cbb6491d76
From-SVN: r184798
732 lines
21 KiB
Go
732 lines
21 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package gob
|
|
|
|
import (
|
|
"bytes"
|
|
"math"
|
|
"reflect"
|
|
"unsafe"
|
|
)
|
|
|
|
const uint64Size = int(unsafe.Sizeof(uint64(0)))
|
|
|
|
// encoderState is the global execution state of an instance of the encoder.
|
|
// Field numbers are delta encoded and always increase. The field
|
|
// number is initialized to -1 so 0 comes out as delta(1). A delta of
|
|
// 0 terminates the structure.
|
|
type encoderState struct {
|
|
enc *Encoder
|
|
b *bytes.Buffer
|
|
sendZero bool // encoding an array element or map key/value pair; send zero values
|
|
fieldnum int // the last field number written.
|
|
buf [1 + uint64Size]byte // buffer used by the encoder; here to avoid allocation.
|
|
next *encoderState // for free list
|
|
}
|
|
|
|
func (enc *Encoder) newEncoderState(b *bytes.Buffer) *encoderState {
|
|
e := enc.freeList
|
|
if e == nil {
|
|
e = new(encoderState)
|
|
e.enc = enc
|
|
} else {
|
|
enc.freeList = e.next
|
|
}
|
|
e.sendZero = false
|
|
e.fieldnum = 0
|
|
e.b = b
|
|
return e
|
|
}
|
|
|
|
func (enc *Encoder) freeEncoderState(e *encoderState) {
|
|
e.next = enc.freeList
|
|
enc.freeList = e
|
|
}
|
|
|
|
// Unsigned integers have a two-state encoding. If the number is less
|
|
// than 128 (0 through 0x7F), its value is written directly.
|
|
// Otherwise the value is written in big-endian byte order preceded
|
|
// by the byte length, negated.
|
|
|
|
// encodeUint writes an encoded unsigned integer to state.b.
|
|
func (state *encoderState) encodeUint(x uint64) {
|
|
if x <= 0x7F {
|
|
err := state.b.WriteByte(uint8(x))
|
|
if err != nil {
|
|
error_(err)
|
|
}
|
|
return
|
|
}
|
|
i := uint64Size
|
|
for x > 0 {
|
|
state.buf[i] = uint8(x)
|
|
x >>= 8
|
|
i--
|
|
}
|
|
state.buf[i] = uint8(i - uint64Size) // = loop count, negated
|
|
_, err := state.b.Write(state.buf[i : uint64Size+1])
|
|
if err != nil {
|
|
error_(err)
|
|
}
|
|
}
|
|
|
|
// encodeInt writes an encoded signed integer to state.w.
|
|
// The low bit of the encoding says whether to bit complement the (other bits of the)
|
|
// uint to recover the int.
|
|
func (state *encoderState) encodeInt(i int64) {
|
|
var x uint64
|
|
if i < 0 {
|
|
x = uint64(^i<<1) | 1
|
|
} else {
|
|
x = uint64(i << 1)
|
|
}
|
|
state.encodeUint(uint64(x))
|
|
}
|
|
|
|
// encOp is the signature of an encoding operator for a given type.
|
|
type encOp func(i *encInstr, state *encoderState, p unsafe.Pointer)
|
|
|
|
// The 'instructions' of the encoding machine
|
|
type encInstr struct {
|
|
op encOp
|
|
field int // field number
|
|
indir int // how many pointer indirections to reach the value in the struct
|
|
offset uintptr // offset in the structure of the field to encode
|
|
}
|
|
|
|
// update emits a field number and updates the state to record its value for delta encoding.
|
|
// If the instruction pointer is nil, it does nothing
|
|
func (state *encoderState) update(instr *encInstr) {
|
|
if instr != nil {
|
|
state.encodeUint(uint64(instr.field - state.fieldnum))
|
|
state.fieldnum = instr.field
|
|
}
|
|
}
|
|
|
|
// Each encoder for a composite is responsible for handling any
|
|
// indirections associated with the elements of the data structure.
|
|
// If any pointer so reached is nil, no bytes are written. If the
|
|
// data item is zero, no bytes are written. Single values - ints,
|
|
// strings etc. - are indirected before calling their encoders.
