace;
|
|
gimple *stmt;
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"=== vect_pattern_recog ===\n");
|
|
|
|
if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo))
|
|
{
|
|
loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
bbs = LOOP_VINFO_BBS (loop_vinfo);
|
|
nbbs = loop->num_nodes;
|
|
|
|
/* Scan through the loop stmts, applying the pattern recognition
|
|
functions starting at each stmt visited: */
|
|
for (i = 0; i < nbbs; i++)
|
|
{
|
|
basic_block bb = bbs[i];
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
|
{
|
|
/* Scan over all generic vect_recog_xxx_pattern functions. */
|
|
for (j = 0; j < NUM_PATTERNS; j++)
|
|
if (vect_pattern_recog_1 (&vect_vect_recog_func_ptrs[j], si,
|
|
&stmts_to_replace))
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
bb_vec_info bb_vinfo = as_a <bb_vec_info> (vinfo);
|
|
for (si = bb_vinfo->region_begin;
|
|
gsi_stmt (si) != gsi_stmt (bb_vinfo->region_end); gsi_next (&si))
|
|
{
|
|
if ((stmt = gsi_stmt (si))
|
|
&& vinfo_for_stmt (stmt)
|
|
&& !STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (stmt)))
|
|
continue;
|
|
|
|
/* Scan over all generic vect_recog_xxx_pattern functions. */
|
|
for (j = 0; j < NUM_PATTERNS; j++)
|
|
if (vect_pattern_recog_1 (&vect_vect_recog_func_ptrs[j], si,
|
|
&stmts_to_replace))
|
|
break;
|
|
}
|
|
}
|
|
}
|