f06a83c0b2
libjava/ 2007-08-04 Matthias Klose <doko@ubuntu.com> Import GNU Classpath (libgcj-import-20070727). * Regenerate class and header files. * Regenerate auto* files. * include/jvm.h: * jni-libjvm.cc (Jv_JNI_InvokeFunctions): Rename type. * jni.cc (_Jv_JNIFunctions, _Jv_JNI_InvokeFunctions): Likewise. * jni.cc (_Jv_JNI_CallAnyMethodA, _Jv_JNI_CallAnyVoidMethodA, _Jv_JNI_CallMethodA, _Jv_JNI_CallVoidMethodA, _Jv_JNI_CallStaticMethodA, _Jv_JNI_CallStaticVoidMethodA, _Jv_JNI_NewObjectA, _Jv_JNI_SetPrimitiveArrayRegion): Constify jvalue parameter. * java/lang/reflect/natMethod.cc (_Jv_CallAnyMethodA): Likewise. * java/lang/VMFloat.java (toString, parseFloat): New. * gnu/awt/xlib/XToolkit.java (setAlwaysOnTop, isModalityTypeSupported, isModalExclusionTypeSupported): New (stub only). * gnu/awt/xlib/XCanvasPeer.java (requestFocus): Likewise. * gnu/awt/xlib/XFramePeer.java (updateMinimumSize, updateIconImages, updateFocusableWindowState, setModalBlocked, getBoundsPrivate, setAlwaysOnTop): Likewise. * gnu/awt/xlib/XFontPeer.java (canDisplay): Update signature. * scripts/makemake.tcl: Ignore gnu/javax/sound/sampled/gstreamer, ignore javax.sound.sampled.spi.MixerProvider, ignore .in files. * HACKING: Mention --enable-gstreamer-peer, removal of generated files. libjava/classpath/ 2007-08-04 Matthias Klose <doko@ubuntu.com> * java/util/EnumMap.java (clone): Add cast. From-SVN: r127204
4033 lines
131 KiB
Java
4033 lines
131 KiB
Java
/* Arrays.java -- Utility class with methods to operate on arrays
|
||
Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GNU Classpath.
|
||
|
||
GNU Classpath is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU Classpath is distributed in the hope that it will be useful, but
|
||
WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU Classpath; see the file COPYING. If not, write to the
|
||
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
||
02110-1301 USA.
|
||
|
||
Linking this library statically or dynamically with other modules is
|
||
making a combined work based on this library. Thus, the terms and
|
||
conditions of the GNU General Public License cover the whole
|
||
combination.
|
||
|
||
As a special exception, the copyright holders of this library give you
|
||
permission to link this library with independent modules to produce an
|
||
executable, regardless of the license terms of these independent
|
||
modules, and to copy and distribute the resulting executable under
|
||
terms of your choice, provided that you also meet, for each linked
|
||
independent module, the terms and conditions of the license of that
|
||
module. An independent module is a module which is not derived from
|
||
or based on this library. If you modify this library, you may extend
|
||
this exception to your version of the library, but you are not
|
||
obligated to do so. If you do not wish to do so, delete this
|
||
exception statement from your version. */
|
||
|
||
|
||
package java.util;
|
||
|
||
import java.io.Serializable;
|
||
import java.lang.reflect.Array;
|
||
|
||
/**
|
||
* This class contains various static utility methods performing operations on
|
||
* arrays, and a method to provide a List "view" of an array to facilitate
|
||
* using arrays with Collection-based APIs. All methods throw a
|
||
* {@link NullPointerException} if the parameter array is null.
|
||
* <p>
|
||
*
|
||
* Implementations may use their own algorithms, but must obey the general
|
||
* properties; for example, the sort must be stable and n*log(n) complexity.
|
||
* Sun's implementation of sort, and therefore ours, is a tuned quicksort,
|
||
* adapted from Jon L. Bentley and M. Douglas McIlroy's "Engineering a Sort
|
||
* Function", Software-Practice and Experience, Vol. 23(11) P. 1249-1265
|
||
* (November 1993). This algorithm offers n*log(n) performance on many data
|
||
* sets that cause other quicksorts to degrade to quadratic performance.
|
||
*
|
||
* @author Original author unknown
|
||
* @author Bryce McKinlay
|
||
* @author Eric Blake (ebb9@email.byu.edu)
|
||
* @see Comparable
|
||
* @see Comparator
|
||
* @since 1.2
|
||
* @status updated to 1.4
|
||
*/
|
||
public class Arrays
|
||
{
|
||
/**
|
||
* This class is non-instantiable.
|
||
*/
|
||
private Arrays()
|
||
{
|
||
}
|
||
|
||
|
||
// binarySearch
|
||
/**
|
||
* Perform a binary search of a byte array for a key. The array must be
|
||
* sorted (as by the sort() method) - if it is not, the behaviour of this
|
||
* method is undefined, and may be an infinite loop. If the array contains
|
||
* the key more than once, any one of them may be found. Note: although the
|
||
* specification allows for an infinite loop if the array is unsorted, it
|
||
* will not happen in this implementation.
|
||
*
|
||
* @param a the array to search (must be sorted)
|
||
* @param key the value to search for
|
||
* @return the index at which the key was found, or -n-1 if it was not
|
||
* found, where n is the index of the first value higher than key or
|
||
* a.length if there is no such value.
