f791702956
gcc/ * config/i386/i386.c (ix86_reassociation_width): Add alternative for vector case. * config/i386/i386.h (TARGET_VECTOR_PARALLEL_EXECUTION): New. * config/i386/x86-tune.def (X86_TUNE_VECTOR_PARALLEL_EXECUTION): New. * tree-vect-data-refs.c (vect_shift_permute_load_chain): New. Introduces alternative way of loads group permutaions. (vect_transform_grouped_load): Try alternative way of permutations. gcc/testsuite/ PR tree-optimization/52252 * gcc.target/i386/pr52252-atom.c: Test on loads group of size 3. * gcc.target/i386/pr52252-core.c: Ditto. PR tree-optimization/61403 * gcc.target/i386/pr61403.c: Test on loads and stores group of size 3. From-SVN: r211769
5871 lines
190 KiB
C
5871 lines
190 KiB
C
/* Data References Analysis and Manipulation Utilities for Vectorization.
|
|
Copyright (C) 2003-2014 Free Software Foundation, Inc.
|
|
Contributed by Dorit Naishlos <dorit@il.ibm.com>
|
|
and Ira Rosen <irar@il.ibm.com>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "dumpfile.h"
|
|
#include "tm.h"
|
|
#include "tree.h"
|
|
#include "stor-layout.h"
|
|
#include "tm_p.h"
|
|
#include "target.h"
|
|
#include "basic-block.h"
|
|
#include "gimple-pretty-print.h"
|
|
#include "tree-ssa-alias.h"
|
|
#include "internal-fn.h"
|
|
#include "tree-eh.h"
|
|
#include "gimple-expr.h"
|
|
#include "is-a.h"
|
|
#include "gimple.h"
|
|
#include "gimplify.h"
|
|
#include "gimple-iterator.h"
|
|
#include "gimplify-me.h"
|
|
#include "gimple-ssa.h"
|
|
#include "tree-phinodes.h"
|
|
#include "ssa-iterators.h"
|
|
#include "stringpool.h"
|
|
#include "tree-ssanames.h"
|
|
#include "tree-ssa-loop-ivopts.h"
|
|
#include "tree-ssa-loop-manip.h"
|
|
#include "tree-ssa-loop.h"
|
|
#include "dumpfile.h"
|
|
#include "cfgloop.h"
|
|
#include "tree-chrec.h"
|
|
#include "tree-scalar-evolution.h"
|
|
#include "tree-vectorizer.h"
|
|
#include "diagnostic-core.h"
|
|
#include "cgraph.h"
|
|
/* Need to include rtl.h, expr.h, etc. for optabs. */
|
|
#include "expr.h"
|
|
#include "optabs.h"
|
|
#include "builtins.h"
|
|
#include "varasm.h"
|
|
|
|
/* Return true if load- or store-lanes optab OPTAB is implemented for
|
|
COUNT vectors of type VECTYPE. NAME is the name of OPTAB. */
|
|
|
|
static bool
|
|
vect_lanes_optab_supported_p (const char *name, convert_optab optab,
|
|
tree vectype, unsigned HOST_WIDE_INT count)
|
|
{
|
|
enum machine_mode mode, array_mode;
|
|
bool limit_p;
|
|
|
|
mode = TYPE_MODE (vectype);
|
|
limit_p = !targetm.array_mode_supported_p (mode, count);
|
|
array_mode = mode_for_size (count * GET_MODE_BITSIZE (mode),
|
|
MODE_INT, limit_p);
|
|
|
|
if (array_mode == BLKmode)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"no array mode for %s[" HOST_WIDE_INT_PRINT_DEC "]\n",
|
|
GET_MODE_NAME (mode), count);
|
|
return false;
|
|
}
|
|
|
|
if (convert_optab_handler (optab, array_mode, mode) == CODE_FOR_nothing)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"cannot use %s<%s><%s>\n", name,
|
|
GET_MODE_NAME (array_mode), GET_MODE_NAME (mode));
|
|
return false;
|
|
}
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"can use %s<%s><%s>\n", name, GET_MODE_NAME (array_mode),
|
|
GET_MODE_NAME (mode));
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Return the smallest scalar part of STMT.
|
|
This is used to determine the vectype of the stmt. We generally set the
|
|
vectype according to the type of the result (lhs). For stmts whose
|
|
result-type is different than the type of the arguments (e.g., demotion,
|
|
promotion), vectype will be reset appropriately (later). Note that we have
|
|
to visit the smallest datatype in this function, because that determines the
|
|
VF. If the smallest datatype in the loop is present only as the rhs of a
|
|
promotion operation - we'd miss it.
|
|
Such a case, where a variable of this datatype does not appear in the lhs
|
|
anywhere in the loop, can only occur if it's an invariant: e.g.:
|
|
'int_x = (int) short_inv', which we'd expect to have been optimized away by
|
|
invariant motion. However, we cannot rely on invariant motion to always
|
|
take invariants out of the loop, and so in the case of promotion we also
|
|
have to check the rhs.
|
|
LHS_SIZE_UNIT and RHS_SIZE_UNIT contain the sizes of the corresponding
|
|
types. */
|
|
|
|
tree
|
|
vect_get_smallest_scalar_type (gimple stmt, HOST_WIDE_INT *lhs_size_unit,
|
|
HOST_WIDE_INT *rhs_size_unit)
|
|
{
|
|
tree scalar_type = gimple_expr_type (stmt);
|
|
HOST_WIDE_INT lhs, rhs;
|
|
|
|
lhs = rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
|
|
|
|
if (is_gimple_assign (stmt)
|
|
&& (gimple_assign_cast_p (stmt)
|
|
|| gimple_assign_rhs_code (stmt) == WIDEN_MULT_EXPR
|
|
|| gimple_assign_rhs_code (stmt) == WIDEN_LSHIFT_EXPR
|
|
|| gimple_assign_rhs_code (stmt) == FLOAT_EXPR))
|
|
{
|
|
tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
|
|
|
|
rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (rhs_type));
|
|
if (rhs < lhs)
|
|
scalar_type = rhs_type;
|
|
}
|
|
|
|
*lhs_size_unit = lhs;
|
|
*rhs_size_unit = rhs;
|
|
return scalar_type;
|
|
}
|
|
|
|
|
|
/* Insert DDR into LOOP_VINFO list of ddrs that may alias and need to be
|
|
tested at run-time. Return TRUE if DDR was successfully inserted.
|
|
Return false if versioning is not supported. */
|
|
|
|
static bool
|
|
vect_mark_for_runtime_alias_test (ddr_p ddr, loop_vec_info loop_vinfo)
|
|
{
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
|
|
if ((unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS) == 0)
|
|
return false;
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"mark for run-time aliasing test between ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_A (ddr)));
|
|
dump_printf (MSG_NOTE, " and ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_B (ddr)));
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
|
|
if (optimize_loop_nest_for_size_p (loop))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"versioning not supported when optimizing"
|
|
" for size.\n");
|
|
return false;
|
|
}
|
|
|
|
/* FORNOW: We don't support versioning with outer-loop vectorization. */
|
|
if (loop->inner)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"versioning not yet supported for outer-loops.\n");
|
|
return false;
|
|
}
|
|
|
|
/* FORNOW: We don't support creating runtime alias tests for non-constant
|
|
step. */
|
|
if (TREE_CODE (DR_STEP (DDR_A (ddr))) != INTEGER_CST
|
|
|| TREE_CODE (DR_STEP (DDR_B (ddr))) != INTEGER_CST)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"versioning not yet supported for non-constant "
|
|
"step\n");
|
|
return false;
|
|
}
|
|
|
|
LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).safe_push (ddr);
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Function vect_analyze_data_ref_dependence.
|
|
|
|
Return TRUE if there (might) exist a dependence between a memory-reference
|
|
DRA and a memory-reference DRB. When versioning for alias may check a
|
|
dependence at run-time, return FALSE. Adjust *MAX_VF according to
|
|
the data dependence. */
|
|
|
|
static bool
|
|
vect_analyze_data_ref_dependence (struct data_dependence_relation *ddr,
|
|
loop_vec_info loop_vinfo, int *max_vf)
|
|
{
|
|
unsigned int i;
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
struct data_reference *dra = DDR_A (ddr);
|
|
struct data_reference *drb = DDR_B (ddr);
|
|
stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
|
|
stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
|
|
lambda_vector dist_v;
|
|
unsigned int loop_depth;
|
|
|
|
/* In loop analysis all data references should be vectorizable. */
|
|
if (!STMT_VINFO_VECTORIZABLE (stmtinfo_a)
|
|
|| !STMT_VINFO_VECTORIZABLE (stmtinfo_b))
|
|
gcc_unreachable ();
|
|
|
|
/* Independent data accesses. */
|
|
if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
|
|
return false;
|
|
|
|
if (dra == drb
|
|
|| (DR_IS_READ (dra) && DR_IS_READ (drb)))
|
|
return false;
|
|
|
|
/* Even if we have an anti-dependence then, as the vectorized loop covers at
|
|
least two scalar iterations, there is always also a true dependence.
|
|
As the vectorizer does not re-order loads and stores we can ignore
|
|
the anti-dependence if TBAA can disambiguate both DRs similar to the
|
|
case with known negative distance anti-dependences (positive
|
|
distance anti-dependences would violate TBAA constraints). */
|
|
if (((DR_IS_READ (dra) && DR_IS_WRITE (drb))
|
|
|| (DR_IS_WRITE (dra) && DR_IS_READ (drb)))
|
|
&& !alias_sets_conflict_p (get_alias_set (DR_REF (dra)),
|
|
get_alias_set (DR_REF (drb))))
|
|
return false;
|
|
|
|
/* Unknown data dependence. */
|
|
if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
|
|
{
|
|
/* If user asserted safelen consecutive iterations can be
|
|
executed concurrently, assume independence. */
|
|
if (loop->safelen >= 2)
|
|
{
|
|
if (loop->safelen < *max_vf)
|
|
*max_vf = loop->safelen;
|
|
LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false;
|
|
return false;
|
|
}
|
|
|
|
if (STMT_VINFO_GATHER_P (stmtinfo_a)
|
|
|| STMT_VINFO_GATHER_P (stmtinfo_b))
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"versioning for alias not supported for: "
|
|
"can't determine dependence between ");
|
|
dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
|
|
DR_REF (dra));
|
|
dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
|
|
dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
|
|
DR_REF (drb));
|
|
dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"versioning for alias required: "
|
|
"can't determine dependence between ");
|
|
dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
|
|
DR_REF (dra));
|
|
dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
|
|
dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
|
|
DR_REF (drb));
|
|
dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
|
|
}
|
|
|
|
/* Add to list of ddrs that need to be tested at run-time. */
|
|
return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
|
|
}
|
|
|
|
/* Known data dependence. */
|
|
if (DDR_NUM_DIST_VECTS (ddr) == 0)
|
|
{
|
|
/* If user asserted safelen consecutive iterations can be
|
|
executed concurrently, assume independence. */
|
|
if (loop->safelen >= 2)
|
|
{
|
|
if (loop->safelen < *max_vf)
|
|
*max_vf = loop->safelen;
|
|
LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false;
|
|
return false;
|
|
}
|
|
|
|
if (STMT_VINFO_GATHER_P (stmtinfo_a)
|
|
|| STMT_VINFO_GATHER_P (stmtinfo_b))
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"versioning for alias not supported for: "
|
|
"bad dist vector for ");
|
|
dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
|
|
DR_REF (dra));
|
|
dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
|
|
dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
|
|
DR_REF (drb));
|
|
dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"versioning for alias required: "
|
|
"bad dist vector for ");
|
|
dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (dra));
|
|
dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
|
|
dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (drb));
|
|
dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
|
|
}
|
|
/* Add to list of ddrs that need to be tested at run-time. */
|
|
return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
|
|
}
|
|
|
|
loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
|
|
FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
|
|
{
|
|
int dist = dist_v[loop_depth];
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"dependence distance = %d.\n", dist);
|
|
|
|
if (dist == 0)
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"dependence distance == 0 between ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
|
|
dump_printf (MSG_NOTE, " and ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
|
|
dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
|
|
}
|
|
|
|
/* When we perform grouped accesses and perform implicit CSE
|
|
by detecting equal accesses and doing disambiguation with
|
|
runtime alias tests like for
|
|
.. = a[i];
|
|
.. = a[i+1];
|
|
a[i] = ..;
|
|
a[i+1] = ..;
|
|
*p = ..;
|
|
.. = a[i];
|
|
.. = a[i+1];
|
|
where we will end up loading { a[i], a[i+1] } once, make
|
|
sure that inserting group loads before the first load and
|
|
stores after the last store will do the right thing. */
|
|
if ((STMT_VINFO_GROUPED_ACCESS (stmtinfo_a)
|
|
&& GROUP_SAME_DR_STMT (stmtinfo_a))
|
|
|| (STMT_VINFO_GROUPED_ACCESS (stmtinfo_b)
|
|
&& GROUP_SAME_DR_STMT (stmtinfo_b)))
|
|
{
|
|
gimple earlier_stmt;
|
|
earlier_stmt = get_earlier_stmt (DR_STMT (dra), DR_STMT (drb));
|
|
if (DR_IS_WRITE
|
|
(STMT_VINFO_DATA_REF (vinfo_for_stmt (earlier_stmt))))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"READ_WRITE dependence in interleaving."
|
|
"\n");
|
|
return true;
|
|
}
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
if (dist > 0 && DDR_REVERSED_P (ddr))
|
|
{
|
|
/* If DDR_REVERSED_P the order of the data-refs in DDR was
|
|
reversed (to make distance vector positive), and the actual
|
|
distance is negative. */
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"dependence distance negative.\n");
|
|
/* Record a negative dependence distance to later limit the
|
|
amount of stmt copying / unrolling we can perform.
|
|
Only need to handle read-after-write dependence. */
|
|
if (DR_IS_READ (drb)
|
|
&& (STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) == 0
|
|
|| STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) > (unsigned)dist))
|
|
STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) = dist;
|
|
continue;
|
|
}
|
|
|
|
if (abs (dist) >= 2
|
|
&& abs (dist) < *max_vf)
|
|
{
|
|
/* The dependence distance requires reduction of the maximal
|
|
vectorization factor. */
|
|
*max_vf = abs (dist);
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"adjusting maximal vectorization factor to %i\n",
|
|
*max_vf);
|
|
}
|
|
|
|
if (abs (dist) >= *max_vf)
|
|
{
|
|
/* Dependence distance does not create dependence, as far as
|
|
vectorization is concerned, in this case. */
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"dependence distance >= VF.\n");
|
|
continue;
|
|
}
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized, possible dependence "
|
|
"between data-refs ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
|
|
dump_printf (MSG_NOTE, " and ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Function vect_analyze_data_ref_dependences.
|
|
|
|
Examine all the data references in the loop, and make sure there do not
|
|
exist any data dependences between them. Set *MAX_VF according to
|
|
the maximum vectorization factor the data dependences allow. */
|
|
|
|
bool
|
|
vect_analyze_data_ref_dependences (loop_vec_info loop_vinfo, int *max_vf)
|
|
{
|
|
unsigned int i;
|
|
struct data_dependence_relation *ddr;
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"=== vect_analyze_data_ref_dependences ===\n");
|
|
|
|
LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = true;
|
|
if (!compute_all_dependences (LOOP_VINFO_DATAREFS (loop_vinfo),
|
|
&LOOP_VINFO_DDRS (loop_vinfo),
|
|
LOOP_VINFO_LOOP_NEST (loop_vinfo), true))
|
|
return false;
|
|
|
|
FOR_EACH_VEC_ELT (LOOP_VINFO_DDRS (loop_vinfo), i, ddr)
|
|
if (vect_analyze_data_ref_dependence (ddr, loop_vinfo, max_vf))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Function vect_slp_analyze_data_ref_dependence.
|
|
|
|
Return TRUE if there (might) exist a dependence between a memory-reference
|
|
DRA and a memory-reference DRB. When versioning for alias may check a
|
|
dependence at run-time, return FALSE. Adjust *MAX_VF according to
|
|
the data dependence. */
|
|
|
|
static bool
|
|
vect_slp_analyze_data_ref_dependence (struct data_dependence_relation *ddr)
|
|
{
|
|
struct data_reference *dra = DDR_A (ddr);
|
|
struct data_reference *drb = DDR_B (ddr);
|
|
|
|
/* We need to check dependences of statements marked as unvectorizable
|
|
as well, they still can prohibit vectorization. */
|
|
|
|
/* Independent data accesses. */
|
|
if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
|
|
return false;
|
|
|
|
if (dra == drb)
|
|
return false;
|
|
|
|
/* Read-read is OK. */
|
|
if (DR_IS_READ (dra) && DR_IS_READ (drb))
|
|
return false;
|
|
|
|
/* If dra and drb are part of the same interleaving chain consider
|
|
them independent. */
|
|
if (STMT_VINFO_GROUPED_ACCESS (vinfo_for_stmt (DR_STMT (dra)))
|
|
&& (GROUP_FIRST_ELEMENT (vinfo_for_stmt (DR_STMT (dra)))
|
|
== GROUP_FIRST_ELEMENT (vinfo_for_stmt (DR_STMT (drb)))))
|
|
return false;
|
|
|
|
/* Unknown data dependence. */
|
|
if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"can't determine dependence between ");
|
|
dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (dra));
|
|
dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
|
|
dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (drb));
|
|
dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
|
|
}
|
|
}
|
|
else if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"determined dependence between ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
|
|
dump_printf (MSG_NOTE, " and ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
|
|
/* We do not vectorize basic blocks with write-write dependencies. */
|
|
if (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))
|
|
return true;
|
|
|
|
/* If we have a read-write dependence check that the load is before the store.
|
|
When we vectorize basic blocks, vector load can be only before
|
|
corresponding scalar load, and vector store can be only after its
|
|
corresponding scalar store. So the order of the acceses is preserved in
|
|
case the load is before the store. */
|
|
gimple earlier_stmt = get_earlier_stmt (DR_STMT (dra), DR_STMT (drb));
|
|
if (DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (earlier_stmt))))
|
|
{
|
|
/* That only holds for load-store pairs taking part in vectorization. */
|
|
if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dra)))
|
|
&& STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (drb))))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Function vect_analyze_data_ref_dependences.
|
|
|
|
Examine all the data references in the basic-block, and make sure there
|
|
do not exist any data dependences between them. Set *MAX_VF according to
|
|
the maximum vectorization factor the data dependences allow. */
|
|
|
|
bool
|
|
vect_slp_analyze_data_ref_dependences (bb_vec_info bb_vinfo)
|
|
{
|
|
struct data_dependence_relation *ddr;
|
|
unsigned int i;
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"=== vect_slp_analyze_data_ref_dependences ===\n");
|
|
|
|
if (!compute_all_dependences (BB_VINFO_DATAREFS (bb_vinfo),
|
|
&BB_VINFO_DDRS (bb_vinfo),
|
|
vNULL, true))
|
|
return false;
|
|
|
|
FOR_EACH_VEC_ELT (BB_VINFO_DDRS (bb_vinfo), i, ddr)
|
|
if (vect_slp_analyze_data_ref_dependence (ddr))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Function vect_compute_data_ref_alignment
|
|
|
|
Compute the misalignment of the data reference DR.
|
|
|
|
Output:
|
|
1. If during the misalignment computation it is found that the data reference
|
|
cannot be vectorized then false is returned.
|
|
2. DR_MISALIGNMENT (DR) is defined.
|
|
|
|
FOR NOW: No analysis is actually performed. Misalignment is calculated
|
|
only for trivial cases. TODO. */
|
|
|
|
static bool
|
|
vect_compute_data_ref_alignment (struct data_reference *dr)
|
|
{
|
|
gimple stmt = DR_STMT (dr);
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
|
struct loop *loop = NULL;
|
|
tree ref = DR_REF (dr);
|
|
tree vectype;
|
|
tree base, base_addr;
|
|
bool base_aligned;
|
|
tree misalign;
|
|
tree aligned_to, alignment;
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"vect_compute_data_ref_alignment:\n");
|
|
|
|
if (loop_vinfo)
|
|
loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
|
|
/* Initialize misalignment to unknown. */
|
|
SET_DR_MISALIGNMENT (dr, -1);
|
|
|
|
/* Strided loads perform only component accesses, misalignment information
|
|
is irrelevant for them. */
|
|
if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
|
|
return true;
|
|
|
|
misalign = DR_INIT (dr);
|
|
aligned_to = DR_ALIGNED_TO (dr);
|
|
base_addr = DR_BASE_ADDRESS (dr);
|
|
vectype = STMT_VINFO_VECTYPE (stmt_info);
|
|
|
|
/* In case the dataref is in an inner-loop of the loop that is being
|
|
vectorized (LOOP), we use the base and misalignment information
|
|
relative to the outer-loop (LOOP). This is ok only if the misalignment
|
|
stays the same throughout the execution of the inner-loop, which is why
|
|
we have to check that the stride of the dataref in the inner-loop evenly
|
|
divides by the vector size. */
|
|
if (loop && nested_in_vect_loop_p (loop, stmt))
|
|
{
|
|
tree step = DR_STEP (dr);
|
|
HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
|
|
|
|
if (dr_step % GET_MODE_SIZE (TYPE_MODE (vectype)) == 0)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"inner step divides the vector-size.\n");
|
|
misalign = STMT_VINFO_DR_INIT (stmt_info);
|
|
aligned_to = STMT_VINFO_DR_ALIGNED_TO (stmt_info);
|
|
base_addr = STMT_VINFO_DR_BASE_ADDRESS (stmt_info);
|
|
}
|
|
else
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"inner step doesn't divide the vector-size.\n");
|
|
misalign = NULL_TREE;
|
|
}
|
|
}
|
|
|
|
/* Similarly, if we're doing basic-block vectorization, we can only use
|
|
base and misalignment information relative to an innermost loop if the
|
|
misalignment stays the same throughout the execution of the loop.
|
|
As above, this is the case if the stride of the dataref evenly divides
|
|
by the vector size. */
|
|
if (!loop)
|
|
{
|
|
tree step = DR_STEP (dr);
|
|
HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
|
|
|
|
if (dr_step % GET_MODE_SIZE (TYPE_MODE (vectype)) != 0)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"SLP: step doesn't divide the vector-size.\n");
|
|
misalign = NULL_TREE;
|
|
}
|
|
}
|
|
|
|
base = build_fold_indirect_ref (base_addr);
|
|
alignment = ssize_int (TYPE_ALIGN (vectype)/BITS_PER_UNIT);
|
|
|
|
if ((aligned_to && tree_int_cst_compare (aligned_to, alignment) < 0)
|
|
|| !misalign)
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"Unknown alignment for access: ");
|
|
dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, base);
|
|
dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if ((DECL_P (base)
|
|
&& tree_int_cst_compare (ssize_int (DECL_ALIGN_UNIT (base)),
|
|
alignment) >= 0)
|
|
|| (TREE_CODE (base_addr) == SSA_NAME
|
|
&& tree_int_cst_compare (ssize_int (TYPE_ALIGN_UNIT (TREE_TYPE (
|
|
TREE_TYPE (base_addr)))),
|
|
alignment) >= 0)
|
|
|| (get_pointer_alignment (base_addr) >= TYPE_ALIGN (vectype)))
|
|
base_aligned = true;
|
|
else
|
|
base_aligned = false;
|
|
|
|
if (!base_aligned)
|
|
{
|
|
/* Do not change the alignment of global variables here if
|
|
flag_section_anchors is enabled as we already generated
|
|
RTL for other functions. Most global variables should
|
|
have been aligned during the IPA increase_alignment pass. */
|
|
if (!vect_can_force_dr_alignment_p (base, TYPE_ALIGN (vectype))
|
|
|| (TREE_STATIC (base) && flag_section_anchors))
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"can't force alignment of ref: ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Force the alignment of the decl.
|
|
NOTE: This is the only change to the code we make during
|
|
the analysis phase, before deciding to vectorize the loop. */
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location, "force alignment of ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
|
|
((dataref_aux *)dr->aux)->base_decl = base;
|
|
((dataref_aux *)dr->aux)->base_misaligned = true;
|
|
}
|
|
|
|
/* If this is a backward running DR then first access in the larger
|
|
vectype actually is N-1 elements before the address in the DR.
|
|
Adjust misalign accordingly. */
|
|
if (tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0)
|
|
{
|
|
tree offset = ssize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
|
|
/* DR_STEP(dr) is the same as -TYPE_SIZE of the scalar type,
|
|
otherwise we wouldn't be here. */
|
|
offset = fold_build2 (MULT_EXPR, ssizetype, offset, DR_STEP (dr));
|
|
/* PLUS because DR_STEP was negative. */
|
|
misalign = size_binop (PLUS_EXPR, misalign, offset);
|
|
}
|
|
|
|
/* Modulo alignment. */
|
|
misalign = size_binop (FLOOR_MOD_EXPR, misalign, alignment);
|
|
|
|
if (!tree_fits_uhwi_p (misalign))
|
|
{
|
|
/* Negative or overflowed misalignment value. */
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"unexpected misalign value\n");
|
|
return false;
|
|
}
|
|
|
|
SET_DR_MISALIGNMENT (dr, tree_to_uhwi (misalign));
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"misalign = %d bytes of ref ", DR_MISALIGNMENT (dr));
|
|
dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, ref);
|
|
dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Function vect_compute_data_refs_alignment
|
|
|
|
Compute the misalignment of data references in the loop.
|
|
Return FALSE if a data reference is found that cannot be vectorized. */
|
|
|
|
static bool
|
|
vect_compute_data_refs_alignment (loop_vec_info loop_vinfo,
|
|
bb_vec_info bb_vinfo)
|
|
{
|
|
vec<data_reference_p> datarefs;
|
|
struct data_reference *dr;
|
|
unsigned int i;
|
|
|
|
if (loop_vinfo)
|
|
datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
|
|
else
|
|
datarefs = BB_VINFO_DATAREFS (bb_vinfo);
|
|
|
|
FOR_EACH_VEC_ELT (datarefs, i, dr)
|
|
if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr)))
|
|
&& !vect_compute_data_ref_alignment (dr))
|
|
{
|
|
if (bb_vinfo)
|
|
{
|
|
/* Mark unsupported statement as unvectorizable. */
|
|
STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
|
|
continue;
|
|
}
|
|
else
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Function vect_update_misalignment_for_peel
|
|
|
|
DR - the data reference whose misalignment is to be adjusted.
|
|
DR_PEEL - the data reference whose misalignment is being made
|
|
zero in the vector loop by the peel.
