Jakub Jelinek 5624e564d2 Update copyright years.
From-SVN: r219188
2015-01-05 13:33:28 +01:00

522 lines
12 KiB
C++

// 2001-12-27 pme
//
// Copyright (C) 2001-2015 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING3. If not see
// <http://www.gnu.org/licenses/>.
// 23.2.1.1 deque constructors, copy, and assignment
#include <deque>
#include <iterator>
#include <sstream>
#include <testsuite_allocator.h>
#include <testsuite_hooks.h>
using __gnu_test::copy_tracker;
using __gnu_test::tracker_allocator_counter;
using __gnu_test::tracker_allocator;
using __gnu_test::copy_constructor;
using __gnu_test::assignment_operator;
using __gnu_test::object_counter;
using __gnu_test::destructor;
typedef std::deque<object_counter> gdeque;
bool test __attribute__((unused)) = true;
// 23.2.1 required types
//
// A missing required type will cause a compile failure.
//
void
requiredTypesCheck()
{
typedef int T;
typedef std::deque<T> X;
typedef X::reference reference;
typedef X::const_reference const_reference;
typedef X::iterator iterator;
typedef X::const_iterator const_iterator;
typedef X::size_type size_type;
typedef X::difference_type difference_type;
typedef X::value_type value_type;
typedef X::allocator_type allocator_type;
typedef X::pointer pointer;
typedef X::const_pointer const_pointer;
typedef X::reverse_iterator reverse_iterator;
typedef X::const_reverse_iterator const_reverse_iterator;
}
// @fn defaultConstructorCheck
// Explicitly checks the default deque constructor and destructor for both
// trivial and non-trivial types. In addition, the size() and empty()
// member functions are explicitly checked here since it should be their
// first use. Checking those functions means checking the begin() and
// end() and their const brethren functions as well.
//
// @verbatim
// 23.2.1.1 default ctor/dtor
// effects:
// 23.2.1.1 constructs an empty deque using the specified allocator
// postconditions:
// 23.1 table 65 u.size() == 0
// throws:
// complexity:
// 23.1 table 65 constant
//
// 23.2.1.2 bool empty() const
// semantics:
// 23.1 table 65 a.size() == 0
// 23.1 (7) a.begin() == a.end()
// throws:
// complexity:
// 23.1 table 65 constant
//
// 23.2.1.2 size_type size() const
// semantics:
// 23.1 table 65 a.end() - a.begin()
// throws:
// complexity:
// 23.1 table 65(A) should be constant
//
// 23.2.1 iterator begin()
// const_iterator begin() const
// iterator end()
// const_iterator end() const
// throws:
// 23.1 (10) pt. 4 does not throw
// complexity:
// 23.1 table 65 constant
// @endverbatim
void
defaultConstructorCheckPOD()
{
// setup
typedef int T;
typedef std::deque<T> X;
// run test
X u;
// assert postconditions
VERIFY(u.empty());
VERIFY(0 == u.size());
VERIFY(u.begin() == u.end());
VERIFY(0 == std::distance(u.begin(), u.end()));
// teardown
}
void
defaultConstructorCheck()
{
// setup
typedef copy_tracker T;
typedef std::deque<T> X;
copy_tracker::reset();
// run test
const X u;
// assert postconditions
VERIFY(u.empty());
VERIFY(0 == u.size());
VERIFY(u.begin() == u.end());
VERIFY(0 == std::distance(u.begin(), u.end()));
// teardown
}
// @fn copyConstructorCheck()
// Explicitly checks the deque copy constructor. Continues verificaton of
// ancillary member functions documented under defaultConstructorCheck().
//
// This check also tests the push_back() member function.