|
||
*/
|
||
public static int binarySearch(byte[] a, byte key)
|
||
{
|
||
if (a.length == 0)
|
||
return -1;
|
||
return binarySearch(a, 0, a.length - 1, key);
|
||
}
|
||
|
||
/**
|
||
* Perform a binary search of a range of a byte array for a key. The range
|
||
* must be sorted (as by the <code>sort(byte[], int, int)</code> method) -
|
||
* if it is not, the behaviour of this method is undefined, and may be an
|
||
* infinite loop. If the array contains the key more than once, any one of
|
||
* them may be found. Note: although the specification allows for an infinite
|
||
* loop if the array is unsorted, it will not happen in this implementation.
|
||
*
|
||
* @param a the array to search (must be sorted)
|
||
* @param low the lowest index to search from.
|
||
* @param hi the highest index to search to.
|
||
* @param key the value to search for
|
||
* @return the index at which the key was found, or -n-1 if it was not
|
||
* found, where n is the index of the first value higher than key or
|
||
* a.length if there is no such value.
|
||
* @throws IllegalArgumentException if <code>low > hi</code>
|
||
* @throws ArrayIndexOutOfBoundsException if <code>low < 0</code> or
|
||
* <code>hi > a.length</code>.
|
||
*/
|
||
public static int binarySearch(byte[] a, int low, int hi, byte key)
|
||
{
|
||
if (low > hi)
|
||
throw new IllegalArgumentException("The start index is higher than " +
|
||
"the finish index.");
|
||
if (low < 0 || hi > a.length)
|
||
throw new ArrayIndexOutOfBoundsException("One of the indices is out " +
|
||
"of bounds.");
|
||
int mid = 0;
|
||
while (low <= hi)
|
||
{
|
||
mid = (low + hi) >>> 1;
|
||
final byte d = a[mid];
|
||
if (d == key)
|
||
return mid;
|
||
else if (d > key)
|
||
hi = mid - 1;
|
||
else
|
||
// This gets the insertion point right on the last loop.
|
||
low = ++mid;
|
||
}
|
||
return -mid - 1;
|
||
}
|
||
|
||
/**
|
||
* Perform a binary search of a char array for a key. The array must be
|
||
* sorted (as by the sort() method) - if it is not, the behaviour of this
|
||
* method is undefined, and may be an infinite loop. If the array contains
|
||
* the key more than once, any one of them may be found. Note: although the
|
||
* specification allows for an infinite loop if the array is unsorted, it
|
||
* will not happen in this implementation.
|
||
*
|
||
* @param a the array to search (must be sorted)
|
||
* @param key the value to search for
|
||
* @return the index at which the key was found, or -n-1 if it was not
|
||
* found, where n is the index of the first value higher than key or
|
||
* a.length if there is no such value.
|
||
*/
|
||
public static int binarySearch(char[] a, char key)
|
||
{
|
||
if (a.length == 0)
|
||
return -1;
|
||
return binarySearch(a, 0, a.length - 1, key);
|
||
}
|
||
|
||
/**
|
||
* Perform a binary search of a range of a char array for a key. The range
|
||
* must be sorted (as by the <code>sort(char[], int, int)</code> method) -
|
||
* if it is not, the behaviour of this method is undefined, and may be an
|
||
* infinite loop. If the array contains the key more than once, any one of
|
||
* them may be found. Note: although the specification allows for an infinite
|
||
* loop if the array is unsorted, it will not happen in this implementation.
|
||
*
|
||
* @param a the array to search (must be sorted)
|
||
* @param low the lowest index to search from.
|
||
* @param hi the highest index to search to.
|
||
* @param key the value to search for
|
||
* @return the index at which the key was found, or -n-1 if it was not
|
||
* found, where n is the index of the first value higher than key or
|
||
* a.length if there is no such value.
|
||
* @throws IllegalArgumentException if <code>low > hi</code>
|
||
* @throws ArrayIndexOutOfBoundsException if <code>low < 0</code> or
|
||
* <code>hi > a.length</code>.
|
||
*/
|
||
public static int binarySearch(char[] a, int low, int hi, char key)
|
||
{
|
||
if (low > hi)
|
||
throw new IllegalArgumentException("The start index is higher than " +
|
||
"the finish index.");
|
||
if (low < 0 || hi > a.length)
|
||
throw new ArrayIndexOutOfBoundsException("One of the indices is out " +
|
||
"of bounds.");
|
||
int mid = 0;
|
||
while (low <= hi)
|
||
{
|
||
mid = (low + hi) >>> 1;
|
||
final char d = a[mid];
|
||
if (d == key)
|
||
return mid;
|
||
else if (d > key)
|
||
hi = mid - 1;
|
||
else
|
||
// This gets the insertion point right on the last loop.
|
||
low = ++mid;
|
||
}
|
||
return -mid - 1;
|
||
}
|
||
|
||
/**
|
||
* Perform a binary search of a short array for a key. The array must be
|
||
* sorted (as by the sort() method) - if it is not, the behaviour of this
|
||
* method is undefined, and may be an infinite loop. If the array contains
|
||
* the key more than once, any one of them may be found. Note: although the
|
||
* specification allows for an infinite loop if the array is unsorted, it
|
||
* will not happen in this implementation.
|
||
*
|
||
* @param a the array to search (must be sorted)
|
||
* @param key the value to search for
|
||
* @return the index at which the key was found, or -n-1 if it was not
|
||
* found, where n is the index of the first value higher than key or
|
||
* a.length if there is no such value.
|
||
*/
|
||
public static int binarySearch(short[] a, short key)
|
||
{
|
||
if (a.length == 0)
|
||
return -1;
|
||
return binarySearch(a, 0, a.length - 1, key);
|
||
}
|
||
|
||
/**
|
||
* Perform a binary search of a range of a short array for a key. The range
|
||
* must be sorted (as by the <code>sort(short[], int, int)</code> method) -
|
||
* if it is not, the behaviour of this method is undefined, and may be an
|
||
* infinite loop. If the array contains the key more than once, any one of
|
||
* them may be found. Note: although the specification allows for an infinite
|
||
* loop if the array is unsorted, it will not happen in this implementation.