|
|
// Otherwise, the output (for a scalar) is the field number, as an
|
|
// encoded integer, followed by the field data in its appropriate
|
|
// format.
|
|
|
|
// encIndirect dereferences p indir times and returns the result.
|
|
func encIndirect(p unsafe.Pointer, indir int) unsafe.Pointer {
|
|
for ; indir > 0; indir-- {
|
|
p = *(*unsafe.Pointer)(p)
|
|
if p == nil {
|
|
return unsafe.Pointer(nil)
|
|
}
|
|
}
|
|
return p
|
|
}
|
|
|
|
// encBool encodes the bool with address p as an unsigned 0 or 1.
|
|
func encBool(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
b := *(*bool)(p)
|
|
if b || state.sendZero {
|
|
state.update(i)
|
|
if b {
|
|
state.encodeUint(1)
|
|
} else {
|
|
state.encodeUint(0)
|
|
}
|
|
}
|
|
}
|
|
|
|
// encInt encodes the int with address p.
|
|
func encInt(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
v := int64(*(*int)(p))
|
|
if v != 0 || state.sendZero {
|
|
state.update(i)
|
|
state.encodeInt(v)
|
|
}
|
|
}
|
|
|
|
// encUint encodes the uint with address p.
|
|
func encUint(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
v := uint64(*(*uint)(p))
|
|
if v != 0 || state.sendZero {
|
|
state.update(i)
|
|
state.encodeUint(v)
|
|
}
|
|
}
|
|
|
|
// encInt8 encodes the int8 with address p.
|
|
func encInt8(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
v := int64(*(*int8)(p))
|
|
if v != 0 || state.sendZero {
|
|
state.update(i)
|
|
state.encodeInt(v)
|
|
}
|
|
}
|
|
|
|
// encUint8 encodes the uint8 with address p.
|
|
func encUint8(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
v := uint64(*(*uint8)(p))
|
|
if v != 0 || state.sendZero {
|
|
state.update(i)
|
|
state.encodeUint(v)
|
|
}
|
|
}
|
|
|
|
// encInt16 encodes the int16 with address p.
|
|
func encInt16(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
v := int64(*(*int16)(p))
|
|
if v != 0 || state.sendZero {
|
|
state.update(i)
|
|
state.encodeInt(v)
|
|
}
|
|
}
|
|
|
|
// encUint16 encodes the uint16 with address p.
|
|
func encUint16(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
v := uint64(*(*uint16)(p))
|
|
if v != 0 || state.sendZero {
|
|
state.update(i)
|
|
state.encodeUint(v)
|
|
}
|
|
}
|
|
|
|
// encInt32 encodes the int32 with address p.
|
|
func encInt32(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
v := int64(*(*int32)(p))
|
|
if v != 0 || state.sendZero {
|
|
state.update(i)
|
|
state.encodeInt(v)
|
|
}
|
|
}
|
|
|
|
// encUint encodes the uint32 with address p.
|
|
func encUint32(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
v := uint64(*(*uint32)(p))
|
|
if v != 0 || state.sendZero {
|
|
state.update(i)
|
|
state.encodeUint(v)
|
|
}
|
|
}
|
|
|
|
// encInt64 encodes the int64 with address p.
|
|
func encInt64(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
v := *(*int64)(p)
|
|
if v != 0 || state.sendZero {
|
|
state.update(i)
|
|
state.encodeInt(v)
|
|
}
|
|
}
|
|
|
|
// encInt64 encodes the uint64 with address p.
|
|
func encUint64(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
v := *(*uint64)(p)
|
|
if v != 0 || state.sendZero {
|
|
state.update(i)
|
|
state.encodeUint(v)
|
|
}
|
|
}
|
|
|
|
// encUintptr encodes the uintptr with address p.
|
|
func encUintptr(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
v := uint64(*(*uintptr)(p))
|
|
if v != 0 || state.sendZero {
|
|
state.update(i)
|
|
state.encodeUint(v)
|
|
}
|
|
}
|
|
|
|
// floatBits returns a uint64 holding the bits of a floating-point number.
