ac47786e99
gcc/ * vec.h (FOR_EACH_VEC_ELT): Define. * c-decl.c: Use it. * cfgloop.c: Likewise. * cfgloopmanip.c: Likewise. * cgraph.c: Likewise. * cgraphunit.c: Likewise. * combine.c: Likewise. * config/bfin/bfin.c: Likewise. * config/mips/mips.c: Likewise. * config/rs6000/rs6000.c: Likewise. * dbxout.c: Likewise. * df-scan.c: Likewise. * dominance.c: Likewise. * dse.c: Likewise. * dwarf2out.c: Likewise. * except.c: Likewise. * expr.c: Likewise. * function.c: Likewise. * gcse.c: Likewise. * genattr.c: Likewise. * ggc-common.c: Likewise. * gimplify.c: Likewise. * graphite-blocking.c: Likewise. * graphite-clast-to-gimple.c: Likewise. * graphite-dependences.c: Likewise. * graphite-interchange.c: Likewise. * graphite-poly.c: Likewise. * graphite-scop-detection.c: Likewise. * graphite-sese-to-poly.c: Likewise. * graphite.c: Likewise. * haifa-sched.c: Likewise. * ifcvt.c: Likewise. * implicit-zee.c: Likewise. * ipa-prop.c: Likewise. * ipa-struct-reorg.c: Likewise. * ipa.c: Likewise. * ira-build.c: Likewise. * ira-color.c: Likewise. * ira-emit.c: Likewise. * lambda-code.c: Likewise. * loop-invariant.c: Likewise. * loop-unroll.c: Likewise. * lower-subreg.c: Likewise. * lto-cgraph.c: Likewise. * lto-opts.c: Likewise. * lto-streamer-in.c: Likewise. * lto-streamer-out.c: Likewise. * lto-streamer.c: Likewise. * lto-symtab.c: Likewise. * matrix-reorg.c: Likewise. * opts.c: Likewise. * predict.c: Likewise. * print-tree.c: Likewise. * sdbout.c: Likewise. * sel-sched-dump.c: Likewise. * sel-sched-ir.c: Likewise. * sel-sched.c: Likewise. * sese.c: Likewise. * stor-layout.c: Likewise. * tree-cfg.c: Likewise. * tree-cfgcleanup.c: Likewise. * tree-chrec.c: Likewise. * tree-data-ref.c: Likewise. * tree-emutls.c: Likewise. * tree-inline.c: Likewise. * tree-into-ssa.c: Likewise. * tree-loop-distribution.c: Likewise. * tree-loop-linear.c: Likewise. * tree-mudflap.c: Likewise. * tree-outof-ssa.c: Likewise. * tree-parloops.c: Likewise. * tree-predcom.c: Likewise. * tree-pretty-print.c: Likewise. * tree-scalar-evolution.c: Likewise. * tree-ssa-live.c: Likewise. * tree-ssa-loop-im.c: Likewise. * tree-ssa-loop-ivcanon.c: Likewise. * tree-ssa-loop-ivopts.c: Likewise. * tree-ssa-loop-manip.c: Likewise. * tree-ssa-loop-niter.c: Likewise. * tree-ssa-loop-prefetch.c: Likewise. * tree-ssa-phiprop.c: Likewise. * tree-ssa-pre.c: Likewise. * tree-ssa-reassoc.c: Likewise. * tree-ssa-sccvn.c: Likewise. * tree-ssa-structalias.c: Likewise. * tree-ssa.c: Likewise. * tree-vect-data-refs.c: Likewise. * tree-vect-loop-manip.c: Likewise. * tree-vect-loop.c: Likewise. * tree-vect-patterns.c: Likewise. * tree-vect-slp.c: Likewise. * tree-vect-stmts.c: Likewise. * tree-vrp.c: Likewise. * tree.c: Likewise. * value-prof.c: Likewise. * var-tracking.c: Likewise. * varasm.c: Likewise. * vmsdbgout.c: Likewise. gcc/ada/ * gcc-interface/decl.c: Use FOR_EACH_VEC_ELT. * gcc-interface/trans.c: Likewise. * gcc-interface/utils.c: Likewise. gcc/c-family/ * c-common.c: Use FOR_EACH_VEC_ELT. * c-gimplify.c: Likewise. * c-pragma.c: Likewise. gcc/cp/ * call.c: Use FOR_EACH_VEC_ELT. * class.c: Likewise. * decl.c: Likewise. * decl2.c: Likewise. * error.c: Likewise. * except.c: Likewise. * mangle.c: Likewise. * method.c: Likewise. * name-lookup.c: Likewise. * parser.c: Likewise. * pt.c: Likewise. * repo.c: Likewise. * semantics.c: Likewise. * typeck2.c: Likewise. gcc/fortran/ * trans-openmp.c: Use FOR_EACH_VEC_ELT. gcc/java/ * class.c: Use FOR_EACH_VEC_ELT. * expr.c: Likewise. * jcf-parse.c: Likewise. * resource.c: Likewise. gcc/lto/ * lto.c: Use FOR_EACH_VEC_ELT. From-SVN: r163401
5242 lines
146 KiB
C
5242 lines
146 KiB
C
/* Data references and dependences detectors.
|
||
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
|
||
Free Software Foundation, Inc.
|
||
Contributed by Sebastian Pop <pop@cri.ensmp.fr>
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
/* This pass walks a given loop structure searching for array
|
||
references. The information about the array accesses is recorded
|
||
in DATA_REFERENCE structures.
|
||
|
||
The basic test for determining the dependences is:
|
||
given two access functions chrec1 and chrec2 to a same array, and
|
||
x and y two vectors from the iteration domain, the same element of
|
||
the array is accessed twice at iterations x and y if and only if:
|
||
| chrec1 (x) == chrec2 (y).
|
||
|
||
The goals of this analysis are:
|
||
|
||
- to determine the independence: the relation between two
|
||
independent accesses is qualified with the chrec_known (this
|
||
information allows a loop parallelization),
|
||
|
||
- when two data references access the same data, to qualify the
|
||
dependence relation with classic dependence representations:
|
||
|
||
- distance vectors
|
||
- direction vectors
|
||
- loop carried level dependence
|
||
- polyhedron dependence
|
||
or with the chains of recurrences based representation,
|
||
|
||
- to define a knowledge base for storing the data dependence
|
||
information,
|
||
|
||
- to define an interface to access this data.
|
||
|
||
|
||
Definitions:
|
||
|
||
- subscript: given two array accesses a subscript is the tuple
|
||
composed of the access functions for a given dimension. Example:
|
||
Given A[f1][f2][f3] and B[g1][g2][g3], there are three subscripts:
|
||
(f1, g1), (f2, g2), (f3, g3).
|
||
|
||
- Diophantine equation: an equation whose coefficients and
|
||
solutions are integer constants, for example the equation
|
||
| 3*x + 2*y = 1
|
||
has an integer solution x = 1 and y = -1.
|
||
|
||
References:
|
||
|
||
- "Advanced Compilation for High Performance Computing" by Randy
|
||
Allen and Ken Kennedy.
|
||
http://citeseer.ist.psu.edu/goff91practical.html
|
||
|
||
- "Loop Transformations for Restructuring Compilers - The Foundations"
|
||
by Utpal Banerjee.
|
||
|
||
|
||
*/
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "ggc.h"
|
||
#include "flags.h"
|
||
#include "tree.h"
|
||
#include "basic-block.h"
|
||
#include "tree-pretty-print.h"
|
||
#include "gimple-pretty-print.h"
|
||
#include "tree-flow.h"
|
||
#include "tree-dump.h"
|
||
#include "timevar.h"
|
||
#include "cfgloop.h"
|
||
#include "tree-data-ref.h"
|
||
#include "tree-scalar-evolution.h"
|
||
#include "tree-pass.h"
|
||
#include "langhooks.h"
|
||
|
||
static struct datadep_stats
|
||
{
|
||
int num_dependence_tests;
|
||
int num_dependence_dependent;
|
||
int num_dependence_independent;
|
||
int num_dependence_undetermined;
|
||
|
||
int num_subscript_tests;
|
||
int num_subscript_undetermined;
|
||
int num_same_subscript_function;
|
||
|
||
int num_ziv;
|
||
int num_ziv_independent;
|
||
int num_ziv_dependent;
|
||
int num_ziv_unimplemented;
|
||
|
||
int num_siv;
|
||
int num_siv_independent;
|
||
int num_siv_dependent;
|
||
int num_siv_unimplemented;
|
||
|
||
int num_miv;
|
||
int num_miv_independent;
|
||
int num_miv_dependent;
|
||
int num_miv_unimplemented;
|
||
} dependence_stats;
|
||
|
||
static bool subscript_dependence_tester_1 (struct data_dependence_relation *,
|
||
struct data_reference *,
|
||
struct data_reference *,
|
||
struct loop *);
|
||
/* Returns true iff A divides B. */
|
||
|
||
static inline bool
|
||
tree_fold_divides_p (const_tree a, const_tree b)
|
||
{
|
||
gcc_assert (TREE_CODE (a) == INTEGER_CST);
|
||
gcc_assert (TREE_CODE (b) == INTEGER_CST);
|
||
return integer_zerop (int_const_binop (TRUNC_MOD_EXPR, b, a, 0));
|
||
}
|
||
|
||
/* Returns true iff A divides B. */
|
||
|
||
static inline bool
|
||
int_divides_p (int a, int b)
|
||
{
|
||
return ((b % a) == 0);
|
||
}
|
||
|
||
|
||
|
||
/* Dump into FILE all the data references from DATAREFS. */
|
||
|
||
void
|
||
dump_data_references (FILE *file, VEC (data_reference_p, heap) *datarefs)
|
||
{
|
||
unsigned int i;
|
||
struct data_reference *dr;
|
||
|
||
FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
|
||
dump_data_reference (file, dr);
|
||
}
|
||
|
||
/* Dump into STDERR all the data references from DATAREFS. */
|
||
|
||
DEBUG_FUNCTION void
|
||
debug_data_references (VEC (data_reference_p, heap) *datarefs)
|
||
{
|
||
dump_data_references (stderr, datarefs);
|
||
}
|
||
|
||
/* Dump to STDERR all the dependence relations from DDRS. */
|
||
|
||
DEBUG_FUNCTION void
|
||
debug_data_dependence_relations (VEC (ddr_p, heap) *ddrs)
|
||
{
|
||
dump_data_dependence_relations (stderr, ddrs);
|
||
}
|
||
|
||
/* Dump into FILE all the dependence relations from DDRS. */
|
||
|
||
void
|
||
dump_data_dependence_relations (FILE *file,
|
||
VEC (ddr_p, heap) *ddrs)
|
||
{
|
||
unsigned int i;
|
||
struct data_dependence_relation *ddr;
|
||
|
||
FOR_EACH_VEC_ELT (ddr_p, ddrs, i, ddr)
|
||
dump_data_dependence_relation (file, ddr);
|
||
}
|
||
|
||
/* Print to STDERR the data_reference DR. */
|
||
|
||
DEBUG_FUNCTION void
|
||
debug_data_reference (struct data_reference *dr)
|
||
{
|
||
dump_data_reference (stderr, dr);
|
||
}
|
||
|
||
/* Dump function for a DATA_REFERENCE structure. */
|
||
|
||
void
|
||
dump_data_reference (FILE *outf,
|
||
struct data_reference *dr)
|
||
{
|
||
unsigned int i;
|
||
|
||
fprintf (outf, "#(Data Ref: \n# stmt: ");
|
||
print_gimple_stmt (outf, DR_STMT (dr), 0, 0);
|
||
fprintf (outf, "# ref: ");
|
||
print_generic_stmt (outf, DR_REF (dr), 0);
|
||
fprintf (outf, "# base_object: ");
|
||
print_generic_stmt (outf, DR_BASE_OBJECT (dr), 0);
|
||
|
||
for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
|
||
{
|
||
fprintf (outf, "# Access function %d: ", i);
|
||
print_generic_stmt (outf, DR_ACCESS_FN (dr, i), 0);
|
||
}
|
||
fprintf (outf, "#)\n");
|
||
}
|
||
|
||
/* Dumps the affine function described by FN to the file OUTF. */
|
||
|
||
static void
|
||
dump_affine_function (FILE *outf, affine_fn fn)
|
||
{
|
||
unsigned i;
|
||
tree coef;
|
||
|
||
print_generic_expr (outf, VEC_index (tree, fn, 0), TDF_SLIM);
|
||
for (i = 1; VEC_iterate (tree, fn, i, coef); i++)
|
||
{
|
||
fprintf (outf, " + ");
|
||
print_generic_expr (outf, coef, TDF_SLIM);
|
||
fprintf (outf, " * x_%u", i);
|
||
}
|
||
}
|
||
|
||
/* Dumps the conflict function CF to the file OUTF. */
|
||
|
||
static void
|
||
dump_conflict_function (FILE *outf, conflict_function *cf)
|
||
{
|
||
unsigned i;
|
||
|
||
if (cf->n == NO_DEPENDENCE)
|
||
fprintf (outf, "no dependence\n");
|
||
else if (cf->n == NOT_KNOWN)
|
||
fprintf (outf, "not known\n");
|
||
else
|
||
{
|
||
for (i = 0; i < cf->n; i++)
|
||
{
|
||
fprintf (outf, "[");
|
||
dump_affine_function (outf, cf->fns[i]);
|
||
fprintf (outf, "]\n");
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Dump function for a SUBSCRIPT structure. */
|
||
|
||
void
|
||
dump_subscript (FILE *outf, struct subscript *subscript)
|
||
{
|
||
conflict_function *cf = SUB_CONFLICTS_IN_A (subscript);
|
||
|
||
fprintf (outf, "\n (subscript \n");
|
||
fprintf (outf, " iterations_that_access_an_element_twice_in_A: ");
|
||
dump_conflict_function (outf, cf);
|
||
if (CF_NONTRIVIAL_P (cf))
|
||
{
|
||
tree last_iteration = SUB_LAST_CONFLICT (subscript);
|
||
fprintf (outf, " last_conflict: ");
|
||
print_generic_stmt (outf, last_iteration, 0);
|
||
}
|
||
|
||
cf = SUB_CONFLICTS_IN_B (subscript);
|
||
fprintf (outf, " iterations_that_access_an_element_twice_in_B: ");
|
||
dump_conflict_function (outf, cf);
|
||
if (CF_NONTRIVIAL_P (cf))
|
||
{
|
||
tree last_iteration = SUB_LAST_CONFLICT (subscript);
|
||
fprintf (outf, " last_conflict: ");
|
||
print_generic_stmt (outf, last_iteration, 0);
|
||
}
|
||
|
||
fprintf (outf, " (Subscript distance: ");
|
||
print_generic_stmt (outf, SUB_DISTANCE (subscript), 0);
|
||
fprintf (outf, " )\n");
|
||
fprintf (outf, " )\n");
|
||
}
|
||
|
||
/* Print the classic direction vector DIRV to OUTF. */
|
||
|
||
void
|
||
print_direction_vector (FILE *outf,
|
||
lambda_vector dirv,
|
||
int length)
|
||
{
|
||
int eq;
|
||
|
||
for (eq = 0; eq < length; eq++)
|
||
{
|
||
enum data_dependence_direction dir = ((enum data_dependence_direction)
|
||
dirv[eq]);
|
||
|
||
switch (dir)
|
||
{
|
||
case dir_positive:
|
||
fprintf (outf, " +");
|
||
break;
|
||
case dir_negative:
|
||
fprintf (outf, " -");
|
||
break;
|
||
case dir_equal:
|
||
fprintf (outf, " =");
|
||
break;
|
||
case dir_positive_or_equal:
|
||
fprintf (outf, " +=");
|
||
break;
|
||
case dir_positive_or_negative:
|
||
fprintf (outf, " +-");
|
||
break;
|
||
case dir_negative_or_equal:
|
||
fprintf (outf, " -=");
|
||
break;
|
||
case dir_star:
|
||
fprintf (outf, " *");
|
||
break;
|
||
default:
|
||
fprintf (outf, "indep");
|
||
break;
|
||
}
|
||
}
|
||
fprintf (outf, "\n");
|
||
}
|
||
|
||
/* Print a vector of direction vectors. */
|
||
|
||
void
|
||
print_dir_vectors (FILE *outf, VEC (lambda_vector, heap) *dir_vects,
|
||
int length)
|
||
{
|
||
unsigned j;
|
||
lambda_vector v;
|
||
|
||
FOR_EACH_VEC_ELT (lambda_vector, dir_vects, j, v)
|
||
print_direction_vector (outf, v, length);
|
||
}
|
||
|
||
/* Print a vector of distance vectors. */
|
||
|
||
void
|
||
print_dist_vectors (FILE *outf, VEC (lambda_vector, heap) *dist_vects,
|
||
int length)
|
||
{
|
||
unsigned j;
|
||
lambda_vector v;
|
||
|
||
FOR_EACH_VEC_ELT (lambda_vector, dist_vects, j, v)
|
||
print_lambda_vector (outf, v, length);
|
||
}
|
||
|
||
/* Debug version. */
|
||
|
||
DEBUG_FUNCTION void
|
||
debug_data_dependence_relation (struct data_dependence_relation *ddr)
|
||
{
|
||
dump_data_dependence_relation (stderr, ddr);
|
||
}
|
||
|
||
/* Dump function for a DATA_DEPENDENCE_RELATION structure. */
|
||
|
||
void
|
||
dump_data_dependence_relation (FILE *outf,
|
||
struct data_dependence_relation *ddr)
|
||
{
|
||
struct data_reference *dra, *drb;
|
||
|
||
fprintf (outf, "(Data Dep: \n");
|
||
|
||
if (!ddr || DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
|
||
{
|
||
if (ddr)
|
||
{
|
||
dra = DDR_A (ddr);
|
||
drb = DDR_B (ddr);
|
||
if (dra)
|
||
dump_data_reference (outf, dra);
|
||
else
|
||
fprintf (outf, " (nil)\n");
|
||
if (drb)
|
||
dump_data_reference (outf, drb);
|
||
else
|
||
fprintf (outf, " (nil)\n");
|
||
}
|
||
fprintf (outf, " (don't know)\n)\n");
|
||
return;
|
||
}
|
||
|
||
dra = DDR_A (ddr);
|
||
drb = DDR_B (ddr);
|
||
dump_data_reference (outf, dra);
|
||
dump_data_reference (outf, drb);
|
||
|
||
if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
|
||
fprintf (outf, " (no dependence)\n");
|
||
|
||
else if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
|
||
{
|
||
unsigned int i;
|
||
struct loop *loopi;
|
||
|
||
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
|
||
{
|
||
fprintf (outf, " access_fn_A: ");
|
||
print_generic_stmt (outf, DR_ACCESS_FN (dra, i), 0);
|
||
fprintf (outf, " access_fn_B: ");
|
||
print_generic_stmt (outf, DR_ACCESS_FN (drb, i), 0);
|
||
dump_subscript (outf, DDR_SUBSCRIPT (ddr, i));
|
||
}
|
||
|
||
fprintf (outf, " inner loop index: %d\n", DDR_INNER_LOOP (ddr));
|
||
fprintf (outf, " loop nest: (");
|
||
FOR_EACH_VEC_ELT (loop_p, DDR_LOOP_NEST (ddr), i, loopi)
|
||
fprintf (outf, "%d ", loopi->num);
|
||
fprintf (outf, ")\n");
|
||
|
||
for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
|
||
{
|
||
fprintf (outf, " distance_vector: ");
|
||
print_lambda_vector (outf, DDR_DIST_VECT (ddr, i),
|
||
DDR_NB_LOOPS (ddr));
|
||
}
|
||
|
||
for (i = 0; i < DDR_NUM_DIR_VECTS (ddr); i++)
|
||
{
|
||
fprintf (outf, " direction_vector: ");
|
||
print_direction_vector (outf, DDR_DIR_VECT (ddr, i),
|
||
DDR_NB_LOOPS (ddr));
|
||
}
|
||
}
|
||
|
||
fprintf (outf, ")\n");
|
||
}
|
||
|
||
/* Dump function for a DATA_DEPENDENCE_DIRECTION structure. */
|
||
|
||
void
|
||
dump_data_dependence_direction (FILE *file,
|
||
enum data_dependence_direction dir)
|
||
{
|
||
switch (dir)
|
||
{
|
||
case dir_positive:
|
||
fprintf (file, "+");
|
||
break;
|
||
|
||
case dir_negative:
|
||
fprintf (file, "-");
|
||
break;
|
||
|
||
case dir_equal:
|
||
fprintf (file, "=");
|
||
break;
|
||
|
||
case dir_positive_or_negative:
|
||
fprintf (file, "+-");
|
||
break;
|
||
|
||
case dir_positive_or_equal:
|
||
fprintf (file, "+=");
|
||
break;
|
||
|
||
case dir_negative_or_equal:
|
||
fprintf (file, "-=");
|
||
break;
|
||
|
||
case dir_star:
|
||
fprintf (file, "*");
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Dumps the distance and direction vectors in FILE. DDRS contains
|
||
the dependence relations, and VECT_SIZE is the size of the
|
||
dependence vectors, or in other words the number of loops in the
|
||
considered nest. */
|
||
|
||
void
|
||
dump_dist_dir_vectors (FILE *file, VEC (ddr_p, heap) *ddrs)
|
||
{
|
||
unsigned int i, j;
|
||
struct data_dependence_relation *ddr;
|
||
lambda_vector v;
|
||
|
||
FOR_EACH_VEC_ELT (ddr_p, ddrs, i, ddr)
|
||
if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE && DDR_AFFINE_P (ddr))
|
||
{
|
||
FOR_EACH_VEC_ELT (lambda_vector, DDR_DIST_VECTS (ddr), j, v)
|
||
{
|
||
fprintf (file, "DISTANCE_V (");
|
||
print_lambda_vector (file, v, DDR_NB_LOOPS (ddr));
|
||
fprintf (file, ")\n");
|
||
}
|
||
|
||
FOR_EACH_VEC_ELT (lambda_vector, DDR_DIR_VECTS (ddr), j, v)
|
||
{
|
||
fprintf (file, "DIRECTION_V (");
|
||
print_direction_vector (file, v, DDR_NB_LOOPS (ddr));
|
||
fprintf (file, ")\n");
|
||
}
|
||
}
|
||
|
||
fprintf (file, "\n\n");
|
||
}
|
||
|
||
/* Dumps the data dependence relations DDRS in FILE. */
|
||
|
||
void
|
||
dump_ddrs (FILE *file, VEC (ddr_p, heap) *ddrs)
|
||
{
|
||
unsigned int i;
|
||
struct data_dependence_relation *ddr;
|
||
|
||
FOR_EACH_VEC_ELT (ddr_p, ddrs, i, ddr)
|
||
dump_data_dependence_relation (file, ddr);
|
||
|
||
fprintf (file, "\n\n");
|
||
}
|
||
|
||
/* Helper function for split_constant_offset. Expresses OP0 CODE OP1
|
||
(the type of the result is TYPE) as VAR + OFF, where OFF is a nonzero
|
||
constant of type ssizetype, and returns true. If we cannot do this
|
||
with OFF nonzero, OFF and VAR are set to NULL_TREE instead and false
|
||
is returned. */
|
||
|
||
static bool
|
||
split_constant_offset_1 (tree type, tree op0, enum tree_code code, tree op1,
|
||
tree *var, tree *off)
|
||
{
|
||
tree var0, var1;
|
||
tree off0, off1;
|
||
enum tree_code ocode = code;
|
||
|
||
*var = NULL_TREE;
|
||
*off = NULL_TREE;
|
||
|
||
switch (code)
|
||
{
|
||
case INTEGER_CST:
|
||
*var = build_int_cst (type, 0);
|
||
*off = fold_convert (ssizetype, op0);
|
||
return true;
|
||
|
||
case POINTER_PLUS_EXPR:
|
||
ocode = PLUS_EXPR;
|
||
/* FALLTHROUGH */
|
||
case PLUS_EXPR:
|
||
case MINUS_EXPR:
|
||
split_constant_offset (op0, &var0, &off0);
|
||
split_constant_offset (op1, &var1, &off1);
|
||
*var = fold_build2 (code, type, var0, var1);
|
||
*off = size_binop (ocode, off0, off1);
|
||
return true;
|
||
|
||
case MULT_EXPR:
|
||
if (TREE_CODE (op1) != INTEGER_CST)
|
||
return false;
|
||
|
||
split_constant_offset (op0, &var0, &off0);
|
||
*var = fold_build2 (MULT_EXPR, type, var0, op1);
|
||
*off = size_binop (MULT_EXPR, off0, fold_convert (ssizetype, op1));
|
||
return true;
|
||
|
||
case ADDR_EXPR:
|
||
{
|
||
tree base, poffset;
|
||
HOST_WIDE_INT pbitsize, pbitpos;
|
||
enum machine_mode pmode;
|
||
int punsignedp, pvolatilep;
|
||
|
||
op0 = TREE_OPERAND (op0, 0);
|
||
if (!handled_component_p (op0))
|
||
return false;
|
||
|
||
base = get_inner_reference (op0, &pbitsize, &pbitpos, &poffset,
|
||
&pmode, &punsignedp, &pvolatilep, false);
|
||
|
||
if (pbitpos % BITS_PER_UNIT != 0)
|
||
return false;
|
||
base = build_fold_addr_expr (base);
|
||
off0 = ssize_int (pbitpos / BITS_PER_UNIT);
|
||
|
||
if (poffset)
|
||
{
|
||
split_constant_offset (poffset, &poffset, &off1);
|
||
off0 = size_binop (PLUS_EXPR, off0, off1);
|
||
if (POINTER_TYPE_P (TREE_TYPE (base)))
|
||
base = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (base),
|
||
base, fold_convert (sizetype, poffset));
|
||
else
|
||
base = fold_build2 (PLUS_EXPR, TREE_TYPE (base), base,
|
||
fold_convert (TREE_TYPE (base), poffset));
|
||
}
|
||
|
||
var0 = fold_convert (type, base);
|
||
|
||
/* If variable length types are involved, punt, otherwise casts
|
||
might be converted into ARRAY_REFs in gimplify_conversion.