|
||
*
|
||
* @param a the array to search (must be sorted)
|
||
* @param low the lowest index to search from.
|
||
* @param hi the highest index to search to.
|
||
* @param key the value to search for
|
||
* @return the index at which the key was found, or -n-1 if it was not
|
||
* found, where n is the index of the first value higher than key or
|
||
* a.length if there is no such value.
|
||
* @throws IllegalArgumentException if <code>low > hi</code>
|
||
* @throws ArrayIndexOutOfBoundsException if <code>low < 0</code> or
|
||
* <code>hi > a.length</code>.
|
||
*/
|
||
public static int binarySearch(short[] a, int low, int hi, short key)
|
||
{
|
||
if (low > hi)
|
||
throw new IllegalArgumentException("The start index is higher than " +
|
||
"the finish index.");
|
||
if (low < 0 || hi > a.length)
|
||
throw new ArrayIndexOutOfBoundsException("One of the indices is out " +
|
||
"of bounds.");
|
||
int mid = 0;
|
||
while (low <= hi)
|
||
{
|
||
mid = (low + hi) >>> 1;
|
||
final short d = a[mid];
|
||
if (d == key)
|
||
return mid;
|
||
else if (d > key)
|
||
hi = mid - 1;
|
||
else
|
||
// This gets the insertion point right on the last loop.
|
||
low = ++mid;
|
||
}
|
||
return -mid - 1;
|
||
}
|
||
|
||
/**
|
||
* Perform a binary search of an int array for a key. The array must be
|
||
* sorted (as by the sort() method) - if it is not, the behaviour of this
|
||
* method is undefined, and may be an infinite loop. If the array contains
|
||
* the key more than once, any one of them may be found. Note: although the
|
||
* specification allows for an infinite loop if the array is unsorted, it
|
||
* will not happen in this implementation.
|
||
*
|
||
* @param a the array to search (must be sorted)
|
||
* @param key the value to search for
|
||
* @return the index at which the key was found, or -n-1 if it was not
|
||
* found, where n is the index of the first value higher than key or
|
||
* a.length if there is no such value.
|
||
*/
|
||
public static int binarySearch(int[] a, int key)
|
||
{
|
||
if (a.length == 0)
|
||
return -1;
|
||
return binarySearch(a, 0, a.length - 1, key);
|
||
}
|
||
|
||
/**
|
||
* Perform a binary search of a range of an integer array for a key. The range
|
||
* must be sorted (as by the <code>sort(int[], int, int)</code> method) -
|
||
* if it is not, the behaviour of this method is undefined, and may be an
|
||
* infinite loop. If the array contains the key more than once, any one of
|
||
* them may be found. Note: although the specification allows for an infinite
|
||
* loop if the array is unsorted, it will not happen in this implementation.
|
||
*
|
||
* @param a the array to search (must be sorted)
|
||
* @param low the lowest index to search from.
|
||
* @param hi the highest index to search to.
|
||
* @param key the value to search for
|
||
* @return the index at which the key was found, or -n-1 if it was not
|
||
* found, where n is the index of the first value higher than key or
|
||
* a.length if there is no such value.
|
||
* @throws IllegalArgumentException if <code>low > hi</code>
|
||
* @throws ArrayIndexOutOfBoundsException if <code>low < 0</code> or
|
||
* <code>hi > a.length</code>.
|
||
*/
|
||
public static int binarySearch(int[] a, int low, int hi, int key)
|
||
{
|
||
if (low > hi)
|
||
throw new IllegalArgumentException("The start index is higher than " +
|
||
"the finish index.");
|
||
if (low < 0 || hi > a.length)
|
||
throw new ArrayIndexOutOfBoundsException("One of the indices is out " +
|
||
"of bounds.");
|
||
int mid = 0;
|
||
while (low <= hi)
|
||
{
|
||
mid = (low + hi) >>> 1;
|
||
final int d = a[mid];
|
||
if (d == key)
|
||
return mid;
|
||
else if (d > key)
|
||
hi = mid - 1;
|
||
else
|
||
// This gets the insertion point right on the last loop.
|
||
low = ++mid;
|
||
}
|
||
return -mid - 1;
|
||
}
|
||
|
||
/**
|
||
* Perform a binary search of a long array for a key. The array must be
|
||
* sorted (as by the sort() method) - if it is not, the behaviour of this
|
||
* method is undefined, and may be an infinite loop. If the array contains
|
||
* the key more than once, any one of them may be found. Note: although the
|
||
* specification allows for an infinite loop if the array is unsorted, it
|
||
* will not happen in this implementation.
|
||
*
|
||
* @param a the array to search (must be sorted)
|
||
* @param key the value to search for
|
||
* @return the index at which the key was found, or -n-1 if it was not
|
||
* found, where n is the index of the first value higher than key or
|
||
* a.length if there is no such value.
|
||
*/
|
||
public static int binarySearch(long[] a, long key)
|
||
{
|
||
if (a.length == 0)
|
||
return -1;
|
||
return binarySearch(a, 0, a.length - 1, key);
|
||
}
|
||
|
||
/**
|
||
* Perform a binary search of a range of a long array for a key. The range
|
||
* must be sorted (as by the <code>sort(long[], int, int)</code> method) -
|
||
* if it is not, the behaviour of this method is undefined, and may be an
|
||
* infinite loop. If the array contains the key more than once, any one of
|
||
* them may be found. Note: although the specification allows for an infinite
|
||
* loop if the array is unsorted, it will not happen in this implementation.