|
|
// Floating-point numbers are transmitted as uint64s holding the bits
|
|
// of the underlying representation. They are sent byte-reversed, with
|
|
// the exponent end coming out first, so integer floating point numbers
|
|
// (for example) transmit more compactly. This routine does the
|
|
// swizzling.
|
|
func floatBits(f float64) uint64 {
|
|
u := math.Float64bits(f)
|
|
var v uint64
|
|
for i := 0; i < 8; i++ {
|
|
v <<= 8
|
|
v |= u & 0xFF
|
|
u >>= 8
|
|
}
|
|
return v
|
|
}
|
|
|
|
// encFloat32 encodes the float32 with address p.
|
|
func encFloat32(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
f := *(*float32)(p)
|
|
if f != 0 || state.sendZero {
|
|
v := floatBits(float64(f))
|
|
state.update(i)
|
|
state.encodeUint(v)
|
|
}
|
|
}
|
|
|
|
// encFloat64 encodes the float64 with address p.
|
|
func encFloat64(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
f := *(*float64)(p)
|
|
if f != 0 || state.sendZero {
|
|
state.update(i)
|
|
v := floatBits(f)
|
|
state.encodeUint(v)
|
|
}
|
|
}
|
|
|
|
// encComplex64 encodes the complex64 with address p.
|
|
// Complex numbers are just a pair of floating-point numbers, real part first.
|
|
func encComplex64(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
c := *(*complex64)(p)
|
|
if c != 0+0i || state.sendZero {
|
|
rpart := floatBits(float64(real(c)))
|
|
ipart := floatBits(float64(imag(c)))
|
|
state.update(i)
|
|
state.encodeUint(rpart)
|
|
state.encodeUint(ipart)
|
|
}
|
|
}
|
|
|
|
// encComplex128 encodes the complex128 with address p.
|
|
func encComplex128(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
c := *(*complex128)(p)
|
|
if c != 0+0i || state.sendZero {
|
|
rpart := floatBits(real(c))
|
|
ipart := floatBits(imag(c))
|
|
state.update(i)
|
|
state.encodeUint(rpart)
|
|
state.encodeUint(ipart)
|
|
}
|
|
}
|
|
|
|
// encUint8Array encodes the byte slice whose header has address p.
|
|
// Byte arrays are encoded as an unsigned count followed by the raw bytes.
|
|
func encUint8Array(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
b := *(*[]byte)(p)
|
|
if len(b) > 0 || state.sendZero {
|
|
state.update(i)
|
|
state.encodeUint(uint64(len(b)))
|
|
state.b.Write(b)
|
|
}
|
|
}
|
|
|
|
// encString encodes the string whose header has address p.
|
|
// Strings are encoded as an unsigned count followed by the raw bytes.
|
|
func encString(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
s := *(*string)(p)
|
|
if len(s) > 0 || state.sendZero {
|
|
state.update(i)
|
|
state.encodeUint(uint64(len(s)))
|
|
state.b.WriteString(s)
|
|
}
|
|
}
|
|
|
|
// encStructTerminator encodes the end of an encoded struct
|
|
// as delta field number of 0.
|
|
func encStructTerminator(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
state.encodeUint(0)
|
|
}
|
|
|
|
// Execution engine
|
|
|
|
// encEngine an array of instructions indexed by field number of the encoding
|
|
// data, typically a struct. It is executed top to bottom, walking the struct.
|
|
type encEngine struct {
|
|
instr []encInstr
|
|
}
|
|
|
|
const singletonField = 0
|
|
|
|
// encodeSingle encodes a single top-level non-struct value.
|
|
func (enc *Encoder) encodeSingle(b *bytes.Buffer, engine *encEngine, basep uintptr) {
|
|
state := enc.newEncoderState(b)
|
|
state.fieldnum = singletonField
|
|
// There is no surrounding struct to frame the transmission, so we must
|
|
// generate data even if the item is zero. To do this, set sendZero.
