gcc/libgomp/work.c
Jakub Jelinek c7abdf46fb openmp: Fix up struct gomp_work_share handling [PR102838]
If GOMP_HAVE_EFFICIENT_ALIGNED_ALLOC is not defined, the intent was to
treat the split of the structure between first cacheline (64 bytes)
as mostly write-once, use afterwards and second cacheline as rw just
as an optimization.  But as has been reported, with vectorization enabled
at -O2 it can now result in aligned vector 16-byte or larger stores.
When not having posix_memalign/aligned_alloc/memalign or other similar API,
alloc.c emulates it but it needs to allocate extra memory for the dynamic
realignment.
So, for the GOMP_HAVE_EFFICIENT_ALIGNED_ALLOC not defined case, this patch
stops using aligned (64) attribute in the middle of the structure and instead
inserts padding that puts the second half of the structure at offset 64 bytes.

And when GOMP_HAVE_EFFICIENT_ALIGNED_ALLOC is defined, usually it was allocated
as aligned, but for the orphaned case it could still be allocated just with
gomp_malloc without guaranteed proper alignment.

2021-10-20  Jakub Jelinek  <jakub@redhat.com>

	PR libgomp/102838
	* libgomp.h (struct gomp_work_share_1st_cacheline): New type.
	(struct gomp_work_share): Only use aligned(64) attribute if
	GOMP_HAVE_EFFICIENT_ALIGNED_ALLOC is defined, otherwise just
	add padding before lock to ensure lock is at offset 64 bytes
	into the structure.
	(gomp_workshare_struct_check1, gomp_workshare_struct_check2):
	New poor man's static assertions.
	* work.c (gomp_work_share_start): Use gomp_aligned_alloc instead of
	gomp_malloc if GOMP_HAVE_EFFICIENT_ALIGNED_ALLOC.
2021-10-20 09:34:51 +02:00