|
||
*
|
||
* @param a the array to search (must be sorted)
|
||
* @param low the lowest index to search from.
|
||
* @param hi the highest index to search to.
|
||
* @param key the value to search for
|
||
* @return the index at which the key was found, or -n-1 if it was not
|
||
* found, where n is the index of the first value higher than key or
|
||
* a.length if there is no such value.
|
||
* @throws IllegalArgumentException if <code>low > hi</code>
|
||
* @throws ArrayIndexOutOfBoundsException if <code>low < 0</code> or
|
||
* <code>hi > a.length</code>.
|
||
*/
|
||
public static int binarySearch(long[] a, int low, int hi, long key)
|
||
{
|
||
if (low > hi)
|
||
throw new IllegalArgumentException("The start index is higher than " +
|
||
"the finish index.");
|
||
if (low < 0 || hi > a.length)
|
||
throw new ArrayIndexOutOfBoundsException("One of the indices is out " +
|
||
"of bounds.");
|
||
int mid = 0;
|
||
while (low <= hi)
|
||
{
|
||
mid = (low + hi) >>> 1;
|
||
final long d = a[mid];
|
||
if (d == key)
|
||
return mid;
|
||
else if (d > key)
|
||
hi = mid - 1;
|
||
else
|
||
// This gets the insertion point right on the last loop.
|
||
low = ++mid;
|
||
}
|
||
return -mid - 1;
|
||
}
|
||
|
||
/**
|
||
* Perform a binary search of a float array for a key. The array must be
|
||
* sorted (as by the sort() method) - if it is not, the behaviour of this
|
||
* method is undefined, and may be an infinite loop. If the array contains
|
||
* the key more than once, any one of them may be found. Note: although the
|
||
* specification allows for an infinite loop if the array is unsorted, it
|
||
* will not happen in this implementation.
|
||
*
|
||
* @param a the array to search (must be sorted)
|
||
* @param key the value to search for
|
||
* @return the index at which the key was found, or -n-1 if it was not
|
||
* found, where n is the index of the first value higher than key or
|
||
* a.length if there is no such value.
|
||
*/
|
||
public static int binarySearch(float[] a, float key)
|
||
{
|
||
if (a.length == 0)
|
||
return -1;
|
||
return binarySearch(a, 0, a.length - 1, key);
|
||
}
|
||
|
||
/**
|
||
* Perform a binary search of a range of a float array for a key. The range
|
||
* must be sorted (as by the <code>sort(float[], int, int)</code> method) -
|
||
* if it is not, the behaviour of this method is undefined, and may be an
|
||
* infinite loop. If the array contains the key more than once, any one of
|
||
* them may be found. Note: although the specification allows for an infinite
|
||
* loop if the array is unsorted, it will not happen in this implementation.
|
||
*
|
||
* @param a the array to search (must be sorted)
|
||
* @param low the lowest index to search from.
|
||
* @param hi the highest index to search to.
|
||
* @param key the value to search for
|
||
* @return the index at which the key was found, or -n-1 if it was not
|
||
* found, where n is the index of the first value higher than key or
|
||
* a.length if there is no such value.
|
||
* @throws IllegalArgumentException if <code>low > hi</code>
|
||
* @throws ArrayIndexOutOfBoundsException if <code>low < 0</code> or
|
||
* <code>hi > a.length</code>.
|
||
*/
|
||
public static int binarySearch(float[] a, int low, int hi, float key)
|
||
{
|
||
if (low > hi)
|
||
throw new IllegalArgumentException("The start index is higher than " +
|
||
"the finish index.");
|
||
if (low < 0 || hi > a.length)
|
||
throw new ArrayIndexOutOfBoundsException("One of the indices is out " +
|
||
"of bounds.");
|
||
// Must use Float.compare to take into account NaN, +-0.
|
||
int mid = 0;
|
||
while (low <= hi)
|
||
{
|
||
mid = (low + hi) >>> 1;
|
||
final int r = Float.compare(a[mid], key);
|
||
if (r == 0)
|
||
return mid;
|
||
else if (r > 0)
|
||
hi = mid - 1;
|
||
else
|
||
// This gets the insertion point right on the last loop
|
||
low = ++mid;
|
||
}
|
||
return -mid - 1;
|
||
}
|
||
|
||
/**
|
||
* Perform a binary search of a double array for a key. The array must be
|
||
* sorted (as by the sort() method) - if it is not, the behaviour of this
|
||
* method is undefined, and may be an infinite loop. If the array contains
|
||
* the key more than once, any one of them may be found. Note: although the
|
||
* specification allows for an infinite loop if the array is unsorted, it
|
||
* will not happen in this implementation.
|
||
*
|
||
* @param a the array to search (must be sorted)
|
||
* @param key the value to search for
|
||
* @return the index at which the key was found, or -n-1 if it was not
|
||
* found, where n is the index of the first value higher than key or
|
||
* a.length if there is no such value.
|
||
*/
|
||
public static int binarySearch(double[] a, double key)
|
||
{
|
||
if (a.length == 0)
|
||
return -1;
|
||
return binarySearch(a, 0, a.length - 1, key);
|
||
}
|
||
|
||
/**
|
||
* Perform a binary search of a range of a double array for a key. The range
|
||
* must be sorted (as by the <code>sort(double[], int, int)</code> method) -
|
||
* if it is not, the behaviour of this method is undefined, and may be an
|
||
* infinite loop. If the array contains the key more than once, any one of
|
||
* them may be found. Note: although the specification allows for an infinite
|
||
* loop if the array is unsorted, it will not happen in this implementation.