|
|
NPEEL - the number of iterations in the peel loop if the misalignment
|
|
of DR_PEEL is known at compile time. */
|
|
|
|
static void
|
|
vect_update_misalignment_for_peel (struct data_reference *dr,
|
|
struct data_reference *dr_peel, int npeel)
|
|
{
|
|
unsigned int i;
|
|
vec<dr_p> same_align_drs;
|
|
struct data_reference *current_dr;
|
|
int dr_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr))));
|
|
int dr_peel_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr_peel))));
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (DR_STMT (dr));
|
|
stmt_vec_info peel_stmt_info = vinfo_for_stmt (DR_STMT (dr_peel));
|
|
|
|
/* For interleaved data accesses the step in the loop must be multiplied by
|
|
the size of the interleaving group. */
|
|
if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
|
|
dr_size *= GROUP_SIZE (vinfo_for_stmt (GROUP_FIRST_ELEMENT (stmt_info)));
|
|
if (STMT_VINFO_GROUPED_ACCESS (peel_stmt_info))
|
|
dr_peel_size *= GROUP_SIZE (peel_stmt_info);
|
|
|
|
/* It can be assumed that the data refs with the same alignment as dr_peel
|
|
are aligned in the vector loop. */
|
|
same_align_drs
|
|
= STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (DR_STMT (dr_peel)));
|
|
FOR_EACH_VEC_ELT (same_align_drs, i, current_dr)
|
|
{
|
|
if (current_dr != dr)
|
|
continue;
|
|
gcc_assert (DR_MISALIGNMENT (dr) / dr_size ==
|
|
DR_MISALIGNMENT (dr_peel) / dr_peel_size);
|
|
SET_DR_MISALIGNMENT (dr, 0);
|
|
return;
|
|
}
|
|
|
|
if (known_alignment_for_access_p (dr)
|
|
&& known_alignment_for_access_p (dr_peel))
|
|
{
|
|
bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
|
|
int misal = DR_MISALIGNMENT (dr);
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
|
misal += negative ? -npeel * dr_size : npeel * dr_size;
|
|
misal &= (TYPE_ALIGN (vectype) / BITS_PER_UNIT) - 1;
|
|
SET_DR_MISALIGNMENT (dr, misal);
|
|
return;
|
|
}
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location, "Setting misalignment to -1.\n");
|
|
SET_DR_MISALIGNMENT (dr, -1);
|
|
}
|
|
|
|
|
|
/* Function vect_verify_datarefs_alignment
|
|
|
|
Return TRUE if all data references in the loop can be
|
|
handled with respect to alignment. */
|
|
|
|
bool
|
|
vect_verify_datarefs_alignment (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo)
|
|
{
|
|
vec<data_reference_p> datarefs;
|
|
struct data_reference *dr;
|
|
enum dr_alignment_support supportable_dr_alignment;
|
|
unsigned int i;
|
|
|
|
if (loop_vinfo)
|
|
datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
|
|
else
|
|
datarefs = BB_VINFO_DATAREFS (bb_vinfo);
|
|
|
|
FOR_EACH_VEC_ELT (datarefs, i, dr)
|
|
{
|
|
gimple stmt = DR_STMT (dr);
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info))
|
|
continue;
|
|
|
|
/* For interleaving, only the alignment of the first access matters.
|
|
Skip statements marked as not vectorizable. */
|
|
if ((STMT_VINFO_GROUPED_ACCESS (stmt_info)
|
|
&& GROUP_FIRST_ELEMENT (stmt_info) != stmt)
|
|
|| !STMT_VINFO_VECTORIZABLE (stmt_info))
|
|
continue;
|
|
|
|
/* Strided loads perform only component accesses, alignment is
|
|
irrelevant for them. */
|
|
if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
|
|
continue;
|
|
|
|
supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
|
|
if (!supportable_dr_alignment)
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
if (DR_IS_READ (dr))
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: unsupported unaligned load.");
|
|
else
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: unsupported unaligned "
|
|
"store.");
|
|
|
|
dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
|
|
DR_REF (dr));
|
|
dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
|
|
}
|
|
return false;
|
|
}
|
|
if (supportable_dr_alignment != dr_aligned && dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Vectorizing an unaligned access.\n");
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Given an memory reference EXP return whether its alignment is less
|
|
than its size. */
|
|
|
|
static bool
|
|
not_size_aligned (tree exp)
|
|
{
|
|
if (!tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (exp))))
|
|
return true;
|
|
|
|
return (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (exp)))
|
|
> get_object_alignment (exp));
|
|
}
|
|
|
|
/* Function vector_alignment_reachable_p
|
|
|
|
Return true if vector alignment for DR is reachable by peeling
|
|
a few loop iterations. Return false otherwise. */
|
|
|
|
static bool
|
|
vector_alignment_reachable_p (struct data_reference *dr)
|
|
{
|
|
gimple stmt = DR_STMT (dr);
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
|
|
|
if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
|
|
{
|
|
/* For interleaved access we peel only if number of iterations in
|
|
the prolog loop ({VF - misalignment}), is a multiple of the
|
|
number of the interleaved accesses. */
|
|
int elem_size, mis_in_elements;
|
|
int nelements = TYPE_VECTOR_SUBPARTS (vectype);
|
|
|
|
/* FORNOW: handle only known alignment. */
|
|
if (!known_alignment_for_access_p (dr))
|
|
return false;
|
|
|
|
elem_size = GET_MODE_SIZE (TYPE_MODE (vectype)) / nelements;
|
|
mis_in_elements = DR_MISALIGNMENT (dr) / elem_size;
|
|
|
|
if ((nelements - mis_in_elements) % GROUP_SIZE (stmt_info))
|
|
return false;
|
|
}
|
|
|
|
/* If misalignment is known at the compile time then allow peeling
|
|
only if natural alignment is reachable through peeling. */
|
|
if (known_alignment_for_access_p (dr) && !aligned_access_p (dr))
|
|
{
|
|
HOST_WIDE_INT elmsize =
|
|
int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"data size =" HOST_WIDE_INT_PRINT_DEC, elmsize);
|
|
dump_printf (MSG_NOTE,
|
|
". misalignment = %d.\n", DR_MISALIGNMENT (dr));
|
|
}
|
|
if (DR_MISALIGNMENT (dr) % elmsize)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"data size does not divide the misalignment.\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (!known_alignment_for_access_p (dr))
|
|
{
|
|
tree type = TREE_TYPE (DR_REF (dr));
|
|
bool is_packed = not_size_aligned (DR_REF (dr));
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"Unknown misalignment, is_packed = %d\n",is_packed);
|
|
if ((TYPE_USER_ALIGN (type) && !is_packed)
|
|
|| targetm.vectorize.vector_alignment_reachable (type, is_packed))
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Calculate the cost of the memory access represented by DR. */
|
|
|
|
static void
|
|
vect_get_data_access_cost (struct data_reference *dr,
|
|
unsigned int *inside_cost,
|
|
unsigned int *outside_cost,
|
|
stmt_vector_for_cost *body_cost_vec)
|
|
{
|
|
gimple stmt = DR_STMT (dr);
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
int nunits = TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
|
int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
|
int ncopies = vf / nunits;
|
|
|
|
if (DR_IS_READ (dr))
|
|
vect_get_load_cost (dr, ncopies, true, inside_cost, outside_cost,
|
|
NULL, body_cost_vec, false);
|
|
else
|
|
vect_get_store_cost (dr, ncopies, inside_cost, body_cost_vec);
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"vect_get_data_access_cost: inside_cost = %d, "
|
|
"outside_cost = %d.\n", *inside_cost, *outside_cost);
|
|
}
|
|
|
|
|
|
/* Insert DR into peeling hash table with NPEEL as key. */
|
|
|
|
static void
|
|
vect_peeling_hash_insert (loop_vec_info loop_vinfo, struct data_reference *dr,
|
|
int npeel)
|
|
{
|
|
struct _vect_peel_info elem, *slot;
|
|
_vect_peel_info **new_slot;
|
|
bool supportable_dr_alignment = vect_supportable_dr_alignment (dr, true);
|
|
|
|
elem.npeel = npeel;
|
|
slot = LOOP_VINFO_PEELING_HTAB (loop_vinfo).find (&elem);
|
|
if (slot)
|
|
slot->count++;
|
|
else
|
|
{
|
|
slot = XNEW (struct _vect_peel_info);
|
|
slot->npeel = npeel;
|
|
slot->dr = dr;
|
|
slot->count = 1;
|
|
new_slot = LOOP_VINFO_PEELING_HTAB (loop_vinfo).find_slot (slot, INSERT);
|
|
*new_slot = slot;
|
|
}
|
|
|
|
if (!supportable_dr_alignment
|
|
&& unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
|
|
slot->count += VECT_MAX_COST;
|
|
}
|
|
|
|
|
|
/* Traverse peeling hash table to find peeling option that aligns maximum
|
|
number of data accesses. */
|
|
|
|
int
|
|
vect_peeling_hash_get_most_frequent (_vect_peel_info **slot,
|
|
_vect_peel_extended_info *max)
|
|
{
|
|
vect_peel_info elem = *slot;
|
|
|
|
if (elem->count > max->peel_info.count
|
|
|| (elem->count == max->peel_info.count
|
|
&& max->peel_info.npeel > elem->npeel))
|
|
{
|
|
max->peel_info.npeel = elem->npeel;
|
|
max->peel_info.count = elem->count;
|
|
max->peel_info.dr = elem->dr;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* Traverse peeling hash table and calculate cost for each peeling option.
|
|
Find the one with the lowest cost. */
|
|
|
|
int
|
|
vect_peeling_hash_get_lowest_cost (_vect_peel_info **slot,
|
|
_vect_peel_extended_info *min)
|
|
{
|
|
vect_peel_info elem = *slot;
|
|
int save_misalignment, dummy;
|
|
unsigned int inside_cost = 0, outside_cost = 0, i;
|
|
gimple stmt = DR_STMT (elem->dr);
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
|
vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
|
|
struct data_reference *dr;
|
|
stmt_vector_for_cost prologue_cost_vec, body_cost_vec, epilogue_cost_vec;
|
|
int single_iter_cost;
|
|
|
|
prologue_cost_vec.create (2);
|
|
body_cost_vec.create (2);
|
|
epilogue_cost_vec.create (2);
|
|
|
|
FOR_EACH_VEC_ELT (datarefs, i, dr)
|
|
{
|
|
stmt = DR_STMT (dr);
|
|
stmt_info = vinfo_for_stmt (stmt);
|
|
/* For interleaving, only the alignment of the first access
|
|
matters. */
|
|
if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
|
|
&& GROUP_FIRST_ELEMENT (stmt_info) != stmt)
|
|
continue;
|
|
|
|
save_misalignment = DR_MISALIGNMENT (dr);
|
|
vect_update_misalignment_for_peel (dr, elem->dr, elem->npeel);
|
|
vect_get_data_access_cost (dr, &inside_cost, &outside_cost,
|
|
&body_cost_vec);
|
|
SET_DR_MISALIGNMENT (dr, save_misalignment);
|
|
}
|
|
|
|
single_iter_cost = vect_get_single_scalar_iteration_cost (loop_vinfo);
|
|
outside_cost += vect_get_known_peeling_cost (loop_vinfo, elem->npeel,
|
|
&dummy, single_iter_cost,
|
|
&prologue_cost_vec,
|
|
&epilogue_cost_vec);
|
|
|
|
/* Prologue and epilogue costs are added to the target model later.
|
|
These costs depend only on the scalar iteration cost, the
|
|
number of peeling iterations finally chosen, and the number of
|
|
misaligned statements. So discard the information found here. */
|
|
prologue_cost_vec.release ();
|
|
epilogue_cost_vec.release ();
|
|
|
|
if (inside_cost < min->inside_cost
|
|
|| (inside_cost == min->inside_cost && outside_cost < min->outside_cost))
|
|
{
|
|
min->inside_cost = inside_cost;
|
|
min->outside_cost = outside_cost;
|
|
min->body_cost_vec.release ();
|
|
min->body_cost_vec = body_cost_vec;
|
|
min->peel_info.dr = elem->dr;
|
|
min->peel_info.npeel = elem->npeel;
|
|
}
|
|
else
|
|
body_cost_vec.release ();
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* Choose best peeling option by traversing peeling hash table and either
|
|
choosing an option with the lowest cost (if cost model is enabled) or the
|
|
option that aligns as many accesses as possible. */
|
|
|
|
static struct data_reference *
|
|
vect_peeling_hash_choose_best_peeling (loop_vec_info loop_vinfo,
|
|
unsigned int *npeel,
|
|
stmt_vector_for_cost *body_cost_vec)
|
|
{
|
|
struct _vect_peel_extended_info res;
|
|
|
|
res.peel_info.dr = NULL;
|
|
res.body_cost_vec = stmt_vector_for_cost ();
|
|
|
|
if (!unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
|
|
{
|
|
res.inside_cost = INT_MAX;
|
|
res.outside_cost = INT_MAX;
|
|
LOOP_VINFO_PEELING_HTAB (loop_vinfo)
|
|
.traverse <_vect_peel_extended_info *,
|
|
vect_peeling_hash_get_lowest_cost> (&res);
|
|
}
|
|
else
|
|
{
|
|
res.peel_info.count = 0;
|
|
LOOP_VINFO_PEELING_HTAB (loop_vinfo)
|
|
.traverse <_vect_peel_extended_info *,
|
|
vect_peeling_hash_get_most_frequent> (&res);
|
|
}
|
|
|
|
*npeel = res.peel_info.npeel;
|
|
*body_cost_vec = res.body_cost_vec;
|
|
return res.peel_info.dr;
|
|
}
|
|
|
|
|
|
/* Function vect_enhance_data_refs_alignment
|
|
|
|
This pass will use loop versioning and loop peeling in order to enhance
|
|
the alignment of data references in the loop.
|
|
|
|
FOR NOW: we assume that whatever versioning/peeling takes place, only the
|
|
original loop is to be vectorized. Any other loops that are created by
|
|
the transformations performed in this pass - are not supposed to be
|
|
vectorized. This restriction will be relaxed.
|
|
|
|
This pass will require a cost model to guide it whether to apply peeling
|
|
or versioning or a combination of the two. For example, the scheme that
|
|
intel uses when given a loop with several memory accesses, is as follows:
|
|
choose one memory access ('p') which alignment you want to force by doing
|
|
peeling. Then, either (1) generate a loop in which 'p' is aligned and all
|
|
other accesses are not necessarily aligned, or (2) use loop versioning to
|
|
generate one loop in which all accesses are aligned, and another loop in
|
|
which only 'p' is necessarily aligned.
|
|
|
|
("Automatic Intra-Register Vectorization for the Intel Architecture",
|
|
Aart J.C. Bik, Milind Girkar, Paul M. Grey and Ximmin Tian, International
|
|
Journal of Parallel Programming, Vol. 30, No. 2, April 2002.)
|
|
|
|
Devising a cost model is the most critical aspect of this work. It will
|
|
guide us on which access to peel for, whether to use loop versioning, how
|
|
many versions to create, etc. The cost model will probably consist of
|
|
generic considerations as well as target specific considerations (on
|
|
powerpc for example, misaligned stores are more painful than misaligned
|
|
loads).
|
|
|
|
Here are the general steps involved in alignment enhancements:
|
|
|
|
-- original loop, before alignment analysis:
|
|
for (i=0; i<N; i++){
|
|
x = q[i]; # DR_MISALIGNMENT(q) = unknown
|
|
p[i] = y; # DR_MISALIGNMENT(p) = unknown
|
|
}
|
|
|
|
-- After vect_compute_data_refs_alignment:
|
|
for (i=0; i<N; i++){
|
|
x = q[i]; # DR_MISALIGNMENT(q) = 3
|
|
p[i] = y; # DR_MISALIGNMENT(p) = unknown
|
|
}
|
|
|
|
-- Possibility 1: we do loop versioning:
|
|
if (p is aligned) {
|
|
for (i=0; i<N; i++){ # loop 1A
|
|
x = q[i]; # DR_MISALIGNMENT(q) = 3
|
|
p[i] = y; # DR_MISALIGNMENT(p) = 0
|
|
}
|
|
}
|
|
else {
|
|
for (i=0; i<N; i++){ # loop 1B
|
|
x = q[i]; # DR_MISALIGNMENT(q) = 3
|
|
p[i] = y; # DR_MISALIGNMENT(p) = unaligned
|
|
}
|
|
}
|
|
|
|
-- Possibility 2: we do loop peeling:
|
|
for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
|
|
x = q[i];
|
|
p[i] = y;
|
|
}
|
|
for (i = 3; i < N; i++){ # loop 2A
|
|
x = q[i]; # DR_MISALIGNMENT(q) = 0
|
|
p[i] = y; # DR_MISALIGNMENT(p) = unknown
|
|
}
|
|
|
|
-- Possibility 3: combination of loop peeling and versioning:
|
|
for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
|
|
x = q[i];
|
|
p[i] = y;
|
|
}
|
|
if (p is aligned) {
|
|
for (i = 3; i<N; i++){ # loop 3A
|
|
x = q[i]; # DR_MISALIGNMENT(q) = 0
|
|
p[i] = y; # DR_MISALIGNMENT(p) = 0
|
|
}
|
|
}
|
|
else {
|
|
for (i = 3; i<N; i++){ # loop 3B
|
|
x = q[i]; # DR_MISALIGNMENT(q) = 0
|
|
p[i] = y; # DR_MISALIGNMENT(p) = unaligned
|
|
}
|
|
}
|
|
|
|
These loops are later passed to loop_transform to be vectorized. The
|
|
vectorizer will use the alignment information to guide the transformation
|
|
(whether to generate regular loads/stores, or with special handling for
|
|
misalignment). */
|
|
|
|
bool
|
|
vect_enhance_data_refs_alignment (loop_vec_info loop_vinfo)
|
|
{
|
|
vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
enum dr_alignment_support supportable_dr_alignment;
|
|
struct data_reference *dr0 = NULL, *first_store = NULL;
|
|
struct data_reference *dr;
|
|
unsigned int i, j;
|
|
bool do_peeling = false;
|
|
bool do_versioning = false;
|
|
bool stat;
|
|
gimple stmt;
|
|
stmt_vec_info stmt_info;
|
|
unsigned int npeel = 0;
|
|
bool all_misalignments_unknown = true;
|
|
unsigned int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
|
unsigned possible_npeel_number = 1;
|
|
tree vectype;
|
|
unsigned int nelements, mis, same_align_drs_max = 0;
|
|
stmt_vector_for_cost body_cost_vec = stmt_vector_for_cost ();
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"=== vect_enhance_data_refs_alignment ===\n");
|
|
|
|
/* While cost model enhancements are expected in the future, the high level
|
|
view of the code at this time is as follows:
|
|
|
|
A) If there is a misaligned access then see if peeling to align
|
|
this access can make all data references satisfy
|
|
vect_supportable_dr_alignment. If so, update data structures
|
|
as needed and return true.
|
|
|
|
B) If peeling wasn't possible and there is a data reference with an
|
|
unknown misalignment that does not satisfy vect_supportable_dr_alignment
|
|
then see if loop versioning checks can be used to make all data
|
|
references satisfy vect_supportable_dr_alignment. If so, update
|
|
data structures as needed and return true.
|
|
|
|
C) If neither peeling nor versioning were successful then return false if
|
|
any data reference does not satisfy vect_supportable_dr_alignment.
|
|
|
|
D) Return true (all data references satisfy vect_supportable_dr_alignment).
|
|
|
|
Note, Possibility 3 above (which is peeling and versioning together) is not
|
|
being done at this time. */
|
|
|
|
/* (1) Peeling to force alignment. */
|
|
|
|
/* (1.1) Decide whether to perform peeling, and how many iterations to peel:
|
|
Considerations:
|
|
+ How many accesses will become aligned due to the peeling
|
|
- How many accesses will become unaligned due to the peeling,
|
|
and the cost of misaligned accesses.
|
|
- The cost of peeling (the extra runtime checks, the increase
|
|
in code size). */
|
|
|
|
FOR_EACH_VEC_ELT (datarefs, i, dr)
|
|
{
|
|
stmt = DR_STMT (dr);
|
|
stmt_info = vinfo_for_stmt (stmt);
|
|
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info))
|
|
continue;
|
|
|
|
/* For interleaving, only the alignment of the first access
|
|
matters. */
|
|
if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
|
|
&& GROUP_FIRST_ELEMENT (stmt_info) != stmt)
|
|
continue;
|
|
|
|
/* For invariant accesses there is nothing to enhance. */
|
|
if (integer_zerop (DR_STEP (dr)))
|
|
continue;
|
|
|
|
/* Strided loads perform only component accesses, alignment is
|
|
irrelevant for them. */
|
|
if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
|
|
continue;
|
|
|
|
supportable_dr_alignment = vect_supportable_dr_alignment (dr, true);
|
|
do_peeling = vector_alignment_reachable_p (dr);
|
|
if (do_peeling)
|
|
{
|
|
if (known_alignment_for_access_p (dr))
|
|
{
|
|
unsigned int npeel_tmp;
|
|
bool negative = tree_int_cst_compare (DR_STEP (dr),
|
|
size_zero_node) < 0;
|
|
|
|
/* Save info about DR in the hash table. */
|
|
if (!LOOP_VINFO_PEELING_HTAB (loop_vinfo).is_created ())
|
|
LOOP_VINFO_PEELING_HTAB (loop_vinfo).create (1);
|
|
|
|
vectype = STMT_VINFO_VECTYPE (stmt_info);
|
|
nelements = TYPE_VECTOR_SUBPARTS (vectype);
|
|
mis = DR_MISALIGNMENT (dr) / GET_MODE_SIZE (TYPE_MODE (
|
|
TREE_TYPE (DR_REF (dr))));
|
|
npeel_tmp = (negative
|
|
? (mis - nelements) : (nelements - mis))
|
|
& (nelements - 1);
|
|
|
|
/* For multiple types, it is possible that the bigger type access
|
|
will have more than one peeling option. E.g., a loop with two
|
|
types: one of size (vector size / 4), and the other one of
|
|
size (vector size / 8). Vectorization factor will 8. If both
|
|
access are misaligned by 3, the first one needs one scalar
|
|
iteration to be aligned, and the second one needs 5. But the
|
|
the first one will be aligned also by peeling 5 scalar
|
|
iterations, and in that case both accesses will be aligned.
|
|
Hence, except for the immediate peeling amount, we also want
|
|
to try to add full vector size, while we don't exceed
|
|
vectorization factor.