//
// @verbatim
// 23.2.1 copy constructor
// effects:
// postconditions:
// 22.1.1 table 65 a == X(a)
// u == a
// throws:
// complexity:
// 22.1.1 table 65 linear
// @endverbatim
void
copyConstructorCheck()
{
// setup
typedef copy_tracker T;
typedef std::deque<T> X;
const std::size_t copyBaseSize = 17; // arbitrary
X a;
for (std::size_t i = 0; i < copyBaseSize; ++i)
a.push_back(i);
copy_tracker::reset();
// assert preconditions
VERIFY(!a.empty());
VERIFY(copyBaseSize == a.size());
VERIFY(a.begin() != a.end());
VERIFY( copyBaseSize == static_cast<std::size_t>(std::distance(a.begin(), a.end())) );
// run test
X u = a;
// assert postconditions
VERIFY(u == a);
VERIFY(copyBaseSize == copy_constructor::count());
// teardown
}
// @fn fillConstructorCheck()
// This test explicitly verifies the basic fill constructor. Like the default
// constructor, later tests depend on the fill constructor working correctly.
// That means this explicit test should precede the later tests so the error
// message given on assertion failure can be more helpful n tracking the
// problem.
//
// 23.2.1.1 fill constructor
// complexity:
// 23.2.1.1 linear in N
void
fillConstructorCheck()
{
// setup
typedef copy_tracker T;
typedef std::deque<T> X;
const X::size_type n(23);
const X::value_type t(111);
copy_tracker::reset();
// run test
X a(n, t);
// assert postconditions
VERIFY(n == a.size());
VERIFY(n == copy_constructor::count());
// teardown
}
// @fn fillConstructorCheck2()
// Explicit check for fill constructors masqueraded as range constructors as
// elucidated in clause 23.1.1 paragraph 9 of the standard.
//
// 23.1.1 (9) fill constructor looking like a range constructor
void
fillConstructorCheck2()
{
typedef copy_tracker T;
typedef std::deque<T> X;
const std::size_t f = 23;
const std::size_t l = 111;
copy_tracker::reset();
X a(f, l);
VERIFY(f == a.size());
VERIFY(f == copy_constructor::count());
}
// @fn rangeConstructorCheckForwardIterator()
// This test copies from one deque to another to force the copy
// constructor for T to be used because the compiler will kindly
// elide copies if the default constructor can be used with
// type conversions. Trust me.
//
// 23.2.1.1 range constructor, forward iterators
void
rangeConstructorCheckForwardIterator()
{
// setup
typedef copy_tracker T;
typedef std::deque<T> X;
const X::size_type n(726);
const X::value_type t(307);
X source(n, t);
X::iterator i = source.begin();
X::iterator j = source.end();
X::size_type rangeSize = std::distance(i, j);
copy_tracker::reset();
// test
X a(i, j);
// assert postconditions
VERIFY(rangeSize == a.size());
VERIFY(copy_constructor::count() <= rangeSize);
}
// @fn rangeConstructorCheckInputIterator()
// An explicit check for range construction on an input iterator
// range, which the standard expounds upon as having a different
// complexity than forward iterators.
//
// 23.2.1.1 range constructor, input iterators
void
rangeConstructorCheckInputIterator()
{
typedef copy_tracker T;
typedef std::deque<T> X;
std::istringstream ibuf("1234567890123456789");
const X::size_type rangeSize = ibuf.str().size();
std::istream_iterator<char> i(ibuf);
std::istream_iterator<char> j;
copy_tracker::reset();
X a(i, j);
VERIFY(rangeSize == a.size());
VERIFY(copy_constructor::count() <= (2 * rangeSize));
}
// 23.2.1 copy assignment
void
copyAssignmentCheck()
{
typedef copy_tracker T;
typedef std::deque<T> X;
const X::size_type n(18);
const X::value_type t(1023);
X a(n, t);
X r;
copy_tracker::reset();
r = a;
VERIFY(r == a);
VERIFY(n == copy_constructor::count());
}
// 23.2.1.1 fill assignment
//
// The complexity check must check dtors+copyAssign and
// copyCtor+copyAssign because that's the way the SGI implementation
// works. Dunno if it's true standard compliant (which specifies fill
// assignment in terms of erase and insert only), but it should work
// as (most) users expect and is more efficient.