|
||
*
|
||
* @param a the array to search (must be sorted)
|
||
* @param low the lowest index to search from.
|
||
* @param hi the highest index to search to.
|
||
* @param key the value to search for
|
||
* @return the index at which the key was found, or -n-1 if it was not
|
||
* found, where n is the index of the first value higher than key or
|
||
* a.length if there is no such value.
|
||
* @throws IllegalArgumentException if <code>low > hi</code>
|
||
* @throws ArrayIndexOutOfBoundsException if <code>low < 0</code> or
|
||
* <code>hi > a.length</code>.
|
||
*/
|
||
public static int binarySearch(double[] a, int low, int hi, double key)
|
||
{
|
||
if (low > hi)
|
||
throw new IllegalArgumentException("The start index is higher than " +
|
||
"the finish index.");
|
||
if (low < 0 || hi > a.length)
|
||
throw new ArrayIndexOutOfBoundsException("One of the indices is out " +
|
||
"of bounds.");
|
||
// Must use Double.compare to take into account NaN, +-0.
|
||
int mid = 0;
|
||
while (low <= hi)
|
||
{
|
||
mid = (low + hi) >>> 1;
|
||
final int r = Double.compare(a[mid], key);
|
||
if (r == 0)
|
||
return mid;
|
||
else if (r > 0)
|
||
hi = mid - 1;
|
||
else
|
||
// This gets the insertion point right on the last loop
|
||
low = ++mid;
|
||
}
|
||
return -mid - 1;
|
||
}
|
||
|
||
/**
|
||
* Perform a binary search of an Object array for a key, using the natural
|
||
* ordering of the elements. The array must be sorted (as by the sort()
|
||
* method) - if it is not, the behaviour of this method is undefined, and may
|
||
* be an infinite loop. Further, the key must be comparable with every item
|
||
* in the array. If the array contains the key more than once, any one of
|
||
* them may be found. Note: although the specification allows for an infinite
|
||
* loop if the array is unsorted, it will not happen in this (JCL)
|
||
* implementation.
|
||
*
|
||
* @param a the array to search (must be sorted)
|
||
* @param key the value to search for
|
||
* @return the index at which the key was found, or -n-1 if it was not
|
||
* found, where n is the index of the first value higher than key or
|
||
* a.length if there is no such value.
|
||
* @throws ClassCastException if key could not be compared with one of the
|
||
* elements of a
|
||
* @throws NullPointerException if a null element in a is compared
|
||
*/
|
||
public static int binarySearch(Object[] a, Object key)
|
||
{
|
||
if (a.length == 0)
|
||
return -1;
|
||
return binarySearch(a, key, null);
|
||
}
|
||
|
||
/**
|
||
* Perform a binary search of a range of an Object array for a key. The range
|
||
* must be sorted (as by the <code>sort(Object[], int, int)</code> method) -
|
||
* if it is not, the behaviour of this method is undefined, and may be an
|
||
* infinite loop. If the array contains the key more than once, any one of
|
||
* them may be found. Note: although the specification allows for an infinite
|
||
* loop if the array is unsorted, it will not happen in this implementation.
|
||
*
|
||
* @param a the array to search (must be sorted)
|
||
* @param low the lowest index to search from.
|
||
* @param hi the highest index to search to.
|
||
* @param key the value to search for
|
||
* @return the index at which the key was found, or -n-1 if it was not
|
||
* found, where n is the index of the first value higher than key or
|
||
* a.length if there is no such value.
|
||
*/
|
||
public static int binarySearch(Object[] a, int low, int hi, Object key)
|
||
{
|
||
return binarySearch(a, low, hi, key, null);
|
||
}
|
||
|
||
/**
|
||
* Perform a binary search of an Object array for a key, using a supplied
|
||
* Comparator. The array must be sorted (as by the sort() method with the
|
||
* same Comparator) - if it is not, the behaviour of this method is
|
||
* undefined, and may be an infinite loop. Further, the key must be
|
||
* comparable with every item in the array. If the array contains the key
|
||
* more than once, any one of them may be found. Note: although the
|
||
* specification allows for an infinite loop if the array is unsorted, it
|
||
* will not happen in this (JCL) implementation.
|
||
*
|
||
* @param a the array to search (must be sorted)
|
||
* @param key the value to search for
|
||
* @param c the comparator by which the array is sorted; or null to
|
||
* use the elements' natural order
|
||
* @return the index at which the key was found, or -n-1 if it was not
|
||
* found, where n is the index of the first value higher than key or
|
||
* a.length if there is no such value.
|
||
* @throws ClassCastException if key could not be compared with one of the
|
||
* elements of a
|
||
* @throws NullPointerException if a null element is compared with natural
|
||
* ordering (only possible when c is null)
|
||
*/
|
||
public static <T> int binarySearch(T[] a, T key, Comparator<? super T> c)
|
||
{
|
||
if (a.length == 0)
|
||
return -1;
|
||
return binarySearch(a, 0, a.length - 1, key, c);
|
||
}
|
||
|
||
/**
|
||
* Perform a binary search of a range of an Object array for a key using
|
||
* a {@link Comparator}. The range must be sorted (as by the
|
||
* <code>sort(Object[], int, int)</code> method) - if it is not, the
|
||
* behaviour of this method is undefined, and may be an infinite loop. If
|
||
* the array contains the key more than once, any one of them may be found.