|
|
We do this automtically for cost model, since we calculate cost
|
|
for every peeling option. */
|
|
if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
|
|
possible_npeel_number = vf /nelements;
|
|
|
|
/* Handle the aligned case. We may decide to align some other
|
|
access, making DR unaligned. */
|
|
if (DR_MISALIGNMENT (dr) == 0)
|
|
{
|
|
npeel_tmp = 0;
|
|
if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
|
|
possible_npeel_number++;
|
|
}
|
|
|
|
for (j = 0; j < possible_npeel_number; j++)
|
|
{
|
|
gcc_assert (npeel_tmp <= vf);
|
|
vect_peeling_hash_insert (loop_vinfo, dr, npeel_tmp);
|
|
npeel_tmp += nelements;
|
|
}
|
|
|
|
all_misalignments_unknown = false;
|
|
/* Data-ref that was chosen for the case that all the
|
|
misalignments are unknown is not relevant anymore, since we
|
|
have a data-ref with known alignment. */
|
|
dr0 = NULL;
|
|
}
|
|
else
|
|
{
|
|
/* If we don't know any misalignment values, we prefer
|
|
peeling for data-ref that has the maximum number of data-refs
|
|
with the same alignment, unless the target prefers to align
|
|
stores over load. */
|
|
if (all_misalignments_unknown)
|
|
{
|
|
unsigned same_align_drs
|
|
= STMT_VINFO_SAME_ALIGN_REFS (stmt_info).length ();
|
|
if (!dr0
|
|
|| same_align_drs_max < same_align_drs)
|
|
{
|
|
same_align_drs_max = same_align_drs;
|
|
dr0 = dr;
|
|
}
|
|
/* For data-refs with the same number of related
|
|
accesses prefer the one where the misalign
|
|
computation will be invariant in the outermost loop. */
|
|
else if (same_align_drs_max == same_align_drs)
|
|
{
|
|
struct loop *ivloop0, *ivloop;
|
|
ivloop0 = outermost_invariant_loop_for_expr
|
|
(loop, DR_BASE_ADDRESS (dr0));
|
|
ivloop = outermost_invariant_loop_for_expr
|
|
(loop, DR_BASE_ADDRESS (dr));
|
|
if ((ivloop && !ivloop0)
|
|
|| (ivloop && ivloop0
|
|
&& flow_loop_nested_p (ivloop, ivloop0)))
|
|
dr0 = dr;
|
|
}
|
|
|
|
if (!first_store && DR_IS_WRITE (dr))
|
|
first_store = dr;
|
|
}
|
|
|
|
/* If there are both known and unknown misaligned accesses in the
|
|
loop, we choose peeling amount according to the known
|
|
accesses. */
|
|
if (!supportable_dr_alignment)
|
|
{
|
|
dr0 = dr;
|
|
if (!first_store && DR_IS_WRITE (dr))
|
|
first_store = dr;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (!aligned_access_p (dr))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"vector alignment may not be reachable\n");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Check if we can possibly peel the loop. */
|
|
if (!vect_can_advance_ivs_p (loop_vinfo)
|
|
|| !slpeel_can_duplicate_loop_p (loop, single_exit (loop)))
|
|
do_peeling = false;
|
|
|
|
if (do_peeling && all_misalignments_unknown
|
|
&& vect_supportable_dr_alignment (dr0, false))
|
|
{
|
|
|
|
/* Check if the target requires to prefer stores over loads, i.e., if
|
|
misaligned stores are more expensive than misaligned loads (taking
|
|
drs with same alignment into account). */
|
|
if (first_store && DR_IS_READ (dr0))
|
|
{
|
|
unsigned int load_inside_cost = 0, load_outside_cost = 0;
|
|
unsigned int store_inside_cost = 0, store_outside_cost = 0;
|
|
unsigned int load_inside_penalty = 0, load_outside_penalty = 0;
|
|
unsigned int store_inside_penalty = 0, store_outside_penalty = 0;
|
|
stmt_vector_for_cost dummy;
|
|
dummy.create (2);
|
|
|
|
vect_get_data_access_cost (dr0, &load_inside_cost, &load_outside_cost,
|
|
&dummy);
|
|
vect_get_data_access_cost (first_store, &store_inside_cost,
|
|
&store_outside_cost, &dummy);
|
|
|
|
dummy.release ();
|
|
|
|
/* Calculate the penalty for leaving FIRST_STORE unaligned (by
|
|
aligning the load DR0). */
|
|
load_inside_penalty = store_inside_cost;
|
|
load_outside_penalty = store_outside_cost;
|
|
for (i = 0;
|
|
STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (
|
|
DR_STMT (first_store))).iterate (i, &dr);
|
|
i++)
|
|
if (DR_IS_READ (dr))
|
|
{
|
|
load_inside_penalty += load_inside_cost;
|
|
load_outside_penalty += load_outside_cost;
|
|
}
|
|
else
|
|
{
|
|
load_inside_penalty += store_inside_cost;
|
|
load_outside_penalty += store_outside_cost;
|
|
}
|
|
|
|
/* Calculate the penalty for leaving DR0 unaligned (by
|
|
aligning the FIRST_STORE). */
|
|
store_inside_penalty = load_inside_cost;
|
|
store_outside_penalty = load_outside_cost;
|
|
for (i = 0;
|
|
STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (
|
|
DR_STMT (dr0))).iterate (i, &dr);
|
|
i++)
|
|
if (DR_IS_READ (dr))
|
|
{
|
|
store_inside_penalty += load_inside_cost;
|
|
store_outside_penalty += load_outside_cost;
|
|
}
|
|
else
|
|
{
|
|
store_inside_penalty += store_inside_cost;
|
|
store_outside_penalty += store_outside_cost;
|
|
}
|
|
|
|
if (load_inside_penalty > store_inside_penalty
|
|
|| (load_inside_penalty == store_inside_penalty
|
|
&& load_outside_penalty > store_outside_penalty))
|
|
dr0 = first_store;
|
|
}
|
|
|
|
/* In case there are only loads with different unknown misalignments, use
|
|
peeling only if it may help to align other accesses in the loop. */
|
|
if (!first_store
|
|
&& !STMT_VINFO_SAME_ALIGN_REFS (
|
|
vinfo_for_stmt (DR_STMT (dr0))).length ()
|
|
&& vect_supportable_dr_alignment (dr0, false)
|
|
!= dr_unaligned_supported)
|
|
do_peeling = false;
|
|
}
|
|
|
|
if (do_peeling && !dr0)
|
|
{
|
|
/* Peeling is possible, but there is no data access that is not supported
|
|
unless aligned. So we try to choose the best possible peeling. */
|
|
|
|
/* We should get here only if there are drs with known misalignment. */
|
|
gcc_assert (!all_misalignments_unknown);
|
|
|
|
/* Choose the best peeling from the hash table. */
|
|
dr0 = vect_peeling_hash_choose_best_peeling (loop_vinfo, &npeel,
|
|
&body_cost_vec);
|
|
if (!dr0 || !npeel)
|
|
do_peeling = false;
|
|
}
|
|
|
|
if (do_peeling)
|
|
{
|
|
stmt = DR_STMT (dr0);
|
|
stmt_info = vinfo_for_stmt (stmt);
|
|
vectype = STMT_VINFO_VECTYPE (stmt_info);
|
|
nelements = TYPE_VECTOR_SUBPARTS (vectype);
|
|
|
|
if (known_alignment_for_access_p (dr0))
|
|
{
|
|
bool negative = tree_int_cst_compare (DR_STEP (dr0),
|
|
size_zero_node) < 0;
|
|
if (!npeel)
|
|
{
|
|
/* Since it's known at compile time, compute the number of
|
|
iterations in the peeled loop (the peeling factor) for use in
|
|
updating DR_MISALIGNMENT values. The peeling factor is the
|
|
vectorization factor minus the misalignment as an element
|
|
count. */
|
|
mis = DR_MISALIGNMENT (dr0);
|
|
mis /= GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr0))));
|
|
npeel = ((negative ? mis - nelements : nelements - mis)
|
|
& (nelements - 1));
|
|
}
|
|
|
|
/* For interleaved data access every iteration accesses all the
|
|
members of the group, therefore we divide the number of iterations
|
|
by the group size. */
|
|
stmt_info = vinfo_for_stmt (DR_STMT (dr0));
|
|
if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
|
|
npeel /= GROUP_SIZE (stmt_info);
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Try peeling by %d\n", npeel);
|
|
}
|
|
|
|
/* Ensure that all data refs can be vectorized after the peel. */
|
|
FOR_EACH_VEC_ELT (datarefs, i, dr)
|
|
{
|
|
int save_misalignment;
|
|
|
|
if (dr == dr0)
|
|
continue;
|
|
|
|
stmt = DR_STMT (dr);
|
|
stmt_info = vinfo_for_stmt (stmt);
|
|
/* For interleaving, only the alignment of the first access
|
|
matters. */
|
|
if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
|
|
&& GROUP_FIRST_ELEMENT (stmt_info) != stmt)
|
|
continue;
|
|
|
|
/* Strided loads perform only component accesses, alignment is
|
|
irrelevant for them. */
|
|
if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
|
|
continue;
|
|
|
|
save_misalignment = DR_MISALIGNMENT (dr);
|
|
vect_update_misalignment_for_peel (dr, dr0, npeel);
|
|
supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
|
|
SET_DR_MISALIGNMENT (dr, save_misalignment);
|
|
|
|
if (!supportable_dr_alignment)
|
|
{
|
|
do_peeling = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (do_peeling && known_alignment_for_access_p (dr0) && npeel == 0)
|
|
{
|
|
stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
|
|
if (!stat)
|
|
do_peeling = false;
|
|
else
|
|
{
|
|
body_cost_vec.release ();
|
|
return stat;
|
|
}
|
|
}
|
|
|
|
if (do_peeling)
|
|
{
|
|
unsigned max_allowed_peel
|
|
= PARAM_VALUE (PARAM_VECT_MAX_PEELING_FOR_ALIGNMENT);
|
|
if (max_allowed_peel != (unsigned)-1)
|
|
{
|
|
unsigned max_peel = npeel;
|
|
if (max_peel == 0)
|
|
{
|
|
gimple dr_stmt = DR_STMT (dr0);
|
|
stmt_vec_info vinfo = vinfo_for_stmt (dr_stmt);
|
|
tree vtype = STMT_VINFO_VECTYPE (vinfo);
|
|
max_peel = TYPE_VECTOR_SUBPARTS (vtype) - 1;
|
|
}
|
|
if (max_peel > max_allowed_peel)
|
|
{
|
|
do_peeling = false;
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Disable peeling, max peels reached: %d\n", max_peel);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (do_peeling)
|
|
{
|
|
stmt_info_for_cost *si;
|
|
void *data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
|
|
|
|
/* (1.2) Update the DR_MISALIGNMENT of each data reference DR_i.
|
|
If the misalignment of DR_i is identical to that of dr0 then set
|
|
DR_MISALIGNMENT (DR_i) to zero. If the misalignment of DR_i and
|
|
dr0 are known at compile time then increment DR_MISALIGNMENT (DR_i)
|
|
by the peeling factor times the element size of DR_i (MOD the
|
|
vectorization factor times the size). Otherwise, the
|
|
misalignment of DR_i must be set to unknown. */
|
|
FOR_EACH_VEC_ELT (datarefs, i, dr)
|
|
if (dr != dr0)
|
|
vect_update_misalignment_for_peel (dr, dr0, npeel);
|
|
|
|
LOOP_VINFO_UNALIGNED_DR (loop_vinfo) = dr0;
|
|
if (npeel)
|
|
LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) = npeel;
|
|
else
|
|
LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
|
|
= DR_MISALIGNMENT (dr0);
|
|
SET_DR_MISALIGNMENT (dr0, 0);
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Alignment of access forced using peeling.\n");
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Peeling for alignment will be applied.\n");
|
|
}
|
|
/* We've delayed passing the inside-loop peeling costs to the
|
|
target cost model until we were sure peeling would happen.
|
|
Do so now. */
|
|
if (body_cost_vec.exists ())
|
|
{
|
|
FOR_EACH_VEC_ELT (body_cost_vec, i, si)
|
|
{
|
|
struct _stmt_vec_info *stmt_info
|
|
= si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
|
|
(void) add_stmt_cost (data, si->count, si->kind, stmt_info,
|
|
si->misalign, vect_body);
|
|
}
|
|
body_cost_vec.release ();
|
|
}
|
|
|
|
stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
|
|
gcc_assert (stat);
|
|
return stat;
|
|
}
|
|
}
|
|
|
|
body_cost_vec.release ();
|
|
|
|
/* (2) Versioning to force alignment. */
|
|
|
|
/* Try versioning if:
|
|
1) optimize loop for speed
|
|
2) there is at least one unsupported misaligned data ref with an unknown
|
|
misalignment, and
|
|
3) all misaligned data refs with a known misalignment are supported, and
|
|
4) the number of runtime alignment checks is within reason. */
|
|
|
|
do_versioning =
|
|
optimize_loop_nest_for_speed_p (loop)
|
|
&& (!loop->inner); /* FORNOW */
|
|
|
|
if (do_versioning)
|
|
{
|
|
FOR_EACH_VEC_ELT (datarefs, i, dr)
|
|
{
|
|
stmt = DR_STMT (dr);
|
|
stmt_info = vinfo_for_stmt (stmt);
|
|
|
|
/* For interleaving, only the alignment of the first access
|
|
matters. */
|
|
if (aligned_access_p (dr)
|
|
|| (STMT_VINFO_GROUPED_ACCESS (stmt_info)
|
|
&& GROUP_FIRST_ELEMENT (stmt_info) != stmt))
|
|
continue;
|
|
|
|
/* Strided loads perform only component accesses, alignment is
|
|
irrelevant for them. */
|
|
if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
|
|
continue;
|
|
|
|
supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
|
|
|
|
if (!supportable_dr_alignment)
|
|
{
|
|
gimple stmt;
|
|
int mask;
|
|
tree vectype;
|
|
|
|
if (known_alignment_for_access_p (dr)
|
|
|| LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ()
|
|
>= (unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS))
|
|
{
|
|
do_versioning = false;
|
|
break;
|
|
}
|
|
|
|
stmt = DR_STMT (dr);
|
|
vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
|
|
gcc_assert (vectype);
|
|
|
|
/* The rightmost bits of an aligned address must be zeros.
|
|
Construct the mask needed for this test. For example,
|
|
GET_MODE_SIZE for the vector mode V4SI is 16 bytes so the
|
|
mask must be 15 = 0xf. */
|
|
mask = GET_MODE_SIZE (TYPE_MODE (vectype)) - 1;
|
|
|
|
/* FORNOW: use the same mask to test all potentially unaligned
|
|
references in the loop. The vectorizer currently supports
|
|
a single vector size, see the reference to
|
|
GET_MODE_NUNITS (TYPE_MODE (vectype)) where the
|
|
vectorization factor is computed. */
|
|
gcc_assert (!LOOP_VINFO_PTR_MASK (loop_vinfo)
|
|
|| LOOP_VINFO_PTR_MASK (loop_vinfo) == mask);
|
|
LOOP_VINFO_PTR_MASK (loop_vinfo) = mask;
|
|
LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).safe_push (
|
|
DR_STMT (dr));
|
|
}
|
|
}
|
|
|
|
/* Versioning requires at least one misaligned data reference. */
|
|
if (!LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
|
|
do_versioning = false;
|
|
else if (!do_versioning)
|
|
LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).truncate (0);
|
|
}
|
|
|
|
if (do_versioning)
|
|
{
|
|
vec<gimple> may_misalign_stmts
|
|
= LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
|
|
gimple stmt;
|
|
|
|
/* It can now be assumed that the data references in the statements
|
|
in LOOP_VINFO_MAY_MISALIGN_STMTS will be aligned in the version
|
|
of the loop being vectorized. */
|
|
FOR_EACH_VEC_ELT (may_misalign_stmts, i, stmt)
|
|
{
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
dr = STMT_VINFO_DATA_REF (stmt_info);
|
|
SET_DR_MISALIGNMENT (dr, 0);
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Alignment of access forced using versioning.\n");
|
|
}
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Versioning for alignment will be applied.\n");
|
|
|
|
/* Peeling and versioning can't be done together at this time. */
|
|
gcc_assert (! (do_peeling && do_versioning));
|
|
|
|
stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
|
|
gcc_assert (stat);
|
|
return stat;
|
|
}
|
|
|
|
/* This point is reached if neither peeling nor versioning is being done. */
|
|
gcc_assert (! (do_peeling || do_versioning));
|
|
|
|
stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
|
|
return stat;
|
|
}
|
|
|
|
|
|
/* Function vect_find_same_alignment_drs.
|
|
|
|
Update group and alignment relations according to the chosen
|
|
vectorization factor. */
|
|
|
|
static void
|
|
vect_find_same_alignment_drs (struct data_dependence_relation *ddr,
|
|
loop_vec_info loop_vinfo)
|
|
{
|
|
unsigned int i;
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
|
struct data_reference *dra = DDR_A (ddr);
|
|
struct data_reference *drb = DDR_B (ddr);
|
|
stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
|
|
stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
|
|
int dra_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dra))));
|
|
int drb_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (drb))));
|
|
lambda_vector dist_v;
|
|
unsigned int loop_depth;
|
|
|
|
if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
|
|
return;
|
|
|
|
if (dra == drb)
|
|
return;
|
|
|
|
if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
|
|
return;
|
|
|
|
/* Loop-based vectorization and known data dependence. */
|
|
if (DDR_NUM_DIST_VECTS (ddr) == 0)
|
|
return;
|
|
|
|
/* Data-dependence analysis reports a distance vector of zero
|
|
for data-references that overlap only in the first iteration
|
|
but have different sign step (see PR45764).
|
|
So as a sanity check require equal DR_STEP. */
|
|
if (!operand_equal_p (DR_STEP (dra), DR_STEP (drb), 0))
|
|
return;
|
|
|
|
loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
|
|
FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
|
|
{
|
|
int dist = dist_v[loop_depth];
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"dependence distance = %d.\n", dist);
|
|
|
|
/* Same loop iteration. */
|
|
if (dist == 0
|
|
|| (dist % vectorization_factor == 0 && dra_size == drb_size))
|
|
{
|
|
/* Two references with distance zero have the same alignment. */
|
|
STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_a).safe_push (drb);
|
|
STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_b).safe_push (dra);
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"accesses have the same alignment.\n");
|
|
dump_printf (MSG_NOTE,
|
|
"dependence distance modulo vf == 0 between ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
|
|
dump_printf (MSG_NOTE, " and ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Function vect_analyze_data_refs_alignment
|
|
|
|
Analyze the alignment of the data-references in the loop.
|
|
Return FALSE if a data reference is found that cannot be vectorized. */
|
|
|
|
bool
|
|
vect_analyze_data_refs_alignment (loop_vec_info loop_vinfo,
|
|
bb_vec_info bb_vinfo)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"=== vect_analyze_data_refs_alignment ===\n");
|
|
|
|
/* Mark groups of data references with same alignment using
|
|
data dependence information. */
|
|
if (loop_vinfo)
|
|
{
|
|
vec<ddr_p> ddrs = LOOP_VINFO_DDRS (loop_vinfo);
|
|
struct data_dependence_relation *ddr;
|
|
unsigned int i;
|
|
|
|
FOR_EACH_VEC_ELT (ddrs, i, ddr)
|
|
vect_find_same_alignment_drs (ddr, loop_vinfo);
|
|
}
|
|
|
|
if (!vect_compute_data_refs_alignment (loop_vinfo, bb_vinfo))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: can't calculate alignment "
|
|
"for data ref.\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Analyze groups of accesses: check that DR belongs to a group of
|
|
accesses of legal size, step, etc. Detect gaps, single element
|
|
interleaving, and other special cases. Set grouped access info.
|
|
Collect groups of strided stores for further use in SLP analysis. */
|
|
|
|
static bool
|
|
vect_analyze_group_access (struct data_reference *dr)
|
|
{
|
|
tree step = DR_STEP (dr);
|
|
tree scalar_type = TREE_TYPE (DR_REF (dr));
|
|
HOST_WIDE_INT type_size = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
|
|
gimple stmt = DR_STMT (dr);
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
|
bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
|
|
HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
|
|
HOST_WIDE_INT groupsize, last_accessed_element = 1;
|
|
bool slp_impossible = false;
|
|
struct loop *loop = NULL;
|
|
|
|
if (loop_vinfo)
|
|
loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
|
|
/* For interleaving, GROUPSIZE is STEP counted in elements, i.e., the
|
|
size of the interleaving group (including gaps). */
|
|
groupsize = absu_hwi (dr_step) / type_size;
|
|
|
|
/* Not consecutive access is possible only if it is a part of interleaving. */
|
|
if (!GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
|
|
{
|
|
/* Check if it this DR is a part of interleaving, and is a single
|
|
element of the group that is accessed in the loop. */
|
|
|
|
/* Gaps are supported only for loads. STEP must be a multiple of the type
|
|
size. The size of the group must be a power of 2. */
|
|
if (DR_IS_READ (dr)
|
|
&& (dr_step % type_size) == 0
|
|
&& groupsize > 0
|
|
&& exact_log2 (groupsize) != -1)
|
|
{
|
|
GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = stmt;
|
|
GROUP_SIZE (vinfo_for_stmt (stmt)) = groupsize;
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Detected single element interleaving ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr));
|
|
dump_printf (MSG_NOTE, " step ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM, step);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
|
|
if (loop_vinfo)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Data access with gaps requires scalar "
|
|
"epilogue loop\n");
|
|
if (loop->inner)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"Peeling for outer loop is not"
|
|
" supported\n");
|
|
return false;
|
|
}
|
|
|
|
LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = true;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not consecutive access ");
|
|
dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
|
|
dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
|
|
}
|
|
|
|
if (bb_vinfo)
|
|
{
|
|
/* Mark the statement as unvectorizable. */
|
|
STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) == stmt)
|
|
{
|
|
/* First stmt in the interleaving chain. Check the chain. */
|
|
gimple next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmt));
|
|
struct data_reference *data_ref = dr;
|
|
unsigned int count = 1;
|
|
tree prev_init = DR_INIT (data_ref);
|
|
gimple prev = stmt;
|
|
HOST_WIDE_INT diff, gaps = 0;
|
|
unsigned HOST_WIDE_INT count_in_bytes;
|
|
|
|
while (next)
|
|
{
|
|
/* Skip same data-refs. In case that two or more stmts share
|
|
data-ref (supported only for loads), we vectorize only the first
|
|
stmt, and the rest get their vectorized loads from the first
|
|
one. */
|
|
if (!tree_int_cst_compare (DR_INIT (data_ref),
|
|
DR_INIT (STMT_VINFO_DATA_REF (
|
|
vinfo_for_stmt (next)))))
|
|
{
|
|
if (DR_IS_WRITE (data_ref))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"Two store stmts share the same dr.\n");
|
|
return false;
|
|
}
|
|
|
|
/* For load use the same data-ref load. */
|
|
GROUP_SAME_DR_STMT (vinfo_for_stmt (next)) = prev;
|
|
|
|
prev = next;
|
|
next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
|
|
continue;
|
|
}
|
|
|
|
prev = next;
|
|
data_ref = STMT_VINFO_DATA_REF (vinfo_for_stmt (next));
|
|
|
|
/* All group members have the same STEP by construction. */
|
|
gcc_checking_assert (operand_equal_p (DR_STEP (data_ref), step, 0));
|
|
|
|
/* Check that the distance between two accesses is equal to the type
|
|
size. Otherwise, we have gaps. */
|
|
diff = (TREE_INT_CST_LOW (DR_INIT (data_ref))
|
|
- TREE_INT_CST_LOW (prev_init)) / type_size;
|
|
if (diff != 1)
|
|
{
|
|
/* FORNOW: SLP of accesses with gaps is not supported. */
|
|
slp_impossible = true;
|
|
if (DR_IS_WRITE (data_ref))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"interleaved store with gaps\n");
|
|
return false;
|
|
}
|
|
|
|
gaps += diff - 1;
|
|
}
|
|
|
|
last_accessed_element += diff;
|
|
|
|
/* Store the gap from the previous member of the group. If there is no
|
|
gap in the access, GROUP_GAP is always 1. */
|
|
GROUP_GAP (vinfo_for_stmt (next)) = diff;
|
|
|
|
prev_init = DR_INIT (data_ref);
|
|
next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
|
|
/* Count the number of data-refs in the chain. */
|
|
count++;
|
|
}
|
|
|
|
/* COUNT is the number of accesses found, we multiply it by the size of
|
|
the type to get COUNT_IN_BYTES. */
|
|
count_in_bytes = type_size * count;
|
|
|
|
/* Check that the size of the interleaving (including gaps) is not
|
|
greater than STEP. */
|
|
if (dr_step != 0
|
|
&& absu_hwi (dr_step) < count_in_bytes + gaps * type_size)
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"interleaving size is greater than step for ");
|
|
dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
|
|
DR_REF (dr));
|
|
dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Check that the size of the interleaving is equal to STEP for stores,
|
|
i.e., that there are no gaps. */
|
|
if (dr_step != 0
|
|
&& absu_hwi (dr_step) != count_in_bytes)
|
|
{
|
|
if (DR_IS_READ (dr))
|
|
{
|
|
slp_impossible = true;
|
|
/* There is a gap after the last load in the group. This gap is a
|
|
difference between the groupsize and the number of elements.
|
|
When there is no gap, this difference should be 0. */
|
|
GROUP_GAP (vinfo_for_stmt (stmt)) = groupsize - count;
|
|
}
|
|
else
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"interleaved store with gaps\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Check that STEP is a multiple of type size. */
|
|
if (dr_step != 0
|
|
&& (dr_step % type_size) != 0)
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"step is not a multiple of type size: step ");
|
|
dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, step);
|
|
dump_printf (MSG_MISSED_OPTIMIZATION, " size ");
|
|
dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
|
|
TYPE_SIZE_UNIT (scalar_type));
|
|
dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if (groupsize == 0)
|
|
groupsize = count;
|
|
|
|
GROUP_SIZE (vinfo_for_stmt (stmt)) = groupsize;
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Detected interleaving of size %d\n", (int)groupsize);
|
|
|
|
/* SLP: create an SLP data structure for every interleaving group of
|
|
stores for further analysis in vect_analyse_slp. */
|
|
if (DR_IS_WRITE (dr) && !slp_impossible)
|
|
{
|
|
if (loop_vinfo)
|
|
LOOP_VINFO_GROUPED_STORES (loop_vinfo).safe_push (stmt);
|
|
if (bb_vinfo)
|
|
BB_VINFO_GROUPED_STORES (bb_vinfo).safe_push (stmt);
|
|
}
|
|
|
|
/* There is a gap in the end of the group. */
|
|
if (groupsize - last_accessed_element > 0 && loop_vinfo)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"Data access with gaps requires scalar "
|
|
"epilogue loop\n");
|
|
if (loop->inner)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"Peeling for outer loop is not supported\n");
|
|
return false;
|
|
}
|
|
|
|
LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = true;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Analyze the access pattern of the data-reference DR.
|
|
In case of non-consecutive accesses call vect_analyze_group_access() to
|
|
analyze groups of accesses. */
|
|
|
|
static bool
|
|
vect_analyze_data_ref_access (struct data_reference *dr)
|
|
{
|
|
tree step = DR_STEP (dr);
|
|
tree scalar_type = TREE_TYPE (DR_REF (dr));
|
|
gimple stmt = DR_STMT (dr);
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
|
struct loop *loop = NULL;
|
|
|
|
if (loop_vinfo)
|
|
loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
|
|
if (loop_vinfo && !step)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"bad data-ref access in loop\n");
|
|
return false;
|
|
}
|
|
|
|
/* Allow invariant loads in not nested loops. */
|
|
if (loop_vinfo && integer_zerop (step))
|
|
{
|
|
GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
|
|
if (nested_in_vect_loop_p (loop, stmt))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"zero step in inner loop of nest\n");
|
|
return false;
|
|
}
|
|
return DR_IS_READ (dr);
|
|
}
|
|
|
|
if (loop && nested_in_vect_loop_p (loop, stmt))
|
|
{
|
|
/* Interleaved accesses are not yet supported within outer-loop
|
|
vectorization for references in the inner-loop. */
|
|
GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
|
|
|
|
/* For the rest of the analysis we use the outer-loop step. */
|
|
step = STMT_VINFO_DR_STEP (stmt_info);
|
|
if (integer_zerop (step))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"zero step in outer loop.\n");
|
|
if (DR_IS_READ (dr))
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Consecutive? */
|
|
if (TREE_CODE (step) == INTEGER_CST)
|
|
{
|
|
HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
|
|
if (!tree_int_cst_compare (step, TYPE_SIZE_UNIT (scalar_type))
|
|
|| (dr_step < 0
|
|
&& !compare_tree_int (TYPE_SIZE_UNIT (scalar_type), -dr_step)))
|
|
{
|
|
/* Mark that it is not interleaving. */
|
|
GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (loop && nested_in_vect_loop_p (loop, stmt))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"grouped access in outer loop.\n");
|
|
return false;
|
|
}
|
|
|
|
/* Assume this is a DR handled by non-constant strided load case. */
|
|
if (TREE_CODE (step) != INTEGER_CST)
|
|
return STMT_VINFO_STRIDE_LOAD_P (stmt_info);
|
|
|
|
/* Not consecutive access - check if it's a part of interleaving group. */
|
|
return vect_analyze_group_access (dr);
|
|
}
|
|
|
|
|
|
|
|
/* A helper function used in the comparator function to sort data
|
|
references. T1 and T2 are two data references to be compared.