|
||
To compute that ARRAY_REF's element size TYPE_SIZE_UNIT, which
|
||
possibly no longer appears in current GIMPLE, might resurface.
|
||
This perhaps could run
|
||
if (CONVERT_EXPR_P (var0))
|
||
{
|
||
gimplify_conversion (&var0);
|
||
// Attempt to fill in any within var0 found ARRAY_REF's
|
||
// element size from corresponding op embedded ARRAY_REF,
|
||
// if unsuccessful, just punt.
|
||
} */
|
||
while (POINTER_TYPE_P (type))
|
||
type = TREE_TYPE (type);
|
||
if (int_size_in_bytes (type) < 0)
|
||
return false;
|
||
|
||
*var = var0;
|
||
*off = off0;
|
||
return true;
|
||
}
|
||
|
||
case SSA_NAME:
|
||
{
|
||
gimple def_stmt = SSA_NAME_DEF_STMT (op0);
|
||
enum tree_code subcode;
|
||
|
||
if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
|
||
return false;
|
||
|
||
var0 = gimple_assign_rhs1 (def_stmt);
|
||
subcode = gimple_assign_rhs_code (def_stmt);
|
||
var1 = gimple_assign_rhs2 (def_stmt);
|
||
|
||
return split_constant_offset_1 (type, var0, subcode, var1, var, off);
|
||
}
|
||
CASE_CONVERT:
|
||
{
|
||
/* We must not introduce undefined overflow, and we must not change the value.
|
||
Hence we're okay if the inner type doesn't overflow to start with
|
||
(pointer or signed), the outer type also is an integer or pointer
|
||
and the outer precision is at least as large as the inner. */
|
||
tree itype = TREE_TYPE (op0);
|
||
if ((POINTER_TYPE_P (itype)
|
||
|| (INTEGRAL_TYPE_P (itype) && TYPE_OVERFLOW_UNDEFINED (itype)))
|
||
&& TYPE_PRECISION (type) >= TYPE_PRECISION (itype)
|
||
&& (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)))
|
||
{
|
||
split_constant_offset (op0, &var0, off);
|
||
*var = fold_convert (type, var0);
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Expresses EXP as VAR + OFF, where off is a constant. The type of OFF
|
||
will be ssizetype. */
|
||
|
||
void
|
||
split_constant_offset (tree exp, tree *var, tree *off)
|
||
{
|
||
tree type = TREE_TYPE (exp), otype, op0, op1, e, o;
|
||
enum tree_code code;
|
||
|
||
*var = exp;
|
||
*off = ssize_int (0);
|
||
STRIP_NOPS (exp);
|
||
|
||
if (automatically_generated_chrec_p (exp))
|
||
return;
|
||
|
||
otype = TREE_TYPE (exp);
|
||
code = TREE_CODE (exp);
|
||
extract_ops_from_tree (exp, &code, &op0, &op1);
|
||
if (split_constant_offset_1 (otype, op0, code, op1, &e, &o))
|
||
{
|
||
*var = fold_convert (type, e);
|
||
*off = o;
|
||
}
|
||
}
|
||
|
||
/* Returns the address ADDR of an object in a canonical shape (without nop
|
||
casts, and with type of pointer to the object). */
|
||
|
||
static tree
|
||
canonicalize_base_object_address (tree addr)
|
||
{
|
||
tree orig = addr;
|
||
|
||
STRIP_NOPS (addr);
|
||
|
||
/* The base address may be obtained by casting from integer, in that case
|
||
keep the cast. */
|
||
if (!POINTER_TYPE_P (TREE_TYPE (addr)))
|
||
return orig;
|
||
|
||
if (TREE_CODE (addr) != ADDR_EXPR)
|
||
return addr;
|
||
|
||
return build_fold_addr_expr (TREE_OPERAND (addr, 0));
|
||
}
|
||
|
||
/* Analyzes the behavior of the memory reference DR in the innermost loop or
|
||
basic block that contains it. Returns true if analysis succeed or false
|
||
otherwise. */
|
||
|
||
bool
|
||
dr_analyze_innermost (struct data_reference *dr)
|
||
{
|
||
gimple stmt = DR_STMT (dr);
|
||
struct loop *loop = loop_containing_stmt (stmt);
|
||
tree ref = DR_REF (dr);
|
||
HOST_WIDE_INT pbitsize, pbitpos;
|
||
tree base, poffset;
|
||
enum machine_mode pmode;
|
||
int punsignedp, pvolatilep;
|
||
affine_iv base_iv, offset_iv;
|
||
tree init, dinit, step;
|
||
bool in_loop = (loop && loop->num);
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "analyze_innermost: ");
|
||
|
||
base = get_inner_reference (ref, &pbitsize, &pbitpos, &poffset,
|
||
&pmode, &punsignedp, &pvolatilep, false);
|
||
gcc_assert (base != NULL_TREE);
|
||
|
||
if (pbitpos % BITS_PER_UNIT != 0)
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "failed: bit offset alignment.\n");
|
||
return false;
|
||
}
|
||
|
||
if (TREE_CODE (base) == MEM_REF)
|
||
{
|
||
if (!integer_zerop (TREE_OPERAND (base, 1)))
|
||
{
|
||
if (!poffset)
|
||
{
|
||
double_int moff = mem_ref_offset (base);
|
||
poffset = double_int_to_tree (sizetype, moff);
|
||
}
|
||
else
|
||
poffset = size_binop (PLUS_EXPR, poffset, TREE_OPERAND (base, 1));
|
||
}
|
||
base = TREE_OPERAND (base, 0);
|
||
}
|
||
else
|
||
base = build_fold_addr_expr (base);
|
||
if (in_loop)
|
||
{
|
||
if (!simple_iv (loop, loop_containing_stmt (stmt), base, &base_iv,
|
||
false))
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "failed: evolution of base is not affine.\n");
|
||
return false;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
base_iv.base = base;
|
||
base_iv.step = ssize_int (0);
|
||
base_iv.no_overflow = true;
|
||
}
|
||
|
||
if (!poffset)
|
||
{
|
||
offset_iv.base = ssize_int (0);
|
||
offset_iv.step = ssize_int (0);
|
||
}
|
||
else
|
||
{
|
||
if (!in_loop)
|
||
{
|
||
offset_iv.base = poffset;
|
||
offset_iv.step = ssize_int (0);
|
||
}
|
||
else if (!simple_iv (loop, loop_containing_stmt (stmt),
|
||
poffset, &offset_iv, false))
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "failed: evolution of offset is not"
|
||
" affine.\n");
|
||
return false;
|
||
}
|
||
}
|
||
|
||
init = ssize_int (pbitpos / BITS_PER_UNIT);
|
||
split_constant_offset (base_iv.base, &base_iv.base, &dinit);
|
||
init = size_binop (PLUS_EXPR, init, dinit);
|
||
split_constant_offset (offset_iv.base, &offset_iv.base, &dinit);
|
||
init = size_binop (PLUS_EXPR, init, dinit);
|
||
|
||
step = size_binop (PLUS_EXPR,
|
||
fold_convert (ssizetype, base_iv.step),
|
||
fold_convert (ssizetype, offset_iv.step));
|
||
|
||
DR_BASE_ADDRESS (dr) = canonicalize_base_object_address (base_iv.base);
|
||
|
||
DR_OFFSET (dr) = fold_convert (ssizetype, offset_iv.base);
|
||
DR_INIT (dr) = init;
|
||
DR_STEP (dr) = step;
|
||
|
||
DR_ALIGNED_TO (dr) = size_int (highest_pow2_factor (offset_iv.base));
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "success.\n");
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Determines the base object and the list of indices of memory reference
|
||
DR, analyzed in loop nest NEST. */
|
||
|
||
static void
|
||
dr_analyze_indices (struct data_reference *dr, struct loop *nest)
|
||
{
|
||
gimple stmt = DR_STMT (dr);
|
||
struct loop *loop = loop_containing_stmt (stmt);
|
||
VEC (tree, heap) *access_fns = NULL;
|
||
tree ref = unshare_expr (DR_REF (dr)), aref = ref, op;
|
||
tree base, off, access_fn = NULL_TREE;
|
||
basic_block before_loop = NULL;
|
||
|
||
if (nest)
|
||
before_loop = block_before_loop (nest);
|
||
|
||
while (handled_component_p (aref))
|
||
{
|
||
if (TREE_CODE (aref) == ARRAY_REF)
|
||
{
|
||
op = TREE_OPERAND (aref, 1);
|
||
if (nest)
|
||
{
|
||
access_fn = analyze_scalar_evolution (loop, op);
|
||
access_fn = instantiate_scev (before_loop, loop, access_fn);
|
||
VEC_safe_push (tree, heap, access_fns, access_fn);
|
||
}
|
||
|
||
TREE_OPERAND (aref, 1) = build_int_cst (TREE_TYPE (op), 0);
|
||
}
|
||
|
||
aref = TREE_OPERAND (aref, 0);
|
||
}
|
||
|
||
if (nest
|
||
&& (INDIRECT_REF_P (aref)
|
||
|| TREE_CODE (aref) == MEM_REF))
|
||
{
|
||
op = TREE_OPERAND (aref, 0);
|
||
access_fn = analyze_scalar_evolution (loop, op);
|
||
access_fn = instantiate_scev (before_loop, loop, access_fn);
|
||
base = initial_condition (access_fn);
|
||
split_constant_offset (base, &base, &off);
|
||
if (TREE_CODE (aref) == MEM_REF)
|
||
off = size_binop (PLUS_EXPR, off,
|
||
fold_convert (ssizetype, TREE_OPERAND (aref, 1)));
|
||
access_fn = chrec_replace_initial_condition (access_fn,
|
||
fold_convert (TREE_TYPE (base), off));
|
||
|
||
TREE_OPERAND (aref, 0) = base;
|
||
VEC_safe_push (tree, heap, access_fns, access_fn);
|
||
}
|
||
|
||
if (TREE_CODE (aref) == MEM_REF)
|
||
TREE_OPERAND (aref, 1)
|
||
= build_int_cst (TREE_TYPE (TREE_OPERAND (aref, 1)), 0);
|
||
|
||
if (TREE_CODE (ref) == MEM_REF
|
||
&& TREE_CODE (TREE_OPERAND (ref, 0)) == ADDR_EXPR
|
||
&& integer_zerop (TREE_OPERAND (ref, 1)))
|
||
ref = TREE_OPERAND (TREE_OPERAND (ref, 0), 0);
|
||
|
||
/* For canonicalization purposes we'd like to strip all outermost
|
||
zero-offset component-refs.
|
||
??? For now simply handle zero-index array-refs. */
|
||
while (TREE_CODE (ref) == ARRAY_REF
|
||
&& integer_zerop (TREE_OPERAND (ref, 1)))
|
||
ref = TREE_OPERAND (ref, 0);
|
||
|
||
DR_BASE_OBJECT (dr) = ref;
|
||
DR_ACCESS_FNS (dr) = access_fns;
|
||
}
|
||
|
||
/* Extracts the alias analysis information from the memory reference DR. */
|
||
|
||
static void
|
||
dr_analyze_alias (struct data_reference *dr)
|
||
{
|
||
tree ref = DR_REF (dr);
|
||
tree base = get_base_address (ref), addr;
|
||
|
||
if (INDIRECT_REF_P (base)
|
||
|| TREE_CODE (base) == MEM_REF)
|
||
{
|
||
addr = TREE_OPERAND (base, 0);
|
||
if (TREE_CODE (addr) == SSA_NAME)
|
||
DR_PTR_INFO (dr) = SSA_NAME_PTR_INFO (addr);
|
||
}
|
||
}
|
||
|
||
/* Returns true if the address of DR is invariant. */
|
||
|
||
static bool
|
||
dr_address_invariant_p (struct data_reference *dr)
|
||
{
|
||
unsigned i;
|
||
tree idx;
|
||
|
||
FOR_EACH_VEC_ELT (tree, DR_ACCESS_FNS (dr), i, idx)
|
||
if (tree_contains_chrecs (idx, NULL))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Frees data reference DR. */
|
||
|
||
void
|
||
free_data_ref (data_reference_p dr)
|
||
{
|
||
VEC_free (tree, heap, DR_ACCESS_FNS (dr));
|
||
free (dr);
|
||
}
|
||
|
||
/* Analyzes memory reference MEMREF accessed in STMT. The reference
|
||
is read if IS_READ is true, write otherwise. Returns the
|
||
data_reference description of MEMREF. NEST is the outermost loop of the
|
||
loop nest in that the reference should be analyzed. */
|
||
|
||
struct data_reference *
|
||
create_data_ref (struct loop *nest, tree memref, gimple stmt, bool is_read)
|
||
{
|
||
struct data_reference *dr;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "Creating dr for ");
|
||
print_generic_expr (dump_file, memref, TDF_SLIM);
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
|
||
dr = XCNEW (struct data_reference);
|
||
DR_STMT (dr) = stmt;
|
||
DR_REF (dr) = memref;
|
||
DR_IS_READ (dr) = is_read;
|
||
|
||
dr_analyze_innermost (dr);
|
||
dr_analyze_indices (dr, nest);
|
||
dr_analyze_alias (dr);
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "\tbase_address: ");
|
||
print_generic_expr (dump_file, DR_BASE_ADDRESS (dr), TDF_SLIM);
|
||
fprintf (dump_file, "\n\toffset from base address: ");
|
||
print_generic_expr (dump_file, DR_OFFSET (dr), TDF_SLIM);
|
||
fprintf (dump_file, "\n\tconstant offset from base address: ");
|
||
print_generic_expr (dump_file, DR_INIT (dr), TDF_SLIM);
|
||
fprintf (dump_file, "\n\tstep: ");
|
||
print_generic_expr (dump_file, DR_STEP (dr), TDF_SLIM);
|
||
fprintf (dump_file, "\n\taligned to: ");
|
||
print_generic_expr (dump_file, DR_ALIGNED_TO (dr), TDF_SLIM);
|
||
fprintf (dump_file, "\n\tbase_object: ");
|
||
print_generic_expr (dump_file, DR_BASE_OBJECT (dr), TDF_SLIM);
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
|
||
return dr;
|
||
}
|
||
|
||
/* Returns true if FNA == FNB. */
|
||
|
||
static bool
|
||
affine_function_equal_p (affine_fn fna, affine_fn fnb)
|
||
{
|
||
unsigned i, n = VEC_length (tree, fna);
|
||
|
||
if (n != VEC_length (tree, fnb))
|
||
return false;
|
||
|
||
for (i = 0; i < n; i++)
|
||
if (!operand_equal_p (VEC_index (tree, fna, i),
|
||
VEC_index (tree, fnb, i), 0))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* If all the functions in CF are the same, returns one of them,
|
||
otherwise returns NULL. */
|
||
|
||
static affine_fn
|
||
common_affine_function (conflict_function *cf)
|
||
{
|
||
unsigned i;
|
||
affine_fn comm;
|
||
|
||
if (!CF_NONTRIVIAL_P (cf))
|
||
return NULL;
|
||
|
||
comm = cf->fns[0];
|
||
|
||
for (i = 1; i < cf->n; i++)
|
||
if (!affine_function_equal_p (comm, cf->fns[i]))
|
||
return NULL;
|
||
|
||
return comm;
|
||
}
|
||
|
||
/* Returns the base of the affine function FN. */
|
||
|
||
static tree
|
||
affine_function_base (affine_fn fn)
|
||
{
|
||
return VEC_index (tree, fn, 0);
|
||
}
|
||
|
||
/* Returns true if FN is a constant. */
|
||
|
||
static bool
|
||
affine_function_constant_p (affine_fn fn)
|
||
{
|
||
unsigned i;
|
||
tree coef;
|
||
|
||
for (i = 1; VEC_iterate (tree, fn, i, coef); i++)
|
||
if (!integer_zerop (coef))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Returns true if FN is the zero constant function. */
|
||
|
||
static bool
|
||
affine_function_zero_p (affine_fn fn)
|
||
{
|
||
return (integer_zerop (affine_function_base (fn))
|
||
&& affine_function_constant_p (fn));
|
||
}
|
||
|
||
/* Returns a signed integer type with the largest precision from TA
|
||
and TB. */
|
||
|
||
static tree
|
||
signed_type_for_types (tree ta, tree tb)
|
||
{
|
||
if (TYPE_PRECISION (ta) > TYPE_PRECISION (tb))
|
||
return signed_type_for (ta);
|
||
else
|
||
return signed_type_for (tb);
|
||
}
|
||
|
||
/* Applies operation OP on affine functions FNA and FNB, and returns the
|
||
result. */
|
||
|
||
static affine_fn
|
||
affine_fn_op (enum tree_code op, affine_fn fna, affine_fn fnb)
|
||
{
|
||
unsigned i, n, m;
|
||
affine_fn ret;
|
||
tree coef;
|
||
|
||
if (VEC_length (tree, fnb) > VEC_length (tree, fna))
|
||
{
|
||
n = VEC_length (tree, fna);
|
||
m = VEC_length (tree, fnb);
|
||
}
|
||
else
|
||
{
|
||
n = VEC_length (tree, fnb);
|
||
m = VEC_length (tree, fna);
|
||
}
|
||
|
||
ret = VEC_alloc (tree, heap, m);
|
||
for (i = 0; i < n; i++)
|
||
{
|
||
tree type = signed_type_for_types (TREE_TYPE (VEC_index (tree, fna, i)),
|
||
TREE_TYPE (VEC_index (tree, fnb, i)));
|
||
|
||
VEC_quick_push (tree, ret,
|
||
fold_build2 (op, type,
|
||
VEC_index (tree, fna, i),
|
||
VEC_index (tree, fnb, i)));
|
||
}
|
||
|
||
for (; VEC_iterate (tree, fna, i, coef); i++)
|
||
VEC_quick_push (tree, ret,
|
||
fold_build2 (op, signed_type_for (TREE_TYPE (coef)),
|
||
coef, integer_zero_node));
|
||
for (; VEC_iterate (tree, fnb, i, coef); i++)
|
||
VEC_quick_push (tree, ret,
|
||
fold_build2 (op, signed_type_for (TREE_TYPE (coef)),
|
||
integer_zero_node, coef));
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Returns the sum of affine functions FNA and FNB. */
|
||
|
||
static affine_fn
|
||
affine_fn_plus (affine_fn fna, affine_fn fnb)
|
||
{
|
||
return affine_fn_op (PLUS_EXPR, fna, fnb);
|
||
}
|
||
|
||
/* Returns the difference of affine functions FNA and FNB. */
|
||
|
||
static affine_fn
|
||
affine_fn_minus (affine_fn fna, affine_fn fnb)
|
||
{
|
||
return affine_fn_op (MINUS_EXPR, fna, fnb);
|
||
}
|
||
|
||
/* Frees affine function FN. */
|
||
|
||
static void
|
||
affine_fn_free (affine_fn fn)
|
||
{
|
||
VEC_free (tree, heap, fn);
|
||
}
|
||
|
||
/* Determine for each subscript in the data dependence relation DDR
|
||
the distance. */
|
||
|
||
static void
|
||
compute_subscript_distance (struct data_dependence_relation *ddr)
|
||
{
|
||
conflict_function *cf_a, *cf_b;
|
||
affine_fn fn_a, fn_b, diff;
|
||
|
||
if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
|
||
{
|
||
struct subscript *subscript;
|
||
|
||
subscript = DDR_SUBSCRIPT (ddr, i);
|
||
cf_a = SUB_CONFLICTS_IN_A (subscript);
|
||
cf_b = SUB_CONFLICTS_IN_B (subscript);
|
||
|
||
fn_a = common_affine_function (cf_a);
|
||
fn_b = common_affine_function (cf_b);
|
||
if (!fn_a || !fn_b)
|
||
{
|
||
SUB_DISTANCE (subscript) = chrec_dont_know;
|
||
return;
|
||
}
|
||
diff = affine_fn_minus (fn_a, fn_b);
|
||
|
||
if (affine_function_constant_p (diff))
|
||
SUB_DISTANCE (subscript) = affine_function_base (diff);
|
||
else
|
||
SUB_DISTANCE (subscript) = chrec_dont_know;
|
||
|
||
affine_fn_free (diff);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Returns the conflict function for "unknown". */
|
||
|
||
static conflict_function *
|
||
conflict_fn_not_known (void)
|
||
{
|
||
conflict_function *fn = XCNEW (conflict_function);
|
||
fn->n = NOT_KNOWN;
|
||
|
||
return fn;
|
||
}
|
||
|
||
/* Returns the conflict function for "independent". */
|
||
|
||
static conflict_function *
|
||
conflict_fn_no_dependence (void)
|
||
{
|
||
conflict_function *fn = XCNEW (conflict_function);
|
||
fn->n = NO_DEPENDENCE;
|
||
|
||
return fn;
|
||
}
|
||
|
||
/* Returns true if the address of OBJ is invariant in LOOP. */
|
||
|
||
static bool
|
||
object_address_invariant_in_loop_p (const struct loop *loop, const_tree obj)
|
||
{
|
||
while (handled_component_p (obj))
|
||
{
|
||
if (TREE_CODE (obj) == ARRAY_REF)
|
||
{
|
||
/* Index of the ARRAY_REF was zeroed in analyze_indices, thus we only
|
||
need to check the stride and the lower bound of the reference. */
|
||
if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 2),
|
||
loop->num)
|
||
|| chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 3),
|
||
loop->num))
|
||
return false;
|
||
}
|
||
else if (TREE_CODE (obj) == COMPONENT_REF)
|
||
{
|
||
if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 2),
|
||
loop->num))
|
||
return false;
|
||
}
|
||
obj = TREE_OPERAND (obj, 0);
|
||
}
|
||
|
||
if (!INDIRECT_REF_P (obj)
|
||
&& TREE_CODE (obj) != MEM_REF)
|
||
return true;
|
||
|
||
return !chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 0),
|
||
loop->num);
|
||
}
|
||
|
||
/* Returns true if A and B are accesses to different objects, or to different
|
||
fields of the same object. */
|
||
|
||
static bool
|
||
disjoint_objects_p (tree a, tree b)
|
||
{
|
||
tree base_a, base_b;
|
||
VEC (tree, heap) *comp_a = NULL, *comp_b = NULL;
|
||
bool ret;
|
||
|
||
base_a = get_base_address (a);
|
||
base_b = get_base_address (b);
|
||
|
||
if (DECL_P (base_a)
|
||
&& DECL_P (base_b)
|
||
&& base_a != base_b)
|
||
return true;
|
||
|
||
if (!operand_equal_p (base_a, base_b, 0))
|
||
return false;
|
||
|
||
/* Compare the component references of A and B. We must start from the inner
|
||
ones, so record them to the vector first. */
|
||
while (handled_component_p (a))
|
||
{
|
||
VEC_safe_push (tree, heap, comp_a, a);
|
||
a = TREE_OPERAND (a, 0);
|
||
}
|
||
while (handled_component_p (b))
|
||
{
|
||
VEC_safe_push (tree, heap, comp_b, b);
|
||
b = TREE_OPERAND (b, 0);
|
||
}
|
||
|
||
ret = false;
|
||
while (1)
|
||
{
|
||
if (VEC_length (tree, comp_a) == 0
|
||
|| VEC_length (tree, comp_b) == 0)
|
||
break;
|
||
|
||
a = VEC_pop (tree, comp_a);
|
||
b = VEC_pop (tree, comp_b);
|
||
|
||
/* Real and imaginary part of a variable do not alias. */
|
||
if ((TREE_CODE (a) == REALPART_EXPR
|
||
&& TREE_CODE (b) == IMAGPART_EXPR)
|
||
|| (TREE_CODE (a) == IMAGPART_EXPR
|
||
&& TREE_CODE (b) == REALPART_EXPR))
|
||
{
|
||
ret = true;
|
||
break;
|
||
}
|
||
|
||
if (TREE_CODE (a) != TREE_CODE (b))
|
||
break;
|
||
|
||
/* Nothing to do for ARRAY_REFs, as the indices of array_refs in
|
||
DR_BASE_OBJECT are always zero. */
|
||
if (TREE_CODE (a) == ARRAY_REF)
|
||
continue;
|
||
else if (TREE_CODE (a) == COMPONENT_REF)
|
||
{
|
||
if (operand_equal_p (TREE_OPERAND (a, 1), TREE_OPERAND (b, 1), 0))
|
||
continue;
|
||
|
||
/* Different fields of unions may overlap. */
|
||
base_a = TREE_OPERAND (a, 0);
|
||
if (TREE_CODE (TREE_TYPE (base_a)) == UNION_TYPE)
|
||
break;
|
||
|
||
/* Different fields of structures cannot. */
|
||
ret = true;
|
||
break;
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
|
||
VEC_free (tree, heap, comp_a);
|
||
VEC_free (tree, heap, comp_b);
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Returns false if we can prove that data references A and B do not alias,
|
||
true otherwise. */
|
||
|
||
bool
|
||
dr_may_alias_p (const struct data_reference *a, const struct data_reference *b)
|
||
{
|
||
const_tree addr_a = DR_BASE_ADDRESS (a);
|
||
const_tree addr_b = DR_BASE_ADDRESS (b);
|
||
const_tree type_a, type_b;
|
||
const_tree decl_a = NULL_TREE, decl_b = NULL_TREE;
|
||
|
||
/* If the accessed objects are disjoint, the memory references do not
|
||
alias. */
|
||
if (disjoint_objects_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b)))
|
||
return false;
|
||
|
||
/* Query the alias oracle. */
|
||
if (!DR_IS_READ (a) && !DR_IS_READ (b))
|
||
{
|
||
if (!refs_output_dependent_p (DR_REF (a), DR_REF (b)))
|
||
return false;
|
||
}
|
||
else if (DR_IS_READ (a) && !DR_IS_READ (b))
|
||
{
|
||
if (!refs_anti_dependent_p (DR_REF (a), DR_REF (b)))
|
||
return false;
|
||
}
|
||
else if (!refs_may_alias_p (DR_REF (a), DR_REF (b)))
|
||
return false;
|
||
|
||