|
||
* Note: although the specification allows for an infinite loop if the array
|
||
* is unsorted, it will not happen in this implementation.
|
||
*
|
||
* @param a the array to search (must be sorted)
|
||
* @param low the lowest index to search from.
|
||
* @param hi the highest index to search to.
|
||
* @param key the value to search for
|
||
* @param c the comparator by which the array is sorted; or null to
|
||
* use the elements' natural order
|
||
* @return the index at which the key was found, or -n-1 if it was not
|
||
* found, where n is the index of the first value higher than key or
|
||
* a.length if there is no such value.
|
||
* @throws ClassCastException if key could not be compared with one of the
|
||
* elements of a
|
||
* @throws IllegalArgumentException if <code>low > hi</code>
|
||
* @throws ArrayIndexOutOfBoundsException if <code>low < 0</code> or
|
||
* <code>hi > a.length</code>.
|
||
*/
|
||
public static <T> int binarySearch(T[] a, int low, int hi, T key,
|
||
Comparator<? super T> c)
|
||
{
|
||
if (low > hi)
|
||
throw new IllegalArgumentException("The start index is higher than " +
|
||
"the finish index.");
|
||
if (low < 0 || hi > a.length)
|
||
throw new ArrayIndexOutOfBoundsException("One of the indices is out " +
|
||
"of bounds.");
|
||
int mid = 0;
|
||
while (low <= hi)
|
||
{
|
||
mid = (low + hi) >>> 1;
|
||
// NOTE: Please keep the order of a[mid] and key. Although
|
||
// not required by the specs, the RI has it in this order as
|
||
// well, and real programs (erroneously) depend on it.
|
||
final int d = Collections.compare(a[mid], key, c);
|
||
if (d == 0)
|
||
return mid;
|
||
else if (d > 0)
|
||
hi = mid - 1;
|
||
else
|
||
// This gets the insertion point right on the last loop
|
||
low = ++mid;
|
||
}
|
||
return -mid - 1;
|
||
}
|
||
|
||
|
||
// equals
|
||
/**
|
||
* Compare two boolean arrays for equality.
|
||
*
|
||
* @param a1 the first array to compare
|
||
* @param a2 the second array to compare
|
||
* @return true if a1 and a2 are both null, or if a2 is of the same length
|
||
* as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
|
||
*/
|
||
public static boolean equals(boolean[] a1, boolean[] a2)
|
||
{
|
||
// Quick test which saves comparing elements of the same array, and also
|
||
// catches the case that both are null.
|
||
if (a1 == a2)
|
||
return true;
|
||
|
||
if (null == a1 || null == a2)
|
||
return false;
|
||
|
||
// If they're the same length, test each element
|
||
if (a1.length == a2.length)
|
||
{
|
||
int i = a1.length;
|
||
while (--i >= 0)
|
||
if (a1[i] != a2[i])
|
||
return false;
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/**
|
||
* Compare two byte arrays for equality.
|
||
*
|
||
* @param a1 the first array to compare
|
||
* @param a2 the second array to compare
|
||
* @return true if a1 and a2 are both null, or if a2 is of the same length
|
||
* as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
|
||
*/
|
||
public static boolean equals(byte[] a1, byte[] a2)
|
||
{
|
||
// Quick test which saves comparing elements of the same array, and also
|
||
// catches the case that both are null.
|
||
if (a1 == a2)
|
||
return true;
|
||
|
||
if (null == a1 || null == a2)
|
||
return false;
|
||
|
||
// If they're the same length, test each element
|
||
if (a1.length == a2.length)
|
||
{
|
||
int i = a1.length;
|
||
while (--i >= 0)
|
||
if (a1[i] != a2[i])
|
||
return false;
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/**
|
||
* Compare two char arrays for equality.
|
||
*
|
||
* @param a1 the first array to compare
|
||
* @param a2 the second array to compare
|
||
* @return true if a1 and a2 are both null, or if a2 is of the same length
|
||
* as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
|
||
*/
|
||
public static boolean equals(char[] a1, char[] a2)
|
||
{
|
||
// Quick test which saves comparing elements of the same array, and also
|
||
// catches the case that both are null.
|
||
if (a1 == a2)
|
||
return true;
|
||
|
||
if (null == a1 || null == a2)
|
||
return false;
|
||
|
||
// If they're the same length, test each element
|
||
if (a1.length == a2.length)
|
||
{
|
||
int i = a1.length;
|
||
while (--i >= 0)
|
||
if (a1[i] != a2[i])
|
||
return false;
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/**
|
||
* Compare two short arrays for equality.
|
||
*
|
||
* @param a1 the first array to compare
|
||
* @param a2 the second array to compare
|
||
* @return true if a1 and a2 are both null, or if a2 is of the same length
|
||
* as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
|
||
*/
|
||
public static boolean equals(short[] a1, short[] a2)
|
||
{
|
||
// Quick test which saves comparing elements of the same array, and also
|
||
// catches the case that both are null.
|
||
if (a1 == a2)
|
||
return true;
|
||
|
||
if (null == a1 || null == a2)
|
||
return false;
|
||
|
||
// If they're the same length, test each element
|
||
if (a1.length == a2.length)
|
||
{
|
||
int i = a1.length;
|
||
while (--i >= 0)
|
||
if (a1[i] != a2[i])
|
||
return false;
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/**
|
||
* Compare two int arrays for equality.
|
||
*
|
||
* @param a1 the first array to compare
|
||
* @param a2 the second array to compare
|
||
* @return true if a1 and a2 are both null, or if a2 is of the same length
|
||
* as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
|
||
*/
|
||
public static boolean equals(int[] a1, int[] a2)
|
||
{
|
||
// Quick test which saves comparing elements of the same array, and also
|
||
// catches the case that both are null.