|
|
The function returns -1, 0, or 1. */
|
|
|
|
static int
|
|
compare_tree (tree t1, tree t2)
|
|
{
|
|
int i, cmp;
|
|
enum tree_code code;
|
|
char tclass;
|
|
|
|
if (t1 == t2)
|
|
return 0;
|
|
if (t1 == NULL)
|
|
return -1;
|
|
if (t2 == NULL)
|
|
return 1;
|
|
|
|
|
|
if (TREE_CODE (t1) != TREE_CODE (t2))
|
|
return TREE_CODE (t1) < TREE_CODE (t2) ? -1 : 1;
|
|
|
|
code = TREE_CODE (t1);
|
|
switch (code)
|
|
{
|
|
/* For const values, we can just use hash values for comparisons. */
|
|
case INTEGER_CST:
|
|
case REAL_CST:
|
|
case FIXED_CST:
|
|
case STRING_CST:
|
|
case COMPLEX_CST:
|
|
case VECTOR_CST:
|
|
{
|
|
hashval_t h1 = iterative_hash_expr (t1, 0);
|
|
hashval_t h2 = iterative_hash_expr (t2, 0);
|
|
if (h1 != h2)
|
|
return h1 < h2 ? -1 : 1;
|
|
break;
|
|
}
|
|
|
|
case SSA_NAME:
|
|
cmp = compare_tree (SSA_NAME_VAR (t1), SSA_NAME_VAR (t2));
|
|
if (cmp != 0)
|
|
return cmp;
|
|
|
|
if (SSA_NAME_VERSION (t1) != SSA_NAME_VERSION (t2))
|
|
return SSA_NAME_VERSION (t1) < SSA_NAME_VERSION (t2) ? -1 : 1;
|
|
break;
|
|
|
|
default:
|
|
tclass = TREE_CODE_CLASS (code);
|
|
|
|
/* For var-decl, we could compare their UIDs. */
|
|
if (tclass == tcc_declaration)
|
|
{
|
|
if (DECL_UID (t1) != DECL_UID (t2))
|
|
return DECL_UID (t1) < DECL_UID (t2) ? -1 : 1;
|
|
break;
|
|
}
|
|
|
|
/* For expressions with operands, compare their operands recursively. */
|
|
for (i = TREE_OPERAND_LENGTH (t1) - 1; i >= 0; --i)
|
|
{
|
|
cmp = compare_tree (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
|
|
if (cmp != 0)
|
|
return cmp;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Compare two data-references DRA and DRB to group them into chunks
|
|
suitable for grouping. */
|
|
|
|
static int
|
|
dr_group_sort_cmp (const void *dra_, const void *drb_)
|
|
{
|
|
data_reference_p dra = *(data_reference_p *)const_cast<void *>(dra_);
|
|
data_reference_p drb = *(data_reference_p *)const_cast<void *>(drb_);
|
|
int cmp;
|
|
|
|
/* Stabilize sort. */
|
|
if (dra == drb)
|
|
return 0;
|
|
|
|
/* Ordering of DRs according to base. */
|
|
if (!operand_equal_p (DR_BASE_ADDRESS (dra), DR_BASE_ADDRESS (drb), 0))
|
|
{
|
|
cmp = compare_tree (DR_BASE_ADDRESS (dra), DR_BASE_ADDRESS (drb));
|
|
if (cmp != 0)
|
|
return cmp;
|
|
}
|
|
|
|
/* And according to DR_OFFSET. */
|
|
if (!dr_equal_offsets_p (dra, drb))
|
|
{
|
|
cmp = compare_tree (DR_OFFSET (dra), DR_OFFSET (drb));
|
|
if (cmp != 0)
|
|
return cmp;
|
|
}
|
|
|
|
/* Put reads before writes. */
|
|
if (DR_IS_READ (dra) != DR_IS_READ (drb))
|
|
return DR_IS_READ (dra) ? -1 : 1;
|
|
|
|
/* Then sort after access size. */
|
|
if (!operand_equal_p (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))),
|
|
TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))), 0))
|
|
{
|
|
cmp = compare_tree (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))),
|
|
TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))));
|
|
if (cmp != 0)
|
|
return cmp;
|
|
}
|
|
|
|
/* And after step. */
|
|
if (!operand_equal_p (DR_STEP (dra), DR_STEP (drb), 0))
|
|
{
|
|
cmp = compare_tree (DR_STEP (dra), DR_STEP (drb));
|
|
if (cmp != 0)
|
|
return cmp;
|
|
}
|
|
|
|
/* Then sort after DR_INIT. In case of identical DRs sort after stmt UID. */
|
|
cmp = tree_int_cst_compare (DR_INIT (dra), DR_INIT (drb));
|
|
if (cmp == 0)
|
|
return gimple_uid (DR_STMT (dra)) < gimple_uid (DR_STMT (drb)) ? -1 : 1;
|
|
return cmp;
|
|
}
|
|
|
|
/* Function vect_analyze_data_ref_accesses.
|
|
|
|
Analyze the access pattern of all the data references in the loop.
|
|
|
|
FORNOW: the only access pattern that is considered vectorizable is a
|
|
simple step 1 (consecutive) access.
|
|
|
|
FORNOW: handle only arrays and pointer accesses. */
|
|
|
|
bool
|
|
vect_analyze_data_ref_accesses (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo)
|
|
{
|
|
unsigned int i;
|
|
vec<data_reference_p> datarefs;
|
|
struct data_reference *dr;
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"=== vect_analyze_data_ref_accesses ===\n");
|
|
|
|
if (loop_vinfo)
|
|
datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
|
|
else
|
|
datarefs = BB_VINFO_DATAREFS (bb_vinfo);
|
|
|
|
if (datarefs.is_empty ())
|
|
return true;
|
|
|
|
/* Sort the array of datarefs to make building the interleaving chains
|
|
linear. Don't modify the original vector's order, it is needed for
|
|
determining what dependencies are reversed. */
|
|
vec<data_reference_p> datarefs_copy = datarefs.copy ();
|
|
datarefs_copy.qsort (dr_group_sort_cmp);
|
|
|
|
/* Build the interleaving chains. */
|
|
for (i = 0; i < datarefs_copy.length () - 1;)
|
|
{
|
|
data_reference_p dra = datarefs_copy[i];
|
|
stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
|
|
stmt_vec_info lastinfo = NULL;
|
|
for (i = i + 1; i < datarefs_copy.length (); ++i)
|
|
{
|
|
data_reference_p drb = datarefs_copy[i];
|
|
stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
|
|
|
|
/* ??? Imperfect sorting (non-compatible types, non-modulo
|
|
accesses, same accesses) can lead to a group to be artificially
|
|
split here as we don't just skip over those. If it really
|
|
matters we can push those to a worklist and re-iterate
|
|
over them. The we can just skip ahead to the next DR here. */
|
|
|
|
/* Check that the data-refs have same first location (except init)
|
|
and they are both either store or load (not load and store). */
|
|
if (DR_IS_READ (dra) != DR_IS_READ (drb)
|
|
|| !operand_equal_p (DR_BASE_ADDRESS (dra),
|
|
DR_BASE_ADDRESS (drb), 0)
|
|
|| !dr_equal_offsets_p (dra, drb))
|
|
break;
|
|
|
|
/* Check that the data-refs have the same constant size and step. */
|
|
tree sza = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra)));
|
|
tree szb = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb)));
|
|
if (!tree_fits_uhwi_p (sza)
|
|
|| !tree_fits_uhwi_p (szb)
|
|
|| !tree_int_cst_equal (sza, szb)
|
|
|| !tree_fits_shwi_p (DR_STEP (dra))
|
|
|| !tree_fits_shwi_p (DR_STEP (drb))
|
|
|| !tree_int_cst_equal (DR_STEP (dra), DR_STEP (drb)))
|
|
break;
|
|
|
|
/* Do not place the same access in the interleaving chain twice. */
|
|
if (tree_int_cst_compare (DR_INIT (dra), DR_INIT (drb)) == 0)
|
|
break;
|
|
|
|
/* Check the types are compatible.
|
|
??? We don't distinguish this during sorting. */
|
|
if (!types_compatible_p (TREE_TYPE (DR_REF (dra)),
|
|
TREE_TYPE (DR_REF (drb))))
|
|
break;
|
|
|
|
/* Sorting has ensured that DR_INIT (dra) <= DR_INIT (drb). */
|
|
HOST_WIDE_INT init_a = TREE_INT_CST_LOW (DR_INIT (dra));
|
|
HOST_WIDE_INT init_b = TREE_INT_CST_LOW (DR_INIT (drb));
|
|
gcc_assert (init_a < init_b);
|
|
|
|
/* If init_b == init_a + the size of the type * k, we have an
|
|
interleaving, and DRA is accessed before DRB. */
|
|
HOST_WIDE_INT type_size_a = tree_to_uhwi (sza);
|
|
if ((init_b - init_a) % type_size_a != 0)
|
|
break;
|
|
|
|
/* The step (if not zero) is greater than the difference between
|
|
data-refs' inits. This splits groups into suitable sizes. */
|
|
HOST_WIDE_INT step = tree_to_shwi (DR_STEP (dra));
|
|
if (step != 0 && step <= (init_b - init_a))
|
|
break;
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Detected interleaving ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
|
|
dump_printf (MSG_NOTE, " and ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
|
|
/* Link the found element into the group list. */
|
|
if (!GROUP_FIRST_ELEMENT (stmtinfo_a))
|
|
{
|
|
GROUP_FIRST_ELEMENT (stmtinfo_a) = DR_STMT (dra);
|
|
lastinfo = stmtinfo_a;
|
|
}
|
|
GROUP_FIRST_ELEMENT (stmtinfo_b) = DR_STMT (dra);
|
|
GROUP_NEXT_ELEMENT (lastinfo) = DR_STMT (drb);
|
|
lastinfo = stmtinfo_b;
|
|
}
|
|
}
|
|
|
|
FOR_EACH_VEC_ELT (datarefs_copy, i, dr)
|
|
if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr)))
|
|
&& !vect_analyze_data_ref_access (dr))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: complicated access pattern.\n");
|
|
|
|
if (bb_vinfo)
|
|
{
|
|
/* Mark the statement as not vectorizable. */
|
|
STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
datarefs_copy.release ();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
datarefs_copy.release ();
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Operator == between two dr_with_seg_len objects.
|
|
|
|
This equality operator is used to make sure two data refs
|
|
are the same one so that we will consider to combine the
|
|
aliasing checks of those two pairs of data dependent data
|
|
refs. */
|
|
|
|
static bool
|
|
operator == (const dr_with_seg_len& d1,
|
|
const dr_with_seg_len& d2)
|
|
{
|
|
return operand_equal_p (DR_BASE_ADDRESS (d1.dr),
|
|
DR_BASE_ADDRESS (d2.dr), 0)
|
|
&& compare_tree (d1.offset, d2.offset) == 0
|
|
&& compare_tree (d1.seg_len, d2.seg_len) == 0;
|
|
}
|
|
|
|
/* Function comp_dr_with_seg_len_pair.
|
|
|
|
Comparison function for sorting objects of dr_with_seg_len_pair_t
|
|
so that we can combine aliasing checks in one scan. */
|
|
|
|
static int
|
|
comp_dr_with_seg_len_pair (const void *p1_, const void *p2_)
|
|
{
|
|
const dr_with_seg_len_pair_t* p1 = (const dr_with_seg_len_pair_t *) p1_;
|
|
const dr_with_seg_len_pair_t* p2 = (const dr_with_seg_len_pair_t *) p2_;
|
|
|
|
const dr_with_seg_len &p11 = p1->first,
|
|
&p12 = p1->second,
|
|
&p21 = p2->first,
|
|
&p22 = p2->second;
|
|
|
|
/* For DR pairs (a, b) and (c, d), we only consider to merge the alias checks
|
|
if a and c have the same basic address snd step, and b and d have the same
|
|
address and step. Therefore, if any a&c or b&d don't have the same address
|
|
and step, we don't care the order of those two pairs after sorting. */
|
|
int comp_res;
|
|
|
|
if ((comp_res = compare_tree (DR_BASE_ADDRESS (p11.dr),
|
|
DR_BASE_ADDRESS (p21.dr))) != 0)
|
|
return comp_res;
|
|
if ((comp_res = compare_tree (DR_BASE_ADDRESS (p12.dr),
|
|
DR_BASE_ADDRESS (p22.dr))) != 0)
|
|
return comp_res;
|
|
if ((comp_res = compare_tree (DR_STEP (p11.dr), DR_STEP (p21.dr))) != 0)
|
|
return comp_res;
|
|
if ((comp_res = compare_tree (DR_STEP (p12.dr), DR_STEP (p22.dr))) != 0)
|
|
return comp_res;
|
|
if ((comp_res = compare_tree (p11.offset, p21.offset)) != 0)
|
|
return comp_res;
|
|
if ((comp_res = compare_tree (p12.offset, p22.offset)) != 0)
|
|
return comp_res;
|
|
|
|
return 0;
|
|
}
|
|
|
|
template <class T> static void
|
|
swap (T& a, T& b)
|
|
{
|
|
T c (a);
|
|
a = b;
|
|
b = c;
|
|
}
|
|
|
|
/* Function vect_vfa_segment_size.
|
|
|
|
Create an expression that computes the size of segment
|
|
that will be accessed for a data reference. The functions takes into
|
|
account that realignment loads may access one more vector.
|
|
|
|
Input:
|
|
DR: The data reference.
|
|
LENGTH_FACTOR: segment length to consider.
|
|
|
|
Return an expression whose value is the size of segment which will be
|
|
accessed by DR. */
|
|
|
|
static tree
|
|
vect_vfa_segment_size (struct data_reference *dr, tree length_factor)
|
|
{
|
|
tree segment_length;
|
|
|
|
if (integer_zerop (DR_STEP (dr)))
|
|
segment_length = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
|
|
else
|
|
segment_length = size_binop (MULT_EXPR,
|
|
fold_convert (sizetype, DR_STEP (dr)),
|
|
fold_convert (sizetype, length_factor));
|
|
|
|
if (vect_supportable_dr_alignment (dr, false)
|
|
== dr_explicit_realign_optimized)
|
|
{
|
|
tree vector_size = TYPE_SIZE_UNIT
|
|
(STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr))));
|
|
|
|
segment_length = size_binop (PLUS_EXPR, segment_length, vector_size);
|
|
}
|
|
return segment_length;
|
|
}
|
|
|
|
/* Function vect_prune_runtime_alias_test_list.
|
|
|
|
Prune a list of ddrs to be tested at run-time by versioning for alias.
|
|
Merge several alias checks into one if possible.
|
|
Return FALSE if resulting list of ddrs is longer then allowed by
|
|
PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS, otherwise return TRUE. */
|
|
|
|
bool
|
|
vect_prune_runtime_alias_test_list (loop_vec_info loop_vinfo)
|
|
{
|
|
vec<ddr_p> may_alias_ddrs =
|
|
LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo);
|
|
vec<dr_with_seg_len_pair_t>& comp_alias_ddrs =
|
|
LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
|
|
int vect_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
|
tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
|
|
|
|
ddr_p ddr;
|
|
unsigned int i;
|
|
tree length_factor;
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"=== vect_prune_runtime_alias_test_list ===\n");
|
|
|
|
if (may_alias_ddrs.is_empty ())
|
|
return true;
|
|
|
|
/* Basically, for each pair of dependent data refs store_ptr_0
|
|
and load_ptr_0, we create an expression:
|
|
|
|
((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
|
|
|| (load_ptr_0 + load_segment_length_0) <= store_ptr_0))
|
|
|
|
for aliasing checks. However, in some cases we can decrease
|
|
the number of checks by combining two checks into one. For
|
|
example, suppose we have another pair of data refs store_ptr_0
|
|
and load_ptr_1, and if the following condition is satisfied:
|
|
|
|
load_ptr_0 < load_ptr_1 &&
|
|
load_ptr_1 - load_ptr_0 - load_segment_length_0 < store_segment_length_0
|
|
|
|
(this condition means, in each iteration of vectorized loop,
|
|
the accessed memory of store_ptr_0 cannot be between the memory
|
|
of load_ptr_0 and load_ptr_1.)
|
|
|
|
we then can use only the following expression to finish the
|
|
alising checks between store_ptr_0 & load_ptr_0 and
|
|
store_ptr_0 & load_ptr_1:
|
|
|
|
((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
|
|
|| (load_ptr_1 + load_segment_length_1 <= store_ptr_0))
|
|
|
|
Note that we only consider that load_ptr_0 and load_ptr_1 have the
|
|
same basic address. */
|
|
|
|
comp_alias_ddrs.create (may_alias_ddrs.length ());
|
|
|
|
/* First, we collect all data ref pairs for aliasing checks. */
|
|
FOR_EACH_VEC_ELT (may_alias_ddrs, i, ddr)
|
|
{
|
|
struct data_reference *dr_a, *dr_b;
|
|
gimple dr_group_first_a, dr_group_first_b;
|
|
tree segment_length_a, segment_length_b;
|
|
gimple stmt_a, stmt_b;
|
|
|
|
dr_a = DDR_A (ddr);
|
|
stmt_a = DR_STMT (DDR_A (ddr));
|
|
dr_group_first_a = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_a));
|
|
if (dr_group_first_a)
|
|
{
|
|
stmt_a = dr_group_first_a;
|
|
dr_a = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_a));
|
|
}
|
|
|
|
dr_b = DDR_B (ddr);
|
|
stmt_b = DR_STMT (DDR_B (ddr));
|
|
dr_group_first_b = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_b));
|
|
if (dr_group_first_b)
|
|
{
|
|
stmt_b = dr_group_first_b;
|
|
dr_b = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_b));
|
|
}
|
|
|
|
if (!operand_equal_p (DR_STEP (dr_a), DR_STEP (dr_b), 0))
|
|
length_factor = scalar_loop_iters;
|
|
else
|
|
length_factor = size_int (vect_factor);
|
|
segment_length_a = vect_vfa_segment_size (dr_a, length_factor);
|
|
segment_length_b = vect_vfa_segment_size (dr_b, length_factor);
|
|
|
|
dr_with_seg_len_pair_t dr_with_seg_len_pair
|
|
(dr_with_seg_len (dr_a, segment_length_a),
|
|
dr_with_seg_len (dr_b, segment_length_b));
|
|
|
|
if (compare_tree (DR_BASE_ADDRESS (dr_a), DR_BASE_ADDRESS (dr_b)) > 0)
|
|
swap (dr_with_seg_len_pair.first, dr_with_seg_len_pair.second);
|
|
|
|
comp_alias_ddrs.safe_push (dr_with_seg_len_pair);
|
|
}
|
|
|
|
/* Second, we sort the collected data ref pairs so that we can scan
|
|
them once to combine all possible aliasing checks. */
|
|
comp_alias_ddrs.qsort (comp_dr_with_seg_len_pair);
|
|
|
|
/* Third, we scan the sorted dr pairs and check if we can combine
|
|
alias checks of two neighbouring dr pairs. */
|
|
for (size_t i = 1; i < comp_alias_ddrs.length (); ++i)
|
|
{
|
|
/* Deal with two ddrs (dr_a1, dr_b1) and (dr_a2, dr_b2). */
|
|
dr_with_seg_len *dr_a1 = &comp_alias_ddrs[i-1].first,
|
|
*dr_b1 = &comp_alias_ddrs[i-1].second,
|
|
*dr_a2 = &comp_alias_ddrs[i].first,
|
|
*dr_b2 = &comp_alias_ddrs[i].second;
|
|
|
|
/* Remove duplicate data ref pairs. */
|
|
if (*dr_a1 == *dr_a2 && *dr_b1 == *dr_b2)
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"found equal ranges ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM,
|
|
DR_REF (dr_a1->dr));
|
|
dump_printf (MSG_NOTE, ", ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM,
|
|
DR_REF (dr_b1->dr));
|
|
dump_printf (MSG_NOTE, " and ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM,
|
|
DR_REF (dr_a2->dr));
|
|
dump_printf (MSG_NOTE, ", ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM,
|
|
DR_REF (dr_b2->dr));
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
|
|
comp_alias_ddrs.ordered_remove (i--);
|
|
continue;
|
|
}
|
|
|
|
if (*dr_a1 == *dr_a2 || *dr_b1 == *dr_b2)
|
|
{
|
|
/* We consider the case that DR_B1 and DR_B2 are same memrefs,
|
|
and DR_A1 and DR_A2 are two consecutive memrefs. */
|
|
if (*dr_a1 == *dr_a2)
|
|
{
|
|
swap (dr_a1, dr_b1);
|
|
swap (dr_a2, dr_b2);
|
|
}
|
|
|
|
if (!operand_equal_p (DR_BASE_ADDRESS (dr_a1->dr),
|
|
DR_BASE_ADDRESS (dr_a2->dr),
|
|
0)
|
|
|| !tree_fits_shwi_p (dr_a1->offset)
|
|
|| !tree_fits_shwi_p (dr_a2->offset))
|
|
continue;
|
|
|
|
HOST_WIDE_INT diff = (tree_to_shwi (dr_a2->offset)
|
|
- tree_to_shwi (dr_a1->offset));
|
|
|
|
|
|
/* Now we check if the following condition is satisfied:
|
|
|
|
DIFF - SEGMENT_LENGTH_A < SEGMENT_LENGTH_B
|
|
|
|
where DIFF = DR_A2->OFFSET - DR_A1->OFFSET. However,
|
|
SEGMENT_LENGTH_A or SEGMENT_LENGTH_B may not be constant so we
|
|
have to make a best estimation. We can get the minimum value
|
|
of SEGMENT_LENGTH_B as a constant, represented by MIN_SEG_LEN_B,
|
|
then either of the following two conditions can guarantee the
|
|
one above:
|
|
|
|
1: DIFF <= MIN_SEG_LEN_B
|
|
2: DIFF - SEGMENT_LENGTH_A < MIN_SEG_LEN_B
|
|
|
|
*/
|
|
|
|
HOST_WIDE_INT min_seg_len_b = (tree_fits_shwi_p (dr_b1->seg_len)
|
|
? tree_to_shwi (dr_b1->seg_len)
|
|
: vect_factor);
|
|
|
|
if (diff <= min_seg_len_b
|
|
|| (tree_fits_shwi_p (dr_a1->seg_len)
|
|
&& diff - tree_to_shwi (dr_a1->seg_len) < min_seg_len_b))
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"merging ranges for ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM,
|
|
DR_REF (dr_a1->dr));
|
|
dump_printf (MSG_NOTE, ", ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM,
|
|
DR_REF (dr_b1->dr));
|
|
dump_printf (MSG_NOTE, " and ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM,
|
|
DR_REF (dr_a2->dr));
|
|
dump_printf (MSG_NOTE, ", ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM,
|
|
DR_REF (dr_b2->dr));
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
|
|
dr_a1->seg_len = size_binop (PLUS_EXPR,
|
|
dr_a2->seg_len, size_int (diff));
|
|
comp_alias_ddrs.ordered_remove (i--);
|
|
}
|
|
}
|
|
}
|
|
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"improved number of alias checks from %d to %d\n",
|
|
may_alias_ddrs.length (), comp_alias_ddrs.length ());
|
|
if ((int) comp_alias_ddrs.length () >
|
|
PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Check whether a non-affine read in stmt is suitable for gather load
|
|
and if so, return a builtin decl for that operation. */
|
|
|
|
tree
|
|
vect_check_gather (gimple stmt, loop_vec_info loop_vinfo, tree *basep,
|
|
tree *offp, int *scalep)
|
|
{
|
|
HOST_WIDE_INT scale = 1, pbitpos, pbitsize;
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
|
|
tree offtype = NULL_TREE;
|
|
tree decl, base, off;
|
|
enum machine_mode pmode;
|
|
int punsignedp, pvolatilep;
|
|
|
|
base = DR_REF (dr);
|
|
/* For masked loads/stores, DR_REF (dr) is an artificial MEM_REF,
|
|
see if we can use the def stmt of the address. */
|
|
if (is_gimple_call (stmt)
|
|
&& gimple_call_internal_p (stmt)
|
|
&& (gimple_call_internal_fn (stmt) == IFN_MASK_LOAD
|
|
|| gimple_call_internal_fn (stmt) == IFN_MASK_STORE)
|
|
&& TREE_CODE (base) == MEM_REF
|
|
&& TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME
|
|
&& integer_zerop (TREE_OPERAND (base, 1))
|
|
&& !expr_invariant_in_loop_p (loop, TREE_OPERAND (base, 0)))
|
|
{
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (TREE_OPERAND (base, 0));
|
|
if (is_gimple_assign (def_stmt)
|
|
&& gimple_assign_rhs_code (def_stmt) == ADDR_EXPR)
|
|
base = TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 0);
|
|
}
|
|
|
|
/* The gather builtins need address of the form
|
|
loop_invariant + vector * {1, 2, 4, 8}
|
|
or
|
|
loop_invariant + sign_extend (vector) * { 1, 2, 4, 8 }.
|
|
Unfortunately DR_BASE_ADDRESS/DR_OFFSET can be a mixture
|
|
of loop invariants/SSA_NAMEs defined in the loop, with casts,
|
|
multiplications and additions in it. To get a vector, we need
|
|
a single SSA_NAME that will be defined in the loop and will
|
|
contain everything that is not loop invariant and that can be
|
|
vectorized. The following code attempts to find such a preexistng
|
|
SSA_NAME OFF and put the loop invariants into a tree BASE
|
|
that can be gimplified before the loop. */
|
|
base = get_inner_reference (base, &pbitsize, &pbitpos, &off,
|
|
&pmode, &punsignedp, &pvolatilep, false);
|
|
gcc_assert (base != NULL_TREE && (pbitpos % BITS_PER_UNIT) == 0);
|
|
|
|
if (TREE_CODE (base) == MEM_REF)
|
|
{
|
|
if (!integer_zerop (TREE_OPERAND (base, 1)))
|
|
{
|
|
if (off == NULL_TREE)
|
|
{
|
|
offset_int moff = mem_ref_offset (base);
|
|
off = wide_int_to_tree (sizetype, moff);
|
|
}
|
|
else
|
|
off = size_binop (PLUS_EXPR, off,
|
|
fold_convert (sizetype, TREE_OPERAND (base, 1)));
|
|
}
|
|
base = TREE_OPERAND (base, 0);
|
|
}
|
|
else
|
|
base = build_fold_addr_expr (base);
|
|
|
|
if (off == NULL_TREE)
|
|
off = size_zero_node;
|
|
|
|
/* If base is not loop invariant, either off is 0, then we start with just
|
|
the constant offset in the loop invariant BASE and continue with base
|
|
as OFF, otherwise give up.
