656297e1fe
Reviewed-on: https://go-review.googlesource.com/c/gofrontend/+/194698 From-SVN: r275691
569 lines
14 KiB
Go
569 lines
14 KiB
Go
// Copyright 2011 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package strings
|
|
|
|
import (
|
|
"io"
|
|
"sync"
|
|
)
|
|
|
|
// Replacer replaces a list of strings with replacements.
|
|
// It is safe for concurrent use by multiple goroutines.
|
|
type Replacer struct {
|
|
once sync.Once // guards buildOnce method
|
|
r replacer
|
|
oldnew []string
|
|
}
|
|
|
|
// replacer is the interface that a replacement algorithm needs to implement.
|
|
type replacer interface {
|
|
Replace(s string) string
|
|
WriteString(w io.Writer, s string) (n int, err error)
|
|
}
|
|
|
|
// NewReplacer returns a new Replacer from a list of old, new string
|
|
// pairs. Replacements are performed in the order they appear in the
|
|
// target string, without overlapping matches. The old string
|
|
// comparisons are done in argument order.
|
|
//
|
|
// NewReplacer panics if given an odd number of arguments.
|
|
func NewReplacer(oldnew ...string) *Replacer {
|
|
if len(oldnew)%2 == 1 {
|
|
panic("strings.NewReplacer: odd argument count")
|
|
}
|
|
return &Replacer{oldnew: append([]string(nil), oldnew...)}
|
|
}
|
|
|
|
func (r *Replacer) buildOnce() {
|
|
r.r = r.build()
|
|
r.oldnew = nil
|
|
}
|
|
|
|
func (b *Replacer) build() replacer {
|
|
oldnew := b.oldnew
|
|
if len(oldnew) == 2 && len(oldnew[0]) > 1 {
|
|
return makeSingleStringReplacer(oldnew[0], oldnew[1])
|
|
}
|
|
|
|
allNewBytes := true
|
|
for i := 0; i < len(oldnew); i += 2 {
|
|
if len(oldnew[i]) != 1 {
|
|
return makeGenericReplacer(oldnew)
|
|
}
|
|
if len(oldnew[i+1]) != 1 {
|
|
allNewBytes = false
|
|
}
|
|
}
|
|
|
|
if allNewBytes {
|
|
r := byteReplacer{}
|
|
for i := range r {
|
|
r[i] = byte(i)
|
|
}
|
|
// The first occurrence of old->new map takes precedence
|
|
// over the others with the same old string.
|
|
for i := len(oldnew) - 2; i >= 0; i -= 2 {
|
|
o := oldnew[i][0]
|
|
n := oldnew[i+1][0]
|
|
r[o] = n
|
|
}
|
|
return &r
|
|
}
|
|
|
|
r := byteStringReplacer{toReplace: make([]string, 0, len(oldnew)/2)}
|
|
// The first occurrence of old->new map takes precedence
|
|
// over the others with the same old string.
|
|
for i := len(oldnew) - 2; i >= 0; i -= 2 {
|
|
o := oldnew[i][0]
|
|
n := oldnew[i+1]
|
|
// To avoid counting repetitions multiple times.
|
|
if r.replacements[o] == nil {
|
|
// We need to use string([]byte{o}) instead of string(o),
|
|
// to avoid utf8 encoding of o.
|
|
// E. g. byte(150) produces string of length 2.
|
|
r.toReplace = append(r.toReplace, string([]byte{o}))
|
|
}
|
|
r.replacements[o] = []byte(n)
|
|
|
|
}
|
|
return &r
|
|
}
|
|
|
|
// Replace returns a copy of s with all replacements performed.
|
|
func (r *Replacer) Replace(s string) string {
|
|
r.once.Do(r.buildOnce)
|
|
return r.r.Replace(s)
|
|
}
|
|
|
|
// WriteString writes s to w with all replacements performed.