|
||
if (a1 == a2)
|
||
return true;
|
||
|
||
if (null == a1 || null == a2)
|
||
return false;
|
||
|
||
// If they're the same length, test each element
|
||
if (a1.length == a2.length)
|
||
{
|
||
int i = a1.length;
|
||
while (--i >= 0)
|
||
if (a1[i] != a2[i])
|
||
return false;
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/**
|
||
* Compare two long arrays for equality.
|
||
*
|
||
* @param a1 the first array to compare
|
||
* @param a2 the second array to compare
|
||
* @return true if a1 and a2 are both null, or if a2 is of the same length
|
||
* as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
|
||
*/
|
||
public static boolean equals(long[] a1, long[] a2)
|
||
{
|
||
// Quick test which saves comparing elements of the same array, and also
|
||
// catches the case that both are null.
|
||
if (a1 == a2)
|
||
return true;
|
||
|
||
if (null == a1 || null == a2)
|
||
return false;
|
||
|
||
// If they're the same length, test each element
|
||
if (a1.length == a2.length)
|
||
{
|
||
int i = a1.length;
|
||
while (--i >= 0)
|
||
if (a1[i] != a2[i])
|
||
return false;
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/**
|
||
* Compare two float arrays for equality.
|
||
*
|
||
* @param a1 the first array to compare
|
||
* @param a2 the second array to compare
|
||
* @return true if a1 and a2 are both null, or if a2 is of the same length
|
||
* as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
|
||
*/
|
||
public static boolean equals(float[] a1, float[] a2)
|
||
{
|
||
// Quick test which saves comparing elements of the same array, and also
|
||
// catches the case that both are null.
|
||
if (a1 == a2)
|
||
return true;
|
||
|
||
if (null == a1 || null == a2)
|
||
return false;
|
||
|
||
// Must use Float.compare to take into account NaN, +-0.
|
||
// If they're the same length, test each element
|
||
if (a1.length == a2.length)
|
||
{
|
||
int i = a1.length;
|
||
while (--i >= 0)
|
||
if (Float.compare(a1[i], a2[i]) != 0)
|
||
return false;
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/**
|
||
* Compare two double arrays for equality.
|
||
*
|
||
* @param a1 the first array to compare
|
||
* @param a2 the second array to compare
|
||
* @return true if a1 and a2 are both null, or if a2 is of the same length
|
||
* as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
|
||
*/
|
||
public static boolean equals(double[] a1, double[] a2)
|
||
{
|
||
// Quick test which saves comparing elements of the same array, and also
|
||
// catches the case that both are null.
|
||
if (a1 == a2)
|
||
return true;
|
||
|
||
if (null == a1 || null == a2)
|
||
return false;
|
||
|
||
// Must use Double.compare to take into account NaN, +-0.
|
||
// If they're the same length, test each element
|
||
if (a1.length == a2.length)
|
||
{
|
||
int i = a1.length;
|
||
while (--i >= 0)
|
||
if (Double.compare(a1[i], a2[i]) != 0)
|
||
return false;
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/**
|
||
* Compare two Object arrays for equality.
|
||
*
|
||
* @param a1 the first array to compare
|
||
* @param a2 the second array to compare
|
||
* @return true if a1 and a2 are both null, or if a1 is of the same length
|
||
* as a2, and for each 0 <= i < a.length, a1[i] == null ?
|
||
* a2[i] == null : a1[i].equals(a2[i]).
|
||
*/
|
||
public static boolean equals(Object[] a1, Object[] a2)
|
||
{
|
||
// Quick test which saves comparing elements of the same array, and also
|
||
// catches the case that both are null.
|
||
if (a1 == a2)
|
||
return true;
|
||
|
||
if (null == a1 || null == a2)
|
||
return false;
|
||
|
||
// If they're the same length, test each element
|
||
if (a1.length == a2.length)
|
||
{
|
||
int i = a1.length;
|
||
while (--i >= 0)
|
||
if (! AbstractCollection.equals(a1[i], a2[i]))
|
||
return false;
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
|
||
// fill
|
||
/**
|
||
* Fill an array with a boolean value.
|
||
*
|
||
* @param a the array to fill
|
||
* @param val the value to fill it with
|
||
*/
|
||
public static void fill(boolean[] a, boolean val)
|
||
{
|
||
fill(a, 0, a.length, val);
|
||
}
|
||
|
||
/**
|
||
* Fill a range of an array with a boolean value.
|
||
*
|
||
* @param a the array to fill
|
||
* @param fromIndex the index to fill from, inclusive
|
||
* @param toIndex the index to fill to, exclusive
|
||
* @param val the value to fill with
|
||
* @throws IllegalArgumentException if fromIndex > toIndex
|
||
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0
|
||
* || toIndex > a.length
|
||
*/
|
||
public static void fill(boolean[] a, int fromIndex, int toIndex, boolean val)
|
||
{
|
||
if (fromIndex > toIndex)
|
||
throw new IllegalArgumentException();
|
||
for (int i = fromIndex; i < toIndex; i++)
|
||
a[i] = val;
|
||
}
|
||
|
||
/**
|
||
* Fill an array with a byte value.
|
||
*
|
||
* @param a the array to fill
|
||
* @param val the value to fill it with
|
||
*/
|
||
public static void fill(byte[] a, byte val)
|
||
{
|
||
fill(a, 0, a.length, val);
|
||
}
|
||
|
||
/**
|
||
* Fill a range of an array with a byte value.