void
fillAssignmentCheck()
{
typedef copy_tracker T;
typedef std::deque<T> X;
const X::size_type starting_size(10);
const X::value_type starting_value(66);
const X::size_type n(23);
const X::value_type t(111);
X a(starting_size, starting_value);
copy_tracker::reset();
// preconditions
VERIFY(starting_size == a.size());
// test
a.assign(n, t);
// postconditions
VERIFY(n == a.size());
VERIFY(n == (copy_constructor::count() + assignment_operator::count()));
VERIFY(starting_size == (destructor::count() + assignment_operator::count()));
}
// @verbatim
// 23.2.1 range assignment
// 23.2.1.1 deque constructors, copy, and assignment
// effects:
// Constructs a deque equal to the range [first, last), using the
// specified allocator.
//
// template<typename InputIterator>
// assign(InputIterator first, InputIterator last);
//
// is equivalent to
//
// erase(begin(), end());
// insert(begin(), first, last);
//
// postconditions:
// throws:
// complexity:
// forward iterators: N calls to the copy constructor, 0 reallocations
// input iterators: 2N calls to the copy constructor, log(N) reallocations
// @endverbatim
void
rangeAssignmentCheck()
{
typedef copy_tracker T;
typedef std::deque<T> X;
const X::size_type source_size(726);
const X::value_type source_value(307);
const X::size_type starting_size(10);
const X::value_type starting_value(66);
X source(source_size, source_value);
X::iterator i = source.begin();
X::iterator j = source.end();
X::size_type rangeSize = std::distance(i, j);
X a(starting_size, starting_value);
VERIFY(starting_size == a.size());
copy_tracker::reset();
a.assign(i, j);
VERIFY(source == a);
VERIFY(rangeSize == (copy_constructor::count() + assignment_operator::count()));
VERIFY(starting_size == (destructor::count() + assignment_operator::count()));
}
// 23.1 (10) range assignment
// 23.2.1.3 with exception
void
rangeAssignmentCheckWithException()
{
// setup
typedef copy_tracker T;
typedef std::deque<T> X;
// test
// What does "no effects" mean?
}
// 23.1.1 (9) fill assignment looking like a range assignment
void
fillAssignmentCheck2()
{
// setup
typedef copy_tracker T;
typedef std::deque<T> X;
// test
// What does "no effects" mean?
}
// Verify that the default deque constructor offers the basic exception
// guarantee.
void
test_default_ctor_exception_safety()
{
// setup
typedef copy_tracker T;
typedef std::deque<T, tracker_allocator<T> > X;
T::reset();
copy_constructor::throw_on(3);
tracker_allocator_counter::reset();
// test
try
{
T ref;
X a(7, ref);
VERIFY( false );
}
catch (...)
{
}
// assert postconditions
VERIFY(tracker_allocator_counter::get_allocation_count() == tracker_allocator_counter::get_deallocation_count());
// teardown
}
// Verify that the copy constructor offers the basic exception guarantee.
void
test_copy_ctor_exception_safety()
{
// setup
typedef copy_tracker T;
typedef std::deque<T, tracker_allocator<T> > X;
tracker_allocator_counter::reset();
{
X a(7);
T::reset();
copy_constructor::throw_on(3);
// test
try
{
X u(a);
VERIFY(false);
}
catch (...)
{
}
}
// assert postconditions
VERIFY(tracker_allocator_counter::get_allocation_count() == tracker_allocator_counter::get_deallocation_count());
// teardown
}
int main()
{
// basic functionality and standard conformance checks
requiredTypesCheck();
defaultConstructorCheckPOD();
defaultConstructorCheck();
test_default_ctor_exception_safety();
copyConstructorCheck();
test_copy_ctor_exception_safety();
fillConstructorCheck();
fillConstructorCheck2();
rangeConstructorCheckInputIterator();
rangeConstructorCheckForwardIterator();
copyAssignmentCheck();
fillAssignmentCheck();
fillAssignmentCheck2();
rangeAssignmentCheck();
rangeAssignmentCheckWithException();
return 0;
}