|
|
func (r *Replacer) WriteString(w io.Writer, s string) (n int, err error) {
|
|
r.once.Do(r.buildOnce)
|
|
return r.r.WriteString(w, s)
|
|
}
|
|
|
|
// trieNode is a node in a lookup trie for prioritized key/value pairs. Keys
|
|
// and values may be empty. For example, the trie containing keys "ax", "ay",
|
|
// "bcbc", "x" and "xy" could have eight nodes:
|
|
//
|
|
// n0 -
|
|
// n1 a-
|
|
// n2 .x+
|
|
// n3 .y+
|
|
// n4 b-
|
|
// n5 .cbc+
|
|
// n6 x+
|
|
// n7 .y+
|
|
//
|
|
// n0 is the root node, and its children are n1, n4 and n6; n1's children are
|
|
// n2 and n3; n4's child is n5; n6's child is n7. Nodes n0, n1 and n4 (marked
|
|
// with a trailing "-") are partial keys, and nodes n2, n3, n5, n6 and n7
|
|
// (marked with a trailing "+") are complete keys.
|
|
type trieNode struct {
|
|
// value is the value of the trie node's key/value pair. It is empty if
|
|
// this node is not a complete key.
|
|
value string
|
|
// priority is the priority (higher is more important) of the trie node's
|
|
// key/value pair; keys are not necessarily matched shortest- or longest-
|
|
// first. Priority is positive if this node is a complete key, and zero
|
|
// otherwise. In the example above, positive/zero priorities are marked
|
|
// with a trailing "+" or "-".
|
|
priority int
|
|
|
|
// A trie node may have zero, one or more child nodes:
|
|
// * if the remaining fields are zero, there are no children.
|
|
// * if prefix and next are non-zero, there is one child in next.
|
|
// * if table is non-zero, it defines all the children.
|
|
//
|
|
// Prefixes are preferred over tables when there is one child, but the
|
|
// root node always uses a table for lookup efficiency.
|
|
|
|
// prefix is the difference in keys between this trie node and the next.
|
|
// In the example above, node n4 has prefix "cbc" and n4's next node is n5.
|
|
// Node n5 has no children and so has zero prefix, next and table fields.
|
|
prefix string
|
|
next *trieNode
|
|
|
|
// table is a lookup table indexed by the next byte in the key, after
|
|
// remapping that byte through genericReplacer.mapping to create a dense
|
|
// index. In the example above, the keys only use 'a', 'b', 'c', 'x' and
|
|
// 'y', which remap to 0, 1, 2, 3 and 4. All other bytes remap to 5, and
|
|
// genericReplacer.tableSize will be 5. Node n0's table will be
|
|
// []*trieNode{ 0:n1, 1:n4, 3:n6 }, where the 0, 1 and 3 are the remapped
|
|
// 'a', 'b' and 'x'.
|
|
table []*trieNode
|
|
}
|
|
|
|
func (t *trieNode) add(key, val string, priority int, r *genericReplacer) {
|
|
if key == "" {
|
|
if t.priority == 0 {
|
|
t.value = val
|
|
t.priority = priority
|
|
}
|
|
return
|
|
}
|
|
|
|
if t.prefix != "" {
|
|
// Need to split the prefix among multiple nodes.
|
|
var n int // length of the longest common prefix
|
|
for ; n < len(t.prefix) && n < len(key); n++ {
|
|
if t.prefix[n] != key[n] {
|
|
break
|
|
}
|
|
}
|
|
if n == len(t.prefix) {
|
|
t.next.add(key[n:], val, priority, r)
|
|
} else if n == 0 {
|
|
// First byte differs, start a new lookup table here. Looking up
|
|
// what is currently t.prefix[0] will lead to prefixNode, and
|
|
// looking up key[0] will lead to keyNode.
|
|
var prefixNode *trieNode
|
|
if len(t.prefix) == 1 {
|
|
prefixNode = t.next
|
|
} else {
|
|
prefixNode = &trieNode{
|
|
prefix: t.prefix[1:],
|
|
next: t.next,
|
|
}
|
|
}
|
|
keyNode := new(trieNode)
|
|
t.table = make([]*trieNode, r.tableSize)
|
|
t.table[r.mapping[t.prefix[0]]] = prefixNode
|
|
t.table[r.mapping[key[0]]] = keyNode
|
|
t.prefix = ""
|
|
t.next = nil
|
|
keyNode.add(key[1:], val, priority, r)
|
|
} else {
|
|
// Insert new node after the common section of the prefix.