if (!addr_a || !addr_b)
|
||
return true;
|
||
|
||
/* If the references are based on different static objects, they cannot
|
||
alias (PTA should be able to disambiguate such accesses, but often
|
||
it fails to). */
|
||
if (TREE_CODE (addr_a) == ADDR_EXPR
|
||
&& TREE_CODE (addr_b) == ADDR_EXPR)
|
||
return TREE_OPERAND (addr_a, 0) == TREE_OPERAND (addr_b, 0);
|
||
|
||
/* An instruction writing through a restricted pointer is "independent" of any
|
||
instruction reading or writing through a different restricted pointer,
|
||
in the same block/scope. */
|
||
|
||
type_a = TREE_TYPE (addr_a);
|
||
type_b = TREE_TYPE (addr_b);
|
||
gcc_assert (POINTER_TYPE_P (type_a) && POINTER_TYPE_P (type_b));
|
||
|
||
if (TREE_CODE (addr_a) == SSA_NAME)
|
||
decl_a = SSA_NAME_VAR (addr_a);
|
||
if (TREE_CODE (addr_b) == SSA_NAME)
|
||
decl_b = SSA_NAME_VAR (addr_b);
|
||
|
||
if (TYPE_RESTRICT (type_a) && TYPE_RESTRICT (type_b)
|
||
&& (!DR_IS_READ (a) || !DR_IS_READ (b))
|
||
&& decl_a && DECL_P (decl_a)
|
||
&& decl_b && DECL_P (decl_b)
|
||
&& decl_a != decl_b
|
||
&& TREE_CODE (DECL_CONTEXT (decl_a)) == FUNCTION_DECL
|
||
&& DECL_CONTEXT (decl_a) == DECL_CONTEXT (decl_b))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
static void compute_self_dependence (struct data_dependence_relation *);
|
||
|
||
/* Initialize a data dependence relation between data accesses A and
|
||
B. NB_LOOPS is the number of loops surrounding the references: the
|
||
size of the classic distance/direction vectors. */
|
||
|
||
static struct data_dependence_relation *
|
||
initialize_data_dependence_relation (struct data_reference *a,
|
||
struct data_reference *b,
|
||
VEC (loop_p, heap) *loop_nest)
|
||
{
|
||
struct data_dependence_relation *res;
|
||
unsigned int i;
|
||
|
||
res = XNEW (struct data_dependence_relation);
|
||
DDR_A (res) = a;
|
||
DDR_B (res) = b;
|
||
DDR_LOOP_NEST (res) = NULL;
|
||
DDR_REVERSED_P (res) = false;
|
||
DDR_SUBSCRIPTS (res) = NULL;
|
||
DDR_DIR_VECTS (res) = NULL;
|
||
DDR_DIST_VECTS (res) = NULL;
|
||
|
||
if (a == NULL || b == NULL)
|
||
{
|
||
DDR_ARE_DEPENDENT (res) = chrec_dont_know;
|
||
return res;
|
||
}
|
||
|
||
/* If the data references do not alias, then they are independent. */
|
||
if (!dr_may_alias_p (a, b))
|
||
{
|
||
DDR_ARE_DEPENDENT (res) = chrec_known;
|
||
return res;
|
||
}
|
||
|
||
/* When the references are exactly the same, don't spend time doing
|
||
the data dependence tests, just initialize the ddr and return. */
|
||
if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
|
||
{
|
||
DDR_AFFINE_P (res) = true;
|
||
DDR_ARE_DEPENDENT (res) = NULL_TREE;
|
||
DDR_SUBSCRIPTS (res) = VEC_alloc (subscript_p, heap, DR_NUM_DIMENSIONS (a));
|
||
DDR_LOOP_NEST (res) = loop_nest;
|
||
DDR_INNER_LOOP (res) = 0;
|
||
DDR_SELF_REFERENCE (res) = true;
|
||
compute_self_dependence (res);
|
||
return res;
|
||
}
|
||
|
||
/* If the references do not access the same object, we do not know
|
||
whether they alias or not. */
|
||
if (!operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0))
|
||
{
|
||
DDR_ARE_DEPENDENT (res) = chrec_dont_know;
|
||
return res;
|
||
}
|
||
|
||
/* If the base of the object is not invariant in the loop nest, we cannot
|
||
analyze it. TODO -- in fact, it would suffice to record that there may
|
||
be arbitrary dependences in the loops where the base object varies. */
|
||
if (loop_nest
|
||
&& !object_address_invariant_in_loop_p (VEC_index (loop_p, loop_nest, 0),
|
||
DR_BASE_OBJECT (a)))
|
||
{
|
||
DDR_ARE_DEPENDENT (res) = chrec_dont_know;
|
||
return res;
|
||
}
|
||
|
||
/* If the number of dimensions of the access to not agree we can have
|
||
a pointer access to a component of the array element type and an
|
||
array access while the base-objects are still the same. Punt. */
|
||
if (DR_NUM_DIMENSIONS (a) != DR_NUM_DIMENSIONS (b))
|
||
{
|
||
DDR_ARE_DEPENDENT (res) = chrec_dont_know;
|
||
return res;
|
||
}
|
||
|
||
DDR_AFFINE_P (res) = true;
|
||
DDR_ARE_DEPENDENT (res) = NULL_TREE;
|
||
DDR_SUBSCRIPTS (res) = VEC_alloc (subscript_p, heap, DR_NUM_DIMENSIONS (a));
|
||
DDR_LOOP_NEST (res) = loop_nest;
|
||
DDR_INNER_LOOP (res) = 0;
|
||
DDR_SELF_REFERENCE (res) = false;
|
||
|
||
for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
|
||
{
|
||
struct subscript *subscript;
|
||
|
||
subscript = XNEW (struct subscript);
|
||
SUB_CONFLICTS_IN_A (subscript) = conflict_fn_not_known ();
|
||
SUB_CONFLICTS_IN_B (subscript) = conflict_fn_not_known ();
|
||
SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
|
||
SUB_DISTANCE (subscript) = chrec_dont_know;
|
||
VEC_safe_push (subscript_p, heap, DDR_SUBSCRIPTS (res), subscript);
|
||
}
|
||
|
||
return res;
|
||
}
|
||
|
||
/* Frees memory used by the conflict function F. */
|
||
|
||
static void
|
||
free_conflict_function (conflict_function *f)
|
||
{
|
||
unsigned i;
|
||
|
||
if (CF_NONTRIVIAL_P (f))
|
||
{
|
||
for (i = 0; i < f->n; i++)
|
||
affine_fn_free (f->fns[i]);
|
||
}
|
||
free (f);
|
||
}
|
||
|
||
/* Frees memory used by SUBSCRIPTS. */
|
||
|
||
static void
|
||
free_subscripts (VEC (subscript_p, heap) *subscripts)
|
||
{
|
||
unsigned i;
|
||
subscript_p s;
|
||
|
||
FOR_EACH_VEC_ELT (subscript_p, subscripts, i, s)
|
||
{
|
||
free_conflict_function (s->conflicting_iterations_in_a);
|
||
free_conflict_function (s->conflicting_iterations_in_b);
|
||
free (s);
|
||
}
|
||
VEC_free (subscript_p, heap, subscripts);
|
||
}
|
||
|
||
/* Set DDR_ARE_DEPENDENT to CHREC and finalize the subscript overlap
|
||
description. */
|
||
|
||
static inline void
|
||
finalize_ddr_dependent (struct data_dependence_relation *ddr,
|
||
tree chrec)
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "(dependence classified: ");
|
||
print_generic_expr (dump_file, chrec, 0);
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
DDR_ARE_DEPENDENT (ddr) = chrec;
|
||
free_subscripts (DDR_SUBSCRIPTS (ddr));
|
||
DDR_SUBSCRIPTS (ddr) = NULL;
|
||
}
|
||
|
||
/* The dependence relation DDR cannot be represented by a distance
|
||
vector. */
|
||
|
||
static inline void
|
||
non_affine_dependence_relation (struct data_dependence_relation *ddr)
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "(Dependence relation cannot be represented by distance vector.) \n");
|
||
|
||
DDR_AFFINE_P (ddr) = false;
|
||
}
|
||
|
||
|
||
|
||
/* This section contains the classic Banerjee tests. */
|
||
|
||
/* Returns true iff CHREC_A and CHREC_B are not dependent on any index
|
||
variables, i.e., if the ZIV (Zero Index Variable) test is true. */
|
||
|
||
static inline bool
|
||
ziv_subscript_p (const_tree chrec_a, const_tree chrec_b)
|
||
{
|
||
return (evolution_function_is_constant_p (chrec_a)
|
||
&& evolution_function_is_constant_p (chrec_b));
|
||
}
|
||
|
||
/* Returns true iff CHREC_A and CHREC_B are dependent on an index
|
||
variable, i.e., if the SIV (Single Index Variable) test is true. */
|
||
|
||
static bool
|
||
siv_subscript_p (const_tree chrec_a, const_tree chrec_b)
|
||
{
|
||
if ((evolution_function_is_constant_p (chrec_a)
|
||
&& evolution_function_is_univariate_p (chrec_b))
|
||
|| (evolution_function_is_constant_p (chrec_b)
|
||
&& evolution_function_is_univariate_p (chrec_a)))
|
||
return true;
|
||
|
||
if (evolution_function_is_univariate_p (chrec_a)
|
||
&& evolution_function_is_univariate_p (chrec_b))
|
||
{
|
||
switch (TREE_CODE (chrec_a))
|
||
{
|
||
case POLYNOMIAL_CHREC:
|
||
switch (TREE_CODE (chrec_b))
|
||
{
|
||
case POLYNOMIAL_CHREC:
|
||
if (CHREC_VARIABLE (chrec_a) != CHREC_VARIABLE (chrec_b))
|
||
return false;
|
||
|
||
default:
|
||
return true;
|
||
}
|
||
|
||
default:
|
||
return true;
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Creates a conflict function with N dimensions. The affine functions
|
||
in each dimension follow. */
|
||
|
||
static conflict_function *
|
||
conflict_fn (unsigned n, ...)
|
||
{
|
||
unsigned i;
|
||
conflict_function *ret = XCNEW (conflict_function);
|
||
va_list ap;
|
||
|
||
gcc_assert (0 < n && n <= MAX_DIM);
|
||
va_start(ap, n);
|
||
|
||
ret->n = n;
|
||
for (i = 0; i < n; i++)
|
||
ret->fns[i] = va_arg (ap, affine_fn);
|
||
va_end(ap);
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Returns constant affine function with value CST. */
|
||
|
||
static affine_fn
|
||
affine_fn_cst (tree cst)
|
||
{
|
||
affine_fn fn = VEC_alloc (tree, heap, 1);
|
||
VEC_quick_push (tree, fn, cst);
|
||
return fn;
|
||
}
|
||
|
||
/* Returns affine function with single variable, CST + COEF * x_DIM. */
|
||
|
||
static affine_fn
|
||
affine_fn_univar (tree cst, unsigned dim, tree coef)
|
||
{
|
||
affine_fn fn = VEC_alloc (tree, heap, dim + 1);
|
||
unsigned i;
|
||
|
||
gcc_assert (dim > 0);
|
||
VEC_quick_push (tree, fn, cst);
|
||
for (i = 1; i < dim; i++)
|
||
VEC_quick_push (tree, fn, integer_zero_node);
|
||
VEC_quick_push (tree, fn, coef);
|
||
return fn;
|
||
}
|
||
|
||
/* Analyze a ZIV (Zero Index Variable) subscript. *OVERLAPS_A and
|
||
*OVERLAPS_B are initialized to the functions that describe the
|
||
relation between the elements accessed twice by CHREC_A and
|
||
CHREC_B. For k >= 0, the following property is verified:
|
||
|
||
CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
|
||
|
||
static void
|
||
analyze_ziv_subscript (tree chrec_a,
|
||
tree chrec_b,
|
||
conflict_function **overlaps_a,
|
||
conflict_function **overlaps_b,
|
||
tree *last_conflicts)
|
||
{
|
||
tree type, difference;
|
||
dependence_stats.num_ziv++;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "(analyze_ziv_subscript \n");
|
||
|
||
type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
|
||
chrec_a = chrec_convert (type, chrec_a, NULL);
|
||
chrec_b = chrec_convert (type, chrec_b, NULL);
|
||
difference = chrec_fold_minus (type, chrec_a, chrec_b);
|
||
|
||
switch (TREE_CODE (difference))
|
||
{
|
||
case INTEGER_CST:
|
||
if (integer_zerop (difference))
|
||
{
|
||
/* The difference is equal to zero: the accessed index
|
||
overlaps for each iteration in the loop. */
|
||
*overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
*overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
*last_conflicts = chrec_dont_know;
|
||
dependence_stats.num_ziv_dependent++;
|
||
}
|
||
else
|
||
{
|
||
/* The accesses do not overlap. */
|
||
*overlaps_a = conflict_fn_no_dependence ();
|
||
*overlaps_b = conflict_fn_no_dependence ();
|
||
*last_conflicts = integer_zero_node;
|
||
dependence_stats.num_ziv_independent++;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
/* We're not sure whether the indexes overlap. For the moment,
|
||
conservatively answer "don't know". */
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "ziv test failed: difference is non-integer.\n");
|
||
|
||
*overlaps_a = conflict_fn_not_known ();
|
||
*overlaps_b = conflict_fn_not_known ();
|
||
*last_conflicts = chrec_dont_know;
|
||
dependence_stats.num_ziv_unimplemented++;
|
||
break;
|
||
}
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
/* Sets NIT to the estimated number of executions of the statements in
|
||
LOOP. If CONSERVATIVE is true, we must be sure that NIT is at least as
|
||
large as the number of iterations. If we have no reliable estimate,
|
||
the function returns false, otherwise returns true. */
|
||
|
||
bool
|
||
estimated_loop_iterations (struct loop *loop, bool conservative,
|
||
double_int *nit)
|
||
{
|
||
estimate_numbers_of_iterations_loop (loop);
|
||
if (conservative)
|
||
{
|
||
if (!loop->any_upper_bound)
|
||
return false;
|
||
|
||
*nit = loop->nb_iterations_upper_bound;
|
||
}
|
||
else
|
||
{
|
||
if (!loop->any_estimate)
|
||
return false;
|
||
|
||
*nit = loop->nb_iterations_estimate;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Similar to estimated_loop_iterations, but returns the estimate only
|
||
if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
|
||
on the number of iterations of LOOP could not be derived, returns -1. */
|
||
|
||
HOST_WIDE_INT
|
||
estimated_loop_iterations_int (struct loop *loop, bool conservative)
|
||
{
|
||
double_int nit;
|
||
HOST_WIDE_INT hwi_nit;
|
||
|
||
if (!estimated_loop_iterations (loop, conservative, &nit))
|
||
return -1;
|
||
|
||
if (!double_int_fits_in_shwi_p (nit))
|
||
return -1;
|
||
hwi_nit = double_int_to_shwi (nit);
|
||
|
||
return hwi_nit < 0 ? -1 : hwi_nit;
|
||
}
|
||
|
||
/* Similar to estimated_loop_iterations, but returns the estimate as a tree,
|
||
and only if it fits to the int type. If this is not the case, or the
|
||
estimate on the number of iterations of LOOP could not be derived, returns
|
||
chrec_dont_know. */
|
||
|
||
static tree
|
||
estimated_loop_iterations_tree (struct loop *loop, bool conservative)
|
||
{
|
||
double_int nit;
|
||
tree type;
|
||
|
||
if (!estimated_loop_iterations (loop, conservative, &nit))
|
||
return chrec_dont_know;
|
||
|
||
type = lang_hooks.types.type_for_size (INT_TYPE_SIZE, true);
|
||
if (!double_int_fits_to_tree_p (type, nit))
|
||
return chrec_dont_know;
|
||
|
||
return double_int_to_tree (type, nit);
|
||
}
|
||
|
||
/* Analyze a SIV (Single Index Variable) subscript where CHREC_A is a
|
||
constant, and CHREC_B is an affine function. *OVERLAPS_A and
|
||
*OVERLAPS_B are initialized to the functions that describe the
|
||
relation between the elements accessed twice by CHREC_A and
|
||
CHREC_B. For k >= 0, the following property is verified:
|
||
|
||
CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
|
||
|
||
static void
|
||
analyze_siv_subscript_cst_affine (tree chrec_a,
|
||
tree chrec_b,
|
||
conflict_function **overlaps_a,
|
||
conflict_function **overlaps_b,
|
||
tree *last_conflicts)
|
||
{
|
||
bool value0, value1, value2;
|
||
tree type, difference, tmp;
|
||
|
||
type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
|
||
chrec_a = chrec_convert (type, chrec_a, NULL);
|
||
chrec_b = chrec_convert (type, chrec_b, NULL);
|
||
difference = chrec_fold_minus (type, initial_condition (chrec_b), chrec_a);
|
||
|
||
if (!chrec_is_positive (initial_condition (difference), &value0))
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "siv test failed: chrec is not positive.\n");
|
||
|
||
dependence_stats.num_siv_unimplemented++;
|
||
*overlaps_a = conflict_fn_not_known ();
|
||
*overlaps_b = conflict_fn_not_known ();
|
||
*last_conflicts = chrec_dont_know;
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
if (value0 == false)
|
||
{
|
||
if (!chrec_is_positive (CHREC_RIGHT (chrec_b), &value1))
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "siv test failed: chrec not positive.\n");
|
||
|
||
*overlaps_a = conflict_fn_not_known ();
|
||
*overlaps_b = conflict_fn_not_known ();
|
||
*last_conflicts = chrec_dont_know;
|
||
dependence_stats.num_siv_unimplemented++;
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
if (value1 == true)
|
||
{
|
||
/* Example:
|
||
chrec_a = 12
|
||
chrec_b = {10, +, 1}
|
||
*/
|
||
|
||
if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference))
|
||
{
|
||
HOST_WIDE_INT numiter;
|
||
struct loop *loop = get_chrec_loop (chrec_b);
|
||
|
||
*overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
tmp = fold_build2 (EXACT_DIV_EXPR, type,
|
||
fold_build1 (ABS_EXPR, type, difference),
|
||
CHREC_RIGHT (chrec_b));
|
||
*overlaps_b = conflict_fn (1, affine_fn_cst (tmp));
|
||
*last_conflicts = integer_one_node;
|
||
|
||
|
||
/* Perform weak-zero siv test to see if overlap is
|
||
outside the loop bounds. */
|
||
numiter = estimated_loop_iterations_int (loop, false);
|
||
|
||
if (numiter >= 0
|
||
&& compare_tree_int (tmp, numiter) > 0)
|
||
{
|
||
free_conflict_function (*overlaps_a);
|
||
free_conflict_function (*overlaps_b);
|
||
*overlaps_a = conflict_fn_no_dependence ();
|
||
*overlaps_b = conflict_fn_no_dependence ();
|
||
*last_conflicts = integer_zero_node;
|
||
dependence_stats.num_siv_independent++;
|
||
return;
|
||
}
|
||
dependence_stats.num_siv_dependent++;
|
||
return;
|
||
}
|
||
|
||
/* When the step does not divide the difference, there are
|
||
no overlaps. */
|
||
else
|
||
{
|
||
*overlaps_a = conflict_fn_no_dependence ();
|
||
*overlaps_b = conflict_fn_no_dependence ();
|
||
*last_conflicts = integer_zero_node;
|
||
dependence_stats.num_siv_independent++;
|
||
return;
|
||
}
|
||
}
|
||
|
||
else
|
||
{
|
||
/* Example:
|
||
chrec_a = 12
|
||
chrec_b = {10, +, -1}
|
||
|
||
In this case, chrec_a will not overlap with chrec_b. */
|
||
*overlaps_a = conflict_fn_no_dependence ();
|
||
*overlaps_b = conflict_fn_no_dependence ();
|
||
*last_conflicts = integer_zero_node;
|
||
dependence_stats.num_siv_independent++;
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (!chrec_is_positive (CHREC_RIGHT (chrec_b), &value2))
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "siv test failed: chrec not positive.\n");
|
||
|
||
*overlaps_a = conflict_fn_not_known ();
|
||
*overlaps_b = conflict_fn_not_known ();
|
||
*last_conflicts = chrec_dont_know;
|
||
dependence_stats.num_siv_unimplemented++;
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
if (value2 == false)
|
||
{
|
||
/* Example:
|
||
chrec_a = 3
|
||
chrec_b = {10, +, -1}
|
||
*/
|
||
if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference))
|
||
{
|
||
HOST_WIDE_INT numiter;
|
||
struct loop *loop = get_chrec_loop (chrec_b);
|
||
|
||
*overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
tmp = fold_build2 (EXACT_DIV_EXPR, type, difference,
|
||
CHREC_RIGHT (chrec_b));
|
||
*overlaps_b = conflict_fn (1, affine_fn_cst (tmp));
|
||
*last_conflicts = integer_one_node;
|
||
|
||
/* Perform weak-zero siv test to see if overlap is
|
||
outside the loop bounds. */
|
||
numiter = estimated_loop_iterations_int (loop, false);
|
||
|
||
if (numiter >= 0
|
||
&& compare_tree_int (tmp, numiter) > 0)
|
||
{
|
||
free_conflict_function (*overlaps_a);
|
||
free_conflict_function (*overlaps_b);
|
||
*overlaps_a = conflict_fn_no_dependence ();
|
||
*overlaps_b = conflict_fn_no_dependence ();
|
||
*last_conflicts = integer_zero_node;
|
||
dependence_stats.num_siv_independent++;
|
||
return;
|
||
}
|
||
dependence_stats.num_siv_dependent++;
|
||
return;
|
||
}
|
||
|
||
/* When the step does not divide the difference, there
|
||
are no overlaps. */
|
||
else
|
||
{
|
||
*overlaps_a = conflict_fn_no_dependence ();
|
||
*overlaps_b = conflict_fn_no_dependence ();
|
||
*last_conflicts = integer_zero_node;
|
||
dependence_stats.num_siv_independent++;
|
||
return;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Example:
|
||
chrec_a = 3
|
||
chrec_b = {4, +, 1}
|
||
|
||
In this case, chrec_a will not overlap with chrec_b. */
|
||
*overlaps_a = conflict_fn_no_dependence ();
|
||
*overlaps_b = conflict_fn_no_dependence ();
|
||
*last_conflicts = integer_zero_node;
|
||
dependence_stats.num_siv_independent++;
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Helper recursive function for initializing the matrix A. Returns
|
||
the initial value of CHREC. */
|
||
|
||
static tree
|
||
initialize_matrix_A (lambda_matrix A, tree chrec, unsigned index, int mult)
|
||
{
|
||
gcc_assert (chrec);
|
||
|
||
switch (TREE_CODE (chrec))
|
||
{
|
||
case POLYNOMIAL_CHREC:
|
||
gcc_assert (TREE_CODE (CHREC_RIGHT (chrec)) == INTEGER_CST);
|
||
|
||
A[index][0] = mult * int_cst_value (CHREC_RIGHT (chrec));
|
||
return initialize_matrix_A (A, CHREC_LEFT (chrec), index + 1, mult);
|
||
|
||
case PLUS_EXPR:
|
||
case MULT_EXPR:
|
||
case MINUS_EXPR:
|
||
{
|
||
tree op0 = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
|
||
tree op1 = initialize_matrix_A (A, TREE_OPERAND (chrec, 1), index, mult);
|
||
|
||
return chrec_fold_op (TREE_CODE (chrec), chrec_type (chrec), op0, op1);
|
||
}
|
||
|
||
case NOP_EXPR:
|
||
{
|
||
tree op = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
|
||
return chrec_convert (chrec_type (chrec), op, NULL);
|
||
}
|
||
|
||
case BIT_NOT_EXPR:
|
||
{
|
||
/* Handle ~X as -1 - X. */
|
||
tree op = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
|
||
return chrec_fold_op (MINUS_EXPR, chrec_type (chrec),
|
||
build_int_cst (TREE_TYPE (chrec), -1), op);
|
||
}
|
||
|
||
case INTEGER_CST:
|
||
return chrec;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
return NULL_TREE;
|
||
}
|
||
}
|
||
|
||
#define FLOOR_DIV(x,y) ((x) / (y))
|
||
|
||
/* Solves the special case of the Diophantine equation:
|
||
| {0, +, STEP_A}_x (OVERLAPS_A) = {0, +, STEP_B}_y (OVERLAPS_B)