|
|
state.sendZero = true
|
|
instr := &engine.instr[singletonField]
|
|
p := unsafe.Pointer(basep) // offset will be zero
|
|
if instr.indir > 0 {
|
|
if p = encIndirect(p, instr.indir); p == nil {
|
|
return
|
|
}
|
|
}
|
|
instr.op(instr, state, p)
|
|
enc.freeEncoderState(state)
|
|
}
|
|
|
|
// encodeStruct encodes a single struct value.
|
|
func (enc *Encoder) encodeStruct(b *bytes.Buffer, engine *encEngine, basep uintptr) {
|
|
state := enc.newEncoderState(b)
|
|
state.fieldnum = -1
|
|
for i := 0; i < len(engine.instr); i++ {
|
|
instr := &engine.instr[i]
|
|
p := unsafe.Pointer(basep + instr.offset)
|
|
if instr.indir > 0 {
|
|
if p = encIndirect(p, instr.indir); p == nil {
|
|
continue
|
|
}
|
|
}
|
|
instr.op(instr, state, p)
|
|
}
|
|
enc.freeEncoderState(state)
|
|
}
|
|
|
|
// encodeArray encodes the array whose 0th element is at p.
|
|
func (enc *Encoder) encodeArray(b *bytes.Buffer, p uintptr, op encOp, elemWid uintptr, elemIndir int, length int) {
|
|
state := enc.newEncoderState(b)
|
|
state.fieldnum = -1
|
|
state.sendZero = true
|
|
state.encodeUint(uint64(length))
|
|
for i := 0; i < length; i++ {
|
|
elemp := p
|
|
up := unsafe.Pointer(elemp)
|
|
if elemIndir > 0 {
|
|
if up = encIndirect(up, elemIndir); up == nil {
|
|
errorf("encodeArray: nil element")
|
|
}
|
|
elemp = uintptr(up)
|
|
}
|
|
op(nil, state, unsafe.Pointer(elemp))
|
|
p += uintptr(elemWid)
|
|
}
|
|
enc.freeEncoderState(state)
|
|
}
|
|
|
|
// encodeReflectValue is a helper for maps. It encodes the value v.
|
|
func encodeReflectValue(state *encoderState, v reflect.Value, op encOp, indir int) {
|
|
for i := 0; i < indir && v.IsValid(); i++ {
|
|
v = reflect.Indirect(v)
|
|
}
|
|
if !v.IsValid() {
|
|
errorf("encodeReflectValue: nil element")
|
|
}
|
|
op(nil, state, unsafe.Pointer(unsafeAddr(v)))
|
|
}
|
|
|
|
// encodeMap encodes a map as unsigned count followed by key:value pairs.
|
|
// Because map internals are not exposed, we must use reflection rather than
|
|
// addresses.
|
|
func (enc *Encoder) encodeMap(b *bytes.Buffer, mv reflect.Value, keyOp, elemOp encOp, keyIndir, elemIndir int) {
|
|
state := enc.newEncoderState(b)
|
|
state.fieldnum = -1
|
|
state.sendZero = true
|
|
keys := mv.MapKeys()
|
|
state.encodeUint(uint64(len(keys)))
|
|
for _, key := range keys {
|
|
encodeReflectValue(state, key, keyOp, keyIndir)
|
|
encodeReflectValue(state, mv.MapIndex(key), elemOp, elemIndir)
|
|
}
|
|
enc.freeEncoderState(state)
|
|
}
|
|
|
|
// encodeInterface encodes the interface value iv.
|
|
// To send an interface, we send a string identifying the concrete type, followed
|
|
// by the type identifier (which might require defining that type right now), followed
|
|
// by the concrete value. A nil value gets sent as the empty string for the name,
|
|
// followed by no value.
|
|
func (enc *Encoder) encodeInterface(b *bytes.Buffer, iv reflect.Value) {
|
|
state := enc.newEncoderState(b)
|
|
state.fieldnum = -1
|
|
state.sendZero = true
|
|
if iv.IsNil() {
|
|
state.encodeUint(0)
|
|
return
|
|
}
|
|
|
|
ut := userType(iv.Elem().Type())
|
|
name, ok := concreteTypeToName[ut.base]
|
|
if !ok {
|
|
errorf("type not registered for interface: %s", ut.base)
|
|
}
|
|
// Send the name.