319 lines
9.2 KiB
C

/* Copyright (C) 2005-2021 Free Software Foundation, Inc.
Contributed by Richard Henderson <rth@redhat.com>.
This file is part of the GNU Offloading and Multi Processing Library
(libgomp).
Libgomp is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
Libgomp is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
/* This file contains routines to manage the work-share queue for a team
of threads. */
#include "libgomp.h"
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
/* Allocate a new work share structure, preferably from current team's
free gomp_work_share cache. */
static struct gomp_work_share *
alloc_work_share (struct gomp_team *team)
{
struct gomp_work_share *ws;
unsigned int i;
/* This is called in a critical section. */
if (team->work_share_list_alloc != NULL)
{
ws = team->work_share_list_alloc;
team->work_share_list_alloc = ws->next_free;
return ws;
}
#ifdef HAVE_SYNC_BUILTINS
ws = team->work_share_list_free;
/* We need atomic read from work_share_list_free,
as free_work_share can be called concurrently. */
__asm ("" : "+r" (ws));
if (ws && ws->next_free)
{
struct gomp_work_share *next = ws->next_free;
ws->next_free = NULL;
team->work_share_list_alloc = next->next_free;
return next;
}
#else
gomp_mutex_lock (&team->work_share_list_free_lock);
ws = team->work_share_list_free;
if (ws)
{
team->work_share_list_alloc = ws->next_free;
team->work_share_list_free = NULL;
gomp_mutex_unlock (&team->work_share_list_free_lock);
return ws;
}
gomp_mutex_unlock (&team->work_share_list_free_lock);
#endif
team->work_share_chunk *= 2;
/* Allocating gomp_work_share structures aligned is just an
optimization, don't do it when using the fallback method. */
#ifdef GOMP_HAVE_EFFICIENT_ALIGNED_ALLOC
ws = gomp_aligned_alloc (__alignof (struct gomp_work_share),
team->work_share_chunk
* sizeof (struct gomp_work_share));
#else
ws = gomp_malloc (team->work_share_chunk * sizeof (struct gomp_work_share));
#endif
ws->next_alloc = team->work_shares[0].next_alloc;
team->work_shares[0].next_alloc = ws;
team->work_share_list_alloc = &ws[1];
for (i = 1; i < team->work_share_chunk - 1; i++)
ws[i].next_free = &ws[i + 1];
ws[i].next_free = NULL;
return ws;
}
/* Initialize an already allocated struct gomp_work_share.
This shouldn't touch the next_alloc field. */
void
gomp_init_work_share (struct gomp_work_share *ws, size_t ordered,
unsigned nthreads)
{
gomp_mutex_init (&ws->lock);
if (__builtin_expect (ordered, 0))
{
#define INLINE_ORDERED_TEAM_IDS_SIZE \
(sizeof (struct gomp_work_share) \
- offsetof (struct gomp_work_share, inline_ordered_team_ids))
if (__builtin_expect (ordered != 1, 0))
{
size_t o = nthreads * sizeof (*ws->ordered_team_ids);
o += __alignof__ (long long) - 1;
if ((offsetof (struct gomp_work_share, inline_ordered_team_ids)
& (__alignof__ (long long) - 1)) == 0)
o &= ~(__alignof__ (long long) - 1);
ordered += o - 1;
}
else
ordered = nthreads * sizeof (*ws->ordered_team_ids);
if (ordered > INLINE_ORDERED_TEAM_IDS_SIZE)
ws->ordered_team_ids = team_malloc (ordered);
else
ws->ordered_team_ids = ws->inline_ordered_team_ids;
memset (ws->ordered_team_ids, '\0', ordered);
ws->ordered_num_used = 0;
ws->ordered_owner = -1;
ws->ordered_cur = 0;
}
else
ws->ordered_team_ids = ws->inline_ordered_team_ids;
gomp_ptrlock_init (&ws->next_ws, NULL);
ws->threads_completed = 0;
}
/* Do any needed destruction of gomp_work_share fields before it
is put back into free gomp_work_share cache or freed. */
void
gomp_fini_work_share (struct gomp_work_share *ws)
{
gomp_mutex_destroy (&ws->lock);
if (ws->ordered_team_ids != ws->inline_ordered_team_ids)
team_free (ws->ordered_team_ids);
gomp_ptrlock_destroy (&ws->next_ws);
}
/* Free a work share struct, if not orphaned, put it into current
team's free gomp_work_share cache. */
static inline void
free_work_share (struct gomp_team *team, struct gomp_work_share *ws)
{
gomp_fini_work_share (ws);
if (__builtin_expect (team == NULL, 0))
free (ws);
else
{
struct gomp_work_share *next_ws;
#ifdef HAVE_SYNC_BUILTINS
do
{
next_ws = team->work_share_list_free;
ws->next_free = next_ws;
}
while (!__sync_bool_compare_and_swap (&team->work_share_list_free,
next_ws, ws));
#else
gomp_mutex_lock (&team->work_share_list_free_lock);
next_ws = team->work_share_list_free;
ws->next_free = next_ws;
team->work_share_list_free = ws;
gomp_mutex_unlock (&team->work_share_list_free_lock);
#endif
}
}
/* The current thread is ready to begin the next work sharing construct.
In all cases, thr->ts.work_share is updated to point to the new
structure. In all cases the work_share lock is locked. Return true
if this was the first thread to reach this point. */
bool
gomp_work_share_start (size_t ordered)
{
struct gomp_thread *thr = gomp_thread ();
struct gomp_team *team = thr->ts.team;
struct gomp_work_share *ws;
/* Work sharing constructs can be orphaned. */
if (team == NULL)
{
#ifdef GOMP_HAVE_EFFICIENT_ALIGNED_ALLOC
ws = gomp_aligned_alloc (__alignof (struct gomp_work_share),
sizeof (*ws));
#else
ws = gomp_malloc (sizeof (*ws));
#endif
gomp_init_work_share (ws, ordered, 1);
thr->ts.work_share = ws;
return true;
}
ws = thr->ts.work_share;
thr->ts.last_work_share = ws;
ws = gomp_ptrlock_get (&ws->next_ws);
if (ws == NULL)
{
/* This thread encountered a new ws first. */
struct gomp_work_share *ws = alloc_work_share (team);
gomp_init_work_share (ws, ordered, team->nthreads);
thr->ts.work_share = ws;
return true;
}
else
{
thr->ts.work_share = ws;
return false;
}
}
/* The current thread is done with its current work sharing construct.
This version does imply a barrier at the end of the work-share. */
void
gomp_work_share_end (void)
{
struct gomp_thread *thr = gomp_thread ();
struct gomp_team *team = thr->ts.team;
gomp_barrier_state_t bstate;
/* Work sharing constructs can be orphaned. */
if (team == NULL)
{
free_work_share (NULL, thr->ts.work_share);
thr->ts.work_share = NULL;
return;
}
bstate = gomp_barrier_wait_start (&team->barrier);
if (gomp_barrier_last_thread (bstate))
{
if (__builtin_expect (thr->ts.last_work_share != NULL, 1))
{
team->work_shares_to_free = thr->ts.work_share;
free_work_share (team, thr->ts.last_work_share);
}
}
gomp_team_barrier_wait_end (&team->barrier, bstate);
thr->ts.last_work_share = NULL;
}
/* The current thread is done with its current work sharing construct.
This version implies a cancellable barrier at the end of the work-share. */
bool
gomp_work_share_end_cancel (void)
{
struct gomp_thread *thr = gomp_thread ();
struct gomp_team *team = thr->ts.team;
gomp_barrier_state_t bstate;
/* Cancellable work sharing constructs cannot be orphaned. */
bstate = gomp_barrier_wait_cancel_start (&team->barrier);
if (gomp_barrier_last_thread (bstate))
{
if (__builtin_expect (thr->ts.last_work_share != NULL, 1))
{
team->work_shares_to_free = thr->ts.work_share;
free_work_share (team, thr->ts.last_work_share);
}
}
thr->ts.last_work_share = NULL;
return gomp_team_barrier_wait_cancel_end (&team->barrier, bstate);
}
/* The current thread is done with its current work sharing construct.
This version does NOT imply a barrier at the end of the work-share. */
void
gomp_work_share_end_nowait (void)
{
struct gomp_thread *thr = gomp_thread ();
struct gomp_team *team = thr->ts.team;
struct gomp_work_share *ws = thr->ts.work_share;
unsigned completed;
/* Work sharing constructs can be orphaned. */
if (team == NULL)
{
free_work_share (NULL, ws);
thr->ts.work_share = NULL;
return;
}
if (__builtin_expect (thr->ts.last_work_share == NULL, 0))
return;
#ifdef HAVE_SYNC_BUILTINS
completed = __sync_add_and_fetch (&ws->threads_completed, 1);
#else
gomp_mutex_lock (&ws->lock);
completed = ++ws->threads_completed;
gomp_mutex_unlock (&ws->lock);
#endif
if (completed == team->nthreads)
{
team->work_shares_to_free = thr->ts.work_share;
free_work_share (team, thr->ts.last_work_share);
}
thr->ts.last_work_share = NULL;
}