|
||
|
||
Computes the descriptions OVERLAPS_A and OVERLAPS_B. NITER is the
|
||
number of iterations that loops X and Y run. The overlaps will be
|
||
constructed as evolutions in dimension DIM. */
|
||
|
||
static void
|
||
compute_overlap_steps_for_affine_univar (int niter, int step_a, int step_b,
|
||
affine_fn *overlaps_a,
|
||
affine_fn *overlaps_b,
|
||
tree *last_conflicts, int dim)
|
||
{
|
||
if (((step_a > 0 && step_b > 0)
|
||
|| (step_a < 0 && step_b < 0)))
|
||
{
|
||
int step_overlaps_a, step_overlaps_b;
|
||
int gcd_steps_a_b, last_conflict, tau2;
|
||
|
||
gcd_steps_a_b = gcd (step_a, step_b);
|
||
step_overlaps_a = step_b / gcd_steps_a_b;
|
||
step_overlaps_b = step_a / gcd_steps_a_b;
|
||
|
||
if (niter > 0)
|
||
{
|
||
tau2 = FLOOR_DIV (niter, step_overlaps_a);
|
||
tau2 = MIN (tau2, FLOOR_DIV (niter, step_overlaps_b));
|
||
last_conflict = tau2;
|
||
*last_conflicts = build_int_cst (NULL_TREE, last_conflict);
|
||
}
|
||
else
|
||
*last_conflicts = chrec_dont_know;
|
||
|
||
*overlaps_a = affine_fn_univar (integer_zero_node, dim,
|
||
build_int_cst (NULL_TREE,
|
||
step_overlaps_a));
|
||
*overlaps_b = affine_fn_univar (integer_zero_node, dim,
|
||
build_int_cst (NULL_TREE,
|
||
step_overlaps_b));
|
||
}
|
||
|
||
else
|
||
{
|
||
*overlaps_a = affine_fn_cst (integer_zero_node);
|
||
*overlaps_b = affine_fn_cst (integer_zero_node);
|
||
*last_conflicts = integer_zero_node;
|
||
}
|
||
}
|
||
|
||
/* Solves the special case of a Diophantine equation where CHREC_A is
|
||
an affine bivariate function, and CHREC_B is an affine univariate
|
||
function. For example,
|
||
|
||
| {{0, +, 1}_x, +, 1335}_y = {0, +, 1336}_z
|
||
|
||
has the following overlapping functions:
|
||
|
||
| x (t, u, v) = {{0, +, 1336}_t, +, 1}_v
|
||
| y (t, u, v) = {{0, +, 1336}_u, +, 1}_v
|
||
| z (t, u, v) = {{{0, +, 1}_t, +, 1335}_u, +, 1}_v
|
||
|
||
FORNOW: This is a specialized implementation for a case occurring in
|
||
a common benchmark. Implement the general algorithm. */
|
||
|
||
static void
|
||
compute_overlap_steps_for_affine_1_2 (tree chrec_a, tree chrec_b,
|
||
conflict_function **overlaps_a,
|
||
conflict_function **overlaps_b,
|
||
tree *last_conflicts)
|
||
{
|
||
bool xz_p, yz_p, xyz_p;
|
||
int step_x, step_y, step_z;
|
||
HOST_WIDE_INT niter_x, niter_y, niter_z, niter;
|
||
affine_fn overlaps_a_xz, overlaps_b_xz;
|
||
affine_fn overlaps_a_yz, overlaps_b_yz;
|
||
affine_fn overlaps_a_xyz, overlaps_b_xyz;
|
||
affine_fn ova1, ova2, ovb;
|
||
tree last_conflicts_xz, last_conflicts_yz, last_conflicts_xyz;
|
||
|
||
step_x = int_cst_value (CHREC_RIGHT (CHREC_LEFT (chrec_a)));
|
||
step_y = int_cst_value (CHREC_RIGHT (chrec_a));
|
||
step_z = int_cst_value (CHREC_RIGHT (chrec_b));
|
||
|
||
niter_x =
|
||
estimated_loop_iterations_int (get_chrec_loop (CHREC_LEFT (chrec_a)),
|
||
false);
|
||
niter_y = estimated_loop_iterations_int (get_chrec_loop (chrec_a), false);
|
||
niter_z = estimated_loop_iterations_int (get_chrec_loop (chrec_b), false);
|
||
|
||
if (niter_x < 0 || niter_y < 0 || niter_z < 0)
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "overlap steps test failed: no iteration counts.\n");
|
||
|
||
*overlaps_a = conflict_fn_not_known ();
|
||
*overlaps_b = conflict_fn_not_known ();
|
||
*last_conflicts = chrec_dont_know;
|
||
return;
|
||
}
|
||
|
||
niter = MIN (niter_x, niter_z);
|
||
compute_overlap_steps_for_affine_univar (niter, step_x, step_z,
|
||
&overlaps_a_xz,
|
||
&overlaps_b_xz,
|
||
&last_conflicts_xz, 1);
|
||
niter = MIN (niter_y, niter_z);
|
||
compute_overlap_steps_for_affine_univar (niter, step_y, step_z,
|
||
&overlaps_a_yz,
|
||
&overlaps_b_yz,
|
||
&last_conflicts_yz, 2);
|
||
niter = MIN (niter_x, niter_z);
|
||
niter = MIN (niter_y, niter);
|
||
compute_overlap_steps_for_affine_univar (niter, step_x + step_y, step_z,
|
||
&overlaps_a_xyz,
|
||
&overlaps_b_xyz,
|
||
&last_conflicts_xyz, 3);
|
||
|
||
xz_p = !integer_zerop (last_conflicts_xz);
|
||
yz_p = !integer_zerop (last_conflicts_yz);
|
||
xyz_p = !integer_zerop (last_conflicts_xyz);
|
||
|
||
if (xz_p || yz_p || xyz_p)
|
||
{
|
||
ova1 = affine_fn_cst (integer_zero_node);
|
||
ova2 = affine_fn_cst (integer_zero_node);
|
||
ovb = affine_fn_cst (integer_zero_node);
|
||
if (xz_p)
|
||
{
|
||
affine_fn t0 = ova1;
|
||
affine_fn t2 = ovb;
|
||
|
||
ova1 = affine_fn_plus (ova1, overlaps_a_xz);
|
||
ovb = affine_fn_plus (ovb, overlaps_b_xz);
|
||
affine_fn_free (t0);
|
||
affine_fn_free (t2);
|
||
*last_conflicts = last_conflicts_xz;
|
||
}
|
||
if (yz_p)
|
||
{
|
||
affine_fn t0 = ova2;
|
||
affine_fn t2 = ovb;
|
||
|
||
ova2 = affine_fn_plus (ova2, overlaps_a_yz);
|
||
ovb = affine_fn_plus (ovb, overlaps_b_yz);
|
||
affine_fn_free (t0);
|
||
affine_fn_free (t2);
|
||
*last_conflicts = last_conflicts_yz;
|
||
}
|
||
if (xyz_p)
|
||
{
|
||
affine_fn t0 = ova1;
|
||
affine_fn t2 = ova2;
|
||
affine_fn t4 = ovb;
|
||
|
||
ova1 = affine_fn_plus (ova1, overlaps_a_xyz);
|
||
ova2 = affine_fn_plus (ova2, overlaps_a_xyz);
|
||
ovb = affine_fn_plus (ovb, overlaps_b_xyz);
|
||
affine_fn_free (t0);
|
||
affine_fn_free (t2);
|
||
affine_fn_free (t4);
|
||
*last_conflicts = last_conflicts_xyz;
|
||
}
|
||
*overlaps_a = conflict_fn (2, ova1, ova2);
|
||
*overlaps_b = conflict_fn (1, ovb);
|
||
}
|
||
else
|
||
{
|
||
*overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
*overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
*last_conflicts = integer_zero_node;
|
||
}
|
||
|
||
affine_fn_free (overlaps_a_xz);
|
||
affine_fn_free (overlaps_b_xz);
|
||
affine_fn_free (overlaps_a_yz);
|
||
affine_fn_free (overlaps_b_yz);
|
||
affine_fn_free (overlaps_a_xyz);
|
||
affine_fn_free (overlaps_b_xyz);
|
||
}
|
||
|
||
/* Determines the overlapping elements due to accesses CHREC_A and
|
||
CHREC_B, that are affine functions. This function cannot handle
|
||
symbolic evolution functions, ie. when initial conditions are
|
||
parameters, because it uses lambda matrices of integers. */
|
||
|
||
static void
|
||
analyze_subscript_affine_affine (tree chrec_a,
|
||
tree chrec_b,
|
||
conflict_function **overlaps_a,
|
||
conflict_function **overlaps_b,
|
||
tree *last_conflicts)
|
||
{
|
||
unsigned nb_vars_a, nb_vars_b, dim;
|
||
HOST_WIDE_INT init_a, init_b, gamma, gcd_alpha_beta;
|
||
lambda_matrix A, U, S;
|
||
struct obstack scratch_obstack;
|
||
|
||
if (eq_evolutions_p (chrec_a, chrec_b))
|
||
{
|
||
/* The accessed index overlaps for each iteration in the
|
||
loop. */
|
||
*overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
*overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
*last_conflicts = chrec_dont_know;
|
||
return;
|
||
}
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "(analyze_subscript_affine_affine \n");
|
||
|
||
/* For determining the initial intersection, we have to solve a
|
||
Diophantine equation. This is the most time consuming part.
|
||
|
||
For answering to the question: "Is there a dependence?" we have
|
||
to prove that there exists a solution to the Diophantine
|
||
equation, and that the solution is in the iteration domain,
|
||
i.e. the solution is positive or zero, and that the solution
|
||
happens before the upper bound loop.nb_iterations. Otherwise
|
||
there is no dependence. This function outputs a description of
|
||
the iterations that hold the intersections. */
|
||
|
||
nb_vars_a = nb_vars_in_chrec (chrec_a);
|
||
nb_vars_b = nb_vars_in_chrec (chrec_b);
|
||
|
||
gcc_obstack_init (&scratch_obstack);
|
||
|
||
dim = nb_vars_a + nb_vars_b;
|
||
U = lambda_matrix_new (dim, dim, &scratch_obstack);
|
||
A = lambda_matrix_new (dim, 1, &scratch_obstack);
|
||
S = lambda_matrix_new (dim, 1, &scratch_obstack);
|
||
|
||
init_a = int_cst_value (initialize_matrix_A (A, chrec_a, 0, 1));
|
||
init_b = int_cst_value (initialize_matrix_A (A, chrec_b, nb_vars_a, -1));
|
||
gamma = init_b - init_a;
|
||
|
||
/* Don't do all the hard work of solving the Diophantine equation
|
||
when we already know the solution: for example,
|
||
| {3, +, 1}_1
|
||
| {3, +, 4}_2
|
||
| gamma = 3 - 3 = 0.
|
||
Then the first overlap occurs during the first iterations:
|
||
| {3, +, 1}_1 ({0, +, 4}_x) = {3, +, 4}_2 ({0, +, 1}_x)
|
||
*/
|
||
if (gamma == 0)
|
||
{
|
||
if (nb_vars_a == 1 && nb_vars_b == 1)
|
||
{
|
||
HOST_WIDE_INT step_a, step_b;
|
||
HOST_WIDE_INT niter, niter_a, niter_b;
|
||
affine_fn ova, ovb;
|
||
|
||
niter_a = estimated_loop_iterations_int (get_chrec_loop (chrec_a),
|
||
false);
|
||
niter_b = estimated_loop_iterations_int (get_chrec_loop (chrec_b),
|
||
false);
|
||
niter = MIN (niter_a, niter_b);
|
||
step_a = int_cst_value (CHREC_RIGHT (chrec_a));
|
||
step_b = int_cst_value (CHREC_RIGHT (chrec_b));
|
||
|
||
compute_overlap_steps_for_affine_univar (niter, step_a, step_b,
|
||
&ova, &ovb,
|
||
last_conflicts, 1);
|
||
*overlaps_a = conflict_fn (1, ova);
|
||
*overlaps_b = conflict_fn (1, ovb);
|
||
}
|
||
|
||
else if (nb_vars_a == 2 && nb_vars_b == 1)
|
||
compute_overlap_steps_for_affine_1_2
|
||
(chrec_a, chrec_b, overlaps_a, overlaps_b, last_conflicts);
|
||
|
||
else if (nb_vars_a == 1 && nb_vars_b == 2)
|
||
compute_overlap_steps_for_affine_1_2
|
||
(chrec_b, chrec_a, overlaps_b, overlaps_a, last_conflicts);
|
||
|
||
else
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "affine-affine test failed: too many variables.\n");
|
||
*overlaps_a = conflict_fn_not_known ();
|
||
*overlaps_b = conflict_fn_not_known ();
|
||
*last_conflicts = chrec_dont_know;
|
||
}
|
||
goto end_analyze_subs_aa;
|
||
}
|
||
|
||
/* U.A = S */
|
||
lambda_matrix_right_hermite (A, dim, 1, S, U);
|
||
|
||
if (S[0][0] < 0)
|
||
{
|
||
S[0][0] *= -1;
|
||
lambda_matrix_row_negate (U, dim, 0);
|
||
}
|
||
gcd_alpha_beta = S[0][0];
|
||
|
||
/* Something went wrong: for example in {1, +, 0}_5 vs. {0, +, 0}_5,
|
||
but that is a quite strange case. Instead of ICEing, answer
|
||
don't know. */
|
||
if (gcd_alpha_beta == 0)
|
||
{
|
||
*overlaps_a = conflict_fn_not_known ();
|
||
*overlaps_b = conflict_fn_not_known ();
|
||
*last_conflicts = chrec_dont_know;
|
||
goto end_analyze_subs_aa;
|
||
}
|
||
|
||
/* The classic "gcd-test". */
|
||
if (!int_divides_p (gcd_alpha_beta, gamma))
|
||
{
|
||
/* The "gcd-test" has determined that there is no integer
|
||
solution, i.e. there is no dependence. */
|
||
*overlaps_a = conflict_fn_no_dependence ();
|
||
*overlaps_b = conflict_fn_no_dependence ();
|
||
*last_conflicts = integer_zero_node;
|
||
}
|
||
|
||
/* Both access functions are univariate. This includes SIV and MIV cases. */
|
||
else if (nb_vars_a == 1 && nb_vars_b == 1)
|
||
{
|
||
/* Both functions should have the same evolution sign. */
|
||
if (((A[0][0] > 0 && -A[1][0] > 0)
|
||
|| (A[0][0] < 0 && -A[1][0] < 0)))
|
||
{
|
||
/* The solutions are given by:
|
||
|
|
||
| [GAMMA/GCD_ALPHA_BETA t].[u11 u12] = [x0]
|
||
| [u21 u22] [y0]
|
||
|
||
For a given integer t. Using the following variables,
|
||
|
||
| i0 = u11 * gamma / gcd_alpha_beta
|
||
| j0 = u12 * gamma / gcd_alpha_beta
|
||
| i1 = u21
|
||
| j1 = u22
|
||
|
||
the solutions are:
|
||
|
||
| x0 = i0 + i1 * t,
|
||
| y0 = j0 + j1 * t. */
|
||
HOST_WIDE_INT i0, j0, i1, j1;
|
||
|
||
i0 = U[0][0] * gamma / gcd_alpha_beta;
|
||
j0 = U[0][1] * gamma / gcd_alpha_beta;
|
||
i1 = U[1][0];
|
||
j1 = U[1][1];
|
||
|
||
if ((i1 == 0 && i0 < 0)
|
||
|| (j1 == 0 && j0 < 0))
|
||
{
|
||
/* There is no solution.
|
||
FIXME: The case "i0 > nb_iterations, j0 > nb_iterations"
|
||
falls in here, but for the moment we don't look at the
|
||
upper bound of the iteration domain. */
|
||
*overlaps_a = conflict_fn_no_dependence ();
|
||
*overlaps_b = conflict_fn_no_dependence ();
|
||
*last_conflicts = integer_zero_node;
|
||
goto end_analyze_subs_aa;
|
||
}
|
||
|
||
if (i1 > 0 && j1 > 0)
|
||
{
|
||
HOST_WIDE_INT niter_a = estimated_loop_iterations_int
|
||
(get_chrec_loop (chrec_a), false);
|
||
HOST_WIDE_INT niter_b = estimated_loop_iterations_int
|
||
(get_chrec_loop (chrec_b), false);
|
||
HOST_WIDE_INT niter = MIN (niter_a, niter_b);
|
||
|
||
/* (X0, Y0) is a solution of the Diophantine equation:
|
||
"chrec_a (X0) = chrec_b (Y0)". */
|
||
HOST_WIDE_INT tau1 = MAX (CEIL (-i0, i1),
|
||
CEIL (-j0, j1));
|
||
HOST_WIDE_INT x0 = i1 * tau1 + i0;
|
||
HOST_WIDE_INT y0 = j1 * tau1 + j0;
|
||
|
||
/* (X1, Y1) is the smallest positive solution of the eq
|
||
"chrec_a (X1) = chrec_b (Y1)", i.e. this is where the
|
||
first conflict occurs. */
|
||
HOST_WIDE_INT min_multiple = MIN (x0 / i1, y0 / j1);
|
||
HOST_WIDE_INT x1 = x0 - i1 * min_multiple;
|
||
HOST_WIDE_INT y1 = y0 - j1 * min_multiple;
|
||
|
||
if (niter > 0)
|
||
{
|
||
HOST_WIDE_INT tau2 = MIN (FLOOR_DIV (niter - i0, i1),
|
||
FLOOR_DIV (niter - j0, j1));
|
||
HOST_WIDE_INT last_conflict = tau2 - (x1 - i0)/i1;
|
||
|
||
/* If the overlap occurs outside of the bounds of the
|
||
loop, there is no dependence. */
|
||
if (x1 >= niter || y1 >= niter)
|
||
{
|
||
*overlaps_a = conflict_fn_no_dependence ();
|
||
*overlaps_b = conflict_fn_no_dependence ();
|
||
*last_conflicts = integer_zero_node;
|
||
goto end_analyze_subs_aa;
|
||
}
|
||
else
|
||
*last_conflicts = build_int_cst (NULL_TREE, last_conflict);
|
||
}
|
||
else
|
||
*last_conflicts = chrec_dont_know;
|
||
|
||
*overlaps_a
|
||
= conflict_fn (1,
|
||
affine_fn_univar (build_int_cst (NULL_TREE, x1),
|
||
1,
|
||
build_int_cst (NULL_TREE, i1)));
|
||
*overlaps_b
|
||
= conflict_fn (1,
|
||
affine_fn_univar (build_int_cst (NULL_TREE, y1),
|
||
1,
|
||
build_int_cst (NULL_TREE, j1)));
|
||
}
|
||
else
|
||
{
|
||
/* FIXME: For the moment, the upper bound of the
|
||
iteration domain for i and j is not checked. */
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
|
||
*overlaps_a = conflict_fn_not_known ();
|
||
*overlaps_b = conflict_fn_not_known ();
|
||
*last_conflicts = chrec_dont_know;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
|
||
*overlaps_a = conflict_fn_not_known ();
|
||
*overlaps_b = conflict_fn_not_known ();
|
||
*last_conflicts = chrec_dont_know;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
|
||
*overlaps_a = conflict_fn_not_known ();
|
||
*overlaps_b = conflict_fn_not_known ();
|
||
*last_conflicts = chrec_dont_know;
|
||
}
|
||
|
||
end_analyze_subs_aa:
|
||
obstack_free (&scratch_obstack, NULL);
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, " (overlaps_a = ");
|
||
dump_conflict_function (dump_file, *overlaps_a);
|
||
fprintf (dump_file, ")\n (overlaps_b = ");
|
||
dump_conflict_function (dump_file, *overlaps_b);
|
||
fprintf (dump_file, ")\n");
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
}
|
||
|
||
/* Returns true when analyze_subscript_affine_affine can be used for
|
||
determining the dependence relation between chrec_a and chrec_b,
|
||
that contain symbols. This function modifies chrec_a and chrec_b
|
||
such that the analysis result is the same, and such that they don't
|
||
contain symbols, and then can safely be passed to the analyzer.
|
||
|
||
Example: The analysis of the following tuples of evolutions produce
|
||
the same results: {x+1, +, 1}_1 vs. {x+3, +, 1}_1, and {-2, +, 1}_1
|
||
vs. {0, +, 1}_1
|
||
|
||
{x+1, +, 1}_1 ({2, +, 1}_1) = {x+3, +, 1}_1 ({0, +, 1}_1)
|
||
{-2, +, 1}_1 ({2, +, 1}_1) = {0, +, 1}_1 ({0, +, 1}_1)
|
||
*/
|
||
|
||
static bool
|
||
can_use_analyze_subscript_affine_affine (tree *chrec_a, tree *chrec_b)
|
||
{
|
||
tree diff, type, left_a, left_b, right_b;
|
||
|
||
if (chrec_contains_symbols (CHREC_RIGHT (*chrec_a))
|
||
|| chrec_contains_symbols (CHREC_RIGHT (*chrec_b)))
|
||
/* FIXME: For the moment not handled. Might be refined later. */
|
||
return false;
|
||
|
||
type = chrec_type (*chrec_a);
|
||
left_a = CHREC_LEFT (*chrec_a);
|
||
left_b = chrec_convert (type, CHREC_LEFT (*chrec_b), NULL);
|
||
diff = chrec_fold_minus (type, left_a, left_b);
|
||
|
||
if (!evolution_function_is_constant_p (diff))
|
||
return false;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "can_use_subscript_aff_aff_for_symbolic \n");
|
||
|
||
*chrec_a = build_polynomial_chrec (CHREC_VARIABLE (*chrec_a),
|
||
diff, CHREC_RIGHT (*chrec_a));
|
||
right_b = chrec_convert (type, CHREC_RIGHT (*chrec_b), NULL);
|
||
*chrec_b = build_polynomial_chrec (CHREC_VARIABLE (*chrec_b),
|
||
build_int_cst (type, 0),
|
||
right_b);
|
||
return true;
|
||
}
|
||
|
||
/* Analyze a SIV (Single Index Variable) subscript. *OVERLAPS_A and
|
||
*OVERLAPS_B are initialized to the functions that describe the
|
||
relation between the elements accessed twice by CHREC_A and
|
||
CHREC_B. For k >= 0, the following property is verified:
|
||
|
||
CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
|
||
|
||
static void
|
||
analyze_siv_subscript (tree chrec_a,
|
||
tree chrec_b,
|
||
conflict_function **overlaps_a,
|
||
conflict_function **overlaps_b,
|
||
tree *last_conflicts,
|
||
int loop_nest_num)
|
||
{
|
||
dependence_stats.num_siv++;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "(analyze_siv_subscript \n");
|
||
|
||
if (evolution_function_is_constant_p (chrec_a)
|
||
&& evolution_function_is_affine_in_loop (chrec_b, loop_nest_num))
|
||
analyze_siv_subscript_cst_affine (chrec_a, chrec_b,
|
||
overlaps_a, overlaps_b, last_conflicts);
|
||
|
||
else if (evolution_function_is_affine_in_loop (chrec_a, loop_nest_num)
|
||
&& evolution_function_is_constant_p (chrec_b))
|
||
analyze_siv_subscript_cst_affine (chrec_b, chrec_a,
|
||
overlaps_b, overlaps_a, last_conflicts);
|
||
|
||
else if (evolution_function_is_affine_in_loop (chrec_a, loop_nest_num)
|
||
&& evolution_function_is_affine_in_loop (chrec_b, loop_nest_num))
|
||
{
|
||
if (!chrec_contains_symbols (chrec_a)
|
||
&& !chrec_contains_symbols (chrec_b))
|
||
{
|
||
analyze_subscript_affine_affine (chrec_a, chrec_b,
|
||
overlaps_a, overlaps_b,
|
||
last_conflicts);
|
||
|
||
if (CF_NOT_KNOWN_P (*overlaps_a)
|
||
|| CF_NOT_KNOWN_P (*overlaps_b))
|
||
dependence_stats.num_siv_unimplemented++;
|
||
else if (CF_NO_DEPENDENCE_P (*overlaps_a)
|
||
|| CF_NO_DEPENDENCE_P (*overlaps_b))
|
||
dependence_stats.num_siv_independent++;
|
||
else
|
||
dependence_stats.num_siv_dependent++;
|
||
}
|
||
else if (can_use_analyze_subscript_affine_affine (&chrec_a,
|
||
&chrec_b))
|
||
{
|
||
analyze_subscript_affine_affine (chrec_a, chrec_b,
|
||
overlaps_a, overlaps_b,
|
||
last_conflicts);
|
||
|
||
if (CF_NOT_KNOWN_P (*overlaps_a)
|
||
|| CF_NOT_KNOWN_P (*overlaps_b))
|
||
dependence_stats.num_siv_unimplemented++;
|
||
else if (CF_NO_DEPENDENCE_P (*overlaps_a)
|
||
|| CF_NO_DEPENDENCE_P (*overlaps_b))
|
||
dependence_stats.num_siv_independent++;
|
||
else
|
||
dependence_stats.num_siv_dependent++;
|
||
}
|
||
else
|
||
goto siv_subscript_dontknow;
|
||
}
|
||
|
||
else
|
||
{
|
||
siv_subscript_dontknow:;
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "siv test failed: unimplemented.\n");
|
||
*overlaps_a = conflict_fn_not_known ();
|
||
*overlaps_b = conflict_fn_not_known ();
|
||
*last_conflicts = chrec_dont_know;
|
||
dependence_stats.num_siv_unimplemented++;
|
||
}
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
/* Returns false if we can prove that the greatest common divisor of the steps
|
||
of CHREC does not divide CST, false otherwise. */
|
||
|
||
static bool
|
||
gcd_of_steps_may_divide_p (const_tree chrec, const_tree cst)
|
||
{
|
||
HOST_WIDE_INT cd = 0, val;
|
||
tree step;
|
||
|
||
if (!host_integerp (cst, 0))
|
||
return true;
|
||
val = tree_low_cst (cst, 0);
|
||
|
||
while (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
|
||
{
|
||
step = CHREC_RIGHT (chrec);
|
||
if (!host_integerp (step, 0))
|
||
return true;
|
||
cd = gcd (cd, tree_low_cst (step, 0));
|
||
chrec = CHREC_LEFT (chrec);
|
||
}
|
||
|
||
return val % cd == 0;
|
||
}
|
||
|
||
/* Analyze a MIV (Multiple Index Variable) subscript with respect to
|
||
LOOP_NEST. *OVERLAPS_A and *OVERLAPS_B are initialized to the
|
||
functions that describe the relation between the elements accessed
|
||
twice by CHREC_A and CHREC_B. For k >= 0, the following property
|
||
is verified:
|
||
|
||
CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
|
||
|
||
static void
|
||
analyze_miv_subscript (tree chrec_a,
|
||
tree chrec_b,
|
||
conflict_function **overlaps_a,
|
||
conflict_function **overlaps_b,
|
||
tree *last_conflicts,
|
||
struct loop *loop_nest)
|
||
{
|
||
/* FIXME: This is a MIV subscript, not yet handled.