|
|
state.encodeUint(uint64(len(name)))
|
|
_, err := state.b.WriteString(name)
|
|
if err != nil {
|
|
error_(err)
|
|
}
|
|
// Define the type id if necessary.
|
|
enc.sendTypeDescriptor(enc.writer(), state, ut)
|
|
// Send the type id.
|
|
enc.sendTypeId(state, ut)
|
|
// Encode the value into a new buffer. Any nested type definitions
|
|
// should be written to b, before the encoded value.
|
|
enc.pushWriter(b)
|
|
data := new(bytes.Buffer)
|
|
data.Write(spaceForLength)
|
|
enc.encode(data, iv.Elem(), ut)
|
|
if enc.err != nil {
|
|
error_(enc.err)
|
|
}
|
|
enc.popWriter()
|
|
enc.writeMessage(b, data)
|
|
if enc.err != nil {
|
|
error_(err)
|
|
}
|
|
enc.freeEncoderState(state)
|
|
}
|
|
|
|
// isZero returns whether the value is the zero of its type.
|
|
func isZero(val reflect.Value) bool {
|
|
switch val.Kind() {
|
|
case reflect.Array:
|
|
for i := 0; i < val.Len(); i++ {
|
|
if !isZero(val.Index(i)) {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
case reflect.Map, reflect.Slice, reflect.String:
|
|
return val.Len() == 0
|
|
case reflect.Bool:
|
|
return !val.Bool()
|
|
case reflect.Complex64, reflect.Complex128:
|
|
return val.Complex() == 0
|
|
case reflect.Chan, reflect.Func, reflect.Ptr:
|
|
return val.IsNil()
|
|
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
|
|
return val.Int() == 0
|
|
case reflect.Float32, reflect.Float64:
|
|
return val.Float() == 0
|
|
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
|
|
return val.Uint() == 0
|
|
case reflect.Struct:
|
|
for i := 0; i < val.NumField(); i++ {
|
|
if !isZero(val.Field(i)) {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
panic("unknown type in isZero " + val.Type().String())
|
|
}
|
|
|
|
// encGobEncoder encodes a value that implements the GobEncoder interface.
|
|
// The data is sent as a byte array.
|
|
func (enc *Encoder) encodeGobEncoder(b *bytes.Buffer, v reflect.Value) {
|
|
// TODO: should we catch panics from the called method?
|
|
// We know it's a GobEncoder, so just call the method directly.
|
|
data, err := v.Interface().(GobEncoder).GobEncode()
|
|
if err != nil {
|
|
error_(err)
|
|
}
|
|
state := enc.newEncoderState(b)
|
|
state.fieldnum = -1
|
|
state.encodeUint(uint64(len(data)))
|
|
state.b.Write(data)
|
|
enc.freeEncoderState(state)
|
|
}
|
|
|
|
var encOpTable = [...]encOp{
|
|
reflect.Bool: encBool,
|
|
reflect.Int: encInt,
|
|
reflect.Int8: encInt8,
|
|
reflect.Int16: encInt16,
|
|
reflect.Int32: encInt32,
|
|
reflect.Int64: encInt64,
|
|
reflect.Uint: encUint,
|
|
reflect.Uint8: encUint8,
|
|
reflect.Uint16: encUint16,
|
|
reflect.Uint32: encUint32,
|
|
reflect.Uint64: encUint64,
|
|
reflect.Uintptr: encUintptr,
|
|
reflect.Float32: encFloat32,
|
|
reflect.Float64: encFloat64,
|
|
reflect.Complex64: encComplex64,
|
|
reflect.Complex128: encComplex128,
|
|
reflect.String: encString,
|
|
}
|
|
|
|
// encOpFor returns (a pointer to) the encoding op for the base type under rt and
|
|
// the indirection count to reach it.
|
|
func (enc *Encoder) encOpFor(rt reflect.Type, inProgress map[reflect.Type]*encOp) (*encOp, int) {
|
|
ut := userType(rt)
|
|
// If the type implements GobEncoder, we handle it without further processing.