|
|
We could handle that case by gimplifying the addition of base + off
|
|
into some SSA_NAME and use that as off, but for now punt. */
|
|
if (!expr_invariant_in_loop_p (loop, base))
|
|
{
|
|
if (!integer_zerop (off))
|
|
return NULL_TREE;
|
|
off = base;
|
|
base = size_int (pbitpos / BITS_PER_UNIT);
|
|
}
|
|
/* Otherwise put base + constant offset into the loop invariant BASE
|
|
and continue with OFF. */
|
|
else
|
|
{
|
|
base = fold_convert (sizetype, base);
|
|
base = size_binop (PLUS_EXPR, base, size_int (pbitpos / BITS_PER_UNIT));
|
|
}
|
|
|
|
/* OFF at this point may be either a SSA_NAME or some tree expression
|
|
from get_inner_reference. Try to peel off loop invariants from it
|
|
into BASE as long as possible. */
|
|
STRIP_NOPS (off);
|
|
while (offtype == NULL_TREE)
|
|
{
|
|
enum tree_code code;
|
|
tree op0, op1, add = NULL_TREE;
|
|
|
|
if (TREE_CODE (off) == SSA_NAME)
|
|
{
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (off);
|
|
|
|
if (expr_invariant_in_loop_p (loop, off))
|
|
return NULL_TREE;
|
|
|
|
if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
|
|
break;
|
|
|
|
op0 = gimple_assign_rhs1 (def_stmt);
|
|
code = gimple_assign_rhs_code (def_stmt);
|
|
op1 = gimple_assign_rhs2 (def_stmt);
|
|
}
|
|
else
|
|
{
|
|
if (get_gimple_rhs_class (TREE_CODE (off)) == GIMPLE_TERNARY_RHS)
|
|
return NULL_TREE;
|
|
code = TREE_CODE (off);
|
|
extract_ops_from_tree (off, &code, &op0, &op1);
|
|
}
|
|
switch (code)
|
|
{
|
|
case POINTER_PLUS_EXPR:
|
|
case PLUS_EXPR:
|
|
if (expr_invariant_in_loop_p (loop, op0))
|
|
{
|
|
add = op0;
|
|
off = op1;
|
|
do_add:
|
|
add = fold_convert (sizetype, add);
|
|
if (scale != 1)
|
|
add = size_binop (MULT_EXPR, add, size_int (scale));
|
|
base = size_binop (PLUS_EXPR, base, add);
|
|
continue;
|
|
}
|
|
if (expr_invariant_in_loop_p (loop, op1))
|
|
{
|
|
add = op1;
|
|
off = op0;
|
|
goto do_add;
|
|
}
|
|
break;
|
|
case MINUS_EXPR:
|
|
if (expr_invariant_in_loop_p (loop, op1))
|
|
{
|
|
add = fold_convert (sizetype, op1);
|
|
add = size_binop (MINUS_EXPR, size_zero_node, add);
|
|
off = op0;
|
|
goto do_add;
|
|
}
|
|
break;
|
|
case MULT_EXPR:
|
|
if (scale == 1 && tree_fits_shwi_p (op1))
|
|
{
|
|
scale = tree_to_shwi (op1);
|
|
off = op0;
|
|
continue;
|
|
}
|
|
break;
|
|
case SSA_NAME:
|
|
off = op0;
|
|
continue;
|
|
CASE_CONVERT:
|
|
if (!POINTER_TYPE_P (TREE_TYPE (op0))
|
|
&& !INTEGRAL_TYPE_P (TREE_TYPE (op0)))
|
|
break;
|
|
if (TYPE_PRECISION (TREE_TYPE (op0))
|
|
== TYPE_PRECISION (TREE_TYPE (off)))
|
|
{
|
|
off = op0;
|
|
continue;
|
|
}
|
|
if (TYPE_PRECISION (TREE_TYPE (op0))
|
|
< TYPE_PRECISION (TREE_TYPE (off)))
|
|
{
|
|
off = op0;
|
|
offtype = TREE_TYPE (off);
|
|
STRIP_NOPS (off);
|
|
continue;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* If at the end OFF still isn't a SSA_NAME or isn't
|
|
defined in the loop, punt. */
|
|
if (TREE_CODE (off) != SSA_NAME
|
|
|| expr_invariant_in_loop_p (loop, off))
|
|
return NULL_TREE;
|
|
|
|
if (offtype == NULL_TREE)
|
|
offtype = TREE_TYPE (off);
|
|
|
|
decl = targetm.vectorize.builtin_gather (STMT_VINFO_VECTYPE (stmt_info),
|
|
offtype, scale);
|
|
if (decl == NULL_TREE)
|
|
return NULL_TREE;
|
|
|
|
if (basep)
|
|
*basep = base;
|
|
if (offp)
|
|
*offp = off;
|
|
if (scalep)
|
|
*scalep = scale;
|
|
return decl;
|
|
}
|
|
|
|
/* Function vect_analyze_data_refs.
|
|
|
|
Find all the data references in the loop or basic block.
|
|
|
|
The general structure of the analysis of data refs in the vectorizer is as
|
|
follows:
|
|
1- vect_analyze_data_refs(loop/bb): call
|
|
compute_data_dependences_for_loop/bb to find and analyze all data-refs
|
|
in the loop/bb and their dependences.
|
|
2- vect_analyze_dependences(): apply dependence testing using ddrs.
|
|
3- vect_analyze_drs_alignment(): check that ref_stmt.alignment is ok.
|
|
4- vect_analyze_drs_access(): check that ref_stmt.step is ok.
|
|
|
|
*/
|
|
|
|
bool
|
|
vect_analyze_data_refs (loop_vec_info loop_vinfo,
|
|
bb_vec_info bb_vinfo,
|
|
int *min_vf, unsigned *n_stmts)
|
|
{
|
|
struct loop *loop = NULL;
|
|
basic_block bb = NULL;
|
|
unsigned int i;
|
|
vec<data_reference_p> datarefs;
|
|
struct data_reference *dr;
|
|
tree scalar_type;
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"=== vect_analyze_data_refs ===\n");
|
|
|
|
if (loop_vinfo)
|
|
{
|
|
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
|
|
|
|
loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
|
|
if (!find_loop_nest (loop, &LOOP_VINFO_LOOP_NEST (loop_vinfo)))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: loop contains function calls"
|
|
" or data references that cannot be analyzed\n");
|
|
return false;
|
|
}
|
|
|
|
for (i = 0; i < loop->num_nodes; i++)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
|
|
for (gsi = gsi_start_bb (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gimple stmt = gsi_stmt (gsi);
|
|
if (is_gimple_debug (stmt))
|
|
continue;
|
|
++*n_stmts;
|
|
if (!find_data_references_in_stmt (loop, stmt, &datarefs))
|
|
{
|
|
if (is_gimple_call (stmt) && loop->safelen)
|
|
{
|
|
tree fndecl = gimple_call_fndecl (stmt), op;
|
|
if (fndecl != NULL_TREE)
|
|
{
|
|
struct cgraph_node *node = cgraph_get_node (fndecl);
|
|
if (node != NULL && node->simd_clones != NULL)
|
|
{
|
|
unsigned int j, n = gimple_call_num_args (stmt);
|
|
for (j = 0; j < n; j++)
|
|
{
|
|
op = gimple_call_arg (stmt, j);
|
|
if (DECL_P (op)
|
|
|| (REFERENCE_CLASS_P (op)
|
|
&& get_base_address (op)))
|
|
break;
|
|
}
|
|
op = gimple_call_lhs (stmt);
|
|
/* Ignore #pragma omp declare simd functions
|
|
if they don't have data references in the
|
|
call stmt itself. */
|
|
if (j == n
|
|
&& !(op
|
|
&& (DECL_P (op)
|
|
|| (REFERENCE_CLASS_P (op)
|
|
&& get_base_address (op)))))
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
LOOP_VINFO_DATAREFS (loop_vinfo) = datarefs;
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: loop contains function "
|
|
"calls or data references that cannot "
|
|
"be analyzed\n");
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
LOOP_VINFO_DATAREFS (loop_vinfo) = datarefs;
|
|
}
|
|
else
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
|
|
bb = BB_VINFO_BB (bb_vinfo);
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gimple stmt = gsi_stmt (gsi);
|
|
if (is_gimple_debug (stmt))
|
|
continue;
|
|
++*n_stmts;
|
|
if (!find_data_references_in_stmt (NULL, stmt,
|
|
&BB_VINFO_DATAREFS (bb_vinfo)))
|
|
{
|
|
/* Mark the rest of the basic-block as unvectorizable. */
|
|
for (; !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
stmt = gsi_stmt (gsi);
|
|
STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (stmt)) = false;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
datarefs = BB_VINFO_DATAREFS (bb_vinfo);
|
|
}
|
|
|
|
/* Go through the data-refs, check that the analysis succeeded. Update
|
|
pointer from stmt_vec_info struct to DR and vectype. */
|
|
|
|
FOR_EACH_VEC_ELT (datarefs, i, dr)
|
|
{
|
|
gimple stmt;
|
|
stmt_vec_info stmt_info;
|
|
tree base, offset, init;
|
|
bool gather = false;
|
|
bool simd_lane_access = false;
|
|
int vf;
|
|
|
|
again:
|
|
if (!dr || !DR_REF (dr))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: unhandled data-ref\n");
|
|
return false;
|
|
}
|
|
|
|
stmt = DR_STMT (dr);
|
|
stmt_info = vinfo_for_stmt (stmt);
|
|
|
|
/* Discard clobbers from the dataref vector. We will remove
|
|
clobber stmts during vectorization. */
|
|
if (gimple_clobber_p (stmt))
|
|
{
|
|
free_data_ref (dr);
|
|
if (i == datarefs.length () - 1)
|
|
{
|
|
datarefs.pop ();
|
|
break;
|
|
}
|
|
datarefs.ordered_remove (i);
|
|
dr = datarefs[i];
|
|
goto again;
|
|
}
|
|
|
|
/* Check that analysis of the data-ref succeeded. */
|
|
if (!DR_BASE_ADDRESS (dr) || !DR_OFFSET (dr) || !DR_INIT (dr)
|
|
|| !DR_STEP (dr))
|
|
{
|
|
bool maybe_gather
|
|
= DR_IS_READ (dr)
|
|
&& !TREE_THIS_VOLATILE (DR_REF (dr))
|
|
&& targetm.vectorize.builtin_gather != NULL;
|
|
bool maybe_simd_lane_access
|
|
= loop_vinfo && loop->simduid;
|
|
|
|
/* If target supports vector gather loads, or if this might be
|
|
a SIMD lane access, see if they can't be used. */
|
|
if (loop_vinfo
|
|
&& (maybe_gather || maybe_simd_lane_access)
|
|
&& !nested_in_vect_loop_p (loop, stmt))
|
|
{
|
|
struct data_reference *newdr
|
|
= create_data_ref (NULL, loop_containing_stmt (stmt),
|
|
DR_REF (dr), stmt, true);
|
|
gcc_assert (newdr != NULL && DR_REF (newdr));
|
|
if (DR_BASE_ADDRESS (newdr)
|
|
&& DR_OFFSET (newdr)
|
|
&& DR_INIT (newdr)
|
|
&& DR_STEP (newdr)
|
|
&& integer_zerop (DR_STEP (newdr)))
|
|
{
|
|
if (maybe_simd_lane_access)
|
|
{
|
|
tree off = DR_OFFSET (newdr);
|
|
STRIP_NOPS (off);
|
|
if (TREE_CODE (DR_INIT (newdr)) == INTEGER_CST
|
|
&& TREE_CODE (off) == MULT_EXPR
|
|
&& tree_fits_uhwi_p (TREE_OPERAND (off, 1)))
|
|
{
|
|
tree step = TREE_OPERAND (off, 1);
|
|
off = TREE_OPERAND (off, 0);
|
|
STRIP_NOPS (off);
|
|
if (CONVERT_EXPR_P (off)
|
|
&& TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (off,
|
|
0)))
|
|
< TYPE_PRECISION (TREE_TYPE (off)))
|
|
off = TREE_OPERAND (off, 0);
|
|
if (TREE_CODE (off) == SSA_NAME)
|
|
{
|
|
gimple def = SSA_NAME_DEF_STMT (off);
|
|
tree reft = TREE_TYPE (DR_REF (newdr));
|
|
if (is_gimple_call (def)
|
|
&& gimple_call_internal_p (def)
|
|
&& (gimple_call_internal_fn (def)
|
|
== IFN_GOMP_SIMD_LANE))
|
|
{
|
|
tree arg = gimple_call_arg (def, 0);
|
|
gcc_assert (TREE_CODE (arg) == SSA_NAME);
|
|
arg = SSA_NAME_VAR (arg);
|
|
if (arg == loop->simduid
|
|
/* For now. */
|
|
&& tree_int_cst_equal
|
|
(TYPE_SIZE_UNIT (reft),
|
|
step))
|
|
{
|
|
DR_OFFSET (newdr) = ssize_int (0);
|
|
DR_STEP (newdr) = step;
|
|
DR_ALIGNED_TO (newdr)
|
|
= size_int (BIGGEST_ALIGNMENT);
|
|
dr = newdr;
|
|
simd_lane_access = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (!simd_lane_access && maybe_gather)
|
|
{
|
|
dr = newdr;
|
|
gather = true;
|
|
}
|
|
}
|
|
if (!gather && !simd_lane_access)
|
|
free_data_ref (newdr);
|
|
}
|
|
|
|
if (!gather && !simd_lane_access)
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: data ref analysis "
|
|
"failed ");
|
|
dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
|
|
dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
|
|
}
|
|
|
|
if (bb_vinfo)
|
|
break;
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (TREE_CODE (DR_BASE_ADDRESS (dr)) == INTEGER_CST)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: base addr of dr is a "
|
|
"constant\n");
|
|
|
|
if (bb_vinfo)
|
|
break;
|
|
|
|
if (gather || simd_lane_access)
|
|
free_data_ref (dr);
|
|
return false;
|
|
}
|
|
|
|
if (TREE_THIS_VOLATILE (DR_REF (dr)))
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: volatile type ");
|
|
dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
|
|
dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
|
|
}
|
|
|
|
if (bb_vinfo)
|
|
break;
|
|
|
|
return false;
|
|
}
|
|
|
|
if (stmt_can_throw_internal (stmt))
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: statement can throw an "
|
|
"exception ");
|
|
dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
|
|
dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
|
|
}
|
|
|
|
if (bb_vinfo)
|
|
break;
|
|
|
|
if (gather || simd_lane_access)
|
|
free_data_ref (dr);
|
|
return false;
|
|
}
|
|
|
|
if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
|
|
&& DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: statement is bitfield "
|
|
"access ");
|
|
dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
|
|
dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
|
|
}
|
|
|
|
if (bb_vinfo)
|
|
break;
|
|
|
|
if (gather || simd_lane_access)
|
|
free_data_ref (dr);
|
|
return false;
|
|
}
|
|
|
|
base = unshare_expr (DR_BASE_ADDRESS (dr));
|
|
offset = unshare_expr (DR_OFFSET (dr));
|
|
init = unshare_expr (DR_INIT (dr));
|
|
|
|
if (is_gimple_call (stmt)
|
|
&& (!gimple_call_internal_p (stmt)
|
|
|| (gimple_call_internal_fn (stmt) != IFN_MASK_LOAD
|
|
&& gimple_call_internal_fn (stmt) != IFN_MASK_STORE)))
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: dr in a call ");
|
|
dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
|
|
dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
|
|
}
|
|
|
|
if (bb_vinfo)
|
|
break;
|
|
|
|
if (gather || simd_lane_access)
|
|
free_data_ref (dr);
|
|
return false;
|
|
}
|
|
|
|
/* Update DR field in stmt_vec_info struct. */
|
|
|
|
/* If the dataref is in an inner-loop of the loop that is considered for
|
|
for vectorization, we also want to analyze the access relative to
|
|
the outer-loop (DR contains information only relative to the
|
|
inner-most enclosing loop). We do that by building a reference to the
|
|
first location accessed by the inner-loop, and analyze it relative to
|
|
the outer-loop. */
|
|
if (loop && nested_in_vect_loop_p (loop, stmt))
|
|
{
|
|
tree outer_step, outer_base, outer_init;
|
|
HOST_WIDE_INT pbitsize, pbitpos;
|
|
tree poffset;
|
|
enum machine_mode pmode;
|
|
int punsignedp, pvolatilep;
|
|
affine_iv base_iv, offset_iv;
|
|
tree dinit;
|
|
|
|
/* Build a reference to the first location accessed by the
|
|
inner-loop: *(BASE+INIT). (The first location is actually
|
|
BASE+INIT+OFFSET, but we add OFFSET separately later). */
|
|
tree inner_base = build_fold_indirect_ref
|
|
(fold_build_pointer_plus (base, init));
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"analyze in outer-loop: ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM, inner_base);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
|
|
outer_base = get_inner_reference (inner_base, &pbitsize, &pbitpos,
|
|
&poffset, &pmode, &punsignedp, &pvolatilep, false);
|
|
gcc_assert (outer_base != NULL_TREE);
|
|
|
|
if (pbitpos % BITS_PER_UNIT != 0)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"failed: bit offset alignment.\n");
|
|
return false;
|
|
}
|
|
|
|
outer_base = build_fold_addr_expr (outer_base);
|
|
if (!simple_iv (loop, loop_containing_stmt (stmt), outer_base,
|
|
&base_iv, false))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"failed: evolution of base is not affine.\n");
|
|
return false;
|
|
}
|
|
|
|
if (offset)
|
|
{
|
|
if (poffset)
|
|
poffset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset), offset,
|
|
poffset);
|
|
else
|
|
poffset = offset;
|
|
}
|
|
|
|
if (!poffset)
|
|
{
|
|
offset_iv.base = ssize_int (0);
|
|
offset_iv.step = ssize_int (0);
|
|
}
|
|
else if (!simple_iv (loop, loop_containing_stmt (stmt), poffset,
|
|
&offset_iv, false))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"evolution of offset is not affine.\n");
|
|
return false;
|
|
}
|
|
|
|
outer_init = ssize_int (pbitpos / BITS_PER_UNIT);
|
|
split_constant_offset (base_iv.base, &base_iv.base, &dinit);
|
|
outer_init = size_binop (PLUS_EXPR, outer_init, dinit);
|
|
split_constant_offset (offset_iv.base, &offset_iv.base, &dinit);
|
|
outer_init = size_binop (PLUS_EXPR, outer_init, dinit);
|
|
|
|
outer_step = size_binop (PLUS_EXPR,
|
|
fold_convert (ssizetype, base_iv.step),
|
|
fold_convert (ssizetype, offset_iv.step));
|
|
|
|
STMT_VINFO_DR_STEP (stmt_info) = outer_step;
|
|
/* FIXME: Use canonicalize_base_object_address (base_iv.base); */
|
|
STMT_VINFO_DR_BASE_ADDRESS (stmt_info) = base_iv.base;
|
|
STMT_VINFO_DR_INIT (stmt_info) = outer_init;
|
|
STMT_VINFO_DR_OFFSET (stmt_info) =
|
|
fold_convert (ssizetype, offset_iv.base);
|
|
STMT_VINFO_DR_ALIGNED_TO (stmt_info) =
|
|
size_int (highest_pow2_factor (offset_iv.base));
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"\touter base_address: ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM,
|
|
STMT_VINFO_DR_BASE_ADDRESS (stmt_info));
|
|
dump_printf (MSG_NOTE, "\n\touter offset from base address: ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM,
|
|
STMT_VINFO_DR_OFFSET (stmt_info));
|
|
dump_printf (MSG_NOTE,
|
|
"\n\touter constant offset from base address: ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM,
|
|
STMT_VINFO_DR_INIT (stmt_info));
|
|
dump_printf (MSG_NOTE, "\n\touter step: ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM,
|
|
STMT_VINFO_DR_STEP (stmt_info));
|
|
dump_printf (MSG_NOTE, "\n\touter aligned to: ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM,
|
|
STMT_VINFO_DR_ALIGNED_TO (stmt_info));
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
}
|
|
|
|
if (STMT_VINFO_DATA_REF (stmt_info))
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: more than one data ref "
|
|
"in stmt: ");
|
|
dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
|
|
dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
|
|
}
|
|
|
|
if (bb_vinfo)
|
|
break;
|
|
|
|
if (gather || simd_lane_access)
|
|
free_data_ref (dr);
|
|
return false;
|
|
}
|
|
|
|
STMT_VINFO_DATA_REF (stmt_info) = dr;
|
|
if (simd_lane_access)
|
|
{
|
|
STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info) = true;
|
|
free_data_ref (datarefs[i]);
|
|
datarefs[i] = dr;
|
|
}
|
|
|
|
/* Set vectype for STMT. */
|
|
scalar_type = TREE_TYPE (DR_REF (dr));
|
|
STMT_VINFO_VECTYPE (stmt_info)
|
|
= get_vectype_for_scalar_type (scalar_type);
|
|
if (!STMT_VINFO_VECTYPE (stmt_info))
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: no vectype for stmt: ");
|
|
dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
|
|
dump_printf (MSG_MISSED_OPTIMIZATION, " scalar_type: ");
|
|
dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_DETAILS,
|
|
scalar_type);
|
|
dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
|
|
}
|
|
|
|
if (bb_vinfo)
|
|
break;
|
|
|
|
if (gather || simd_lane_access)
|
|
{
|
|
STMT_VINFO_DATA_REF (stmt_info) = NULL;
|
|
if (gather)
|
|
free_data_ref (dr);
|
|
}
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"got vectype for stmt: ");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM,
|
|
STMT_VINFO_VECTYPE (stmt_info));
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
}
|
|
|
|
/* Adjust the minimal vectorization factor according to the
|
|
vector type. */
|
|
vf = TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
|
|
if (vf > *min_vf)
|
|
*min_vf = vf;
|
|
|
|
if (gather)
|
|
{
|
|
tree off;
|
|
|
|
gather = 0 != vect_check_gather (stmt, loop_vinfo, NULL, &off, NULL);
|
|
if (gather
|
|
&& get_vectype_for_scalar_type (TREE_TYPE (off)) == NULL_TREE)
|
|
gather = false;
|
|
if (!gather)
|
|
{
|
|
STMT_VINFO_DATA_REF (stmt_info) = NULL;
|
|
free_data_ref (dr);
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: not suitable for gather "
|
|
"load ");
|
|
dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
|
|
dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
|
|
}
|
|
return false;
|
|
}
|
|
|
|
datarefs[i] = dr;
|
|
STMT_VINFO_GATHER_P (stmt_info) = true;
|
|
}
|
|
else if (loop_vinfo
|
|
&& TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
|
|
{
|
|
if (nested_in_vect_loop_p (loop, stmt)
|
|
|| !DR_IS_READ (dr))
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: not suitable for strided "
|
|
"load ");
|
|
dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
|
|
dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
|
|
}
|
|
return false;
|
|
}
|
|
STMT_VINFO_STRIDE_LOAD_P (stmt_info) = true;
|
|
}
|
|
}
|
|
|
|
/* If we stopped analysis at the first dataref we could not analyze
|
|
when trying to vectorize a basic-block mark the rest of the datarefs
|
|
as not vectorizable and truncate the vector of datarefs. That
|
|
avoids spending useless time in analyzing their dependence. */
|
|
if (i != datarefs.length ())
|
|
{
|
|
gcc_assert (bb_vinfo != NULL);
|
|
for (unsigned j = i; j < datarefs.length (); ++j)
|
|
{
|
|
data_reference_p dr = datarefs[j];
|
|
STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
|
|
free_data_ref (dr);
|
|
}
|
|
datarefs.truncate (i);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Function vect_get_new_vect_var.
|
|
|
|
Returns a name for a new variable. The current naming scheme appends the
|
|
prefix "vect_" or "vect_p" (depending on the value of VAR_KIND) to
|
|
the name of vectorizer generated variables, and appends that to NAME if
|
|
provided. */
|
|
|
|
tree
|
|
vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name)
|
|
{
|
|
const char *prefix;
|
|
tree new_vect_var;
|
|
|
|
switch (var_kind)
|
|
{
|
|
case vect_simple_var:
|
|
prefix = "vect";
|
|
break;
|
|
case vect_scalar_var:
|
|
prefix = "stmp";
|
|
break;
|
|
case vect_pointer_var:
|
|
prefix = "vectp";
|
|
break;
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
if (name)
|
|
{
|
|
char* tmp = concat (prefix, "_", name, NULL);
|
|
new_vect_var = create_tmp_reg (type, tmp);
|
|
free (tmp);
|
|
}
|
|
else
|
|
new_vect_var = create_tmp_reg (type, prefix);
|
|
|
|
return new_vect_var;
|
|
}
|
|
|
|
|
|
/* Function vect_create_addr_base_for_vector_ref.
|
|
|
|
Create an expression that computes the address of the first memory location
|
|
that will be accessed for a data reference.
|
|
|
|
Input:
|
|
STMT: The statement containing the data reference.
|
|
NEW_STMT_LIST: Must be initialized to NULL_TREE or a statement list.
|
|
OFFSET: Optional. If supplied, it is be added to the initial address.
|
|
LOOP: Specify relative to which loop-nest should the address be computed.
|
|
For example, when the dataref is in an inner-loop nested in an
|
|
outer-loop that is now being vectorized, LOOP can be either the
|
|
outer-loop, or the inner-loop. The first memory location accessed
|
|
by the following dataref ('in' points to short):
|
|
|
|
for (i=0; i<N; i++)
|
|
for (j=0; j<M; j++)
|
|
s += in[i+j]
|
|
|
|
is as follows:
|
|
if LOOP=i_loop: &in (relative to i_loop)
|
|
if LOOP=j_loop: &in+i*2B (relative to j_loop)
|
|
|
|
Output:
|
|
1. Return an SSA_NAME whose value is the address of the memory location of
|
|
the first vector of the data reference.
|
|
2. If new_stmt_list is not NULL_TREE after return then the caller must insert
|
|
these statement(s) which define the returned SSA_NAME.