|
||
Example: (A[{1, +, 1}_1] vs. A[{1, +, 1}_2]) that comes from
|
||
(A[i] vs. A[j]).
|
||
|
||
In the SIV test we had to solve a Diophantine equation with two
|
||
variables. In the MIV case we have to solve a Diophantine
|
||
equation with 2*n variables (if the subscript uses n IVs).
|
||
*/
|
||
tree type, difference;
|
||
|
||
dependence_stats.num_miv++;
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "(analyze_miv_subscript \n");
|
||
|
||
type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
|
||
chrec_a = chrec_convert (type, chrec_a, NULL);
|
||
chrec_b = chrec_convert (type, chrec_b, NULL);
|
||
difference = chrec_fold_minus (type, chrec_a, chrec_b);
|
||
|
||
if (eq_evolutions_p (chrec_a, chrec_b))
|
||
{
|
||
/* Access functions are the same: all the elements are accessed
|
||
in the same order. */
|
||
*overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
*overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
*last_conflicts = estimated_loop_iterations_tree
|
||
(get_chrec_loop (chrec_a), true);
|
||
dependence_stats.num_miv_dependent++;
|
||
}
|
||
|
||
else if (evolution_function_is_constant_p (difference)
|
||
/* For the moment, the following is verified:
|
||
evolution_function_is_affine_multivariate_p (chrec_a,
|
||
loop_nest->num) */
|
||
&& !gcd_of_steps_may_divide_p (chrec_a, difference))
|
||
{
|
||
/* testsuite/.../ssa-chrec-33.c
|
||
{{21, +, 2}_1, +, -2}_2 vs. {{20, +, 2}_1, +, -2}_2
|
||
|
||
The difference is 1, and all the evolution steps are multiples
|
||
of 2, consequently there are no overlapping elements. */
|
||
*overlaps_a = conflict_fn_no_dependence ();
|
||
*overlaps_b = conflict_fn_no_dependence ();
|
||
*last_conflicts = integer_zero_node;
|
||
dependence_stats.num_miv_independent++;
|
||
}
|
||
|
||
else if (evolution_function_is_affine_multivariate_p (chrec_a, loop_nest->num)
|
||
&& !chrec_contains_symbols (chrec_a)
|
||
&& evolution_function_is_affine_multivariate_p (chrec_b, loop_nest->num)
|
||
&& !chrec_contains_symbols (chrec_b))
|
||
{
|
||
/* testsuite/.../ssa-chrec-35.c
|
||
{0, +, 1}_2 vs. {0, +, 1}_3
|
||
the overlapping elements are respectively located at iterations:
|
||
{0, +, 1}_x and {0, +, 1}_x,
|
||
in other words, we have the equality:
|
||
{0, +, 1}_2 ({0, +, 1}_x) = {0, +, 1}_3 ({0, +, 1}_x)
|
||
|
||
Other examples:
|
||
{{0, +, 1}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y) =
|
||
{0, +, 1}_1 ({{0, +, 1}_x, +, 2}_y)
|
||
|
||
{{0, +, 2}_1, +, 3}_2 ({0, +, 1}_y, {0, +, 1}_x) =
|
||
{{0, +, 3}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y)
|
||
*/
|
||
analyze_subscript_affine_affine (chrec_a, chrec_b,
|
||
overlaps_a, overlaps_b, last_conflicts);
|
||
|
||
if (CF_NOT_KNOWN_P (*overlaps_a)
|
||
|| CF_NOT_KNOWN_P (*overlaps_b))
|
||
dependence_stats.num_miv_unimplemented++;
|
||
else if (CF_NO_DEPENDENCE_P (*overlaps_a)
|
||
|| CF_NO_DEPENDENCE_P (*overlaps_b))
|
||
dependence_stats.num_miv_independent++;
|
||
else
|
||
dependence_stats.num_miv_dependent++;
|
||
}
|
||
|
||
else
|
||
{
|
||
/* When the analysis is too difficult, answer "don't know". */
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "analyze_miv_subscript test failed: unimplemented.\n");
|
||
|
||
*overlaps_a = conflict_fn_not_known ();
|
||
*overlaps_b = conflict_fn_not_known ();
|
||
*last_conflicts = chrec_dont_know;
|
||
dependence_stats.num_miv_unimplemented++;
|
||
}
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
/* Determines the iterations for which CHREC_A is equal to CHREC_B in
|
||
with respect to LOOP_NEST. OVERLAP_ITERATIONS_A and
|
||
OVERLAP_ITERATIONS_B are initialized with two functions that
|
||
describe the iterations that contain conflicting elements.
|
||
|
||
Remark: For an integer k >= 0, the following equality is true:
|
||
|
||
CHREC_A (OVERLAP_ITERATIONS_A (k)) == CHREC_B (OVERLAP_ITERATIONS_B (k)).
|
||
*/
|
||
|
||
static void
|
||
analyze_overlapping_iterations (tree chrec_a,
|
||
tree chrec_b,
|
||
conflict_function **overlap_iterations_a,
|
||
conflict_function **overlap_iterations_b,
|
||
tree *last_conflicts, struct loop *loop_nest)
|
||
{
|
||
unsigned int lnn = loop_nest->num;
|
||
|
||
dependence_stats.num_subscript_tests++;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "(analyze_overlapping_iterations \n");
|
||
fprintf (dump_file, " (chrec_a = ");
|
||
print_generic_expr (dump_file, chrec_a, 0);
|
||
fprintf (dump_file, ")\n (chrec_b = ");
|
||
print_generic_expr (dump_file, chrec_b, 0);
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
if (chrec_a == NULL_TREE
|
||
|| chrec_b == NULL_TREE
|
||
|| chrec_contains_undetermined (chrec_a)
|
||
|| chrec_contains_undetermined (chrec_b))
|
||
{
|
||
dependence_stats.num_subscript_undetermined++;
|
||
|
||
*overlap_iterations_a = conflict_fn_not_known ();
|
||
*overlap_iterations_b = conflict_fn_not_known ();
|
||
}
|
||
|
||
/* If they are the same chrec, and are affine, they overlap
|
||
on every iteration. */
|
||
else if (eq_evolutions_p (chrec_a, chrec_b)
|
||
&& evolution_function_is_affine_multivariate_p (chrec_a, lnn))
|
||
{
|
||
dependence_stats.num_same_subscript_function++;
|
||
*overlap_iterations_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
*overlap_iterations_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
*last_conflicts = chrec_dont_know;
|
||
}
|
||
|
||
/* If they aren't the same, and aren't affine, we can't do anything
|
||
yet. */
|
||
else if ((chrec_contains_symbols (chrec_a)
|
||
|| chrec_contains_symbols (chrec_b))
|
||
&& (!evolution_function_is_affine_multivariate_p (chrec_a, lnn)
|
||
|| !evolution_function_is_affine_multivariate_p (chrec_b, lnn)))
|
||
{
|
||
dependence_stats.num_subscript_undetermined++;
|
||
*overlap_iterations_a = conflict_fn_not_known ();
|
||
*overlap_iterations_b = conflict_fn_not_known ();
|
||
}
|
||
|
||
else if (ziv_subscript_p (chrec_a, chrec_b))
|
||
analyze_ziv_subscript (chrec_a, chrec_b,
|
||
overlap_iterations_a, overlap_iterations_b,
|
||
last_conflicts);
|
||
|
||
else if (siv_subscript_p (chrec_a, chrec_b))
|
||
analyze_siv_subscript (chrec_a, chrec_b,
|
||
overlap_iterations_a, overlap_iterations_b,
|
||
last_conflicts, lnn);
|
||
|
||
else
|
||
analyze_miv_subscript (chrec_a, chrec_b,
|
||
overlap_iterations_a, overlap_iterations_b,
|
||
last_conflicts, loop_nest);
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, " (overlap_iterations_a = ");
|
||
dump_conflict_function (dump_file, *overlap_iterations_a);
|
||
fprintf (dump_file, ")\n (overlap_iterations_b = ");
|
||
dump_conflict_function (dump_file, *overlap_iterations_b);
|
||
fprintf (dump_file, ")\n");
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
}
|
||
|
||
/* Helper function for uniquely inserting distance vectors. */
|
||
|
||
static void
|
||
save_dist_v (struct data_dependence_relation *ddr, lambda_vector dist_v)
|
||
{
|
||
unsigned i;
|
||
lambda_vector v;
|
||
|
||
FOR_EACH_VEC_ELT (lambda_vector, DDR_DIST_VECTS (ddr), i, v)
|
||
if (lambda_vector_equal (v, dist_v, DDR_NB_LOOPS (ddr)))
|
||
return;
|
||
|
||
VEC_safe_push (lambda_vector, heap, DDR_DIST_VECTS (ddr), dist_v);
|
||
}
|
||
|
||
/* Helper function for uniquely inserting direction vectors. */
|
||
|
||
static void
|
||
save_dir_v (struct data_dependence_relation *ddr, lambda_vector dir_v)
|
||
{
|
||
unsigned i;
|
||
lambda_vector v;
|
||
|
||
FOR_EACH_VEC_ELT (lambda_vector, DDR_DIR_VECTS (ddr), i, v)
|
||
if (lambda_vector_equal (v, dir_v, DDR_NB_LOOPS (ddr)))
|
||
return;
|
||
|
||
VEC_safe_push (lambda_vector, heap, DDR_DIR_VECTS (ddr), dir_v);
|
||
}
|
||
|
||
/* Add a distance of 1 on all the loops outer than INDEX. If we
|
||
haven't yet determined a distance for this outer loop, push a new
|
||
distance vector composed of the previous distance, and a distance
|
||
of 1 for this outer loop. Example:
|
||
|
||
| loop_1
|
||
| loop_2
|
||
| A[10]
|
||
| endloop_2
|
||
| endloop_1
|
||
|
||
Saved vectors are of the form (dist_in_1, dist_in_2). First, we
|
||
save (0, 1), then we have to save (1, 0). */
|
||
|
||
static void
|
||
add_outer_distances (struct data_dependence_relation *ddr,
|
||
lambda_vector dist_v, int index)
|
||
{
|
||
/* For each outer loop where init_v is not set, the accesses are
|
||
in dependence of distance 1 in the loop. */
|
||
while (--index >= 0)
|
||
{
|
||
lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
||
lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr));
|
||
save_v[index] = 1;
|
||
save_dist_v (ddr, save_v);
|
||
}
|
||
}
|
||
|
||
/* Return false when fail to represent the data dependence as a
|
||
distance vector. INIT_B is set to true when a component has been
|
||
added to the distance vector DIST_V. INDEX_CARRY is then set to
|
||
the index in DIST_V that carries the dependence. */
|
||
|
||
static bool
|
||
build_classic_dist_vector_1 (struct data_dependence_relation *ddr,
|
||
struct data_reference *ddr_a,
|
||
struct data_reference *ddr_b,
|
||
lambda_vector dist_v, bool *init_b,
|
||
int *index_carry)
|
||
{
|
||
unsigned i;
|
||
lambda_vector init_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
||
|
||
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
|
||
{
|
||
tree access_fn_a, access_fn_b;
|
||
struct subscript *subscript = DDR_SUBSCRIPT (ddr, i);
|
||
|
||
if (chrec_contains_undetermined (SUB_DISTANCE (subscript)))
|
||
{
|
||
non_affine_dependence_relation (ddr);
|
||
return false;
|
||
}
|
||
|
||
access_fn_a = DR_ACCESS_FN (ddr_a, i);
|
||
access_fn_b = DR_ACCESS_FN (ddr_b, i);
|
||
|
||
if (TREE_CODE (access_fn_a) == POLYNOMIAL_CHREC
|
||
&& TREE_CODE (access_fn_b) == POLYNOMIAL_CHREC)
|
||
{
|
||
int dist, index;
|
||
int index_a = index_in_loop_nest (CHREC_VARIABLE (access_fn_a),
|
||
DDR_LOOP_NEST (ddr));
|
||
int index_b = index_in_loop_nest (CHREC_VARIABLE (access_fn_b),
|
||
DDR_LOOP_NEST (ddr));
|
||
|
||
/* The dependence is carried by the outermost loop. Example:
|
||
| loop_1
|
||
| A[{4, +, 1}_1]
|
||
| loop_2
|
||
| A[{5, +, 1}_2]
|
||
| endloop_2
|
||
| endloop_1
|
||
In this case, the dependence is carried by loop_1. */
|
||
index = index_a < index_b ? index_a : index_b;
|
||
*index_carry = MIN (index, *index_carry);
|
||
|
||
if (chrec_contains_undetermined (SUB_DISTANCE (subscript)))
|
||
{
|
||
non_affine_dependence_relation (ddr);
|
||
return false;
|
||
}
|
||
|
||
dist = int_cst_value (SUB_DISTANCE (subscript));
|
||
|
||
/* This is the subscript coupling test. If we have already
|
||
recorded a distance for this loop (a distance coming from
|
||
another subscript), it should be the same. For example,
|
||
in the following code, there is no dependence:
|
||
|
||
| loop i = 0, N, 1
|
||
| T[i+1][i] = ...
|
||
| ... = T[i][i]
|
||
| endloop
|
||
*/
|
||
if (init_v[index] != 0 && dist_v[index] != dist)
|
||
{
|
||
finalize_ddr_dependent (ddr, chrec_known);
|
||
return false;
|
||
}
|
||
|
||
dist_v[index] = dist;
|
||
init_v[index] = 1;
|
||
*init_b = true;
|
||
}
|
||
else if (!operand_equal_p (access_fn_a, access_fn_b, 0))
|
||
{
|
||
/* This can be for example an affine vs. constant dependence
|
||
(T[i] vs. T[3]) that is not an affine dependence and is
|
||
not representable as a distance vector. */
|
||
non_affine_dependence_relation (ddr);
|
||
return false;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Return true when the DDR contains only constant access functions. */
|
||
|
||
static bool
|
||
constant_access_functions (const struct data_dependence_relation *ddr)
|
||
{
|
||
unsigned i;
|
||
|
||
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
|
||
if (!evolution_function_is_constant_p (DR_ACCESS_FN (DDR_A (ddr), i))
|
||
|| !evolution_function_is_constant_p (DR_ACCESS_FN (DDR_B (ddr), i)))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Helper function for the case where DDR_A and DDR_B are the same
|
||
multivariate access function with a constant step. For an example
|
||
see pr34635-1.c. */
|
||
|
||
static void
|
||
add_multivariate_self_dist (struct data_dependence_relation *ddr, tree c_2)
|
||
{
|
||
int x_1, x_2;
|
||
tree c_1 = CHREC_LEFT (c_2);
|
||
tree c_0 = CHREC_LEFT (c_1);
|
||
lambda_vector dist_v;
|
||
int v1, v2, cd;
|
||
|
||
/* Polynomials with more than 2 variables are not handled yet. When
|
||
the evolution steps are parameters, it is not possible to
|
||
represent the dependence using classical distance vectors. */
|
||
if (TREE_CODE (c_0) != INTEGER_CST
|
||
|| TREE_CODE (CHREC_RIGHT (c_1)) != INTEGER_CST
|
||
|| TREE_CODE (CHREC_RIGHT (c_2)) != INTEGER_CST)
|
||
{
|
||
DDR_AFFINE_P (ddr) = false;
|
||
return;
|
||
}
|
||
|
||
x_2 = index_in_loop_nest (CHREC_VARIABLE (c_2), DDR_LOOP_NEST (ddr));
|
||
x_1 = index_in_loop_nest (CHREC_VARIABLE (c_1), DDR_LOOP_NEST (ddr));
|
||
|
||
/* For "{{0, +, 2}_1, +, 3}_2" the distance vector is (3, -2). */
|
||
dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
||
v1 = int_cst_value (CHREC_RIGHT (c_1));
|
||
v2 = int_cst_value (CHREC_RIGHT (c_2));
|
||
cd = gcd (v1, v2);
|
||
v1 /= cd;
|
||
v2 /= cd;
|
||
|
||
if (v2 < 0)
|
||
{
|
||
v2 = -v2;
|
||
v1 = -v1;
|
||
}
|
||
|
||
dist_v[x_1] = v2;
|
||
dist_v[x_2] = -v1;
|
||
save_dist_v (ddr, dist_v);
|
||
|
||
add_outer_distances (ddr, dist_v, x_1);
|
||
}
|
||
|
||
/* Helper function for the case where DDR_A and DDR_B are the same
|
||
access functions. */
|
||
|
||
static void
|
||
add_other_self_distances (struct data_dependence_relation *ddr)
|
||
{
|
||
lambda_vector dist_v;
|
||
unsigned i;
|
||
int index_carry = DDR_NB_LOOPS (ddr);
|
||
|
||
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
|
||
{
|
||
tree access_fun = DR_ACCESS_FN (DDR_A (ddr), i);
|
||
|
||
if (TREE_CODE (access_fun) == POLYNOMIAL_CHREC)
|
||
{
|
||
if (!evolution_function_is_univariate_p (access_fun))
|
||
{
|
||
if (DDR_NUM_SUBSCRIPTS (ddr) != 1)
|
||
{
|
||
DDR_ARE_DEPENDENT (ddr) = chrec_dont_know;
|
||
return;
|
||
}
|
||
|
||
access_fun = DR_ACCESS_FN (DDR_A (ddr), 0);
|
||
|
||
if (TREE_CODE (CHREC_LEFT (access_fun)) == POLYNOMIAL_CHREC)
|
||
add_multivariate_self_dist (ddr, access_fun);
|
||
else
|
||
/* The evolution step is not constant: it varies in
|
||
the outer loop, so this cannot be represented by a
|
||
distance vector. For example in pr34635.c the
|
||
evolution is {0, +, {0, +, 4}_1}_2. */
|
||
DDR_AFFINE_P (ddr) = false;
|
||
|
||
return;
|
||
}
|
||
|
||
index_carry = MIN (index_carry,
|
||
index_in_loop_nest (CHREC_VARIABLE (access_fun),
|
||
DDR_LOOP_NEST (ddr)));
|
||
}
|
||
}
|
||
|
||
dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
||
add_outer_distances (ddr, dist_v, index_carry);
|
||
}
|
||
|
||
static void
|
||
insert_innermost_unit_dist_vector (struct data_dependence_relation *ddr)
|
||
{
|
||
lambda_vector dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
||
|
||
dist_v[DDR_INNER_LOOP (ddr)] = 1;
|
||
save_dist_v (ddr, dist_v);
|
||
}
|
||
|
||
/* Adds a unit distance vector to DDR when there is a 0 overlap. This
|
||
is the case for example when access functions are the same and
|
||
equal to a constant, as in:
|
||
|
||
| loop_1
|
||
| A[3] = ...
|
||
| ... = A[3]
|
||
| endloop_1
|
||
|
||
in which case the distance vectors are (0) and (1). */
|
||
|
||
static void
|
||
add_distance_for_zero_overlaps (struct data_dependence_relation *ddr)
|
||
{
|
||
unsigned i, j;
|
||
|
||
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
|
||
{
|
||
subscript_p sub = DDR_SUBSCRIPT (ddr, i);
|
||
conflict_function *ca = SUB_CONFLICTS_IN_A (sub);
|
||
conflict_function *cb = SUB_CONFLICTS_IN_B (sub);
|
||
|
||
for (j = 0; j < ca->n; j++)
|
||
if (affine_function_zero_p (ca->fns[j]))
|
||
{
|
||
insert_innermost_unit_dist_vector (ddr);
|
||
return;
|
||
}
|
||
|
||
for (j = 0; j < cb->n; j++)
|
||
if (affine_function_zero_p (cb->fns[j]))
|
||
{
|
||
insert_innermost_unit_dist_vector (ddr);
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Compute the classic per loop distance vector. DDR is the data
|
||
dependence relation to build a vector from. Return false when fail
|
||
to represent the data dependence as a distance vector. */
|
||
|
||
static bool
|
||
build_classic_dist_vector (struct data_dependence_relation *ddr,
|
||
struct loop *loop_nest)
|
||
{
|
||
bool init_b = false;
|
||
int index_carry = DDR_NB_LOOPS (ddr);
|
||
lambda_vector dist_v;
|
||
|
||
if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE)
|
||
return false;
|
||
|
||
if (same_access_functions (ddr))
|
||
{
|
||
/* Save the 0 vector. */
|
||
dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
||
save_dist_v (ddr, dist_v);
|
||
|
||
if (constant_access_functions (ddr))
|
||
add_distance_for_zero_overlaps (ddr);
|
||
|
||
if (DDR_NB_LOOPS (ddr) > 1)
|
||
add_other_self_distances (ddr);
|
||
|
||
return true;
|
||
}
|
||
|
||
dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
||
if (!build_classic_dist_vector_1 (ddr, DDR_A (ddr), DDR_B (ddr),
|
||
dist_v, &init_b, &index_carry))
|
||
return false;
|
||
|
||
/* Save the distance vector if we initialized one. */
|
||
if (init_b)
|
||
{
|
||
/* Verify a basic constraint: classic distance vectors should
|
||
always be lexicographically positive.
|
||
|
||
Data references are collected in the order of execution of
|
||
the program, thus for the following loop
|
||
|
||
| for (i = 1; i < 100; i++)
|
||
| for (j = 1; j < 100; j++)
|
||
| {
|
||
| t = T[j+1][i-1]; // A
|
||
| T[j][i] = t + 2; // B
|
||
| }
|
||
|
||
references are collected following the direction of the wind:
|
||
A then B. The data dependence tests are performed also
|
||
following this order, such that we're looking at the distance
|
||
separating the elements accessed by A from the elements later
|
||
accessed by B. But in this example, the distance returned by
|
||
test_dep (A, B) is lexicographically negative (-1, 1), that
|
||
means that the access A occurs later than B with respect to
|
||
the outer loop, ie. we're actually looking upwind. In this
|
||
case we solve test_dep (B, A) looking downwind to the
|
||
lexicographically positive solution, that returns the
|
||
distance vector (1, -1). */
|
||
if (!lambda_vector_lexico_pos (dist_v, DDR_NB_LOOPS (ddr)))
|
||
{
|
||
lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
||
if (!subscript_dependence_tester_1 (ddr, DDR_B (ddr), DDR_A (ddr),
|
||
loop_nest))
|
||
return false;
|
||
compute_subscript_distance (ddr);
|
||
if (!build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr),
|
||
save_v, &init_b, &index_carry))
|
||
return false;
|
||
save_dist_v (ddr, save_v);
|
||
DDR_REVERSED_P (ddr) = true;
|
||
|
||
/* In this case there is a dependence forward for all the
|
||
outer loops:
|
||
|
||
| for (k = 1; k < 100; k++)
|
||
| for (i = 1; i < 100; i++)
|
||
| for (j = 1; j < 100; j++)
|
||
| {
|
||
| t = T[j+1][i-1]; // A
|
||
| T[j][i] = t + 2; // B
|
||
| }
|
||
|
||
the vectors are:
|
||
(0, 1, -1)
|
||
(1, 1, -1)
|
||
(1, -1, 1)
|
||
*/
|
||
if (DDR_NB_LOOPS (ddr) > 1)
|
||
{
|
||
add_outer_distances (ddr, save_v, index_carry);
|
||
add_outer_distances (ddr, dist_v, index_carry);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
||
lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr));
|
||
|
||
if (DDR_NB_LOOPS (ddr) > 1)
|
||
{
|
||
lambda_vector opposite_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
||
|
||
if (!subscript_dependence_tester_1 (ddr, DDR_B (ddr),
|
||
DDR_A (ddr), loop_nest))
|
||
return false;
|
||
compute_subscript_distance (ddr);
|
||
if (!build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr),
|
||
opposite_v, &init_b,
|
||
&index_carry))
|
||
return false;
|
||
|
||
save_dist_v (ddr, save_v);
|
||
add_outer_distances (ddr, dist_v, index_carry);
|
||
add_outer_distances (ddr, opposite_v, index_carry);
|
||
}
|
||
else
|
||
save_dist_v (ddr, save_v);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* There is a distance of 1 on all the outer loops: Example:
|
||
there is a dependence of distance 1 on loop_1 for the array A.
|
||
|
||
| loop_1
|
||
| A[5] = ...