|
|
next := &trieNode{
|
|
prefix: t.prefix[n:],
|
|
next: t.next,
|
|
}
|
|
t.prefix = t.prefix[:n]
|
|
t.next = next
|
|
next.add(key[n:], val, priority, r)
|
|
}
|
|
} else if t.table != nil {
|
|
// Insert into existing table.
|
|
m := r.mapping[key[0]]
|
|
if t.table[m] == nil {
|
|
t.table[m] = new(trieNode)
|
|
}
|
|
t.table[m].add(key[1:], val, priority, r)
|
|
} else {
|
|
t.prefix = key
|
|
t.next = new(trieNode)
|
|
t.next.add("", val, priority, r)
|
|
}
|
|
}
|
|
|
|
func (r *genericReplacer) lookup(s string, ignoreRoot bool) (val string, keylen int, found bool) {
|
|
// Iterate down the trie to the end, and grab the value and keylen with
|
|
// the highest priority.
|
|
bestPriority := 0
|
|
node := &r.root
|
|
n := 0
|
|
for node != nil {
|
|
if node.priority > bestPriority && !(ignoreRoot && node == &r.root) {
|
|
bestPriority = node.priority
|
|
val = node.value
|
|
keylen = n
|
|
found = true
|
|
}
|
|
|
|
if s == "" {
|
|
break
|
|
}
|
|
if node.table != nil {
|
|
index := r.mapping[s[0]]
|
|
if int(index) == r.tableSize {
|
|
break
|
|
}
|
|
node = node.table[index]
|
|
s = s[1:]
|
|
n++
|
|
} else if node.prefix != "" && HasPrefix(s, node.prefix) {
|
|
n += len(node.prefix)
|
|
s = s[len(node.prefix):]
|
|
node = node.next
|
|
} else {
|
|
break
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
// genericReplacer is the fully generic algorithm.
|
|
// It's used as a fallback when nothing faster can be used.
|
|
type genericReplacer struct {
|
|
root trieNode
|
|
// tableSize is the size of a trie node's lookup table. It is the number
|
|
// of unique key bytes.
|
|
tableSize int
|
|
// mapping maps from key bytes to a dense index for trieNode.table.
|
|
mapping [256]byte
|
|
}
|
|
|
|
func makeGenericReplacer(oldnew []string) *genericReplacer {
|
|
r := new(genericReplacer)
|
|
// Find each byte used, then assign them each an index.
|
|
for i := 0; i < len(oldnew); i += 2 {
|
|
key := oldnew[i]
|
|
for j := 0; j < len(key); j++ {
|
|
r.mapping[key[j]] = 1
|
|
}
|
|
}
|
|
|
|
for _, b := range r.mapping {
|
|
r.tableSize += int(b)
|
|
}
|
|
|
|
var index byte
|
|
for i, b := range r.mapping {
|
|
if b == 0 {
|
|
r.mapping[i] = byte(r.tableSize)
|
|
} else {
|
|
r.mapping[i] = index
|
|
index++
|
|
}
|
|
}
|
|
// Ensure root node uses a lookup table (for performance).
|
|
r.root.table = make([]*trieNode, r.tableSize)
|
|
|
|
for i := 0; i < len(oldnew); i += 2 {
|
|
r.root.add(oldnew[i], oldnew[i+1], len(oldnew)-i, r)
|
|
}
|
|
return r
|
|
}
|
|
|
|
type appendSliceWriter []byte
|
|
|
|
// Write writes to the buffer to satisfy io.Writer.
|
|
func (w *appendSliceWriter) Write(p []byte) (int, error) {
|
|
*w = append(*w, p...)
|
|
return len(p), nil
|
|
}
|
|
|
|
// WriteString writes to the buffer without string->[]byte->string allocations.
|
|
func (w *appendSliceWriter) WriteString(s string) (int, error) {
|
|
*w = append(*w, s...)