|
|
|
|
FORNOW: We are only handling array accesses with step 1. */
|
|
|
|
tree
|
|
vect_create_addr_base_for_vector_ref (gimple stmt,
|
|
gimple_seq *new_stmt_list,
|
|
tree offset,
|
|
struct loop *loop)
|
|
{
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
|
|
tree data_ref_base;
|
|
const char *base_name;
|
|
tree addr_base;
|
|
tree dest;
|
|
gimple_seq seq = NULL;
|
|
tree base_offset;
|
|
tree init;
|
|
tree vect_ptr_type;
|
|
tree step = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
|
|
|
if (loop_vinfo && loop && loop != (gimple_bb (stmt))->loop_father)
|
|
{
|
|
struct loop *outer_loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
|
|
gcc_assert (nested_in_vect_loop_p (outer_loop, stmt));
|
|
|
|
data_ref_base = unshare_expr (STMT_VINFO_DR_BASE_ADDRESS (stmt_info));
|
|
base_offset = unshare_expr (STMT_VINFO_DR_OFFSET (stmt_info));
|
|
init = unshare_expr (STMT_VINFO_DR_INIT (stmt_info));
|
|
}
|
|
else
|
|
{
|
|
data_ref_base = unshare_expr (DR_BASE_ADDRESS (dr));
|
|
base_offset = unshare_expr (DR_OFFSET (dr));
|
|
init = unshare_expr (DR_INIT (dr));
|
|
}
|
|
|
|
if (loop_vinfo)
|
|
base_name = get_name (data_ref_base);
|
|
else
|
|
{
|
|
base_offset = ssize_int (0);
|
|
init = ssize_int (0);
|
|
base_name = get_name (DR_REF (dr));
|
|
}
|
|
|
|
/* Create base_offset */
|
|
base_offset = size_binop (PLUS_EXPR,
|
|
fold_convert (sizetype, base_offset),
|
|
fold_convert (sizetype, init));
|
|
|
|
if (offset)
|
|
{
|
|
offset = fold_build2 (MULT_EXPR, sizetype,
|
|
fold_convert (sizetype, offset), step);
|
|
base_offset = fold_build2 (PLUS_EXPR, sizetype,
|
|
base_offset, offset);
|
|
}
|
|
|
|
/* base + base_offset */
|
|
if (loop_vinfo)
|
|
addr_base = fold_build_pointer_plus (data_ref_base, base_offset);
|
|
else
|
|
{
|
|
addr_base = build1 (ADDR_EXPR,
|
|
build_pointer_type (TREE_TYPE (DR_REF (dr))),
|
|
unshare_expr (DR_REF (dr)));
|
|
}
|
|
|
|
vect_ptr_type = build_pointer_type (STMT_VINFO_VECTYPE (stmt_info));
|
|
addr_base = fold_convert (vect_ptr_type, addr_base);
|
|
dest = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var, base_name);
|
|
addr_base = force_gimple_operand (addr_base, &seq, false, dest);
|
|
gimple_seq_add_seq (new_stmt_list, seq);
|
|
|
|
if (DR_PTR_INFO (dr)
|
|
&& TREE_CODE (addr_base) == SSA_NAME)
|
|
{
|
|
duplicate_ssa_name_ptr_info (addr_base, DR_PTR_INFO (dr));
|
|
if (offset)
|
|
mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (addr_base));
|
|
}
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location, "created ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM, addr_base);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
|
|
return addr_base;
|
|
}
|
|
|
|
|
|
/* Function vect_create_data_ref_ptr.
|
|
|
|
Create a new pointer-to-AGGR_TYPE variable (ap), that points to the first
|
|
location accessed in the loop by STMT, along with the def-use update
|
|
chain to appropriately advance the pointer through the loop iterations.
|
|
Also set aliasing information for the pointer. This pointer is used by
|
|
the callers to this function to create a memory reference expression for
|
|
vector load/store access.
|
|
|
|
Input:
|
|
1. STMT: a stmt that references memory. Expected to be of the form
|
|
GIMPLE_ASSIGN <name, data-ref> or
|
|
GIMPLE_ASSIGN <data-ref, name>.
|
|
2. AGGR_TYPE: the type of the reference, which should be either a vector
|
|
or an array.
|
|
3. AT_LOOP: the loop where the vector memref is to be created.
|
|
4. OFFSET (optional): an offset to be added to the initial address accessed
|
|
by the data-ref in STMT.
|
|
5. BSI: location where the new stmts are to be placed if there is no loop
|
|
6. ONLY_INIT: indicate if ap is to be updated in the loop, or remain
|
|
pointing to the initial address.
|
|
|
|
Output:
|
|
1. Declare a new ptr to vector_type, and have it point to the base of the
|
|
data reference (initial addressed accessed by the data reference).
|
|
For example, for vector of type V8HI, the following code is generated:
|
|
|
|
v8hi *ap;
|
|
ap = (v8hi *)initial_address;
|
|
|
|
if OFFSET is not supplied:
|
|
initial_address = &a[init];
|
|
if OFFSET is supplied:
|
|
initial_address = &a[init + OFFSET];
|
|
|
|
Return the initial_address in INITIAL_ADDRESS.
|
|
|
|
2. If ONLY_INIT is true, just return the initial pointer. Otherwise, also
|
|
update the pointer in each iteration of the loop.
|
|
|
|
Return the increment stmt that updates the pointer in PTR_INCR.
|
|
|
|
3. Set INV_P to true if the access pattern of the data reference in the
|
|
vectorized loop is invariant. Set it to false otherwise.
|
|
|
|
4. Return the pointer. */
|
|
|
|
tree
|
|
vect_create_data_ref_ptr (gimple stmt, tree aggr_type, struct loop *at_loop,
|
|
tree offset, tree *initial_address,
|
|
gimple_stmt_iterator *gsi, gimple *ptr_incr,
|
|
bool only_init, bool *inv_p)
|
|
{
|
|
const char *base_name;
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
|
struct loop *loop = NULL;
|
|
bool nested_in_vect_loop = false;
|
|
struct loop *containing_loop = NULL;
|
|
tree aggr_ptr_type;
|
|
tree aggr_ptr;
|
|
tree new_temp;
|
|
gimple vec_stmt;
|
|
gimple_seq new_stmt_list = NULL;
|
|
edge pe = NULL;
|
|
basic_block new_bb;
|
|
tree aggr_ptr_init;
|
|
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
|
|
tree aptr;
|
|
gimple_stmt_iterator incr_gsi;
|
|
bool insert_after;
|
|
tree indx_before_incr, indx_after_incr;
|
|
gimple incr;
|
|
tree step;
|
|
bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
|
|
|
|
gcc_assert (TREE_CODE (aggr_type) == ARRAY_TYPE
|
|
|| TREE_CODE (aggr_type) == VECTOR_TYPE);
|
|
|
|
if (loop_vinfo)
|
|
{
|
|
loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
|
|
containing_loop = (gimple_bb (stmt))->loop_father;
|
|
pe = loop_preheader_edge (loop);
|
|
}
|
|
else
|
|
{
|
|
gcc_assert (bb_vinfo);
|
|
only_init = true;
|
|
*ptr_incr = NULL;
|
|
}
|
|
|
|
/* Check the step (evolution) of the load in LOOP, and record
|
|
whether it's invariant. */
|
|
if (nested_in_vect_loop)
|
|
step = STMT_VINFO_DR_STEP (stmt_info);
|
|
else
|
|
step = DR_STEP (STMT_VINFO_DATA_REF (stmt_info));
|
|
|
|
if (integer_zerop (step))
|
|
*inv_p = true;
|
|
else
|
|
*inv_p = false;
|
|
|
|
/* Create an expression for the first address accessed by this load
|
|
in LOOP. */
|
|
base_name = get_name (DR_BASE_ADDRESS (dr));
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
tree dr_base_type = TREE_TYPE (DR_BASE_OBJECT (dr));
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"create %s-pointer variable to type: ",
|
|
get_tree_code_name (TREE_CODE (aggr_type)));
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM, aggr_type);
|
|
if (TREE_CODE (dr_base_type) == ARRAY_TYPE)
|
|
dump_printf (MSG_NOTE, " vectorizing an array ref: ");
|
|
else if (TREE_CODE (dr_base_type) == VECTOR_TYPE)
|
|
dump_printf (MSG_NOTE, " vectorizing a vector ref: ");
|
|
else if (TREE_CODE (dr_base_type) == RECORD_TYPE)
|
|
dump_printf (MSG_NOTE, " vectorizing a record based array ref: ");
|
|
else
|
|
dump_printf (MSG_NOTE, " vectorizing a pointer ref: ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_BASE_OBJECT (dr));
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
|
|
/* (1) Create the new aggregate-pointer variable.
|
|
Vector and array types inherit the alias set of their component
|
|
type by default so we need to use a ref-all pointer if the data
|
|
reference does not conflict with the created aggregated data
|
|
reference because it is not addressable. */
|
|
bool need_ref_all = false;
|
|
if (!alias_sets_conflict_p (get_alias_set (aggr_type),
|
|
get_alias_set (DR_REF (dr))))
|
|
need_ref_all = true;
|
|
/* Likewise for any of the data references in the stmt group. */
|
|
else if (STMT_VINFO_GROUP_SIZE (stmt_info) > 1)
|
|
{
|
|
gimple orig_stmt = STMT_VINFO_GROUP_FIRST_ELEMENT (stmt_info);
|
|
do
|
|
{
|
|
stmt_vec_info sinfo = vinfo_for_stmt (orig_stmt);
|
|
struct data_reference *sdr = STMT_VINFO_DATA_REF (sinfo);
|
|
if (!alias_sets_conflict_p (get_alias_set (aggr_type),
|
|
get_alias_set (DR_REF (sdr))))
|
|
{
|
|
need_ref_all = true;
|
|
break;
|
|
}
|
|
orig_stmt = STMT_VINFO_GROUP_NEXT_ELEMENT (sinfo);
|
|
}
|
|
while (orig_stmt);
|
|
}
|
|
aggr_ptr_type = build_pointer_type_for_mode (aggr_type, ptr_mode,
|
|
need_ref_all);
|
|
aggr_ptr = vect_get_new_vect_var (aggr_ptr_type, vect_pointer_var, base_name);
|
|
|
|
|
|
/* Note: If the dataref is in an inner-loop nested in LOOP, and we are
|
|
vectorizing LOOP (i.e., outer-loop vectorization), we need to create two
|
|
def-use update cycles for the pointer: one relative to the outer-loop
|
|
(LOOP), which is what steps (3) and (4) below do. The other is relative
|
|
to the inner-loop (which is the inner-most loop containing the dataref),
|
|
and this is done be step (5) below.
|
|
|
|
When vectorizing inner-most loops, the vectorized loop (LOOP) is also the
|
|
inner-most loop, and so steps (3),(4) work the same, and step (5) is
|
|
redundant. Steps (3),(4) create the following:
|
|
|
|
vp0 = &base_addr;
|
|
LOOP: vp1 = phi(vp0,vp2)
|
|
...
|
|
...
|
|
vp2 = vp1 + step
|
|
goto LOOP
|
|
|
|
If there is an inner-loop nested in loop, then step (5) will also be
|
|
applied, and an additional update in the inner-loop will be created:
|
|
|
|
vp0 = &base_addr;
|
|
LOOP: vp1 = phi(vp0,vp2)
|
|
...
|
|
inner: vp3 = phi(vp1,vp4)
|
|
vp4 = vp3 + inner_step
|
|
if () goto inner
|
|
...
|
|
vp2 = vp1 + step
|
|
if () goto LOOP */
|
|
|
|
/* (2) Calculate the initial address of the aggregate-pointer, and set
|
|
the aggregate-pointer to point to it before the loop. */
|
|
|
|
/* Create: (&(base[init_val+offset]) in the loop preheader. */
|
|
|
|
new_temp = vect_create_addr_base_for_vector_ref (stmt, &new_stmt_list,
|
|
offset, loop);
|
|
if (new_stmt_list)
|
|
{
|
|
if (pe)
|
|
{
|
|
new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmt_list);
|
|
gcc_assert (!new_bb);
|
|
}
|
|
else
|
|
gsi_insert_seq_before (gsi, new_stmt_list, GSI_SAME_STMT);
|
|
}
|
|
|
|
*initial_address = new_temp;
|
|
|
|
/* Create: p = (aggr_type *) initial_base */
|
|
if (TREE_CODE (new_temp) != SSA_NAME
|
|
|| !useless_type_conversion_p (aggr_ptr_type, TREE_TYPE (new_temp)))
|
|
{
|
|
vec_stmt = gimple_build_assign (aggr_ptr,
|
|
fold_convert (aggr_ptr_type, new_temp));
|
|
aggr_ptr_init = make_ssa_name (aggr_ptr, vec_stmt);
|
|
/* Copy the points-to information if it exists. */
|
|
if (DR_PTR_INFO (dr))
|
|
duplicate_ssa_name_ptr_info (aggr_ptr_init, DR_PTR_INFO (dr));
|
|
gimple_assign_set_lhs (vec_stmt, aggr_ptr_init);
|
|
if (pe)
|
|
{
|
|
new_bb = gsi_insert_on_edge_immediate (pe, vec_stmt);
|
|
gcc_assert (!new_bb);
|
|
}
|
|
else
|
|
gsi_insert_before (gsi, vec_stmt, GSI_SAME_STMT);
|
|
}
|
|
else
|
|
aggr_ptr_init = new_temp;
|
|
|
|
/* (3) Handle the updating of the aggregate-pointer inside the loop.
|
|
This is needed when ONLY_INIT is false, and also when AT_LOOP is the
|
|
inner-loop nested in LOOP (during outer-loop vectorization). */
|
|
|
|
/* No update in loop is required. */
|
|
if (only_init && (!loop_vinfo || at_loop == loop))
|
|
aptr = aggr_ptr_init;
|
|
else
|
|
{
|
|
/* The step of the aggregate pointer is the type size. */
|
|
tree iv_step = TYPE_SIZE_UNIT (aggr_type);
|
|
/* One exception to the above is when the scalar step of the load in
|
|
LOOP is zero. In this case the step here is also zero. */
|
|
if (*inv_p)
|
|
iv_step = size_zero_node;
|
|
else if (tree_int_cst_sgn (step) == -1)
|
|
iv_step = fold_build1 (NEGATE_EXPR, TREE_TYPE (iv_step), iv_step);
|
|
|
|
standard_iv_increment_position (loop, &incr_gsi, &insert_after);
|
|
|
|
create_iv (aggr_ptr_init,
|
|
fold_convert (aggr_ptr_type, iv_step),
|
|
aggr_ptr, loop, &incr_gsi, insert_after,
|
|
&indx_before_incr, &indx_after_incr);
|
|
incr = gsi_stmt (incr_gsi);
|
|
set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo, NULL));
|
|
|
|
/* Copy the points-to information if it exists. */
|
|
if (DR_PTR_INFO (dr))
|
|
{
|
|
duplicate_ssa_name_ptr_info (indx_before_incr, DR_PTR_INFO (dr));
|
|
duplicate_ssa_name_ptr_info (indx_after_incr, DR_PTR_INFO (dr));
|
|
}
|
|
if (ptr_incr)
|
|
*ptr_incr = incr;
|
|
|
|
aptr = indx_before_incr;
|
|
}
|
|
|
|
if (!nested_in_vect_loop || only_init)
|
|
return aptr;
|
|
|
|
|
|
/* (4) Handle the updating of the aggregate-pointer inside the inner-loop
|
|
nested in LOOP, if exists. */
|
|
|
|
gcc_assert (nested_in_vect_loop);
|
|
if (!only_init)
|
|
{
|
|
standard_iv_increment_position (containing_loop, &incr_gsi,
|
|
&insert_after);
|
|
create_iv (aptr, fold_convert (aggr_ptr_type, DR_STEP (dr)), aggr_ptr,
|
|
containing_loop, &incr_gsi, insert_after, &indx_before_incr,
|
|
&indx_after_incr);
|
|
incr = gsi_stmt (incr_gsi);
|
|
set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo, NULL));
|
|
|
|
/* Copy the points-to information if it exists. */
|
|
if (DR_PTR_INFO (dr))
|
|
{
|
|
duplicate_ssa_name_ptr_info (indx_before_incr, DR_PTR_INFO (dr));
|
|
duplicate_ssa_name_ptr_info (indx_after_incr, DR_PTR_INFO (dr));
|
|
}
|
|
if (ptr_incr)
|
|
*ptr_incr = incr;
|
|
|
|
return indx_before_incr;
|
|
}
|
|
else
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
|
|
/* Function bump_vector_ptr
|
|
|
|
Increment a pointer (to a vector type) by vector-size. If requested,
|
|
i.e. if PTR-INCR is given, then also connect the new increment stmt
|
|
to the existing def-use update-chain of the pointer, by modifying
|
|
the PTR_INCR as illustrated below:
|
|
|
|
The pointer def-use update-chain before this function:
|
|
DATAREF_PTR = phi (p_0, p_2)
|
|
....
|
|
PTR_INCR: p_2 = DATAREF_PTR + step
|
|
|
|
The pointer def-use update-chain after this function:
|
|
DATAREF_PTR = phi (p_0, p_2)
|
|
....
|
|
NEW_DATAREF_PTR = DATAREF_PTR + BUMP
|
|
....
|
|
PTR_INCR: p_2 = NEW_DATAREF_PTR + step
|
|
|
|
Input:
|
|
DATAREF_PTR - ssa_name of a pointer (to vector type) that is being updated
|
|
in the loop.
|
|
PTR_INCR - optional. The stmt that updates the pointer in each iteration of
|
|
the loop. The increment amount across iterations is expected
|
|
to be vector_size.
|
|
BSI - location where the new update stmt is to be placed.
|
|
STMT - the original scalar memory-access stmt that is being vectorized.
|
|
BUMP - optional. The offset by which to bump the pointer. If not given,
|
|
the offset is assumed to be vector_size.
|
|
|
|
Output: Return NEW_DATAREF_PTR as illustrated above.
|
|
|
|
*/
|
|
|
|
tree
|
|
bump_vector_ptr (tree dataref_ptr, gimple ptr_incr, gimple_stmt_iterator *gsi,
|
|
gimple stmt, tree bump)
|
|
{
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
|
tree update = TYPE_SIZE_UNIT (vectype);
|
|
gimple incr_stmt;
|
|
ssa_op_iter iter;
|
|
use_operand_p use_p;
|
|
tree new_dataref_ptr;
|
|
|
|
if (bump)
|
|
update = bump;
|
|
|
|
new_dataref_ptr = copy_ssa_name (dataref_ptr, NULL);
|
|
incr_stmt = gimple_build_assign_with_ops (POINTER_PLUS_EXPR, new_dataref_ptr,
|
|
dataref_ptr, update);
|
|
vect_finish_stmt_generation (stmt, incr_stmt, gsi);
|
|
|
|
/* Copy the points-to information if it exists. */
|
|
if (DR_PTR_INFO (dr))
|
|
{
|
|
duplicate_ssa_name_ptr_info (new_dataref_ptr, DR_PTR_INFO (dr));
|
|
mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (new_dataref_ptr));
|
|
}
|
|
|
|
if (!ptr_incr)
|
|
return new_dataref_ptr;
|
|
|
|
/* Update the vector-pointer's cross-iteration increment. */
|
|
FOR_EACH_SSA_USE_OPERAND (use_p, ptr_incr, iter, SSA_OP_USE)
|
|
{
|
|
tree use = USE_FROM_PTR (use_p);
|
|
|
|
if (use == dataref_ptr)
|
|
SET_USE (use_p, new_dataref_ptr);
|
|
else
|
|
gcc_assert (tree_int_cst_compare (use, update) == 0);
|
|
}
|
|
|
|
return new_dataref_ptr;
|
|
}
|
|
|
|
|
|
/* Function vect_create_destination_var.
|
|
|
|
Create a new temporary of type VECTYPE. */
|
|
|
|
tree
|
|
vect_create_destination_var (tree scalar_dest, tree vectype)
|
|
{
|
|
tree vec_dest;
|
|
const char *name;
|
|
char *new_name;
|
|
tree type;
|
|
enum vect_var_kind kind;
|
|
|
|
kind = vectype ? vect_simple_var : vect_scalar_var;
|
|
type = vectype ? vectype : TREE_TYPE (scalar_dest);
|
|
|
|
gcc_assert (TREE_CODE (scalar_dest) == SSA_NAME);
|
|
|
|
name = get_name (scalar_dest);
|
|
if (name)
|
|
asprintf (&new_name, "%s_%u", name, SSA_NAME_VERSION (scalar_dest));
|
|
else
|
|
asprintf (&new_name, "_%u", SSA_NAME_VERSION (scalar_dest));
|
|
vec_dest = vect_get_new_vect_var (type, kind, new_name);
|
|
free (new_name);
|
|
|
|
return vec_dest;
|
|
}
|
|
|
|
/* Function vect_grouped_store_supported.
|
|
|
|
Returns TRUE if interleave high and interleave low permutations
|
|
are supported, and FALSE otherwise. */
|
|
|
|
bool
|
|
vect_grouped_store_supported (tree vectype, unsigned HOST_WIDE_INT count)
|
|
{
|
|
enum machine_mode mode = TYPE_MODE (vectype);
|
|
|
|
/* vect_permute_store_chain requires the group size to be equal to 3 or
|
|
be a power of two. */
|
|
if (count != 3 && exact_log2 (count) == -1)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"the size of the group of accesses"
|
|
" is not a power of 2 or not eqaul to 3\n");
|
|
return false;
|
|
}
|
|
|
|
/* Check that the permutation is supported. */
|
|
if (VECTOR_MODE_P (mode))
|
|
{
|
|
unsigned int i, nelt = GET_MODE_NUNITS (mode);
|
|
unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
|
|
|
|
if (count == 3)
|
|
{
|
|
unsigned int j0 = 0, j1 = 0, j2 = 0;
|
|
unsigned int i, j;
|
|
|
|
for (j = 0; j < 3; j++)
|
|
{
|
|
int nelt0 = ((3 - j) * nelt) % 3;
|
|
int nelt1 = ((3 - j) * nelt + 1) % 3;
|
|
int nelt2 = ((3 - j) * nelt + 2) % 3;
|
|
for (i = 0; i < nelt; i++)
|
|
{
|
|
if (3 * i + nelt0 < nelt)
|
|
sel[3 * i + nelt0] = j0++;
|
|
if (3 * i + nelt1 < nelt)
|
|
sel[3 * i + nelt1] = nelt + j1++;
|
|
if (3 * i + nelt2 < nelt)
|
|
sel[3 * i + nelt2] = 0;
|
|
}
|
|
if (!can_vec_perm_p (mode, false, sel))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf (MSG_MISSED_OPTIMIZATION,
|
|
"permutaion op not supported by target.\n");
|
|
return false;
|
|
}
|
|
|
|
for (i = 0; i < nelt; i++)
|
|
{
|
|
if (3 * i + nelt0 < nelt)
|
|
sel[3 * i + nelt0] = 3 * i + nelt0;
|
|
if (3 * i + nelt1 < nelt)
|
|
sel[3 * i + nelt1] = 3 * i + nelt1;
|
|
if (3 * i + nelt2 < nelt)
|
|
sel[3 * i + nelt2] = nelt + j2++;
|
|
}
|
|
if (!can_vec_perm_p (mode, false, sel))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf (MSG_MISSED_OPTIMIZATION,
|
|
"permutaion op not supported by target.\n");
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
/* If length is not equal to 3 then only power of 2 is supported. */
|
|
gcc_assert (exact_log2 (count) != -1);
|
|
|
|
for (i = 0; i < nelt / 2; i++)
|
|
{
|
|
sel[i * 2] = i;
|
|
sel[i * 2 + 1] = i + nelt;
|
|
}
|
|
if (can_vec_perm_p (mode, false, sel))
|
|
{
|
|
for (i = 0; i < nelt; i++)
|
|
sel[i] += nelt / 2;
|
|
if (can_vec_perm_p (mode, false, sel))
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf (MSG_MISSED_OPTIMIZATION,
|
|
"permutaion op not supported by target.\n");
|
|
return false;
|
|
}
|
|
|
|
|
|
/* Return TRUE if vec_store_lanes is available for COUNT vectors of
|
|
type VECTYPE. */
|
|
|
|
bool
|
|
vect_store_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count)
|
|
{
|
|
return vect_lanes_optab_supported_p ("vec_store_lanes",
|
|
vec_store_lanes_optab,
|
|
vectype, count);
|
|
}
|
|
|
|
|
|
/* Function vect_permute_store_chain.
|
|
|
|
Given a chain of interleaved stores in DR_CHAIN of LENGTH that must be
|
|
a power of 2 or equal to 3, generate interleave_high/low stmts to reorder
|
|
the data correctly for the stores. Return the final references for stores
|
|
in RESULT_CHAIN.
|
|
|
|
E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
|
|
The input is 4 vectors each containing 8 elements. We assign a number to
|
|
each element, the input sequence is:
|
|
|
|
1st vec: 0 1 2 3 4 5 6 7
|
|
2nd vec: 8 9 10 11 12 13 14 15
|
|
3rd vec: 16 17 18 19 20 21 22 23
|
|
4th vec: 24 25 26 27 28 29 30 31
|
|
|
|
The output sequence should be:
|
|
|
|
1st vec: 0 8 16 24 1 9 17 25
|
|
2nd vec: 2 10 18 26 3 11 19 27
|
|
3rd vec: 4 12 20 28 5 13 21 30
|
|
4th vec: 6 14 22 30 7 15 23 31
|
|
|
|
i.e., we interleave the contents of the four vectors in their order.
|
|
|
|
We use interleave_high/low instructions to create such output. The input of
|
|
each interleave_high/low operation is two vectors:
|
|
1st vec 2nd vec
|
|
0 1 2 3 4 5 6 7
|
|
the even elements of the result vector are obtained left-to-right from the
|
|
high/low elements of the first vector. The odd elements of the result are
|
|
obtained left-to-right from the high/low elements of the second vector.
|
|
The output of interleave_high will be: 0 4 1 5
|
|
and of interleave_low: 2 6 3 7
|
|
|
|
|
|
The permutation is done in log LENGTH stages. In each stage interleave_high
|
|
and interleave_low stmts are created for each pair of vectors in DR_CHAIN,
|
|
where the first argument is taken from the first half of DR_CHAIN and the
|
|
second argument from it's second half.