|
||
| endloop
|
||
*/
|
||
add_outer_distances (ddr, dist_v,
|
||
lambda_vector_first_nz (dist_v,
|
||
DDR_NB_LOOPS (ddr), 0));
|
||
}
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
unsigned i;
|
||
|
||
fprintf (dump_file, "(build_classic_dist_vector\n");
|
||
for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
|
||
{
|
||
fprintf (dump_file, " dist_vector = (");
|
||
print_lambda_vector (dump_file, DDR_DIST_VECT (ddr, i),
|
||
DDR_NB_LOOPS (ddr));
|
||
fprintf (dump_file, " )\n");
|
||
}
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Return the direction for a given distance.
|
||
FIXME: Computing dir this way is suboptimal, since dir can catch
|
||
cases that dist is unable to represent. */
|
||
|
||
static inline enum data_dependence_direction
|
||
dir_from_dist (int dist)
|
||
{
|
||
if (dist > 0)
|
||
return dir_positive;
|
||
else if (dist < 0)
|
||
return dir_negative;
|
||
else
|
||
return dir_equal;
|
||
}
|
||
|
||
/* Compute the classic per loop direction vector. DDR is the data
|
||
dependence relation to build a vector from. */
|
||
|
||
static void
|
||
build_classic_dir_vector (struct data_dependence_relation *ddr)
|
||
{
|
||
unsigned i, j;
|
||
lambda_vector dist_v;
|
||
|
||
FOR_EACH_VEC_ELT (lambda_vector, DDR_DIST_VECTS (ddr), i, dist_v)
|
||
{
|
||
lambda_vector dir_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
||
|
||
for (j = 0; j < DDR_NB_LOOPS (ddr); j++)
|
||
dir_v[j] = dir_from_dist (dist_v[j]);
|
||
|
||
save_dir_v (ddr, dir_v);
|
||
}
|
||
}
|
||
|
||
/* Helper function. Returns true when there is a dependence between
|
||
data references DRA and DRB. */
|
||
|
||
static bool
|
||
subscript_dependence_tester_1 (struct data_dependence_relation *ddr,
|
||
struct data_reference *dra,
|
||
struct data_reference *drb,
|
||
struct loop *loop_nest)
|
||
{
|
||
unsigned int i;
|
||
tree last_conflicts;
|
||
struct subscript *subscript;
|
||
|
||
for (i = 0; VEC_iterate (subscript_p, DDR_SUBSCRIPTS (ddr), i, subscript);
|
||
i++)
|
||
{
|
||
conflict_function *overlaps_a, *overlaps_b;
|
||
|
||
analyze_overlapping_iterations (DR_ACCESS_FN (dra, i),
|
||
DR_ACCESS_FN (drb, i),
|
||
&overlaps_a, &overlaps_b,
|
||
&last_conflicts, loop_nest);
|
||
|
||
if (CF_NOT_KNOWN_P (overlaps_a)
|
||
|| CF_NOT_KNOWN_P (overlaps_b))
|
||
{
|
||
finalize_ddr_dependent (ddr, chrec_dont_know);
|
||
dependence_stats.num_dependence_undetermined++;
|
||
free_conflict_function (overlaps_a);
|
||
free_conflict_function (overlaps_b);
|
||
return false;
|
||
}
|
||
|
||
else if (CF_NO_DEPENDENCE_P (overlaps_a)
|
||
|| CF_NO_DEPENDENCE_P (overlaps_b))
|
||
{
|
||
finalize_ddr_dependent (ddr, chrec_known);
|
||
dependence_stats.num_dependence_independent++;
|
||
free_conflict_function (overlaps_a);
|
||
free_conflict_function (overlaps_b);
|
||
return false;
|
||
}
|
||
|
||
else
|
||
{
|
||
if (SUB_CONFLICTS_IN_A (subscript))
|
||
free_conflict_function (SUB_CONFLICTS_IN_A (subscript));
|
||
if (SUB_CONFLICTS_IN_B (subscript))
|
||
free_conflict_function (SUB_CONFLICTS_IN_B (subscript));
|
||
|
||
SUB_CONFLICTS_IN_A (subscript) = overlaps_a;
|
||
SUB_CONFLICTS_IN_B (subscript) = overlaps_b;
|
||
SUB_LAST_CONFLICT (subscript) = last_conflicts;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Computes the conflicting iterations in LOOP_NEST, and initialize DDR. */
|
||
|
||
static void
|
||
subscript_dependence_tester (struct data_dependence_relation *ddr,
|
||
struct loop *loop_nest)
|
||
{
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "(subscript_dependence_tester \n");
|
||
|
||
if (subscript_dependence_tester_1 (ddr, DDR_A (ddr), DDR_B (ddr), loop_nest))
|
||
dependence_stats.num_dependence_dependent++;
|
||
|
||
compute_subscript_distance (ddr);
|
||
if (build_classic_dist_vector (ddr, loop_nest))
|
||
build_classic_dir_vector (ddr);
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
/* Returns true when all the access functions of A are affine or
|
||
constant with respect to LOOP_NEST. */
|
||
|
||
static bool
|
||
access_functions_are_affine_or_constant_p (const struct data_reference *a,
|
||
const struct loop *loop_nest)
|
||
{
|
||
unsigned int i;
|
||
VEC(tree,heap) *fns = DR_ACCESS_FNS (a);
|
||
tree t;
|
||
|
||
FOR_EACH_VEC_ELT (tree, fns, i, t)
|
||
if (!evolution_function_is_invariant_p (t, loop_nest->num)
|
||
&& !evolution_function_is_affine_multivariate_p (t, loop_nest->num))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Initializes an equation for an OMEGA problem using the information
|
||
contained in the ACCESS_FUN. Returns true when the operation
|
||
succeeded.
|
||
|
||
PB is the omega constraint system.
|
||
EQ is the number of the equation to be initialized.
|
||
OFFSET is used for shifting the variables names in the constraints:
|
||
a constrain is composed of 2 * the number of variables surrounding
|
||
dependence accesses. OFFSET is set either to 0 for the first n variables,
|
||
then it is set to n.
|
||
ACCESS_FUN is expected to be an affine chrec. */
|
||
|
||
static bool
|
||
init_omega_eq_with_af (omega_pb pb, unsigned eq,
|
||
unsigned int offset, tree access_fun,
|
||
struct data_dependence_relation *ddr)
|
||
{
|
||
switch (TREE_CODE (access_fun))
|
||
{
|
||
case POLYNOMIAL_CHREC:
|
||
{
|
||
tree left = CHREC_LEFT (access_fun);
|
||
tree right = CHREC_RIGHT (access_fun);
|
||
int var = CHREC_VARIABLE (access_fun);
|
||
unsigned var_idx;
|
||
|
||
if (TREE_CODE (right) != INTEGER_CST)
|
||
return false;
|
||
|
||
var_idx = index_in_loop_nest (var, DDR_LOOP_NEST (ddr));
|
||
pb->eqs[eq].coef[offset + var_idx + 1] = int_cst_value (right);
|
||
|
||
/* Compute the innermost loop index. */
|
||
DDR_INNER_LOOP (ddr) = MAX (DDR_INNER_LOOP (ddr), var_idx);
|
||
|
||
if (offset == 0)
|
||
pb->eqs[eq].coef[var_idx + DDR_NB_LOOPS (ddr) + 1]
|
||
+= int_cst_value (right);
|
||
|
||
switch (TREE_CODE (left))
|
||
{
|
||
case POLYNOMIAL_CHREC:
|
||
return init_omega_eq_with_af (pb, eq, offset, left, ddr);
|
||
|
||
case INTEGER_CST:
|
||
pb->eqs[eq].coef[0] += int_cst_value (left);
|
||
return true;
|
||
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
case INTEGER_CST:
|
||
pb->eqs[eq].coef[0] += int_cst_value (access_fun);
|
||
return true;
|
||
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* As explained in the comments preceding init_omega_for_ddr, we have
|
||
to set up a system for each loop level, setting outer loops
|
||
variation to zero, and current loop variation to positive or zero.
|
||
Save each lexico positive distance vector. */
|
||
|
||
static void
|
||
omega_extract_distance_vectors (omega_pb pb,
|
||
struct data_dependence_relation *ddr)
|
||
{
|
||
int eq, geq;
|
||
unsigned i, j;
|
||
struct loop *loopi, *loopj;
|
||
enum omega_result res;
|
||
|
||
/* Set a new problem for each loop in the nest. The basis is the
|
||
problem that we have initialized until now. On top of this we
|
||
add new constraints. */
|
||
for (i = 0; i <= DDR_INNER_LOOP (ddr)
|
||
&& VEC_iterate (loop_p, DDR_LOOP_NEST (ddr), i, loopi); i++)
|
||
{
|
||
int dist = 0;
|
||
omega_pb copy = omega_alloc_problem (2 * DDR_NB_LOOPS (ddr),
|
||
DDR_NB_LOOPS (ddr));
|
||
|
||
omega_copy_problem (copy, pb);
|
||
|
||
/* For all the outer loops "loop_j", add "dj = 0". */
|
||
for (j = 0;
|
||
j < i && VEC_iterate (loop_p, DDR_LOOP_NEST (ddr), j, loopj); j++)
|
||
{
|
||
eq = omega_add_zero_eq (copy, omega_black);
|
||
copy->eqs[eq].coef[j + 1] = 1;
|
||
}
|
||
|
||
/* For "loop_i", add "0 <= di". */
|
||
geq = omega_add_zero_geq (copy, omega_black);
|
||
copy->geqs[geq].coef[i + 1] = 1;
|
||
|
||
/* Reduce the constraint system, and test that the current
|
||
problem is feasible. */
|
||
res = omega_simplify_problem (copy);
|
||
if (res == omega_false
|
||
|| res == omega_unknown
|
||
|| copy->num_geqs > (int) DDR_NB_LOOPS (ddr))
|
||
goto next_problem;
|
||
|
||
for (eq = 0; eq < copy->num_subs; eq++)
|
||
if (copy->subs[eq].key == (int) i + 1)
|
||
{
|
||
dist = copy->subs[eq].coef[0];
|
||
goto found_dist;
|
||
}
|
||
|
||
if (dist == 0)
|
||
{
|
||
/* Reinitialize problem... */
|
||
omega_copy_problem (copy, pb);
|
||
for (j = 0;
|
||
j < i && VEC_iterate (loop_p, DDR_LOOP_NEST (ddr), j, loopj); j++)
|
||
{
|
||
eq = omega_add_zero_eq (copy, omega_black);
|
||
copy->eqs[eq].coef[j + 1] = 1;
|
||
}
|
||
|
||
/* ..., but this time "di = 1". */
|
||
eq = omega_add_zero_eq (copy, omega_black);
|
||
copy->eqs[eq].coef[i + 1] = 1;
|
||
copy->eqs[eq].coef[0] = -1;
|
||
|
||
res = omega_simplify_problem (copy);
|
||
if (res == omega_false
|
||
|| res == omega_unknown
|
||
|| copy->num_geqs > (int) DDR_NB_LOOPS (ddr))
|
||
goto next_problem;
|
||
|
||
for (eq = 0; eq < copy->num_subs; eq++)
|
||
if (copy->subs[eq].key == (int) i + 1)
|
||
{
|
||
dist = copy->subs[eq].coef[0];
|
||
goto found_dist;
|
||
}
|
||
}
|
||
|
||
found_dist:;
|
||
/* Save the lexicographically positive distance vector. */
|
||
if (dist >= 0)
|
||
{
|
||
lambda_vector dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
||
lambda_vector dir_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
||
|
||
dist_v[i] = dist;
|
||
|
||
for (eq = 0; eq < copy->num_subs; eq++)
|
||
if (copy->subs[eq].key > 0)
|
||
{
|
||
dist = copy->subs[eq].coef[0];
|
||
dist_v[copy->subs[eq].key - 1] = dist;
|
||
}
|
||
|
||
for (j = 0; j < DDR_NB_LOOPS (ddr); j++)
|
||
dir_v[j] = dir_from_dist (dist_v[j]);
|
||
|
||
save_dist_v (ddr, dist_v);
|
||
save_dir_v (ddr, dir_v);
|
||
}
|
||
|
||
next_problem:;
|
||
omega_free_problem (copy);
|
||
}
|
||
}
|
||
|
||
/* This is called for each subscript of a tuple of data references:
|
||
insert an equality for representing the conflicts. */
|
||
|
||
static bool
|
||
omega_setup_subscript (tree access_fun_a, tree access_fun_b,
|
||
struct data_dependence_relation *ddr,
|
||
omega_pb pb, bool *maybe_dependent)
|
||
{
|
||
int eq;
|
||
tree type = signed_type_for_types (TREE_TYPE (access_fun_a),
|
||
TREE_TYPE (access_fun_b));
|
||
tree fun_a = chrec_convert (type, access_fun_a, NULL);
|
||
tree fun_b = chrec_convert (type, access_fun_b, NULL);
|
||
tree difference = chrec_fold_minus (type, fun_a, fun_b);
|
||
|
||
/* When the fun_a - fun_b is not constant, the dependence is not
|
||
captured by the classic distance vector representation. */
|
||
if (TREE_CODE (difference) != INTEGER_CST)
|
||
return false;
|
||
|
||
/* ZIV test. */
|
||
if (ziv_subscript_p (fun_a, fun_b) && !integer_zerop (difference))
|
||
{
|
||
/* There is no dependence. */
|
||
*maybe_dependent = false;
|
||
return true;
|
||
}
|
||
|
||
fun_b = chrec_fold_multiply (type, fun_b, integer_minus_one_node);
|
||
|
||
eq = omega_add_zero_eq (pb, omega_black);
|
||
if (!init_omega_eq_with_af (pb, eq, DDR_NB_LOOPS (ddr), fun_a, ddr)
|
||
|| !init_omega_eq_with_af (pb, eq, 0, fun_b, ddr))
|
||
/* There is probably a dependence, but the system of
|
||
constraints cannot be built: answer "don't know". */
|
||
return false;
|
||
|
||
/* GCD test. */
|
||
if (DDR_NB_LOOPS (ddr) != 0 && pb->eqs[eq].coef[0]
|
||
&& !int_divides_p (lambda_vector_gcd
|
||
((lambda_vector) &(pb->eqs[eq].coef[1]),
|
||
2 * DDR_NB_LOOPS (ddr)),
|
||
pb->eqs[eq].coef[0]))
|
||
{
|
||
/* There is no dependence. */
|
||
*maybe_dependent = false;
|
||
return true;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Helper function, same as init_omega_for_ddr but specialized for
|
||
data references A and B. */
|
||
|
||
static bool
|
||
init_omega_for_ddr_1 (struct data_reference *dra, struct data_reference *drb,
|
||
struct data_dependence_relation *ddr,
|
||
omega_pb pb, bool *maybe_dependent)
|
||
{
|
||
unsigned i;
|
||
int ineq;
|
||
struct loop *loopi;
|
||
unsigned nb_loops = DDR_NB_LOOPS (ddr);
|
||
|
||
/* Insert an equality per subscript. */
|
||
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
|
||
{
|
||
if (!omega_setup_subscript (DR_ACCESS_FN (dra, i), DR_ACCESS_FN (drb, i),
|
||
ddr, pb, maybe_dependent))
|
||
return false;
|
||
else if (*maybe_dependent == false)
|
||
{
|
||
/* There is no dependence. */
|
||
DDR_ARE_DEPENDENT (ddr) = chrec_known;
|
||
return true;
|
||
}
|
||
}
|
||
|
||
/* Insert inequalities: constraints corresponding to the iteration
|
||
domain, i.e. the loops surrounding the references "loop_x" and
|
||
the distance variables "dx". The layout of the OMEGA
|
||
representation is as follows:
|
||
- coef[0] is the constant
|
||
- coef[1..nb_loops] are the protected variables that will not be
|
||
removed by the solver: the "dx"
|
||
- coef[nb_loops + 1, 2*nb_loops] are the loop variables: "loop_x".
|
||
*/
|
||
for (i = 0; i <= DDR_INNER_LOOP (ddr)
|
||
&& VEC_iterate (loop_p, DDR_LOOP_NEST (ddr), i, loopi); i++)
|
||
{
|
||
HOST_WIDE_INT nbi = estimated_loop_iterations_int (loopi, false);
|
||
|
||
/* 0 <= loop_x */
|
||
ineq = omega_add_zero_geq (pb, omega_black);
|
||
pb->geqs[ineq].coef[i + nb_loops + 1] = 1;
|
||
|
||
/* 0 <= loop_x + dx */
|
||
ineq = omega_add_zero_geq (pb, omega_black);
|
||
pb->geqs[ineq].coef[i + nb_loops + 1] = 1;
|
||
pb->geqs[ineq].coef[i + 1] = 1;
|
||
|
||
if (nbi != -1)
|
||
{
|
||
/* loop_x <= nb_iters */
|
||
ineq = omega_add_zero_geq (pb, omega_black);
|
||
pb->geqs[ineq].coef[i + nb_loops + 1] = -1;
|
||
pb->geqs[ineq].coef[0] = nbi;
|
||
|
||
/* loop_x + dx <= nb_iters */
|
||
ineq = omega_add_zero_geq (pb, omega_black);
|
||
pb->geqs[ineq].coef[i + nb_loops + 1] = -1;
|
||
pb->geqs[ineq].coef[i + 1] = -1;
|
||
pb->geqs[ineq].coef[0] = nbi;
|
||
|
||
/* A step "dx" bigger than nb_iters is not feasible, so
|
||
add "0 <= nb_iters + dx", */
|
||
ineq = omega_add_zero_geq (pb, omega_black);
|
||
pb->geqs[ineq].coef[i + 1] = 1;
|
||
pb->geqs[ineq].coef[0] = nbi;
|
||
/* and "dx <= nb_iters". */
|
||
ineq = omega_add_zero_geq (pb, omega_black);
|
||
pb->geqs[ineq].coef[i + 1] = -1;
|
||
pb->geqs[ineq].coef[0] = nbi;
|
||
}
|
||
}
|
||
|
||
omega_extract_distance_vectors (pb, ddr);
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Sets up the Omega dependence problem for the data dependence
|
||
relation DDR. Returns false when the constraint system cannot be
|
||
built, ie. when the test answers "don't know". Returns true
|
||
otherwise, and when independence has been proved (using one of the
|
||
trivial dependence test), set MAYBE_DEPENDENT to false, otherwise
|
||
set MAYBE_DEPENDENT to true.
|
||
|
||
Example: for setting up the dependence system corresponding to the
|
||
conflicting accesses
|
||
|
||
| loop_i
|
||
| loop_j
|
||
| A[i, i+1] = ...
|
||
| ... A[2*j, 2*(i + j)]
|
||
| endloop_j
|
||
| endloop_i
|
||
|
||
the following constraints come from the iteration domain:
|
||
|
||
0 <= i <= Ni
|
||
0 <= i + di <= Ni
|
||
0 <= j <= Nj
|
||
0 <= j + dj <= Nj
|
||
|
||
where di, dj are the distance variables. The constraints
|
||
representing the conflicting elements are:
|
||
|
||
i = 2 * (j + dj)
|
||
i + 1 = 2 * (i + di + j + dj)
|
||
|
||
For asking that the resulting distance vector (di, dj) be
|
||
lexicographically positive, we insert the constraint "di >= 0". If
|
||
"di = 0" in the solution, we fix that component to zero, and we
|
||
look at the inner loops: we set a new problem where all the outer
|
||
loop distances are zero, and fix this inner component to be
|
||
positive. When one of the components is positive, we save that
|
||
distance, and set a new problem where the distance on this loop is
|
||
zero, searching for other distances in the inner loops. Here is
|
||
the classic example that illustrates that we have to set for each
|
||
inner loop a new problem:
|
||
|
||
| loop_1
|
||
| loop_2
|
||
| A[10]
|
||
| endloop_2
|
||
| endloop_1
|
||
|
||
we have to save two distances (1, 0) and (0, 1).
|
||
|
||
Given two array references, refA and refB, we have to set the
|
||
dependence problem twice, refA vs. refB and refB vs. refA, and we
|
||
cannot do a single test, as refB might occur before refA in the
|
||
inner loops, and the contrary when considering outer loops: ex.
|
||
|
||
| loop_0
|
||
| loop_1
|
||
| loop_2
|
||
| T[{1,+,1}_2][{1,+,1}_1] // refA
|
||
| T[{2,+,1}_2][{0,+,1}_1] // refB
|
||
| endloop_2
|
||
| endloop_1
|
||
| endloop_0
|
||
|
||
refB touches the elements in T before refA, and thus for the same
|
||
loop_0 refB precedes refA: ie. the distance vector (0, 1, -1)
|
||
but for successive loop_0 iterations, we have (1, -1, 1)
|
||
|
||
The Omega solver expects the distance variables ("di" in the
|
||
previous example) to come first in the constraint system (as
|
||
variables to be protected, or "safe" variables), the constraint
|
||
system is built using the following layout:
|
||
|
||
"cst | distance vars | index vars".
|
||
*/
|
||
|
||
static bool
|
||
init_omega_for_ddr (struct data_dependence_relation *ddr,
|
||
bool *maybe_dependent)
|
||
{
|
||
omega_pb pb;
|
||
bool res = false;
|
||
|
||
*maybe_dependent = true;
|
||
|
||
if (same_access_functions (ddr))
|
||
{
|
||
unsigned j;
|
||
lambda_vector dir_v;
|
||
|
||
/* Save the 0 vector. */
|
||
save_dist_v (ddr, lambda_vector_new (DDR_NB_LOOPS (ddr)));
|
||
dir_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
||
for (j = 0; j < DDR_NB_LOOPS (ddr); j++)
|
||
dir_v[j] = dir_equal;
|
||
save_dir_v (ddr, dir_v);
|
||
|
||
/* Save the dependences carried by outer loops. */
|
||
pb = omega_alloc_problem (2 * DDR_NB_LOOPS (ddr), DDR_NB_LOOPS (ddr));
|
||
res = init_omega_for_ddr_1 (DDR_A (ddr), DDR_B (ddr), ddr, pb,
|
||
maybe_dependent);
|
||
omega_free_problem (pb);
|
||
return res;
|
||
}
|
||
|
||
/* Omega expects the protected variables (those that have to be kept
|
||
after elimination) to appear first in the constraint system.
|
||
These variables are the distance variables. In the following
|
||
initialization we declare NB_LOOPS safe variables, and the total
|
||
number of variables for the constraint system is 2*NB_LOOPS. */
|
||
pb = omega_alloc_problem (2 * DDR_NB_LOOPS (ddr), DDR_NB_LOOPS (ddr));
|
||
res = init_omega_for_ddr_1 (DDR_A (ddr), DDR_B (ddr), ddr, pb,
|
||
maybe_dependent);
|
||
omega_free_problem (pb);
|
||
|
||
/* Stop computation if not decidable, or no dependence. */
|
||
if (res == false || *maybe_dependent == false)
|
||
return res;
|
||
|
||
pb = omega_alloc_problem (2 * DDR_NB_LOOPS (ddr), DDR_NB_LOOPS (ddr));
|
||
res = init_omega_for_ddr_1 (DDR_B (ddr), DDR_A (ddr), ddr, pb,
|
||
maybe_dependent);
|
||
omega_free_problem (pb);
|
||
|
||
return res;
|
||
}
|
||
|
||
/* Return true when DDR contains the same information as that stored
|
||
in DIR_VECTS and in DIST_VECTS, return false otherwise. */
|
||
|
||
static bool
|
||
ddr_consistent_p (FILE *file,
|
||
struct data_dependence_relation *ddr,
|
||
VEC (lambda_vector, heap) *dist_vects,
|
||
VEC (lambda_vector, heap) *dir_vects)
|
||
{
|
||
unsigned int i, j;
|
||
|
||
/* If dump_file is set, output there. */
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
file = dump_file;
|
||
|
||
if (VEC_length (lambda_vector, dist_vects) != DDR_NUM_DIST_VECTS (ddr))
|
||
{
|
||
lambda_vector b_dist_v;
|
||
fprintf (file, "\n(Number of distance vectors differ: Banerjee has %d, Omega has %d.\n",
|
||
VEC_length (lambda_vector, dist_vects),
|
||
DDR_NUM_DIST_VECTS (ddr));
|
||
|
||
fprintf (file, "Banerjee dist vectors:\n");
|
||
FOR_EACH_VEC_ELT (lambda_vector, dist_vects, i, b_dist_v)
|
||
print_lambda_vector (file, b_dist_v, DDR_NB_LOOPS (ddr));
|
||
|
||
fprintf (file, "Omega dist vectors:\n");
|
||
for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
|
||
print_lambda_vector (file, DDR_DIST_VECT (ddr, i), DDR_NB_LOOPS (ddr));
|
||
|
||
fprintf (file, "data dependence relation:\n");
|
||
dump_data_dependence_relation (file, ddr);
|
||
|
||
fprintf (file, ")\n");
|
||
return false;
|
||
}
|
||
|
||
if (VEC_length (lambda_vector, dir_vects) != DDR_NUM_DIR_VECTS (ddr))
|
||
{
|
||
fprintf (file, "\n(Number of direction vectors differ: Banerjee has %d, Omega has %d.)\n",
|
||
VEC_length (lambda_vector, dir_vects),
|
||
DDR_NUM_DIR_VECTS (ddr));
|
||
return false;
|
||
}
|
||
|
||
for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
|
||
{
|
||
lambda_vector a_dist_v;
|
||
lambda_vector b_dist_v = DDR_DIST_VECT (ddr, i);
|
||
|
||
/* Distance vectors are not ordered in the same way in the DDR
|
||
and in the DIST_VECTS: search for a matching vector. */
|
||
FOR_EACH_VEC_ELT (lambda_vector, dist_vects, j, a_dist_v)
|
||
if (lambda_vector_equal (a_dist_v, b_dist_v, DDR_NB_LOOPS (ddr)))
|
||
break;
|
||
|
||
if (j == VEC_length (lambda_vector, dist_vects))
|
||
{
|
||
fprintf (file, "\n(Dist vectors from the first dependence analyzer:\n");
|
||
print_dist_vectors (file, dist_vects, DDR_NB_LOOPS (ddr));
|
||
fprintf (file, "not found in Omega dist vectors:\n");
|
||
print_dist_vectors (file, DDR_DIST_VECTS (ddr), DDR_NB_LOOPS (ddr));
|
||
fprintf (file, "data dependence relation:\n");
|
||
dump_data_dependence_relation (file, ddr);
|
||
fprintf (file, ")\n");
|
||
}
|
||
}
|
||
|
||
for (i = 0; i < DDR_NUM_DIR_VECTS (ddr); i++)
|
||
{
|
||
lambda_vector a_dir_v;
|
||
lambda_vector b_dir_v = DDR_DIR_VECT (ddr, i);
|
||
|
||
/* Direction vectors are not ordered in the same way in the DDR
|
||
and in the DIR_VECTS: search for a matching vector. */
|
||
FOR_EACH_VEC_ELT (lambda_vector, dir_vects, j, a_dir_v)
|
||
if (lambda_vector_equal (a_dir_v, b_dir_v, DDR_NB_LOOPS (ddr)))
|
||
break;
|
||
|
||
if (j == VEC_length (lambda_vector, dist_vects))
|
||
{
|
||
fprintf (file, "\n(Dir vectors from the first dependence analyzer:\n");
|
||
print_dir_vectors (file, dir_vects, DDR_NB_LOOPS (ddr));
|
||
fprintf (file, "not found in Omega dir vectors:\n");
|
||
print_dir_vectors (file, DDR_DIR_VECTS (ddr), DDR_NB_LOOPS (ddr));
|
||
fprintf (file, "data dependence relation:\n");
|
||
dump_data_dependence_relation (file, ddr);
|
||
fprintf (file, ")\n");
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* This computes the affine dependence relation between A and B with
|
||
respect to LOOP_NEST. CHREC_KNOWN is used for representing the
|
||
independence between two accesses, while CHREC_DONT_KNOW is used
|
||
for representing the unknown relation.