|
|
if ut.isGobEncoder {
|
|
return enc.gobEncodeOpFor(ut)
|
|
}
|
|
// If this type is already in progress, it's a recursive type (e.g. map[string]*T).
|
|
// Return the pointer to the op we're already building.
|
|
if opPtr := inProgress[rt]; opPtr != nil {
|
|
return opPtr, ut.indir
|
|
}
|
|
typ := ut.base
|
|
indir := ut.indir
|
|
k := typ.Kind()
|
|
var op encOp
|
|
if int(k) < len(encOpTable) {
|
|
op = encOpTable[k]
|
|
}
|
|
if op == nil {
|
|
inProgress[rt] = &op
|
|
// Special cases
|
|
switch t := typ; t.Kind() {
|
|
case reflect.Slice:
|
|
if t.Elem().Kind() == reflect.Uint8 {
|
|
op = encUint8Array
|
|
break
|
|
}
|
|
// Slices have a header; we decode it to find the underlying array.
|
|
elemOp, indir := enc.encOpFor(t.Elem(), inProgress)
|
|
op = func(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
slice := (*reflect.SliceHeader)(p)
|
|
if !state.sendZero && slice.Len == 0 {
|
|
return
|
|
}
|
|
state.update(i)
|
|
state.enc.encodeArray(state.b, slice.Data, *elemOp, t.Elem().Size(), indir, int(slice.Len))
|
|
}
|
|
case reflect.Array:
|
|
// True arrays have size in the type.
|
|
elemOp, indir := enc.encOpFor(t.Elem(), inProgress)
|
|
op = func(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
state.update(i)
|
|
state.enc.encodeArray(state.b, uintptr(p), *elemOp, t.Elem().Size(), indir, t.Len())
|
|
}
|
|
case reflect.Map:
|
|
keyOp, keyIndir := enc.encOpFor(t.Key(), inProgress)
|
|
elemOp, elemIndir := enc.encOpFor(t.Elem(), inProgress)
|
|
op = func(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
// Maps cannot be accessed by moving addresses around the way
|
|
// that slices etc. can. We must recover a full reflection value for
|
|
// the iteration.
|
|
v := reflect.NewAt(t, unsafe.Pointer(p)).Elem()
|
|
mv := reflect.Indirect(v)
|
|
// We send zero-length (but non-nil) maps because the
|
|
// receiver might want to use the map. (Maps don't use append.)
|
|
if !state.sendZero && mv.IsNil() {
|
|
return
|
|
}
|
|
state.update(i)
|
|
state.enc.encodeMap(state.b, mv, *keyOp, *elemOp, keyIndir, elemIndir)
|
|
}
|
|
case reflect.Struct:
|
|
// Generate a closure that calls out to the engine for the nested type.
|
|
enc.getEncEngine(userType(typ))
|
|
info := mustGetTypeInfo(typ)
|
|
op = func(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
state.update(i)
|
|
// indirect through info to delay evaluation for recursive structs
|
|
state.enc.encodeStruct(state.b, info.encoder, uintptr(p))
|
|
}
|
|
case reflect.Interface:
|
|
op = func(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
// Interfaces transmit the name and contents of the concrete
|
|
// value they contain.
|
|
v := reflect.NewAt(t, unsafe.Pointer(p)).Elem()
|
|
iv := reflect.Indirect(v)
|
|
if !state.sendZero && (!iv.IsValid() || iv.IsNil()) {
|
|
return
|
|
}
|
|
state.update(i)
|
|
state.enc.encodeInterface(state.b, iv)
|
|
}
|
|
}
|
|
}
|
|
if op == nil {
|
|
errorf("can't happen: encode type %s", rt)
|
|
}
|
|
return &op, indir
|
|
}
|
|
|
|
// gobEncodeOpFor returns the op for a type that is known to implement
|
|
// GobEncoder.
|
|
func (enc *Encoder) gobEncodeOpFor(ut *userTypeInfo) (*encOp, int) {
|
|
rt := ut.user
|
|
if ut.encIndir == -1 {
|
|
rt = reflect.PtrTo(rt)
|
|
} else if ut.encIndir > 0 {
|
|
for i := int8(0); i < ut.encIndir; i++ {
|
|
rt = rt.Elem()
|
|
}
|
|
}
|
|
var op encOp
|
|
op = func(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
var v reflect.Value
|
|
if ut.encIndir == -1 {
|
|
// Need to climb up one level to turn value into pointer.