|
|
In our example,
|
|
|
|
I1: interleave_high (1st vec, 3rd vec)
|
|
I2: interleave_low (1st vec, 3rd vec)
|
|
I3: interleave_high (2nd vec, 4th vec)
|
|
I4: interleave_low (2nd vec, 4th vec)
|
|
|
|
The output for the first stage is:
|
|
|
|
I1: 0 16 1 17 2 18 3 19
|
|
I2: 4 20 5 21 6 22 7 23
|
|
I3: 8 24 9 25 10 26 11 27
|
|
I4: 12 28 13 29 14 30 15 31
|
|
|
|
The output of the second stage, i.e. the final result is:
|
|
|
|
I1: 0 8 16 24 1 9 17 25
|
|
I2: 2 10 18 26 3 11 19 27
|
|
I3: 4 12 20 28 5 13 21 30
|
|
I4: 6 14 22 30 7 15 23 31. */
|
|
|
|
void
|
|
vect_permute_store_chain (vec<tree> dr_chain,
|
|
unsigned int length,
|
|
gimple stmt,
|
|
gimple_stmt_iterator *gsi,
|
|
vec<tree> *result_chain)
|
|
{
|
|
tree vect1, vect2, high, low;
|
|
gimple perm_stmt;
|
|
tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
|
|
tree perm_mask_low, perm_mask_high;
|
|
tree data_ref;
|
|
tree perm3_mask_low, perm3_mask_high;
|
|
unsigned int i, n, log_length = exact_log2 (length);
|
|
unsigned int j, nelt = TYPE_VECTOR_SUBPARTS (vectype);
|
|
unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
|
|
|
|
result_chain->quick_grow (length);
|
|
memcpy (result_chain->address (), dr_chain.address (),
|
|
length * sizeof (tree));
|
|
|
|
if (length == 3)
|
|
{
|
|
unsigned int j0 = 0, j1 = 0, j2 = 0;
|
|
|
|
for (j = 0; j < 3; j++)
|
|
{
|
|
int nelt0 = ((3 - j) * nelt) % 3;
|
|
int nelt1 = ((3 - j) * nelt + 1) % 3;
|
|
int nelt2 = ((3 - j) * nelt + 2) % 3;
|
|
|
|
for (i = 0; i < nelt; i++)
|
|
{
|
|
if (3 * i + nelt0 < nelt)
|
|
sel[3 * i + nelt0] = j0++;
|
|
if (3 * i + nelt1 < nelt)
|
|
sel[3 * i + nelt1] = nelt + j1++;
|
|
if (3 * i + nelt2 < nelt)
|
|
sel[3 * i + nelt2] = 0;
|
|
}
|
|
perm3_mask_low = vect_gen_perm_mask (vectype, sel);
|
|
gcc_assert (perm3_mask_low != NULL);
|
|
|
|
for (i = 0; i < nelt; i++)
|
|
{
|
|
if (3 * i + nelt0 < nelt)
|
|
sel[3 * i + nelt0] = 3 * i + nelt0;
|
|
if (3 * i + nelt1 < nelt)
|
|
sel[3 * i + nelt1] = 3 * i + nelt1;
|
|
if (3 * i + nelt2 < nelt)
|
|
sel[3 * i + nelt2] = nelt + j2++;
|
|
}
|
|
perm3_mask_high = vect_gen_perm_mask (vectype, sel);
|
|
gcc_assert (perm3_mask_high != NULL);
|
|
|
|
vect1 = dr_chain[0];
|
|
vect2 = dr_chain[1];
|
|
|
|
/* Create interleaving stmt:
|
|
low = VEC_PERM_EXPR <vect1, vect2,
|
|
{j, nelt, *, j + 1, nelt + j + 1, *,
|
|
j + 2, nelt + j + 2, *, ...}> */
|
|
data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_low");
|
|
perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
|
|
vect1, vect2,
|
|
perm3_mask_low);
|
|
vect_finish_stmt_generation (stmt, perm_stmt, gsi);
|
|
|
|
vect1 = data_ref;
|
|
vect2 = dr_chain[2];
|
|
/* Create interleaving stmt:
|
|
low = VEC_PERM_EXPR <vect1, vect2,
|
|
{0, 1, nelt + j, 3, 4, nelt + j + 1,
|
|
6, 7, nelt + j + 2, ...}> */
|
|
data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_high");
|
|
perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
|
|
vect1, vect2,
|
|
perm3_mask_high);
|
|
vect_finish_stmt_generation (stmt, perm_stmt, gsi);
|
|
(*result_chain)[j] = data_ref;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* If length is not equal to 3 then only power of 2 is supported. */
|
|
gcc_assert (exact_log2 (length) != -1);
|
|
|
|
for (i = 0, n = nelt / 2; i < n; i++)
|
|
{
|
|
sel[i * 2] = i;
|
|
sel[i * 2 + 1] = i + nelt;
|
|
}
|
|
perm_mask_high = vect_gen_perm_mask (vectype, sel);
|
|
gcc_assert (perm_mask_high != NULL);
|
|
|
|
for (i = 0; i < nelt; i++)
|
|
sel[i] += nelt / 2;
|
|
perm_mask_low = vect_gen_perm_mask (vectype, sel);
|
|
gcc_assert (perm_mask_low != NULL);
|
|
|
|
for (i = 0, n = log_length; i < n; i++)
|
|
{
|
|
for (j = 0; j < length/2; j++)
|
|
{
|
|
vect1 = dr_chain[j];
|
|
vect2 = dr_chain[j+length/2];
|
|
|
|
/* Create interleaving stmt:
|
|
high = VEC_PERM_EXPR <vect1, vect2, {0, nelt, 1, nelt+1,
|
|
...}> */
|
|
high = make_temp_ssa_name (vectype, NULL, "vect_inter_high");
|
|
perm_stmt
|
|
= gimple_build_assign_with_ops (VEC_PERM_EXPR, high,
|
|
vect1, vect2, perm_mask_high);
|
|
vect_finish_stmt_generation (stmt, perm_stmt, gsi);
|
|
(*result_chain)[2*j] = high;
|
|
|
|
/* Create interleaving stmt:
|
|
low = VEC_PERM_EXPR <vect1, vect2,
|
|
{nelt/2, nelt*3/2, nelt/2+1, nelt*3/2+1,
|
|
...}> */
|
|
low = make_temp_ssa_name (vectype, NULL, "vect_inter_low");
|
|
perm_stmt
|
|
= gimple_build_assign_with_ops (VEC_PERM_EXPR, low,
|
|
vect1, vect2, perm_mask_low);
|
|
vect_finish_stmt_generation (stmt, perm_stmt, gsi);
|
|
(*result_chain)[2*j+1] = low;
|
|
}
|
|
memcpy (dr_chain.address (), result_chain->address (),
|
|
length * sizeof (tree));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Function vect_setup_realignment
|
|
|
|
This function is called when vectorizing an unaligned load using
|
|
the dr_explicit_realign[_optimized] scheme.
|
|
This function generates the following code at the loop prolog:
|
|
|
|
p = initial_addr;
|
|
x msq_init = *(floor(p)); # prolog load
|
|
realignment_token = call target_builtin;
|
|
loop:
|
|
x msq = phi (msq_init, ---)
|
|
|
|
The stmts marked with x are generated only for the case of
|
|
dr_explicit_realign_optimized.
|
|
|
|
The code above sets up a new (vector) pointer, pointing to the first
|
|
location accessed by STMT, and a "floor-aligned" load using that pointer.
|
|
It also generates code to compute the "realignment-token" (if the relevant
|
|
target hook was defined), and creates a phi-node at the loop-header bb
|
|
whose arguments are the result of the prolog-load (created by this
|
|
function) and the result of a load that takes place in the loop (to be
|
|
created by the caller to this function).
|
|
|
|
For the case of dr_explicit_realign_optimized:
|
|
The caller to this function uses the phi-result (msq) to create the
|
|
realignment code inside the loop, and sets up the missing phi argument,
|
|
as follows:
|
|
loop:
|
|
msq = phi (msq_init, lsq)
|
|
lsq = *(floor(p')); # load in loop
|
|
result = realign_load (msq, lsq, realignment_token);
|
|
|
|
For the case of dr_explicit_realign:
|
|
loop:
|
|
msq = *(floor(p)); # load in loop
|
|
p' = p + (VS-1);
|
|
lsq = *(floor(p')); # load in loop
|
|
result = realign_load (msq, lsq, realignment_token);
|
|
|
|
Input:
|
|
STMT - (scalar) load stmt to be vectorized. This load accesses
|
|
a memory location that may be unaligned.
|
|
BSI - place where new code is to be inserted.
|
|
ALIGNMENT_SUPPORT_SCHEME - which of the two misalignment handling schemes
|
|
is used.
|
|
|
|
Output:
|
|
REALIGNMENT_TOKEN - the result of a call to the builtin_mask_for_load
|
|
target hook, if defined.
|
|
Return value - the result of the loop-header phi node. */
|
|
|
|
tree
|
|
vect_setup_realignment (gimple stmt, gimple_stmt_iterator *gsi,
|
|
tree *realignment_token,
|
|
enum dr_alignment_support alignment_support_scheme,
|
|
tree init_addr,
|
|
struct loop **at_loop)
|
|
{
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
|
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
|
|
struct loop *loop = NULL;
|
|
edge pe = NULL;
|
|
tree scalar_dest = gimple_assign_lhs (stmt);
|
|
tree vec_dest;
|
|
gimple inc;
|
|
tree ptr;
|
|
tree data_ref;
|
|
gimple new_stmt;
|
|
basic_block new_bb;
|
|
tree msq_init = NULL_TREE;
|
|
tree new_temp;
|
|
gimple phi_stmt;
|
|
tree msq = NULL_TREE;
|
|
gimple_seq stmts = NULL;
|
|
bool inv_p;
|
|
bool compute_in_loop = false;
|
|
bool nested_in_vect_loop = false;
|
|
struct loop *containing_loop = (gimple_bb (stmt))->loop_father;
|
|
struct loop *loop_for_initial_load = NULL;
|
|
|
|
if (loop_vinfo)
|
|
{
|
|
loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
|
|
}
|
|
|
|
gcc_assert (alignment_support_scheme == dr_explicit_realign
|
|
|| alignment_support_scheme == dr_explicit_realign_optimized);
|
|
|
|
/* We need to generate three things:
|
|
1. the misalignment computation
|
|
2. the extra vector load (for the optimized realignment scheme).
|
|
3. the phi node for the two vectors from which the realignment is
|
|
done (for the optimized realignment scheme). */
|
|
|
|
/* 1. Determine where to generate the misalignment computation.
|
|
|
|
If INIT_ADDR is NULL_TREE, this indicates that the misalignment
|
|
calculation will be generated by this function, outside the loop (in the
|
|
preheader). Otherwise, INIT_ADDR had already been computed for us by the
|
|
caller, inside the loop.
|
|
|
|
Background: If the misalignment remains fixed throughout the iterations of
|
|
the loop, then both realignment schemes are applicable, and also the
|
|
misalignment computation can be done outside LOOP. This is because we are
|
|
vectorizing LOOP, and so the memory accesses in LOOP advance in steps that
|
|
are a multiple of VS (the Vector Size), and therefore the misalignment in
|
|
different vectorized LOOP iterations is always the same.
|
|
The problem arises only if the memory access is in an inner-loop nested
|
|
inside LOOP, which is now being vectorized using outer-loop vectorization.
|
|
This is the only case when the misalignment of the memory access may not
|
|
remain fixed throughout the iterations of the inner-loop (as explained in
|
|
detail in vect_supportable_dr_alignment). In this case, not only is the
|
|
optimized realignment scheme not applicable, but also the misalignment
|
|
computation (and generation of the realignment token that is passed to
|
|
REALIGN_LOAD) have to be done inside the loop.
|
|
|
|
In short, INIT_ADDR indicates whether we are in a COMPUTE_IN_LOOP mode
|
|
or not, which in turn determines if the misalignment is computed inside
|
|
the inner-loop, or outside LOOP. */
|
|
|
|
if (init_addr != NULL_TREE || !loop_vinfo)
|
|
{
|
|
compute_in_loop = true;
|
|
gcc_assert (alignment_support_scheme == dr_explicit_realign);
|
|
}
|
|
|
|
|
|
/* 2. Determine where to generate the extra vector load.
|
|
|
|
For the optimized realignment scheme, instead of generating two vector
|
|
loads in each iteration, we generate a single extra vector load in the
|
|
preheader of the loop, and in each iteration reuse the result of the
|
|
vector load from the previous iteration. In case the memory access is in
|
|
an inner-loop nested inside LOOP, which is now being vectorized using
|
|
outer-loop vectorization, we need to determine whether this initial vector
|
|
load should be generated at the preheader of the inner-loop, or can be
|
|
generated at the preheader of LOOP. If the memory access has no evolution
|
|
in LOOP, it can be generated in the preheader of LOOP. Otherwise, it has
|
|
to be generated inside LOOP (in the preheader of the inner-loop). */
|
|
|
|
if (nested_in_vect_loop)
|
|
{
|
|
tree outerloop_step = STMT_VINFO_DR_STEP (stmt_info);
|
|
bool invariant_in_outerloop =
|
|
(tree_int_cst_compare (outerloop_step, size_zero_node) == 0);
|
|
loop_for_initial_load = (invariant_in_outerloop ? loop : loop->inner);
|
|
}
|
|
else
|
|
loop_for_initial_load = loop;
|
|
if (at_loop)
|
|
*at_loop = loop_for_initial_load;
|
|
|
|
if (loop_for_initial_load)
|
|
pe = loop_preheader_edge (loop_for_initial_load);
|
|
|
|
/* 3. For the case of the optimized realignment, create the first vector
|
|
load at the loop preheader. */
|
|
|
|
if (alignment_support_scheme == dr_explicit_realign_optimized)
|
|
{
|
|
/* Create msq_init = *(floor(p1)) in the loop preheader */
|
|
|
|
gcc_assert (!compute_in_loop);
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
|
ptr = vect_create_data_ref_ptr (stmt, vectype, loop_for_initial_load,
|
|
NULL_TREE, &init_addr, NULL, &inc,
|
|
true, &inv_p);
|
|
new_temp = copy_ssa_name (ptr, NULL);
|
|
new_stmt = gimple_build_assign_with_ops
|
|
(BIT_AND_EXPR, new_temp, ptr,
|
|
build_int_cst (TREE_TYPE (ptr),
|
|
-(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
|
|
new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
|
|
gcc_assert (!new_bb);
|
|
data_ref
|
|
= build2 (MEM_REF, TREE_TYPE (vec_dest), new_temp,
|
|
build_int_cst (reference_alias_ptr_type (DR_REF (dr)), 0));
|
|
new_stmt = gimple_build_assign (vec_dest, data_ref);
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
|
gimple_assign_set_lhs (new_stmt, new_temp);
|
|
if (pe)
|
|
{
|
|
new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
|
|
gcc_assert (!new_bb);
|
|
}
|
|
else
|
|
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
|
|
|
|
msq_init = gimple_assign_lhs (new_stmt);
|
|
}
|
|
|
|
/* 4. Create realignment token using a target builtin, if available.
|
|
It is done either inside the containing loop, or before LOOP (as
|
|
determined above). */
|
|
|
|
if (targetm.vectorize.builtin_mask_for_load)
|
|
{
|
|
tree builtin_decl;
|
|
|
|
/* Compute INIT_ADDR - the initial addressed accessed by this memref. */
|
|
if (!init_addr)
|
|
{
|
|
/* Generate the INIT_ADDR computation outside LOOP. */
|
|
init_addr = vect_create_addr_base_for_vector_ref (stmt, &stmts,
|
|
NULL_TREE, loop);
|
|
if (loop)
|
|
{
|
|
pe = loop_preheader_edge (loop);
|
|
new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
|
|
gcc_assert (!new_bb);
|
|
}
|
|
else
|
|
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
|
|
}
|
|
|
|
builtin_decl = targetm.vectorize.builtin_mask_for_load ();
|
|
new_stmt = gimple_build_call (builtin_decl, 1, init_addr);
|
|
vec_dest =
|
|
vect_create_destination_var (scalar_dest,
|
|
gimple_call_return_type (new_stmt));
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
|
gimple_call_set_lhs (new_stmt, new_temp);
|
|
|
|
if (compute_in_loop)
|
|
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
|
|
else
|
|
{
|
|
/* Generate the misalignment computation outside LOOP. */
|
|
pe = loop_preheader_edge (loop);
|
|
new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
|
|
gcc_assert (!new_bb);
|
|
}
|
|
|
|
*realignment_token = gimple_call_lhs (new_stmt);
|
|
|
|
/* The result of the CALL_EXPR to this builtin is determined from
|
|
the value of the parameter and no global variables are touched
|
|
which makes the builtin a "const" function. Requiring the
|
|
builtin to have the "const" attribute makes it unnecessary
|
|
to call mark_call_clobbered. */
|
|
gcc_assert (TREE_READONLY (builtin_decl));
|
|
}
|
|
|
|
if (alignment_support_scheme == dr_explicit_realign)
|
|
return msq;
|
|
|
|
gcc_assert (!compute_in_loop);
|
|
gcc_assert (alignment_support_scheme == dr_explicit_realign_optimized);
|
|
|
|
|
|
/* 5. Create msq = phi <msq_init, lsq> in loop */
|
|
|
|
pe = loop_preheader_edge (containing_loop);
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
|
msq = make_ssa_name (vec_dest, NULL);
|
|
phi_stmt = create_phi_node (msq, containing_loop->header);
|
|
add_phi_arg (phi_stmt, msq_init, pe, UNKNOWN_LOCATION);
|
|
|
|
return msq;
|
|
}
|
|
|
|
|
|
/* Function vect_grouped_load_supported.
|
|
|
|
Returns TRUE if even and odd permutations are supported,
|
|
and FALSE otherwise. */
|
|
|
|
bool
|
|
vect_grouped_load_supported (tree vectype, unsigned HOST_WIDE_INT count)
|
|
{
|
|
enum machine_mode mode = TYPE_MODE (vectype);
|
|
|
|
/* vect_permute_load_chain requires the group size to be equal to 3 or
|
|
be a power of two. */
|
|
if (count != 3 && exact_log2 (count) == -1)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"the size of the group of accesses"
|
|
" is not a power of 2 or not equal to 3\n");
|
|
return false;
|
|
}
|
|
|
|
/* Check that the permutation is supported. */
|
|
if (VECTOR_MODE_P (mode))
|
|
{
|
|
unsigned int i, j, nelt = GET_MODE_NUNITS (mode);
|
|
unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
|
|
|
|
if (count == 3)
|
|
{
|
|
unsigned int k;
|
|
for (k = 0; k < 3; k++)
|
|
{
|
|
for (i = 0; i < nelt; i++)
|
|
if (3 * i + k < 2 * nelt)
|
|
sel[i] = 3 * i + k;
|
|
else
|
|
sel[i] = 0;
|
|
if (!can_vec_perm_p (mode, false, sel))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"shuffle of 3 loads is not supported by"
|
|
" target\n");
|
|
return false;
|
|
}
|
|
for (i = 0, j = 0; i < nelt; i++)
|
|
if (3 * i + k < 2 * nelt)
|
|
sel[i] = i;
|
|
else
|
|
sel[i] = nelt + ((nelt + k) % 3) + 3 * (j++);
|
|
if (!can_vec_perm_p (mode, false, sel))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"shuffle of 3 loads is not supported by"
|
|
" target\n");
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
/* If length is not equal to 3 then only power of 2 is supported. */
|
|
gcc_assert (exact_log2 (count) != -1);
|
|
for (i = 0; i < nelt; i++)
|
|
sel[i] = i * 2;
|
|
if (can_vec_perm_p (mode, false, sel))
|
|
{
|
|
for (i = 0; i < nelt; i++)
|
|
sel[i] = i * 2 + 1;
|
|
if (can_vec_perm_p (mode, false, sel))
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"extract even/odd not supported by target\n");
|
|
return false;
|
|
}
|
|
|
|
/* Return TRUE if vec_load_lanes is available for COUNT vectors of
|
|
type VECTYPE. */
|
|
|
|
bool
|
|
vect_load_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count)
|
|
{
|
|
return vect_lanes_optab_supported_p ("vec_load_lanes",
|
|
vec_load_lanes_optab,
|
|
vectype, count);
|
|
}
|
|
|
|
/* Function vect_permute_load_chain.
|
|
|
|
Given a chain of interleaved loads in DR_CHAIN of LENGTH that must be
|
|
a power of 2 or equal to 3, generate extract_even/odd stmts to reorder
|
|
the input data correctly. Return the final references for loads in
|
|
RESULT_CHAIN.
|
|
|
|
E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
|
|
The input is 4 vectors each containing 8 elements. We assign a number to each
|
|
element, the input sequence is:
|
|
|
|
1st vec: 0 1 2 3 4 5 6 7
|
|
2nd vec: 8 9 10 11 12 13 14 15
|
|
3rd vec: 16 17 18 19 20 21 22 23
|
|
4th vec: 24 25 26 27 28 29 30 31
|
|
|
|
The output sequence should be:
|
|
|
|
1st vec: 0 4 8 12 16 20 24 28
|
|
2nd vec: 1 5 9 13 17 21 25 29
|
|
3rd vec: 2 6 10 14 18 22 26 30
|
|
4th vec: 3 7 11 15 19 23 27 31
|
|
|
|
i.e., the first output vector should contain the first elements of each
|
|
interleaving group, etc.
|
|
|
|
We use extract_even/odd instructions to create such output. The input of
|
|
each extract_even/odd operation is two vectors
|
|
1st vec 2nd vec
|
|
0 1 2 3 4 5 6 7
|
|
|
|
and the output is the vector of extracted even/odd elements. The output of
|
|
extract_even will be: 0 2 4 6
|
|
and of extract_odd: 1 3 5 7
|
|
|
|
|
|
The permutation is done in log LENGTH stages. In each stage extract_even
|
|
and extract_odd stmts are created for each pair of vectors in DR_CHAIN in
|
|
their order. In our example,
|
|
|
|
E1: extract_even (1st vec, 2nd vec)
|
|
E2: extract_odd (1st vec, 2nd vec)
|
|
E3: extract_even (3rd vec, 4th vec)
|
|
E4: extract_odd (3rd vec, 4th vec)
|
|
|
|
The output for the first stage will be:
|
|
|
|
E1: 0 2 4 6 8 10 12 14
|
|
E2: 1 3 5 7 9 11 13 15
|
|
E3: 16 18 20 22 24 26 28 30
|
|
E4: 17 19 21 23 25 27 29 31
|
|
|
|
In order to proceed and create the correct sequence for the next stage (or
|
|
for the correct output, if the second stage is the last one, as in our
|
|
example), we first put the output of extract_even operation and then the
|
|
output of extract_odd in RESULT_CHAIN (which is then copied to DR_CHAIN).
|
|
The input for the second stage is:
|
|
|
|
1st vec (E1): 0 2 4 6 8 10 12 14
|
|
2nd vec (E3): 16 18 20 22 24 26 28 30
|
|
3rd vec (E2): 1 3 5 7 9 11 13 15
|
|
4th vec (E4): 17 19 21 23 25 27 29 31
|
|
|
|
The output of the second stage:
|
|
|
|
E1: 0 4 8 12 16 20 24 28
|
|
E2: 2 6 10 14 18 22 26 30
|
|
E3: 1 5 9 13 17 21 25 29
|
|
E4: 3 7 11 15 19 23 27 31
|
|
|
|
And RESULT_CHAIN after reordering:
|
|
|
|
1st vec (E1): 0 4 8 12 16 20 24 28
|
|
2nd vec (E3): 1 5 9 13 17 21 25 29
|
|
3rd vec (E2): 2 6 10 14 18 22 26 30
|
|
4th vec (E4): 3 7 11 15 19 23 27 31. */
|
|
|
|
static void
|
|
vect_permute_load_chain (vec<tree> dr_chain,
|
|
unsigned int length,
|
|
gimple stmt,
|
|
gimple_stmt_iterator *gsi,
|
|
vec<tree> *result_chain)
|
|
{
|
|
tree data_ref, first_vect, second_vect;
|
|
tree perm_mask_even, perm_mask_odd;
|
|
tree perm3_mask_low, perm3_mask_high;
|
|
gimple perm_stmt;
|
|
tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
|
|
unsigned int i, j, log_length = exact_log2 (length);
|
|
unsigned nelt = TYPE_VECTOR_SUBPARTS (vectype);
|
|
unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
|
|
|
|
result_chain->quick_grow (length);
|
|
memcpy (result_chain->address (), dr_chain.address (),
|
|
length * sizeof (tree));
|
|
|
|
if (length == 3)
|
|
{
|
|
unsigned int k;
|
|
|
|
for (k = 0; k < 3; k++)
|
|
{
|
|
for (i = 0; i < nelt; i++)
|
|
if (3 * i + k < 2 * nelt)
|
|
sel[i] = 3 * i + k;
|
|
else
|
|
sel[i] = 0;
|
|
perm3_mask_low = vect_gen_perm_mask (vectype, sel);
|
|
gcc_assert (perm3_mask_low != NULL);
|
|
|
|
for (i = 0, j = 0; i < nelt; i++)
|
|
if (3 * i + k < 2 * nelt)
|
|
sel[i] = i;
|
|
else
|
|
sel[i] = nelt + ((nelt + k) % 3) + 3 * (j++);
|
|
|
|
perm3_mask_high = vect_gen_perm_mask (vectype, sel);
|
|
gcc_assert (perm3_mask_high != NULL);
|
|
|
|
first_vect = dr_chain[0];
|
|
second_vect = dr_chain[1];
|
|
|
|
/* Create interleaving stmt (low part of):
|
|
low = VEC_PERM_EXPR <first_vect, second_vect2, {k, 3 + k, 6 + k,
|
|
...}> */
|
|
data_ref = make_temp_ssa_name (vectype, NULL, "vect_suffle3_low");
|
|
perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
|
|
first_vect, second_vect,
|
|
perm3_mask_low);
|
|
vect_finish_stmt_generation (stmt, perm_stmt, gsi);
|
|
|
|
/* Create interleaving stmt (high part of):
|
|
high = VEC_PERM_EXPR <first_vect, second_vect2, {k, 3 + k, 6 + k,
|
|
...}> */
|
|
first_vect = data_ref;
|
|
second_vect = dr_chain[2];
|
|
data_ref = make_temp_ssa_name (vectype, NULL, "vect_suffle3_high");
|
|
perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
|
|
first_vect, second_vect,
|
|
perm3_mask_high);
|
|
vect_finish_stmt_generation (stmt, perm_stmt, gsi);
|
|
(*result_chain)[k] = data_ref;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* If length is not equal to 3 then only power of 2 is supported. */
|
|
gcc_assert (exact_log2 (length) != -1);
|
|
|
|
for (i = 0; i < nelt; ++i)
|
|
sel[i] = i * 2;
|
|
perm_mask_even = vect_gen_perm_mask (vectype, sel);
|
|
gcc_assert (perm_mask_even != NULL);
|
|
|
|
for (i = 0; i < nelt; ++i)
|
|
sel[i] = i * 2 + 1;
|
|
perm_mask_odd = vect_gen_perm_mask (vectype, sel);
|
|
gcc_assert (perm_mask_odd != NULL);
|
|
|
|
for (i = 0; i < log_length; i++)
|
|
{
|
|
for (j = 0; j < length; j += 2)
|
|
{
|
|
first_vect = dr_chain[j];
|
|
second_vect = dr_chain[j+1];
|
|
|
|
/* data_ref = permute_even (first_data_ref, second_data_ref); */
|
|
data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_even");
|
|
perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
|
|
first_vect, second_vect,
|
|
perm_mask_even);
|
|
vect_finish_stmt_generation (stmt, perm_stmt, gsi);
|
|
(*result_chain)[j/2] = data_ref;
|
|
|
|
/* data_ref = permute_odd (first_data_ref, second_data_ref); */
|
|
data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_odd");
|
|
perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
|
|
first_vect, second_vect,
|
|
perm_mask_odd);
|
|
vect_finish_stmt_generation (stmt, perm_stmt, gsi);
|
|
(*result_chain)[j/2+length/2] = data_ref;
|
|
}
|
|
memcpy (dr_chain.address (), result_chain->address (),
|
|
length * sizeof (tree));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Function vect_shift_permute_load_chain.