|
||
|
||
Note that it is possible to stop the computation of the dependence
|
||
relation the first time we detect a CHREC_KNOWN element for a given
|
||
subscript. */
|
||
|
||
static void
|
||
compute_affine_dependence (struct data_dependence_relation *ddr,
|
||
struct loop *loop_nest)
|
||
{
|
||
struct data_reference *dra = DDR_A (ddr);
|
||
struct data_reference *drb = DDR_B (ddr);
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "(compute_affine_dependence\n");
|
||
fprintf (dump_file, " (stmt_a = \n");
|
||
print_gimple_stmt (dump_file, DR_STMT (dra), 0, 0);
|
||
fprintf (dump_file, ")\n (stmt_b = \n");
|
||
print_gimple_stmt (dump_file, DR_STMT (drb), 0, 0);
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
/* Analyze only when the dependence relation is not yet known. */
|
||
if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE
|
||
&& !DDR_SELF_REFERENCE (ddr))
|
||
{
|
||
dependence_stats.num_dependence_tests++;
|
||
|
||
if (access_functions_are_affine_or_constant_p (dra, loop_nest)
|
||
&& access_functions_are_affine_or_constant_p (drb, loop_nest))
|
||
{
|
||
if (flag_check_data_deps)
|
||
{
|
||
/* Compute the dependences using the first algorithm. */
|
||
subscript_dependence_tester (ddr, loop_nest);
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "\n\nBanerjee Analyzer\n");
|
||
dump_data_dependence_relation (dump_file, ddr);
|
||
}
|
||
|
||
if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
|
||
{
|
||
bool maybe_dependent;
|
||
VEC (lambda_vector, heap) *dir_vects, *dist_vects;
|
||
|
||
/* Save the result of the first DD analyzer. */
|
||
dist_vects = DDR_DIST_VECTS (ddr);
|
||
dir_vects = DDR_DIR_VECTS (ddr);
|
||
|
||
/* Reset the information. */
|
||
DDR_DIST_VECTS (ddr) = NULL;
|
||
DDR_DIR_VECTS (ddr) = NULL;
|
||
|
||
/* Compute the same information using Omega. */
|
||
if (!init_omega_for_ddr (ddr, &maybe_dependent))
|
||
goto csys_dont_know;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "Omega Analyzer\n");
|
||
dump_data_dependence_relation (dump_file, ddr);
|
||
}
|
||
|
||
/* Check that we get the same information. */
|
||
if (maybe_dependent)
|
||
gcc_assert (ddr_consistent_p (stderr, ddr, dist_vects,
|
||
dir_vects));
|
||
}
|
||
}
|
||
else
|
||
subscript_dependence_tester (ddr, loop_nest);
|
||
}
|
||
|
||
/* As a last case, if the dependence cannot be determined, or if
|
||
the dependence is considered too difficult to determine, answer
|
||
"don't know". */
|
||
else
|
||
{
|
||
csys_dont_know:;
|
||
dependence_stats.num_dependence_undetermined++;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "Data ref a:\n");
|
||
dump_data_reference (dump_file, dra);
|
||
fprintf (dump_file, "Data ref b:\n");
|
||
dump_data_reference (dump_file, drb);
|
||
fprintf (dump_file, "affine dependence test not usable: access function not affine or constant.\n");
|
||
}
|
||
finalize_ddr_dependent (ddr, chrec_dont_know);
|
||
}
|
||
}
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
/* This computes the dependence relation for the same data
|
||
reference into DDR. */
|
||
|
||
static void
|
||
compute_self_dependence (struct data_dependence_relation *ddr)
|
||
{
|
||
unsigned int i;
|
||
struct subscript *subscript;
|
||
|
||
if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE)
|
||
return;
|
||
|
||
for (i = 0; VEC_iterate (subscript_p, DDR_SUBSCRIPTS (ddr), i, subscript);
|
||
i++)
|
||
{
|
||
if (SUB_CONFLICTS_IN_A (subscript))
|
||
free_conflict_function (SUB_CONFLICTS_IN_A (subscript));
|
||
if (SUB_CONFLICTS_IN_B (subscript))
|
||
free_conflict_function (SUB_CONFLICTS_IN_B (subscript));
|
||
|
||
/* The accessed index overlaps for each iteration. */
|
||
SUB_CONFLICTS_IN_A (subscript)
|
||
= conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
SUB_CONFLICTS_IN_B (subscript)
|
||
= conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
|
||
}
|
||
|
||
/* The distance vector is the zero vector. */
|
||
save_dist_v (ddr, lambda_vector_new (DDR_NB_LOOPS (ddr)));
|
||
save_dir_v (ddr, lambda_vector_new (DDR_NB_LOOPS (ddr)));
|
||
}
|
||
|
||
/* Compute in DEPENDENCE_RELATIONS the data dependence graph for all
|
||
the data references in DATAREFS, in the LOOP_NEST. When
|
||
COMPUTE_SELF_AND_RR is FALSE, don't compute read-read and self
|
||
relations. */
|
||
|
||
void
|
||
compute_all_dependences (VEC (data_reference_p, heap) *datarefs,
|
||
VEC (ddr_p, heap) **dependence_relations,
|
||
VEC (loop_p, heap) *loop_nest,
|
||
bool compute_self_and_rr)
|
||
{
|
||
struct data_dependence_relation *ddr;
|
||
struct data_reference *a, *b;
|
||
unsigned int i, j;
|
||
|
||
FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, a)
|
||
for (j = i + 1; VEC_iterate (data_reference_p, datarefs, j, b); j++)
|
||
if (!DR_IS_READ (a) || !DR_IS_READ (b) || compute_self_and_rr)
|
||
{
|
||
ddr = initialize_data_dependence_relation (a, b, loop_nest);
|
||
VEC_safe_push (ddr_p, heap, *dependence_relations, ddr);
|
||
if (loop_nest)
|
||
compute_affine_dependence (ddr, VEC_index (loop_p, loop_nest, 0));
|
||
}
|
||
|
||
if (compute_self_and_rr)
|
||
FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, a)
|
||
{
|
||
ddr = initialize_data_dependence_relation (a, a, loop_nest);
|
||
VEC_safe_push (ddr_p, heap, *dependence_relations, ddr);
|
||
compute_self_dependence (ddr);
|
||
}
|
||
}
|
||
|
||
/* Stores the locations of memory references in STMT to REFERENCES. Returns
|
||
true if STMT clobbers memory, false otherwise. */
|
||
|
||
bool
|
||
get_references_in_stmt (gimple stmt, VEC (data_ref_loc, heap) **references)
|
||
{
|
||
bool clobbers_memory = false;
|
||
data_ref_loc *ref;
|
||
tree *op0, *op1;
|
||
enum gimple_code stmt_code = gimple_code (stmt);
|
||
|
||
*references = NULL;
|
||
|
||
/* ASM_EXPR and CALL_EXPR may embed arbitrary side effects.
|
||
Calls have side-effects, except those to const or pure
|
||
functions. */
|
||
if ((stmt_code == GIMPLE_CALL
|
||
&& !(gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE)))
|
||
|| (stmt_code == GIMPLE_ASM
|
||
&& gimple_asm_volatile_p (stmt)))
|
||
clobbers_memory = true;
|
||
|
||
if (!gimple_vuse (stmt))
|
||
return clobbers_memory;
|
||
|
||
if (stmt_code == GIMPLE_ASSIGN)
|
||
{
|
||
tree base;
|
||
op0 = gimple_assign_lhs_ptr (stmt);
|
||
op1 = gimple_assign_rhs1_ptr (stmt);
|
||
|
||
if (DECL_P (*op1)
|
||
|| (REFERENCE_CLASS_P (*op1)
|
||
&& (base = get_base_address (*op1))
|
||
&& TREE_CODE (base) != SSA_NAME))
|
||
{
|
||
ref = VEC_safe_push (data_ref_loc, heap, *references, NULL);
|
||
ref->pos = op1;
|
||
ref->is_read = true;
|
||
}
|
||
|
||
if (DECL_P (*op0)
|
||
|| (REFERENCE_CLASS_P (*op0) && get_base_address (*op0)))
|
||
{
|
||
ref = VEC_safe_push (data_ref_loc, heap, *references, NULL);
|
||
ref->pos = op0;
|
||
ref->is_read = false;
|
||
}
|
||
}
|
||
else if (stmt_code == GIMPLE_CALL)
|
||
{
|
||
unsigned i, n = gimple_call_num_args (stmt);
|
||
|
||
for (i = 0; i < n; i++)
|
||
{
|
||
op0 = gimple_call_arg_ptr (stmt, i);
|
||
|
||
if (DECL_P (*op0)
|
||
|| (REFERENCE_CLASS_P (*op0) && get_base_address (*op0)))
|
||
{
|
||
ref = VEC_safe_push (data_ref_loc, heap, *references, NULL);
|
||
ref->pos = op0;
|
||
ref->is_read = true;
|
||
}
|
||
}
|
||
}
|
||
|
||
return clobbers_memory;
|
||
}
|
||
|
||
/* Stores the data references in STMT to DATAREFS. If there is an unanalyzable
|
||
reference, returns false, otherwise returns true. NEST is the outermost
|
||
loop of the loop nest in which the references should be analyzed. */
|
||
|
||
bool
|
||
find_data_references_in_stmt (struct loop *nest, gimple stmt,
|
||
VEC (data_reference_p, heap) **datarefs)
|
||
{
|
||
unsigned i;
|
||
VEC (data_ref_loc, heap) *references;
|
||
data_ref_loc *ref;
|
||
bool ret = true;
|
||
data_reference_p dr;
|
||
|
||
if (get_references_in_stmt (stmt, &references))
|
||
{
|
||
VEC_free (data_ref_loc, heap, references);
|
||
return false;
|
||
}
|
||
|
||
FOR_EACH_VEC_ELT (data_ref_loc, references, i, ref)
|
||
{
|
||
dr = create_data_ref (nest, *ref->pos, stmt, ref->is_read);
|
||
gcc_assert (dr != NULL);
|
||
|
||
/* FIXME -- data dependence analysis does not work correctly for objects
|
||
with invariant addresses in loop nests. Let us fail here until the
|
||
problem is fixed. */
|
||
if (dr_address_invariant_p (dr) && nest)
|
||
{
|
||
free_data_ref (dr);
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "\tFAILED as dr address is invariant\n");
|
||
ret = false;
|
||
break;
|
||
}
|
||
|
||
VEC_safe_push (data_reference_p, heap, *datarefs, dr);
|
||
}
|
||
VEC_free (data_ref_loc, heap, references);
|
||
return ret;
|
||
}
|
||
|
||
/* Stores the data references in STMT to DATAREFS. If there is an unanalyzable
|
||
reference, returns false, otherwise returns true. NEST is the outermost
|
||
loop of the loop nest in which the references should be analyzed. */
|
||
|
||
bool
|
||
graphite_find_data_references_in_stmt (struct loop *nest, gimple stmt,
|
||
VEC (data_reference_p, heap) **datarefs)
|
||
{
|
||
unsigned i;
|
||
VEC (data_ref_loc, heap) *references;
|
||
data_ref_loc *ref;
|
||
bool ret = true;
|
||
data_reference_p dr;
|
||
|
||
if (get_references_in_stmt (stmt, &references))
|
||
{
|
||
VEC_free (data_ref_loc, heap, references);
|
||
return false;
|
||
}
|
||
|
||
FOR_EACH_VEC_ELT (data_ref_loc, references, i, ref)
|
||
{
|
||
dr = create_data_ref (nest, *ref->pos, stmt, ref->is_read);
|
||
gcc_assert (dr != NULL);
|
||
VEC_safe_push (data_reference_p, heap, *datarefs, dr);
|
||
}
|
||
|
||
VEC_free (data_ref_loc, heap, references);
|
||
return ret;
|
||
}
|
||
|
||
/* Search the data references in LOOP, and record the information into
|
||
DATAREFS. Returns chrec_dont_know when failing to analyze a
|
||
difficult case, returns NULL_TREE otherwise. */
|
||
|
||
static tree
|
||
find_data_references_in_bb (struct loop *loop, basic_block bb,
|
||
VEC (data_reference_p, heap) **datarefs)
|
||
{
|
||
gimple_stmt_iterator bsi;
|
||
|
||
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
||
{
|
||
gimple stmt = gsi_stmt (bsi);
|
||
|
||
if (!find_data_references_in_stmt (loop, stmt, datarefs))
|
||
{
|
||
struct data_reference *res;
|
||
res = XCNEW (struct data_reference);
|
||
VEC_safe_push (data_reference_p, heap, *datarefs, res);
|
||
|
||
return chrec_dont_know;
|
||
}
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Search the data references in LOOP, and record the information into
|
||
DATAREFS. Returns chrec_dont_know when failing to analyze a
|
||
difficult case, returns NULL_TREE otherwise.
|
||
|
||
TODO: This function should be made smarter so that it can handle address
|
||
arithmetic as if they were array accesses, etc. */
|
||
|
||
tree
|
||
find_data_references_in_loop (struct loop *loop,
|
||
VEC (data_reference_p, heap) **datarefs)
|
||
{
|
||
basic_block bb, *bbs;
|
||
unsigned int i;
|
||
|
||
bbs = get_loop_body_in_dom_order (loop);
|
||
|
||
for (i = 0; i < loop->num_nodes; i++)
|
||
{
|
||
bb = bbs[i];
|
||
|
||
if (find_data_references_in_bb (loop, bb, datarefs) == chrec_dont_know)
|
||
{
|
||
free (bbs);
|
||
return chrec_dont_know;
|
||
}
|
||
}
|
||
free (bbs);
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Recursive helper function. */
|
||
|
||
static bool
|
||
find_loop_nest_1 (struct loop *loop, VEC (loop_p, heap) **loop_nest)
|
||
{
|
||
/* Inner loops of the nest should not contain siblings. Example:
|
||
when there are two consecutive loops,
|
||
|
||
| loop_0
|
||
| loop_1
|
||
| A[{0, +, 1}_1]
|
||
| endloop_1
|
||
| loop_2
|
||
| A[{0, +, 1}_2]
|
||
| endloop_2
|
||
| endloop_0
|
||
|
||
the dependence relation cannot be captured by the distance
|
||
abstraction. */
|
||
if (loop->next)
|
||
return false;
|
||
|
||
VEC_safe_push (loop_p, heap, *loop_nest, loop);
|
||
if (loop->inner)
|
||
return find_loop_nest_1 (loop->inner, loop_nest);
|
||
return true;
|
||
}
|
||
|
||
/* Return false when the LOOP is not well nested. Otherwise return
|
||
true and insert in LOOP_NEST the loops of the nest. LOOP_NEST will
|
||
contain the loops from the outermost to the innermost, as they will
|
||
appear in the classic distance vector. */
|
||
|
||
bool
|
||
find_loop_nest (struct loop *loop, VEC (loop_p, heap) **loop_nest)
|
||
{
|
||
VEC_safe_push (loop_p, heap, *loop_nest, loop);
|
||
if (loop->inner)
|
||
return find_loop_nest_1 (loop->inner, loop_nest);
|
||
return true;
|
||
}
|
||
|
||
/* Returns true when the data dependences have been computed, false otherwise.
|
||
Given a loop nest LOOP, the following vectors are returned:
|
||
DATAREFS is initialized to all the array elements contained in this loop,
|
||
DEPENDENCE_RELATIONS contains the relations between the data references.
|
||
Compute read-read and self relations if
|
||
COMPUTE_SELF_AND_READ_READ_DEPENDENCES is TRUE. */
|
||
|
||
bool
|
||
compute_data_dependences_for_loop (struct loop *loop,
|
||
bool compute_self_and_read_read_dependences,
|
||
VEC (data_reference_p, heap) **datarefs,
|
||
VEC (ddr_p, heap) **dependence_relations)
|
||
{
|
||
bool res = true;
|
||
VEC (loop_p, heap) *vloops = VEC_alloc (loop_p, heap, 3);
|
||
|
||
memset (&dependence_stats, 0, sizeof (dependence_stats));
|
||
|
||
/* If the loop nest is not well formed, or one of the data references
|
||
is not computable, give up without spending time to compute other
|
||
dependences. */
|
||
if (!loop
|
||
|| !find_loop_nest (loop, &vloops)
|
||
|| find_data_references_in_loop (loop, datarefs) == chrec_dont_know)
|
||
{
|
||
struct data_dependence_relation *ddr;
|
||
|
||
/* Insert a single relation into dependence_relations:
|
||
chrec_dont_know. */
|
||
ddr = initialize_data_dependence_relation (NULL, NULL, vloops);
|
||
VEC_safe_push (ddr_p, heap, *dependence_relations, ddr);
|
||
res = false;
|
||
}
|
||
else
|
||
compute_all_dependences (*datarefs, dependence_relations, vloops,
|
||
compute_self_and_read_read_dependences);
|
||
|
||
if (dump_file && (dump_flags & TDF_STATS))
|
||
{
|
||
fprintf (dump_file, "Dependence tester statistics:\n");
|
||
|
||
fprintf (dump_file, "Number of dependence tests: %d\n",
|
||
dependence_stats.num_dependence_tests);
|
||
fprintf (dump_file, "Number of dependence tests classified dependent: %d\n",
|
||
dependence_stats.num_dependence_dependent);
|
||
fprintf (dump_file, "Number of dependence tests classified independent: %d\n",
|
||
dependence_stats.num_dependence_independent);
|
||
fprintf (dump_file, "Number of undetermined dependence tests: %d\n",
|
||
dependence_stats.num_dependence_undetermined);
|
||
|
||
fprintf (dump_file, "Number of subscript tests: %d\n",
|
||
dependence_stats.num_subscript_tests);
|
||
fprintf (dump_file, "Number of undetermined subscript tests: %d\n",
|
||
dependence_stats.num_subscript_undetermined);
|
||
fprintf (dump_file, "Number of same subscript function: %d\n",
|
||
dependence_stats.num_same_subscript_function);
|
||
|
||
fprintf (dump_file, "Number of ziv tests: %d\n",
|
||
dependence_stats.num_ziv);
|
||
fprintf (dump_file, "Number of ziv tests returning dependent: %d\n",
|
||
dependence_stats.num_ziv_dependent);
|
||
fprintf (dump_file, "Number of ziv tests returning independent: %d\n",
|
||
dependence_stats.num_ziv_independent);
|
||
fprintf (dump_file, "Number of ziv tests unimplemented: %d\n",
|
||
dependence_stats.num_ziv_unimplemented);
|
||
|
||
fprintf (dump_file, "Number of siv tests: %d\n",
|
||
dependence_stats.num_siv);
|
||
fprintf (dump_file, "Number of siv tests returning dependent: %d\n",
|
||
dependence_stats.num_siv_dependent);
|
||
fprintf (dump_file, "Number of siv tests returning independent: %d\n",
|
||
dependence_stats.num_siv_independent);
|
||
fprintf (dump_file, "Number of siv tests unimplemented: %d\n",
|
||
dependence_stats.num_siv_unimplemented);
|
||
|
||
fprintf (dump_file, "Number of miv tests: %d\n",
|
||
dependence_stats.num_miv);
|
||
fprintf (dump_file, "Number of miv tests returning dependent: %d\n",
|
||
dependence_stats.num_miv_dependent);
|
||
fprintf (dump_file, "Number of miv tests returning independent: %d\n",
|
||
dependence_stats.num_miv_independent);
|
||
fprintf (dump_file, "Number of miv tests unimplemented: %d\n",
|
||
dependence_stats.num_miv_unimplemented);
|
||
}
|
||
|
||
return res;
|
||
}
|
||
|
||
/* Returns true when the data dependences for the basic block BB have been
|
||
computed, false otherwise.
|
||
DATAREFS is initialized to all the array elements contained in this basic
|
||
block, DEPENDENCE_RELATIONS contains the relations between the data
|
||
references. Compute read-read and self relations if
|
||
COMPUTE_SELF_AND_READ_READ_DEPENDENCES is TRUE. */
|
||
bool
|
||
compute_data_dependences_for_bb (basic_block bb,
|
||
bool compute_self_and_read_read_dependences,
|
||
VEC (data_reference_p, heap) **datarefs,
|
||
VEC (ddr_p, heap) **dependence_relations)
|
||
{
|
||
if (find_data_references_in_bb (NULL, bb, datarefs) == chrec_dont_know)
|
||
return false;
|
||
|
||
compute_all_dependences (*datarefs, dependence_relations, NULL,
|
||
compute_self_and_read_read_dependences);
|
||
return true;
|
||
}
|
||
|
||
/* Entry point (for testing only). Analyze all the data references
|
||
and the dependence relations in LOOP.
|
||
|
||
The data references are computed first.
|
||
|
||
A relation on these nodes is represented by a complete graph. Some
|
||
of the relations could be of no interest, thus the relations can be
|
||
computed on demand.
|
||
|
||
In the following function we compute all the relations. This is
|
||
just a first implementation that is here for:
|
||
- for showing how to ask for the dependence relations,
|
||
- for the debugging the whole dependence graph,
|
||
- for the dejagnu testcases and maintenance.