|
|
return len(s), nil
|
|
}
|
|
|
|
type stringWriter struct {
|
|
w io.Writer
|
|
}
|
|
|
|
func (w stringWriter) WriteString(s string) (int, error) {
|
|
return w.w.Write([]byte(s))
|
|
}
|
|
|
|
func getStringWriter(w io.Writer) io.StringWriter {
|
|
sw, ok := w.(io.StringWriter)
|
|
if !ok {
|
|
sw = stringWriter{w}
|
|
}
|
|
return sw
|
|
}
|
|
|
|
func (r *genericReplacer) Replace(s string) string {
|
|
buf := make(appendSliceWriter, 0, len(s))
|
|
r.WriteString(&buf, s)
|
|
return string(buf)
|
|
}
|
|
|
|
func (r *genericReplacer) WriteString(w io.Writer, s string) (n int, err error) {
|
|
sw := getStringWriter(w)
|
|
var last, wn int
|
|
var prevMatchEmpty bool
|
|
for i := 0; i <= len(s); {
|
|
// Fast path: s[i] is not a prefix of any pattern.
|
|
if i != len(s) && r.root.priority == 0 {
|
|
index := int(r.mapping[s[i]])
|
|
if index == r.tableSize || r.root.table[index] == nil {
|
|
i++
|
|
continue
|
|
}
|
|
}
|
|
|
|
// Ignore the empty match iff the previous loop found the empty match.
|
|
val, keylen, match := r.lookup(s[i:], prevMatchEmpty)
|
|
prevMatchEmpty = match && keylen == 0
|
|
if match {
|
|
wn, err = sw.WriteString(s[last:i])
|
|
n += wn
|
|
if err != nil {
|
|
return
|
|
}
|
|
wn, err = sw.WriteString(val)
|
|
n += wn
|
|
if err != nil {
|
|
return
|
|
}
|
|
i += keylen
|
|
last = i
|
|
continue
|
|
}
|
|
i++
|
|
}
|
|
if last != len(s) {
|
|
wn, err = sw.WriteString(s[last:])
|
|
n += wn
|
|
}
|
|
return
|
|
}
|
|
|
|
// singleStringReplacer is the implementation that's used when there is only
|
|
// one string to replace (and that string has more than one byte).
|
|
type singleStringReplacer struct {
|
|
finder *stringFinder
|
|
// value is the new string that replaces that pattern when it's found.
|
|
value string
|
|
}
|
|
|
|
func makeSingleStringReplacer(pattern string, value string) *singleStringReplacer {
|
|
return &singleStringReplacer{finder: makeStringFinder(pattern), value: value}
|
|
}
|
|
|
|
func (r *singleStringReplacer) Replace(s string) string {
|
|
var buf []byte
|
|
i, matched := 0, false
|
|
for {
|
|
match := r.finder.next(s[i:])
|
|
if match == -1 {
|
|
break
|
|
}
|
|
matched = true
|
|
buf = append(buf, s[i:i+match]...)
|
|
buf = append(buf, r.value...)
|
|
i += match + len(r.finder.pattern)
|
|
}
|
|
if !matched {
|
|
return s
|
|
}
|
|
buf = append(buf, s[i:]...)
|
|
return string(buf)
|
|
}
|
|
|
|
func (r *singleStringReplacer) WriteString(w io.Writer, s string) (n int, err error) {
|
|
sw := getStringWriter(w)
|
|
var i, wn int
|
|
for {
|
|
match := r.finder.next(s[i:])
|
|
if match == -1 {
|
|
break
|
|
}
|
|
wn, err = sw.WriteString(s[i : i+match])
|
|
n += wn
|
|
if err != nil {
|
|
return
|
|
}
|
|
wn, err = sw.WriteString(r.value)
|
|
n += wn
|
|
if err != nil {
|
|
return
|
|
}
|
|
i += match + len(r.finder.pattern)
|
|
}
|
|
wn, err = sw.WriteString(s[i:])
|
|
n += wn
|
|
return
|
|
}
|
|
|
|
// byteReplacer is the implementation that's used when all the "old"
|
|
// and "new" values are single ASCII bytes.
|
|
// The array contains replacement bytes indexed by old byte.
|
|
type byteReplacer [256]byte
|
|
|
|
func (r *byteReplacer) Replace(s string) string {
|
|
var buf []byte // lazily allocated
|
|
for i := 0; i < len(s); i++ {
|
|
b := s[i]
|
|
if r[b] != b {
|
|
if buf == nil {
|
|
buf = []byte(s)
|
|
}
|
|
buf[i] = r[b]
|
|
}
|
|
}
|
|
if buf == nil {
|
|
return s
|
|
}
|
|
return string(buf)
|
|
}
|
|
|
|
func (r *byteReplacer) WriteString(w io.Writer, s string) (n int, err error) {
|
|
// TODO(bradfitz): use io.WriteString with slices of s, avoiding allocation.