|
|
|
|
Given a chain of loads in DR_CHAIN of LENGTH 2 or 3, generate
|
|
sequence of stmts to reorder the input data accordingly.
|
|
Return the final references for loads in RESULT_CHAIN.
|
|
Return true if successed, false otherwise.
|
|
|
|
E.g., LENGTH is 3 and the scalar type is short, i.e., VF is 8.
|
|
The input is 3 vectors each containing 8 elements. We assign a
|
|
number to each element, the input sequence is:
|
|
|
|
1st vec: 0 1 2 3 4 5 6 7
|
|
2nd vec: 8 9 10 11 12 13 14 15
|
|
3rd vec: 16 17 18 19 20 21 22 23
|
|
|
|
The output sequence should be:
|
|
|
|
1st vec: 0 3 6 9 12 15 18 21
|
|
2nd vec: 1 4 7 10 13 16 19 22
|
|
3rd vec: 2 5 8 11 14 17 20 23
|
|
|
|
We use 3 shuffle instructions and 3 * 3 - 1 shifts to create such output.
|
|
|
|
First we shuffle all 3 vectors to get correct elements order:
|
|
|
|
1st vec: ( 0 3 6) ( 1 4 7) ( 2 5)
|
|
2nd vec: ( 8 11 14) ( 9 12 15) (10 13)
|
|
3rd vec: (16 19 22) (17 20 23) (18 21)
|
|
|
|
Next we unite and shift vector 3 times:
|
|
|
|
1st step:
|
|
shift right by 6 the concatenation of:
|
|
"1st vec" and "2nd vec"
|
|
( 0 3 6) ( 1 4 7) |( 2 5) _ ( 8 11 14) ( 9 12 15)| (10 13)
|
|
"2nd vec" and "3rd vec"
|
|
( 8 11 14) ( 9 12 15) |(10 13) _ (16 19 22) (17 20 23)| (18 21)
|
|
"3rd vec" and "1st vec"
|
|
(16 19 22) (17 20 23) |(18 21) _ ( 0 3 6) ( 1 4 7)| ( 2 5)
|
|
| New vectors |
|
|
|
|
So that now new vectors are:
|
|
|
|
1st vec: ( 2 5) ( 8 11 14) ( 9 12 15)
|
|
2nd vec: (10 13) (16 19 22) (17 20 23)
|
|
3rd vec: (18 21) ( 0 3 6) ( 1 4 7)
|
|
|
|
2nd step:
|
|
shift right by 5 the concatenation of:
|
|
"1st vec" and "3rd vec"
|
|
( 2 5) ( 8 11 14) |( 9 12 15) _ (18 21) ( 0 3 6)| ( 1 4 7)
|
|
"2nd vec" and "1st vec"
|
|
(10 13) (16 19 22) |(17 20 23) _ ( 2 5) ( 8 11 14)| ( 9 12 15)
|
|
"3rd vec" and "2nd vec"
|
|
(18 21) ( 0 3 6) |( 1 4 7) _ (10 13) (16 19 22)| (17 20 23)
|
|
| New vectors |
|
|
|
|
So that now new vectors are:
|
|
|
|
1st vec: ( 9 12 15) (18 21) ( 0 3 6)
|
|
2nd vec: (17 20 23) ( 2 5) ( 8 11 14)
|
|
3rd vec: ( 1 4 7) (10 13) (16 19 22) READY
|
|
|
|
3rd step:
|
|
shift right by 5 the concatenation of:
|
|
"1st vec" and "1st vec"
|
|
( 9 12 15) (18 21) |( 0 3 6) _ ( 9 12 15) (18 21)| ( 0 3 6)
|
|
shift right by 3 the concatenation of:
|
|
"2nd vec" and "2nd vec"
|
|
(17 20 23) |( 2 5) ( 8 11 14) _ (17 20 23)| ( 2 5) ( 8 11 14)
|
|
| New vectors |
|
|
|
|
So that now all vectors are READY:
|
|
1st vec: ( 0 3 6) ( 9 12 15) (18 21)
|
|
2nd vec: ( 2 5) ( 8 11 14) (17 20 23)
|
|
3rd vec: ( 1 4 7) (10 13) (16 19 22)
|
|
|
|
This algorithm is faster than one in vect_permute_load_chain if:
|
|
1. "shift of a concatination" is faster than general permutation.
|
|
This is usually so.
|
|
2. The TARGET machine can't execute vector instructions in parallel.
|
|
This is because each step of the algorithm depends on previous.
|
|
The algorithm in vect_permute_load_chain is much more parallel.
|
|
|
|
The algorithm is applicable only for LOAD CHAIN LENGTH less than VF.
|
|
*/
|
|
|
|
static bool
|
|
vect_shift_permute_load_chain (vec<tree> dr_chain,
|
|
unsigned int length,
|
|
gimple stmt,
|
|
gimple_stmt_iterator *gsi,
|
|
vec<tree> *result_chain)
|
|
{
|
|
tree vect[3], vect_shift[3], data_ref, first_vect, second_vect;
|
|
tree perm2_mask1, perm2_mask2, perm3_mask;
|
|
tree select_mask, shift1_mask, shift2_mask, shift3_mask, shift4_mask;
|
|
gimple perm_stmt;
|
|
|
|
tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
|
|
unsigned int i;
|
|
unsigned nelt = TYPE_VECTOR_SUBPARTS (vectype);
|
|
unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
|
|
|
result_chain->quick_grow (length);
|
|
memcpy (result_chain->address (), dr_chain.address (),
|
|
length * sizeof (tree));
|
|
|
|
if (length == 2 && LOOP_VINFO_VECT_FACTOR (loop_vinfo) > 4)
|
|
{
|
|
for (i = 0; i < nelt / 2; ++i)
|
|
sel[i] = i * 2;
|
|
for (i = 0; i < nelt / 2; ++i)
|
|
sel[nelt / 2 + i] = i * 2 + 1;
|
|
if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"shuffle of 2 fields structure is not \
|
|
supported by target\n");
|
|
return false;
|
|
}
|
|
perm2_mask1 = vect_gen_perm_mask (vectype, sel);
|
|
gcc_assert (perm2_mask1 != NULL);
|
|
|
|
for (i = 0; i < nelt / 2; ++i)
|
|
sel[i] = i * 2 + 1;
|
|
for (i = 0; i < nelt / 2; ++i)
|
|
sel[nelt / 2 + i] = i * 2;
|
|
if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"shuffle of 2 fields structure is not \
|
|
supported by target\n");
|
|
return false;
|
|
}
|
|
perm2_mask2 = vect_gen_perm_mask (vectype, sel);
|
|
gcc_assert (perm2_mask2 != NULL);
|
|
|
|
/* Generating permutation constant to shift all elements.
|
|
For vector length 8 it is {4 5 6 7 8 9 10 11}. */
|
|
for (i = 0; i < nelt; i++)
|
|
sel[i] = nelt / 2 + i;
|
|
if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"shift permutation is not supported by target\n");
|
|
return false;
|
|
}
|
|
shift1_mask = vect_gen_perm_mask (vectype, sel);
|
|
gcc_assert (shift1_mask != NULL);
|
|
|
|
/* Generating permutation constant to select vector from 2.
|
|
For vector length 8 it is {0 1 2 3 12 13 14 15}. */
|
|
for (i = 0; i < nelt / 2; i++)
|
|
sel[i] = i;
|
|
for (i = nelt / 2; i < nelt; i++)
|
|
sel[i] = nelt + i;
|
|
if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"select is not supported by target\n");
|
|
return false;
|
|
}
|
|
select_mask = vect_gen_perm_mask (vectype, sel);
|
|
gcc_assert (select_mask != NULL);
|
|
|
|
first_vect = dr_chain[0];
|
|
second_vect = dr_chain[1];
|
|
|
|
data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle2");
|
|
perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
|
|
first_vect, first_vect,
|
|
perm2_mask1);
|
|
vect_finish_stmt_generation (stmt, perm_stmt, gsi);
|
|
vect[0] = data_ref;
|
|
|
|
data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle2");
|
|
perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
|
|
second_vect, second_vect,
|
|
perm2_mask2);
|
|
vect_finish_stmt_generation (stmt, perm_stmt, gsi);
|
|
vect[1] = data_ref;
|
|
|
|
data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift");
|
|
perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
|
|
vect[0], vect[1],
|
|
shift1_mask);
|
|
vect_finish_stmt_generation (stmt, perm_stmt, gsi);
|
|
(*result_chain)[1] = data_ref;
|
|
|
|
data_ref = make_temp_ssa_name (vectype, NULL, "vect_select");
|
|
perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
|
|
vect[0], vect[1],
|
|
select_mask);
|
|
vect_finish_stmt_generation (stmt, perm_stmt, gsi);
|
|
(*result_chain)[0] = data_ref;
|
|
|
|
return true;
|
|
}
|
|
if (length == 3 && LOOP_VINFO_VECT_FACTOR (loop_vinfo) > 2)
|
|
{
|
|
unsigned int k = 0, l = 0;
|
|
|
|
/* Generating permutation constant to get all elements in rigth order.
|
|
For vector length 8 it is {0 3 6 1 4 7 2 5}. */
|
|
for (i = 0; i < nelt; i++)
|
|
{
|
|
if (3 * k + (l % 3) >= nelt)
|
|
{
|
|
k = 0;
|
|
l += (3 - (nelt % 3));
|
|
}
|
|
sel[i] = 3 * k + (l % 3);
|
|
k++;
|
|
}
|
|
if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"shuffle of 3 fields structure is not \
|
|
supported by target\n");
|
|
return false;
|
|
}
|
|
perm3_mask = vect_gen_perm_mask (vectype, sel);
|
|
gcc_assert (perm3_mask != NULL);
|
|
|
|
/* Generating permutation constant to shift all elements.
|
|
For vector length 8 it is {6 7 8 9 10 11 12 13}. */
|
|
for (i = 0; i < nelt; i++)
|
|
sel[i] = 2 * (nelt / 3) + (nelt % 3) + i;
|
|
if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"shift permutation is not supported by target\n");
|
|
return false;
|
|
}
|
|
shift1_mask = vect_gen_perm_mask (vectype, sel);
|
|
gcc_assert (shift1_mask != NULL);
|
|
|
|
/* Generating permutation constant to shift all elements.
|
|
For vector length 8 it is {5 6 7 8 9 10 11 12}. */
|
|
for (i = 0; i < nelt; i++)
|
|
sel[i] = 2 * (nelt / 3) + 1 + i;
|
|
if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"shift permutation is not supported by target\n");
|
|
return false;
|
|
}
|
|
shift2_mask = vect_gen_perm_mask (vectype, sel);
|
|
gcc_assert (shift2_mask != NULL);
|
|
|
|
/* Generating permutation constant to shift all elements.
|
|
For vector length 8 it is {3 4 5 6 7 8 9 10}. */
|
|
for (i = 0; i < nelt; i++)
|
|
sel[i] = (nelt / 3) + (nelt % 3) / 2 + i;
|
|
if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"shift permutation is not supported by target\n");
|
|
return false;
|
|
}
|
|
shift3_mask = vect_gen_perm_mask (vectype, sel);
|
|
gcc_assert (shift3_mask != NULL);
|
|
|
|
/* Generating permutation constant to shift all elements.
|
|
For vector length 8 it is {5 6 7 8 9 10 11 12}. */
|
|
for (i = 0; i < nelt; i++)
|
|
sel[i] = 2 * (nelt / 3) + (nelt % 3) / 2 + i;
|
|
if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"shift permutation is not supported by target\n");
|
|
return false;
|
|
}
|
|
shift4_mask = vect_gen_perm_mask (vectype, sel);
|
|
gcc_assert (shift4_mask != NULL);
|
|
|
|
for (k = 0; k < 3; k++)
|
|
{
|
|
data_ref = make_temp_ssa_name (vectype, NULL, "vect_suffle3");
|
|
perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
|
|
dr_chain[k], dr_chain[k],
|
|
perm3_mask);
|
|
vect_finish_stmt_generation (stmt, perm_stmt, gsi);
|
|
vect[k] = data_ref;
|
|
}
|
|
|
|
for (k = 0; k < 3; k++)
|
|
{
|
|
data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift1");
|
|
perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
|
|
vect[k % 3],
|
|
vect[(k + 1) % 3],
|
|
shift1_mask);
|
|
vect_finish_stmt_generation (stmt, perm_stmt, gsi);
|
|
vect_shift[k] = data_ref;
|
|
}
|
|
|
|
for (k = 0; k < 3; k++)
|
|
{
|
|
data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift2");
|
|
perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
|
|
vect_shift[(4 - k) % 3],
|
|
vect_shift[(3 - k) % 3],
|
|
shift2_mask);
|
|
vect_finish_stmt_generation (stmt, perm_stmt, gsi);
|
|
vect[k] = data_ref;
|
|
}
|
|
|
|
(*result_chain)[3 - (nelt % 3)] = vect[2];
|
|
|
|
data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift3");
|
|
perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
|
|
vect[0], vect[0],
|
|
shift3_mask);
|
|
vect_finish_stmt_generation (stmt, perm_stmt, gsi);
|
|
(*result_chain)[nelt % 3] = data_ref;
|
|
|
|
data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift4");
|
|
perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
|
|
vect[1], vect[1],
|
|
shift4_mask);
|
|
vect_finish_stmt_generation (stmt, perm_stmt, gsi);
|
|
(*result_chain)[0] = data_ref;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Function vect_transform_grouped_load.
|
|
|
|
Given a chain of input interleaved data-refs (in DR_CHAIN), build statements
|
|
to perform their permutation and ascribe the result vectorized statements to
|
|
the scalar statements.
|
|
*/
|
|
|
|
void
|
|
vect_transform_grouped_load (gimple stmt, vec<tree> dr_chain, int size,
|
|
gimple_stmt_iterator *gsi)
|
|
{
|
|
enum machine_mode mode;
|
|
vec<tree> result_chain = vNULL;
|
|
|
|
/* DR_CHAIN contains input data-refs that are a part of the interleaving.
|
|
RESULT_CHAIN is the output of vect_permute_load_chain, it contains permuted
|
|
vectors, that are ready for vector computation. */
|
|
result_chain.create (size);
|
|
|
|
/* If reassociation width for vector type is 2 or greater target machine can
|
|
execute 2 or more vector instructions in parallel. Otherwise try to
|
|
get chain for loads group using vect_shift_permute_load_chain. */
|
|
mode = TYPE_MODE (STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt)));
|
|
if (targetm.sched.reassociation_width (VEC_PERM_EXPR, mode) > 1
|
|
|| !vect_shift_permute_load_chain (dr_chain, size, stmt,
|
|
gsi, &result_chain))
|
|
vect_permute_load_chain (dr_chain, size, stmt, gsi, &result_chain);
|
|
vect_record_grouped_load_vectors (stmt, result_chain);
|
|
result_chain.release ();
|
|
}
|
|
|
|
/* RESULT_CHAIN contains the output of a group of grouped loads that were
|
|
generated as part of the vectorization of STMT. Assign the statement
|
|
for each vector to the associated scalar statement. */
|
|
|
|
void
|
|
vect_record_grouped_load_vectors (gimple stmt, vec<tree> result_chain)
|
|
{
|
|
gimple first_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt));
|
|
gimple next_stmt, new_stmt;
|
|
unsigned int i, gap_count;
|
|
tree tmp_data_ref;
|
|
|
|
/* Put a permuted data-ref in the VECTORIZED_STMT field.
|
|
Since we scan the chain starting from it's first node, their order
|
|
corresponds the order of data-refs in RESULT_CHAIN. */
|
|
next_stmt = first_stmt;
|
|
gap_count = 1;
|
|
FOR_EACH_VEC_ELT (result_chain, i, tmp_data_ref)
|
|
{
|
|
if (!next_stmt)
|
|
break;
|
|
|
|
/* Skip the gaps. Loads created for the gaps will be removed by dead
|
|
code elimination pass later. No need to check for the first stmt in
|
|
the group, since it always exists.
|
|
GROUP_GAP is the number of steps in elements from the previous
|
|
access (if there is no gap GROUP_GAP is 1). We skip loads that
|
|
correspond to the gaps. */
|
|
if (next_stmt != first_stmt
|
|
&& gap_count < GROUP_GAP (vinfo_for_stmt (next_stmt)))
|
|
{
|
|
gap_count++;
|
|
continue;
|
|
}
|
|
|
|
while (next_stmt)
|
|
{
|
|
new_stmt = SSA_NAME_DEF_STMT (tmp_data_ref);
|
|
/* We assume that if VEC_STMT is not NULL, this is a case of multiple
|
|
copies, and we put the new vector statement in the first available
|
|
RELATED_STMT. */
|
|
if (!STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)))
|
|
STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)) = new_stmt;
|
|
else
|
|
{
|
|
if (!GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
|
|
{
|
|
gimple prev_stmt =
|
|
STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt));
|
|
gimple rel_stmt =
|
|
STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt));
|
|
while (rel_stmt)
|
|
{
|
|
prev_stmt = rel_stmt;
|
|
rel_stmt =
|
|
STMT_VINFO_RELATED_STMT (vinfo_for_stmt (rel_stmt));
|
|
}
|
|
|
|
STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt)) =
|
|
new_stmt;
|
|
}
|
|
}
|
|
|
|
next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
|
|
gap_count = 1;
|
|
/* If NEXT_STMT accesses the same DR as the previous statement,
|
|
put the same TMP_DATA_REF as its vectorized statement; otherwise
|
|
get the next data-ref from RESULT_CHAIN. */
|
|
if (!next_stmt || !GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Function vect_force_dr_alignment_p.
|
|
|
|
Returns whether the alignment of a DECL can be forced to be aligned
|
|
on ALIGNMENT bit boundary. */
|
|
|
|
bool
|
|
vect_can_force_dr_alignment_p (const_tree decl, unsigned int alignment)
|
|
{
|
|
if (TREE_CODE (decl) != VAR_DECL)
|
|
return false;
|
|
|
|
/* With -fno-toplevel-reorder we may have already output the constant. */
|
|
if (TREE_ASM_WRITTEN (decl))
|
|
return false;
|
|
|
|
/* Constant pool entries may be shared and not properly merged by LTO. */
|
|
if (DECL_IN_CONSTANT_POOL (decl))
|
|
return false;
|
|
|
|
if (TREE_PUBLIC (decl) || DECL_EXTERNAL (decl))
|
|
{
|
|
symtab_node *snode;
|
|
|
|
/* We cannot change alignment of symbols that may bind to symbols
|
|
in other translation unit that may contain a definition with lower
|
|
alignment. */
|
|
if (!decl_binds_to_current_def_p (decl))
|
|
return false;
|
|
|
|
/* When compiling partition, be sure the symbol is not output by other
|
|
partition. */
|
|
snode = symtab_get_node (decl);
|
|
if (flag_ltrans
|
|
&& (snode->in_other_partition
|
|
|| symtab_get_symbol_partitioning_class (snode) == SYMBOL_DUPLICATE))
|
|
return false;
|
|
}
|
|
|
|
/* Do not override the alignment as specified by the ABI when the used
|
|
attribute is set. */
|
|
if (DECL_PRESERVE_P (decl))
|
|
return false;
|
|
|
|
/* Do not override explicit alignment set by the user when an explicit
|
|
section name is also used. This is a common idiom used by many
|
|
software projects. */
|
|
if (TREE_STATIC (decl)
|
|
&& DECL_SECTION_NAME (decl) != NULL
|
|
&& !symtab_get_node (decl)->implicit_section)
|
|
return false;
|
|
|
|
/* If symbol is an alias, we need to check that target is OK. */
|
|
if (TREE_STATIC (decl))
|
|
{
|
|
tree target = symtab_alias_ultimate_target (symtab_get_node (decl))->decl;
|
|
if (target != decl)
|
|
{
|
|
if (DECL_PRESERVE_P (target))
|
|
return false;
|
|
decl = target;
|
|
}
|
|
}
|
|
|
|
if (TREE_STATIC (decl))
|
|
return (alignment <= MAX_OFILE_ALIGNMENT);
|
|
else
|
|
return (alignment <= MAX_STACK_ALIGNMENT);
|
|
}
|
|
|
|
|
|
/* Return whether the data reference DR is supported with respect to its
|
|
alignment.
|
|
If CHECK_ALIGNED_ACCESSES is TRUE, check if the access is supported even
|
|
it is aligned, i.e., check if it is possible to vectorize it with different
|
|
alignment. */
|
|
|
|
enum dr_alignment_support
|
|
vect_supportable_dr_alignment (struct data_reference *dr,
|
|
bool check_aligned_accesses)
|
|
{
|
|
gimple stmt = DR_STMT (dr);
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
|
enum machine_mode mode = TYPE_MODE (vectype);
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
|
struct loop *vect_loop = NULL;
|
|
bool nested_in_vect_loop = false;
|
|
|
|
if (aligned_access_p (dr) && !check_aligned_accesses)
|
|
return dr_aligned;
|
|
|
|
/* For now assume all conditional loads/stores support unaligned
|
|
access without any special code. */
|
|
if (is_gimple_call (stmt)
|
|
&& gimple_call_internal_p (stmt)
|
|
&& (gimple_call_internal_fn (stmt) == IFN_MASK_LOAD
|
|
|| gimple_call_internal_fn (stmt) == IFN_MASK_STORE))
|
|
return dr_unaligned_supported;
|
|
|
|
if (loop_vinfo)
|
|
{
|
|
vect_loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
nested_in_vect_loop = nested_in_vect_loop_p (vect_loop, stmt);
|
|
}
|
|
|
|
/* Possibly unaligned access. */
|
|
|
|
/* We can choose between using the implicit realignment scheme (generating
|
|
a misaligned_move stmt) and the explicit realignment scheme (generating
|
|
aligned loads with a REALIGN_LOAD). There are two variants to the
|
|
explicit realignment scheme: optimized, and unoptimized.
|
|
We can optimize the realignment only if the step between consecutive
|
|
vector loads is equal to the vector size. Since the vector memory
|
|
accesses advance in steps of VS (Vector Size) in the vectorized loop, it
|
|
is guaranteed that the misalignment amount remains the same throughout the
|
|
execution of the vectorized loop. Therefore, we can create the
|
|
"realignment token" (the permutation mask that is passed to REALIGN_LOAD)
|
|
at the loop preheader.
|
|
|
|
However, in the case of outer-loop vectorization, when vectorizing a
|
|
memory access in the inner-loop nested within the LOOP that is now being
|
|
vectorized, while it is guaranteed that the misalignment of the
|
|
vectorized memory access will remain the same in different outer-loop
|
|
iterations, it is *not* guaranteed that is will remain the same throughout
|
|
the execution of the inner-loop. This is because the inner-loop advances
|
|
with the original scalar step (and not in steps of VS). If the inner-loop
|
|
step happens to be a multiple of VS, then the misalignment remains fixed
|
|
and we can use the optimized realignment scheme. For example:
|
|
|
|
for (i=0; i<N; i++)
|
|
for (j=0; j<M; j++)
|
|
s += a[i+j];
|
|
|
|
When vectorizing the i-loop in the above example, the step between
|
|
consecutive vector loads is 1, and so the misalignment does not remain
|
|
fixed across the execution of the inner-loop, and the realignment cannot
|
|
be optimized (as illustrated in the following pseudo vectorized loop):
|
|
|
|
for (i=0; i<N; i+=4)
|
|
for (j=0; j<M; j++){
|
|
vs += vp[i+j]; // misalignment of &vp[i+j] is {0,1,2,3,0,1,2,3,...}
|
|
// when j is {0,1,2,3,4,5,6,7,...} respectively.
|
|
// (assuming that we start from an aligned address).
|
|
}
|
|
|
|
We therefore have to use the unoptimized realignment scheme:
|
|
|
|
for (i=0; i<N; i+=4)
|
|
for (j=k; j<M; j+=4)
|
|
vs += vp[i+j]; // misalignment of &vp[i+j] is always k (assuming
|
|
// that the misalignment of the initial address is
|
|
// 0).
|
|
|
|
The loop can then be vectorized as follows:
|
|
|
|
for (k=0; k<4; k++){
|
|
rt = get_realignment_token (&vp[k]);
|
|
for (i=0; i<N; i+=4){
|
|
v1 = vp[i+k];
|
|
for (j=k; j<M; j+=4){
|
|
v2 = vp[i+j+VS-1];
|
|
va = REALIGN_LOAD <v1,v2,rt>;
|
|
vs += va;
|
|
v1 = v2;
|
|
}
|
|
}
|
|
} */
|
|
|
|
if (DR_IS_READ (dr))
|
|
{
|
|
bool is_packed = false;
|
|
tree type = (TREE_TYPE (DR_REF (dr)));
|
|
|
|
if (optab_handler (vec_realign_load_optab, mode) != CODE_FOR_nothing
|
|
&& (!targetm.vectorize.builtin_mask_for_load
|
|
|| targetm.vectorize.builtin_mask_for_load ()))
|
|
{
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
|
if ((nested_in_vect_loop
|
|
&& (TREE_INT_CST_LOW (DR_STEP (dr))
|
|
!= GET_MODE_SIZE (TYPE_MODE (vectype))))
|
|
|| !loop_vinfo)
|
|
return dr_explicit_realign;
|
|
else
|
|
return dr_explicit_realign_optimized;
|
|
}
|
|
if (!known_alignment_for_access_p (dr))
|
|
is_packed = not_size_aligned (DR_REF (dr));
|
|
|
|
if ((TYPE_USER_ALIGN (type) && !is_packed)
|
|
|| targetm.vectorize.
|
|
support_vector_misalignment (mode, type,
|
|
DR_MISALIGNMENT (dr), is_packed))
|
|
/* Can't software pipeline the loads, but can at least do them. */
|
|
return dr_unaligned_supported;
|
|
}
|
|
else
|
|
{
|
|
bool is_packed = false;
|
|
tree type = (TREE_TYPE (DR_REF (dr)));
|
|
|
|
if (!known_alignment_for_access_p (dr))
|
|
is_packed = not_size_aligned (DR_REF (dr));
|
|
|
|
if ((TYPE_USER_ALIGN (type) && !is_packed)
|
|
|| targetm.vectorize.
|
|
support_vector_misalignment (mode, type,
|
|
DR_MISALIGNMENT (dr), is_packed))
|
|
return dr_unaligned_supported;
|
|
}
|
|
|
|
/* Unsupported. */
|
|
return dr_unaligned_unsupported;
|
|
}
|