|
||
|
||
It is possible to ask only for a part of the graph, avoiding to
|
||
compute the whole dependence graph. The computed dependences are
|
||
stored in a knowledge base (KB) such that later queries don't
|
||
recompute the same information. The implementation of this KB is
|
||
transparent to the optimizer, and thus the KB can be changed with a
|
||
more efficient implementation, or the KB could be disabled. */
|
||
static void
|
||
analyze_all_data_dependences (struct loop *loop)
|
||
{
|
||
unsigned int i;
|
||
int nb_data_refs = 10;
|
||
VEC (data_reference_p, heap) *datarefs =
|
||
VEC_alloc (data_reference_p, heap, nb_data_refs);
|
||
VEC (ddr_p, heap) *dependence_relations =
|
||
VEC_alloc (ddr_p, heap, nb_data_refs * nb_data_refs);
|
||
|
||
/* Compute DDs on the whole function. */
|
||
compute_data_dependences_for_loop (loop, false, &datarefs,
|
||
&dependence_relations);
|
||
|
||
if (dump_file)
|
||
{
|
||
dump_data_dependence_relations (dump_file, dependence_relations);
|
||
fprintf (dump_file, "\n\n");
|
||
|
||
if (dump_flags & TDF_DETAILS)
|
||
dump_dist_dir_vectors (dump_file, dependence_relations);
|
||
|
||
if (dump_flags & TDF_STATS)
|
||
{
|
||
unsigned nb_top_relations = 0;
|
||
unsigned nb_bot_relations = 0;
|
||
unsigned nb_chrec_relations = 0;
|
||
struct data_dependence_relation *ddr;
|
||
|
||
FOR_EACH_VEC_ELT (ddr_p, dependence_relations, i, ddr)
|
||
{
|
||
if (chrec_contains_undetermined (DDR_ARE_DEPENDENT (ddr)))
|
||
nb_top_relations++;
|
||
|
||
else if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
|
||
nb_bot_relations++;
|
||
|
||
else
|
||
nb_chrec_relations++;
|
||
}
|
||
|
||
gather_stats_on_scev_database ();
|
||
}
|
||
}
|
||
|
||
free_dependence_relations (dependence_relations);
|
||
free_data_refs (datarefs);
|
||
}
|
||
|
||
/* Computes all the data dependences and check that the results of
|
||
several analyzers are the same. */
|
||
|
||
void
|
||
tree_check_data_deps (void)
|
||
{
|
||
loop_iterator li;
|
||
struct loop *loop_nest;
|
||
|
||
FOR_EACH_LOOP (li, loop_nest, 0)
|
||
analyze_all_data_dependences (loop_nest);
|
||
}
|
||
|
||
/* Free the memory used by a data dependence relation DDR. */
|
||
|
||
void
|
||
free_dependence_relation (struct data_dependence_relation *ddr)
|
||
{
|
||
if (ddr == NULL)
|
||
return;
|
||
|
||
if (DDR_SUBSCRIPTS (ddr))
|
||
free_subscripts (DDR_SUBSCRIPTS (ddr));
|
||
if (DDR_DIST_VECTS (ddr))
|
||
VEC_free (lambda_vector, heap, DDR_DIST_VECTS (ddr));
|
||
if (DDR_DIR_VECTS (ddr))
|
||
VEC_free (lambda_vector, heap, DDR_DIR_VECTS (ddr));
|
||
|
||
free (ddr);
|
||
}
|
||
|
||
/* Free the memory used by the data dependence relations from
|
||
DEPENDENCE_RELATIONS. */
|
||
|
||
void
|
||
free_dependence_relations (VEC (ddr_p, heap) *dependence_relations)
|
||
{
|
||
unsigned int i;
|
||
struct data_dependence_relation *ddr;
|
||
VEC (loop_p, heap) *loop_nest = NULL;
|
||
|
||
FOR_EACH_VEC_ELT (ddr_p, dependence_relations, i, ddr)
|
||
{
|
||
if (ddr == NULL)
|
||
continue;
|
||
if (loop_nest == NULL)
|
||
loop_nest = DDR_LOOP_NEST (ddr);
|
||
else
|
||
gcc_assert (DDR_LOOP_NEST (ddr) == NULL
|
||
|| DDR_LOOP_NEST (ddr) == loop_nest);
|
||
free_dependence_relation (ddr);
|
||
}
|
||
|
||
if (loop_nest)
|
||
VEC_free (loop_p, heap, loop_nest);
|
||
VEC_free (ddr_p, heap, dependence_relations);
|
||
}
|
||
|
||
/* Free the memory used by the data references from DATAREFS. */
|
||
|
||
void
|
||
free_data_refs (VEC (data_reference_p, heap) *datarefs)
|
||
{
|
||
unsigned int i;
|
||
struct data_reference *dr;
|
||
|
||
FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
|
||
free_data_ref (dr);
|
||
VEC_free (data_reference_p, heap, datarefs);
|
||
}
|
||
|
||
|
||
|
||
/* Dump vertex I in RDG to FILE. */
|
||
|
||
void
|
||
dump_rdg_vertex (FILE *file, struct graph *rdg, int i)
|
||
{
|
||
struct vertex *v = &(rdg->vertices[i]);
|
||
struct graph_edge *e;
|
||
|
||
fprintf (file, "(vertex %d: (%s%s) (in:", i,
|
||
RDG_MEM_WRITE_STMT (rdg, i) ? "w" : "",
|
||
RDG_MEM_READS_STMT (rdg, i) ? "r" : "");
|
||
|
||
if (v->pred)
|
||
for (e = v->pred; e; e = e->pred_next)
|
||
fprintf (file, " %d", e->src);
|
||
|
||
fprintf (file, ") (out:");
|
||
|
||
if (v->succ)
|
||
for (e = v->succ; e; e = e->succ_next)
|
||
fprintf (file, " %d", e->dest);
|
||
|
||
fprintf (file, ") \n");
|
||
print_gimple_stmt (file, RDGV_STMT (v), 0, TDF_VOPS|TDF_MEMSYMS);
|
||
fprintf (file, ")\n");
|
||
}
|
||
|
||
/* Call dump_rdg_vertex on stderr. */
|
||
|
||
DEBUG_FUNCTION void
|
||
debug_rdg_vertex (struct graph *rdg, int i)
|
||
{
|
||
dump_rdg_vertex (stderr, rdg, i);
|
||
}
|
||
|
||
/* Dump component C of RDG to FILE. If DUMPED is non-null, set the
|
||
dumped vertices to that bitmap. */
|
||
|
||
void dump_rdg_component (FILE *file, struct graph *rdg, int c, bitmap dumped)
|
||
{
|
||
int i;
|
||
|
||
fprintf (file, "(%d\n", c);
|
||
|
||
for (i = 0; i < rdg->n_vertices; i++)
|
||
if (rdg->vertices[i].component == c)
|
||
{
|
||
if (dumped)
|
||
bitmap_set_bit (dumped, i);
|
||
|
||
dump_rdg_vertex (file, rdg, i);
|
||
}
|
||
|
||
fprintf (file, ")\n");
|
||
}
|
||
|
||
/* Call dump_rdg_vertex on stderr. */
|
||
|
||
DEBUG_FUNCTION void
|
||
debug_rdg_component (struct graph *rdg, int c)
|
||
{
|
||
dump_rdg_component (stderr, rdg, c, NULL);
|
||
}
|
||
|
||
/* Dump the reduced dependence graph RDG to FILE. */
|
||
|
||
void
|
||
dump_rdg (FILE *file, struct graph *rdg)
|
||
{
|
||
int i;
|
||
bitmap dumped = BITMAP_ALLOC (NULL);
|
||
|
||
fprintf (file, "(rdg\n");
|
||
|
||
for (i = 0; i < rdg->n_vertices; i++)
|
||
if (!bitmap_bit_p (dumped, i))
|
||
dump_rdg_component (file, rdg, rdg->vertices[i].component, dumped);
|
||
|
||
fprintf (file, ")\n");
|
||
BITMAP_FREE (dumped);
|
||
}
|
||
|
||
/* Call dump_rdg on stderr. */
|
||
|
||
DEBUG_FUNCTION void
|
||
debug_rdg (struct graph *rdg)
|
||
{
|
||
dump_rdg (stderr, rdg);
|
||
}
|
||
|
||
/* This structure is used for recording the mapping statement index in
|
||
the RDG. */
|
||
|
||
struct GTY(()) rdg_vertex_info
|
||
{
|
||
gimple stmt;
|
||
int index;
|
||
};
|
||
|
||
/* Returns the index of STMT in RDG. */
|
||
|
||
int
|
||
rdg_vertex_for_stmt (struct graph *rdg, gimple stmt)
|
||
{
|
||
struct rdg_vertex_info rvi, *slot;
|
||
|
||
rvi.stmt = stmt;
|
||
slot = (struct rdg_vertex_info *) htab_find (rdg->indices, &rvi);
|
||
|
||
if (!slot)
|
||
return -1;
|
||
|
||
return slot->index;
|
||
}
|
||
|
||
/* Creates an edge in RDG for each distance vector from DDR. The
|
||
order that we keep track of in the RDG is the order in which
|
||
statements have to be executed. */
|
||
|
||
static void
|
||
create_rdg_edge_for_ddr (struct graph *rdg, ddr_p ddr)
|
||
{
|
||
struct graph_edge *e;
|
||
int va, vb;
|
||
data_reference_p dra = DDR_A (ddr);
|
||
data_reference_p drb = DDR_B (ddr);
|
||
unsigned level = ddr_dependence_level (ddr);
|
||
|
||
/* For non scalar dependences, when the dependence is REVERSED,
|
||
statement B has to be executed before statement A. */
|
||
if (level > 0
|
||
&& !DDR_REVERSED_P (ddr))
|
||
{
|
||
data_reference_p tmp = dra;
|
||
dra = drb;
|
||
drb = tmp;
|
||
}
|
||
|
||
va = rdg_vertex_for_stmt (rdg, DR_STMT (dra));
|
||
vb = rdg_vertex_for_stmt (rdg, DR_STMT (drb));
|
||
|
||
if (va < 0 || vb < 0)
|
||
return;
|
||
|
||
e = add_edge (rdg, va, vb);
|
||
e->data = XNEW (struct rdg_edge);
|
||
|
||
RDGE_LEVEL (e) = level;
|
||
RDGE_RELATION (e) = ddr;
|
||
|
||
/* Determines the type of the data dependence. */
|
||
if (DR_IS_READ (dra) && DR_IS_READ (drb))
|
||
RDGE_TYPE (e) = input_dd;
|
||
else if (!DR_IS_READ (dra) && !DR_IS_READ (drb))
|
||
RDGE_TYPE (e) = output_dd;
|
||
else if (!DR_IS_READ (dra) && DR_IS_READ (drb))
|
||
RDGE_TYPE (e) = flow_dd;
|
||
else if (DR_IS_READ (dra) && !DR_IS_READ (drb))
|
||
RDGE_TYPE (e) = anti_dd;
|
||
}
|
||
|
||
/* Creates dependence edges in RDG for all the uses of DEF. IDEF is
|
||
the index of DEF in RDG. */
|
||
|
||
static void
|
||
create_rdg_edges_for_scalar (struct graph *rdg, tree def, int idef)
|
||
{
|
||
use_operand_p imm_use_p;
|
||
imm_use_iterator iterator;
|
||
|
||
FOR_EACH_IMM_USE_FAST (imm_use_p, iterator, def)
|
||
{
|
||
struct graph_edge *e;
|
||
int use = rdg_vertex_for_stmt (rdg, USE_STMT (imm_use_p));
|
||
|
||
if (use < 0)
|
||
continue;
|
||
|
||
e = add_edge (rdg, idef, use);
|
||
e->data = XNEW (struct rdg_edge);
|
||
RDGE_TYPE (e) = flow_dd;
|
||
RDGE_RELATION (e) = NULL;
|
||
}
|
||
}
|
||
|
||
/* Creates the edges of the reduced dependence graph RDG. */
|
||
|
||
static void
|
||
create_rdg_edges (struct graph *rdg, VEC (ddr_p, heap) *ddrs)
|
||
{
|
||
int i;
|
||
struct data_dependence_relation *ddr;
|
||
def_operand_p def_p;
|
||
ssa_op_iter iter;
|
||
|
||
FOR_EACH_VEC_ELT (ddr_p, ddrs, i, ddr)
|
||
if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
|
||
create_rdg_edge_for_ddr (rdg, ddr);
|
||
|
||
for (i = 0; i < rdg->n_vertices; i++)
|
||
FOR_EACH_PHI_OR_STMT_DEF (def_p, RDG_STMT (rdg, i),
|
||
iter, SSA_OP_DEF)
|
||
create_rdg_edges_for_scalar (rdg, DEF_FROM_PTR (def_p), i);
|
||
}
|
||
|
||
/* Build the vertices of the reduced dependence graph RDG. */
|
||
|
||
void
|
||
create_rdg_vertices (struct graph *rdg, VEC (gimple, heap) *stmts)
|
||
{
|
||
int i, j;
|
||
gimple stmt;
|
||
|
||
FOR_EACH_VEC_ELT (gimple, stmts, i, stmt)
|
||
{
|
||
VEC (data_ref_loc, heap) *references;
|
||
data_ref_loc *ref;
|
||
struct vertex *v = &(rdg->vertices[i]);
|
||
struct rdg_vertex_info *rvi = XNEW (struct rdg_vertex_info);
|
||
struct rdg_vertex_info **slot;
|
||
|
||
rvi->stmt = stmt;
|
||
rvi->index = i;
|
||
slot = (struct rdg_vertex_info **) htab_find_slot (rdg->indices, rvi, INSERT);
|
||
|
||
if (!*slot)
|
||
*slot = rvi;
|
||
else
|
||
free (rvi);
|
||
|
||
v->data = XNEW (struct rdg_vertex);
|
||
RDG_STMT (rdg, i) = stmt;
|
||
|
||
RDG_MEM_WRITE_STMT (rdg, i) = false;
|
||
RDG_MEM_READS_STMT (rdg, i) = false;
|
||
if (gimple_code (stmt) == GIMPLE_PHI)
|
||
continue;
|
||
|
||
get_references_in_stmt (stmt, &references);
|
||
FOR_EACH_VEC_ELT (data_ref_loc, references, j, ref)
|
||
if (!ref->is_read)
|
||
RDG_MEM_WRITE_STMT (rdg, i) = true;
|
||
else
|
||
RDG_MEM_READS_STMT (rdg, i) = true;
|
||
|
||
VEC_free (data_ref_loc, heap, references);
|
||
}
|
||
}
|
||
|
||
/* Initialize STMTS with all the statements of LOOP. When
|
||
INCLUDE_PHIS is true, include also the PHI nodes. The order in
|
||
which we discover statements is important as
|
||
generate_loops_for_partition is using the same traversal for
|
||
identifying statements. */
|
||
|
||
static void
|
||
stmts_from_loop (struct loop *loop, VEC (gimple, heap) **stmts)
|
||
{
|
||
unsigned int i;
|
||
basic_block *bbs = get_loop_body_in_dom_order (loop);
|
||
|
||
for (i = 0; i < loop->num_nodes; i++)
|
||
{
|
||
basic_block bb = bbs[i];
|
||
gimple_stmt_iterator bsi;
|
||
gimple stmt;
|
||
|
||
for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
||
VEC_safe_push (gimple, heap, *stmts, gsi_stmt (bsi));
|
||
|
||
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
||
{
|
||
stmt = gsi_stmt (bsi);
|
||
if (gimple_code (stmt) != GIMPLE_LABEL)
|
||
VEC_safe_push (gimple, heap, *stmts, stmt);
|
||
}
|
||
}
|
||
|
||
free (bbs);
|
||
}
|
||
|
||
/* Returns true when all the dependences are computable. */
|
||
|
||
static bool
|
||
known_dependences_p (VEC (ddr_p, heap) *dependence_relations)
|
||
{
|
||
ddr_p ddr;
|
||
unsigned int i;
|
||
|
||
FOR_EACH_VEC_ELT (ddr_p, dependence_relations, i, ddr)
|
||
if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Computes a hash function for element ELT. */
|
||
|
||
static hashval_t
|
||
hash_stmt_vertex_info (const void *elt)
|
||
{
|
||
const struct rdg_vertex_info *const rvi =
|
||
(const struct rdg_vertex_info *) elt;
|
||
gimple stmt = rvi->stmt;
|
||
|
||
return htab_hash_pointer (stmt);
|
||
}
|
||
|
||
/* Compares database elements E1 and E2. */
|
||
|
||
static int
|
||
eq_stmt_vertex_info (const void *e1, const void *e2)
|
||
{
|
||
const struct rdg_vertex_info *elt1 = (const struct rdg_vertex_info *) e1;
|
||
const struct rdg_vertex_info *elt2 = (const struct rdg_vertex_info *) e2;
|
||
|
||
return elt1->stmt == elt2->stmt;
|
||
}
|
||
|
||
/* Free the element E. */
|
||
|
||
static void
|
||
hash_stmt_vertex_del (void *e)
|
||
{
|
||
free (e);
|
||
}
|
||
|
||
/* Build the Reduced Dependence Graph (RDG) with one vertex per
|
||
statement of the loop nest, and one edge per data dependence or
|
||
scalar dependence. */
|
||
|
||
struct graph *
|
||
build_empty_rdg (int n_stmts)
|
||
{
|
||
int nb_data_refs = 10;
|
||
struct graph *rdg = new_graph (n_stmts);
|
||
|
||
rdg->indices = htab_create (nb_data_refs, hash_stmt_vertex_info,
|
||
eq_stmt_vertex_info, hash_stmt_vertex_del);
|
||
return rdg;
|
||
}
|
||
|
||
/* Build the Reduced Dependence Graph (RDG) with one vertex per
|
||
statement of the loop nest, and one edge per data dependence or
|
||
scalar dependence. */
|
||
|
||
struct graph *
|
||
build_rdg (struct loop *loop)
|
||
{
|
||
int nb_data_refs = 10;
|
||
struct graph *rdg = NULL;
|
||
VEC (ddr_p, heap) *dependence_relations;
|
||
VEC (data_reference_p, heap) *datarefs;
|
||
VEC (gimple, heap) *stmts = VEC_alloc (gimple, heap, nb_data_refs);
|
||
|
||
dependence_relations = VEC_alloc (ddr_p, heap, nb_data_refs * nb_data_refs) ;
|
||
datarefs = VEC_alloc (data_reference_p, heap, nb_data_refs);
|
||
compute_data_dependences_for_loop (loop,
|
||
false,
|
||
&datarefs,
|
||
&dependence_relations);
|
||
|
||
if (!known_dependences_p (dependence_relations))
|
||
{
|
||
free_dependence_relations (dependence_relations);
|
||
free_data_refs (datarefs);
|
||
VEC_free (gimple, heap, stmts);
|
||
|
||
return rdg;
|
||
}
|
||
|
||
stmts_from_loop (loop, &stmts);
|
||
rdg = build_empty_rdg (VEC_length (gimple, stmts));
|
||
|
||
rdg->indices = htab_create (nb_data_refs, hash_stmt_vertex_info,
|
||
eq_stmt_vertex_info, hash_stmt_vertex_del);
|
||
create_rdg_vertices (rdg, stmts);
|
||
create_rdg_edges (rdg, dependence_relations);
|
||
|
||
VEC_free (gimple, heap, stmts);
|
||
return rdg;
|
||
}
|
||
|
||
/* Free the reduced dependence graph RDG. */
|
||
|
||
void
|
||
free_rdg (struct graph *rdg)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < rdg->n_vertices; i++)
|
||
free (rdg->vertices[i].data);
|
||
|
||
htab_delete (rdg->indices);
|
||
free_graph (rdg);
|
||
}
|
||
|
||
/* Initialize STMTS with all the statements of LOOP that contain a
|
||
store to memory. */
|
||
|
||
void
|
||
stores_from_loop (struct loop *loop, VEC (gimple, heap) **stmts)
|
||
{
|
||
unsigned int i;
|
||
basic_block *bbs = get_loop_body_in_dom_order (loop);
|
||
|
||
for (i = 0; i < loop->num_nodes; i++)
|
||
{
|
||
basic_block bb = bbs[i];
|
||
gimple_stmt_iterator bsi;
|
||
|
||
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
||
if (gimple_vdef (gsi_stmt (bsi)))
|
||
VEC_safe_push (gimple, heap, *stmts, gsi_stmt (bsi));
|
||
}
|
||
|
||
free (bbs);
|
||
}
|
||
|
||
/* Initialize STMTS with all the statements of LOOP that contain a
|
||
store to memory of the form "A[i] = 0". */
|
||
|
||
void
|
||
stores_zero_from_loop (struct loop *loop, VEC (gimple, heap) **stmts)
|
||
{
|
||
unsigned int i;
|
||
basic_block bb;
|
||
gimple_stmt_iterator si;
|
||
gimple stmt;
|
||
tree op;
|
||
basic_block *bbs = get_loop_body_in_dom_order (loop);
|
||
|
||
for (i = 0; i < loop->num_nodes; i++)
|
||
for (bb = bbs[i], si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
||
if ((stmt = gsi_stmt (si))
|
||
&& gimple_vdef (stmt)
|
||
&& is_gimple_assign (stmt)
|
||
&& gimple_assign_rhs_code (stmt) == INTEGER_CST
|
||
&& (op = gimple_assign_rhs1 (stmt))
|
||
&& (integer_zerop (op) || real_zerop (op)))
|
||
VEC_safe_push (gimple, heap, *stmts, gsi_stmt (si));
|
||
|
||
free (bbs);
|
||
}
|
||
|
||
/* For a data reference REF, return the declaration of its base
|
||
address or NULL_TREE if the base is not determined. */
|
||
|
||
static inline tree
|
||
ref_base_address (gimple stmt, data_ref_loc *ref)
|
||
{
|
||
tree base = NULL_TREE;
|
||
tree base_address;
|
||
struct data_reference *dr = XCNEW (struct data_reference);
|
||
|
||
DR_STMT (dr) = stmt;
|
||
DR_REF (dr) = *ref->pos;
|
||
dr_analyze_innermost (dr);
|
||
base_address = DR_BASE_ADDRESS (dr);
|
||
|
||
if (!base_address)
|
||
goto end;
|
||
|
||
switch (TREE_CODE (base_address))
|
||
{
|
||
case ADDR_EXPR:
|
||
base = TREE_OPERAND (base_address, 0);
|
||
break;
|
||
|
||
default:
|
||
base = base_address;
|
||
break;
|
||
}
|
||
|
||
end:
|
||
free_data_ref (dr);
|
||
return base;
|
||
}
|
||
|
||
/* Determines whether the statement from vertex V of the RDG has a
|
||
definition used outside the loop that contains this statement. */
|
||
|
||
bool
|
||
rdg_defs_used_in_other_loops_p (struct graph *rdg, int v)
|
||
{
|
||
gimple stmt = RDG_STMT (rdg, v);
|
||
struct loop *loop = loop_containing_stmt (stmt);
|
||
use_operand_p imm_use_p;
|
||
imm_use_iterator iterator;
|
||
ssa_op_iter it;
|
||
def_operand_p def_p;
|
||
|
||
if (!loop)
|
||
return true;
|
||
|
||
FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, it, SSA_OP_DEF)
|
||
{
|
||
FOR_EACH_IMM_USE_FAST (imm_use_p, iterator, DEF_FROM_PTR (def_p))
|
||
{
|
||
if (loop_containing_stmt (USE_STMT (imm_use_p)) != loop)
|
||
return true;
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Determines whether statements S1 and S2 access to similar memory
|
||
locations. Two memory accesses are considered similar when they
|
||
have the same base address declaration, i.e. when their
|
||
ref_base_address is the same. */
|
||
|
||
bool
|
||
have_similar_memory_accesses (gimple s1, gimple s2)
|
||
{
|
||
bool res = false;
|
||
unsigned i, j;
|
||
VEC (data_ref_loc, heap) *refs1, *refs2;
|
||
data_ref_loc *ref1, *ref2;
|
||
|
||
get_references_in_stmt (s1, &refs1);
|
||
get_references_in_stmt (s2, &refs2);
|
||
|
||
FOR_EACH_VEC_ELT (data_ref_loc, refs1, i, ref1)
|
||
{
|
||
tree base1 = ref_base_address (s1, ref1);
|
||
|
||
if (base1)
|
||
FOR_EACH_VEC_ELT (data_ref_loc, refs2, j, ref2)
|
||
if (base1 == ref_base_address (s2, ref2))
|
||
{
|
||
res = true;
|
||
goto end;
|
||
}
|
||
}
|
||
|
||
end:
|
||
VEC_free (data_ref_loc, heap, refs1);
|
||
VEC_free (data_ref_loc, heap, refs2);
|
||
return res;
|
||
}
|
||
|
||
/* Helper function for the hashtab. */
|
||
|
||
static int
|
||
have_similar_memory_accesses_1 (const void *s1, const void *s2)
|
||
{
|
||
return have_similar_memory_accesses (CONST_CAST_GIMPLE ((const_gimple) s1),
|
||
CONST_CAST_GIMPLE ((const_gimple) s2));
|
||
}
|
||
|
||
/* Helper function for the hashtab. */
|
||
|
||
static hashval_t
|
||
ref_base_address_1 (const void *s)
|
||
{
|
||
gimple stmt = CONST_CAST_GIMPLE ((const_gimple) s);
|
||
unsigned i;
|
||
VEC (data_ref_loc, heap) *refs;
|
||
data_ref_loc *ref;
|
||
hashval_t res = 0;
|
||
|
||
get_references_in_stmt (stmt, &refs);
|
||
|
||
FOR_EACH_VEC_ELT (data_ref_loc, refs, i, ref)
|
||
if (!ref->is_read)
|
||
{
|
||
res = htab_hash_pointer (ref_base_address (stmt, ref));
|
||
break;
|
||
}
|
||
|
||
VEC_free (data_ref_loc, heap, refs);
|
||
return res;
|
||
}
|
||
|
||
/* Try to remove duplicated write data references from STMTS. */
|
||
|
||
void
|
||
remove_similar_memory_refs (VEC (gimple, heap) **stmts)
|
||
{
|
||
unsigned i;
|
||
gimple stmt;
|
||
htab_t seen = htab_create (VEC_length (gimple, *stmts), ref_base_address_1,
|
||
have_similar_memory_accesses_1, NULL);
|
||
|
||
for (i = 0; VEC_iterate (gimple, *stmts, i, stmt); )
|
||
{
|
||
void **slot;
|
||
|
||
slot = htab_find_slot (seen, stmt, INSERT);
|
||
|
||
if (*slot)
|
||
VEC_ordered_remove (gimple, *stmts, i);
|
||
else
|
||
{
|
||
*slot = (void *) stmt;
|
||
i++;
|
||
}
|
||
}
|
||
|
||
htab_delete (seen);
|
||
}
|
||
|
||
/* Returns the index of PARAMETER in the parameters vector of the
|
||
ACCESS_MATRIX. If PARAMETER does not exist return -1. */
|
||
|
||
int
|
||
access_matrix_get_index_for_parameter (tree parameter,
|
||
struct access_matrix *access_matrix)
|
||
{
|
||
int i;
|
||
VEC (tree,heap) *lambda_parameters = AM_PARAMETERS (access_matrix);
|
||
tree lambda_parameter;
|
||
|
||
FOR_EACH_VEC_ELT (tree, lambda_parameters, i, lambda_parameter)
|
||
if (lambda_parameter == parameter)
|
||
return i + AM_NB_INDUCTION_VARS (access_matrix);
|
||
|
||
return -1;
|
||
}
|