|
|
v = reflect.NewAt(rt, unsafe.Pointer(&p)).Elem()
|
|
} else {
|
|
v = reflect.NewAt(rt, p).Elem()
|
|
}
|
|
if !state.sendZero && isZero(v) {
|
|
return
|
|
}
|
|
state.update(i)
|
|
state.enc.encodeGobEncoder(state.b, v)
|
|
}
|
|
return &op, int(ut.encIndir) // encIndir: op will get called with p == address of receiver.
|
|
}
|
|
|
|
// compileEnc returns the engine to compile the type.
|
|
func (enc *Encoder) compileEnc(ut *userTypeInfo) *encEngine {
|
|
srt := ut.base
|
|
engine := new(encEngine)
|
|
seen := make(map[reflect.Type]*encOp)
|
|
rt := ut.base
|
|
if ut.isGobEncoder {
|
|
rt = ut.user
|
|
}
|
|
if !ut.isGobEncoder &&
|
|
srt.Kind() == reflect.Struct {
|
|
for fieldNum, wireFieldNum := 0, 0; fieldNum < srt.NumField(); fieldNum++ {
|
|
f := srt.Field(fieldNum)
|
|
if !isExported(f.Name) {
|
|
continue
|
|
}
|
|
op, indir := enc.encOpFor(f.Type, seen)
|
|
engine.instr = append(engine.instr, encInstr{*op, wireFieldNum, indir, uintptr(f.Offset)})
|
|
wireFieldNum++
|
|
}
|
|
if srt.NumField() > 0 && len(engine.instr) == 0 {
|
|
errorf("type %s has no exported fields", rt)
|
|
}
|
|
engine.instr = append(engine.instr, encInstr{encStructTerminator, 0, 0, 0})
|
|
} else {
|
|
engine.instr = make([]encInstr, 1)
|
|
op, indir := enc.encOpFor(rt, seen)
|
|
engine.instr[0] = encInstr{*op, singletonField, indir, 0} // offset is zero
|
|
}
|
|
return engine
|
|
}
|
|
|
|
// getEncEngine returns the engine to compile the type.
|
|
// typeLock must be held (or we're in initialization and guaranteed single-threaded).
|
|
func (enc *Encoder) getEncEngine(ut *userTypeInfo) *encEngine {
|
|
info, err1 := getTypeInfo(ut)
|
|
if err1 != nil {
|
|
error_(err1)
|
|
}
|
|
if info.encoder == nil {
|
|
// mark this engine as underway before compiling to handle recursive types.
|
|
info.encoder = new(encEngine)
|
|
info.encoder = enc.compileEnc(ut)
|
|
}
|
|
return info.encoder
|
|
}
|
|
|
|
// lockAndGetEncEngine is a function that locks and compiles.
|
|
// This lets us hold the lock only while compiling, not when encoding.
|
|
func (enc *Encoder) lockAndGetEncEngine(ut *userTypeInfo) *encEngine {
|
|
typeLock.Lock()
|
|
defer typeLock.Unlock()
|
|
return enc.getEncEngine(ut)
|
|
}
|
|
|
|
func (enc *Encoder) encode(b *bytes.Buffer, value reflect.Value, ut *userTypeInfo) {
|
|
defer catchError(&enc.err)
|
|
engine := enc.lockAndGetEncEngine(ut)
|
|
indir := ut.indir
|
|
if ut.isGobEncoder {
|
|
indir = int(ut.encIndir)
|
|
}
|
|
for i := 0; i < indir; i++ {
|
|
value = reflect.Indirect(value)
|
|
}
|
|
if !ut.isGobEncoder && value.Type().Kind() == reflect.Struct {
|
|
enc.encodeStruct(b, engine, unsafeAddr(value))
|
|
} else {
|
|
enc.encodeSingle(b, engine, unsafeAddr(value))
|
|
}
|
|
}
|