|
|
bufsize := 32 << 10
|
|
if len(s) < bufsize {
|
|
bufsize = len(s)
|
|
}
|
|
buf := make([]byte, bufsize)
|
|
|
|
for len(s) > 0 {
|
|
ncopy := copy(buf, s)
|
|
s = s[ncopy:]
|
|
for i, b := range buf[:ncopy] {
|
|
buf[i] = r[b]
|
|
}
|
|
wn, err := w.Write(buf[:ncopy])
|
|
n += wn
|
|
if err != nil {
|
|
return n, err
|
|
}
|
|
}
|
|
return n, nil
|
|
}
|
|
|
|
// byteStringReplacer is the implementation that's used when all the
|
|
// "old" values are single ASCII bytes but the "new" values vary in size.
|
|
type byteStringReplacer struct {
|
|
// replacements contains replacement byte slices indexed by old byte.
|
|
// A nil []byte means that the old byte should not be replaced.
|
|
replacements [256][]byte
|
|
// toReplace keeps a list of bytes to replace. Depending on length of toReplace
|
|
// and length of target string it may be faster to use Count, or a plain loop.
|
|
// We store single byte as a string, because Count takes a string.
|
|
toReplace []string
|
|
}
|
|
|
|
// countCutOff controls the ratio of a string length to a number of replacements
|
|
// at which (*byteStringReplacer).Replace switches algorithms.
|
|
// For strings with higher ration of length to replacements than that value,
|
|
// we call Count, for each replacement from toReplace.
|
|
// For strings, with a lower ratio we use simple loop, because of Count overhead.
|
|
// countCutOff is an empirically determined overhead multiplier.
|
|
// TODO(tocarip) revisit once we have register-based abi/mid-stack inlining.
|
|
const countCutOff = 8
|
|
|
|
func (r *byteStringReplacer) Replace(s string) string {
|
|
newSize := len(s)
|
|
anyChanges := false
|
|
// Is it faster to use Count?
|
|
if len(r.toReplace)*countCutOff <= len(s) {
|
|
for _, x := range r.toReplace {
|
|
if c := Count(s, x); c != 0 {
|
|
// The -1 is because we are replacing 1 byte with len(replacements[b]) bytes.
|
|
newSize += c * (len(r.replacements[x[0]]) - 1)
|
|
anyChanges = true
|
|
}
|
|
|
|
}
|
|
} else {
|
|
for i := 0; i < len(s); i++ {
|
|
b := s[i]
|
|
if r.replacements[b] != nil {
|
|
// See above for explanation of -1
|
|
newSize += len(r.replacements[b]) - 1
|
|
anyChanges = true
|
|
}
|
|
}
|
|
}
|
|
if !anyChanges {
|
|
return s
|
|
}
|
|
buf := make([]byte, newSize)
|
|
j := 0
|
|
for i := 0; i < len(s); i++ {
|
|
b := s[i]
|
|
if r.replacements[b] != nil {
|
|
j += copy(buf[j:], r.replacements[b])
|
|
} else {
|
|
buf[j] = b
|
|
j++
|
|
}
|
|
}
|
|
return string(buf)
|
|
}
|
|
|
|
func (r *byteStringReplacer) WriteString(w io.Writer, s string) (n int, err error) {
|
|
sw := getStringWriter(w)
|
|
last := 0
|
|
for i := 0; i < len(s); i++ {
|
|
b := s[i]
|
|
if r.replacements[b] == nil {
|
|
continue
|
|
}
|
|
if last != i {
|
|
nw, err := sw.WriteString(s[last:i])
|
|
n += nw
|
|
if err != nil {
|
|
return n, err
|
|
}
|
|
}
|
|
last = i + 1
|
|
nw, err := w.Write(r.replacements[b])
|
|
n += nw
|
|
if err != nil {
|
|
return n, err
|
|
}
|
|
}
|
|
if last != len(s) {
|
|
var nw int
|
|
nw, err = sw.WriteString(s[last:])
|
|
n += nw
|
|
}
|
|
return
|
|
}
|