|
||
*
|
||
* @param a the array to fill
|
||
* @param fromIndex the index to fill from, inclusive
|
||
* @param toIndex the index to fill to, exclusive
|
||
* @param val the value to fill with
|
||
* @throws IllegalArgumentException if fromIndex > toIndex
|
||
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0
|
||
* || toIndex > a.length
|
||
*/
|
||
public static void fill(byte[] a, int fromIndex, int toIndex, byte val)
|
||
{
|
||
if (fromIndex > toIndex)
|
||
throw new IllegalArgumentException();
|
||
for (int i = fromIndex; i < toIndex; i++)
|
||
a[i] = val;
|
||
}
|
||
|
||
/**
|
||
* Fill an array with a char value.
|
||
*
|
||
* @param a the array to fill
|
||
* @param val the value to fill it with
|
||
*/
|
||
public static void fill(char[] a, char val)
|
||
{
|
||
fill(a, 0, a.length, val);
|
||
}
|
||
|
||
/**
|
||
* Fill a range of an array with a char value.
|
||
*
|
||
* @param a the array to fill
|
||
* @param fromIndex the index to fill from, inclusive
|
||
* @param toIndex the index to fill to, exclusive
|
||
* @param val the value to fill with
|
||
* @throws IllegalArgumentException if fromIndex > toIndex
|
||
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0
|
||
* || toIndex > a.length
|
||
*/
|
||
public static void fill(char[] a, int fromIndex, int toIndex, char val)
|
||
{
|
||
if (fromIndex > toIndex)
|
||
throw new IllegalArgumentException();
|
||
for (int i = fromIndex; i < toIndex; i++)
|
||
a[i] = val;
|
||
}
|
||
|
||
/**
|
||
* Fill an array with a short value.
|
||
*
|
||
* @param a the array to fill
|
||
* @param val the value to fill it with
|
||
*/
|
||
public static void fill(short[] a, short val)
|
||
{
|
||
fill(a, 0, a.length, val);
|
||
}
|
||
|
||
/**
|
||
* Fill a range of an array with a short value.
|
||
*
|
||
* @param a the array to fill
|
||
* @param fromIndex the index to fill from, inclusive
|
||
* @param toIndex the index to fill to, exclusive
|
||
* @param val the value to fill with
|
||
* @throws IllegalArgumentException if fromIndex > toIndex
|
||
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0
|
||
* || toIndex > a.length
|
||
*/
|
||
public static void fill(short[] a, int fromIndex, int toIndex, short val)
|
||
{
|
||
if (fromIndex > toIndex)
|
||
throw new IllegalArgumentException();
|
||
for (int i = fromIndex; i < toIndex; i++)
|
||
a[i] = val;
|
||
}
|
||
|
||
/**
|
||
* Fill an array with an int value.
|
||
*
|
||
* @param a the array to fill
|
||
* @param val the value to fill it with
|
||
*/
|
||
public static void fill(int[] a, int val)
|
||
{
|
||
fill(a, 0, a.length, val);
|
||
}
|
||
|
||
/**
|
||
* Fill a range of an array with an int value.
|
||
*
|
||
* @param a the array to fill
|
||
* @param fromIndex the index to fill from, inclusive
|
||
* @param toIndex the index to fill to, exclusive
|
||
* @param val the value to fill with
|
||
* @throws IllegalArgumentException if fromIndex > toIndex
|
||
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0
|
||
* || toIndex > a.length
|
||
*/
|
||
public static void fill(int[] a, int fromIndex, int toIndex, int val)
|
||
{
|
||
if (fromIndex > toIndex)
|
||
throw new IllegalArgumentException();
|
||
for (int i = fromIndex; i < toIndex; i++)
|
||
a[i] = val;
|
||
}
|
||
|
||
/**
|
||
* Fill an array with a long value.
|
||
*
|
||
* @param a the array to fill
|
||
* @param val the value to fill it with
|
||
*/
|
||
public static void fill(long[] a, long val)
|
||
{
|
||
fill(a, 0, a.length, val);
|
||
}
|
||
|
||
/**
|
||
* Fill a range of an array with a long value.
|
||
*
|
||
* @param a the array to fill
|
||
* @param fromIndex the index to fill from, inclusive
|
||
* @param toIndex the index to fill to, exclusive
|
||
* @param val the value to fill with
|
||
* @throws IllegalArgumentException if fromIndex > toIndex
|
||
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0
|
||
* || toIndex > a.length
|
||
*/
|
||
public static void fill(long[] a, int fromIndex, int toIndex, long val)
|
||
{
|
||
if (fromIndex > toIndex)
|
||
throw new IllegalArgumentException();
|
||
for (int i = fromIndex; i < toIndex; i++)
|
||
a[i] = val;
|
||
}
|
||
|
||
/**
|
||
* Fill an array with a float value.
|
||
*
|
||
* @param a the array to fill
|
||
* @param val the value to fill it with
|
||
*/
|
||
public static void fill(float[] a, float val)
|
||
{
|
||
fill(a, 0, a.length, val);
|
||
}
|
||
|
||
/**
|
||
* Fill a range of an array with a float value.
|
||
*
|
||
* @param a the array to fill
|
||
* @param fromIndex the index to fill from, inclusive
|
||
* @param toIndex the index to fill to, exclusive
|
||
* @param val the value to fill with
|
||
* @throws IllegalArgumentException if fromIndex > toIndex
|
||
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0
|
||
* || toIndex > a.length
|
||
*/
|
||
public static void fill(float[] a, int fromIndex, int toIndex, float val)
|
||
{
|
||
if (fromIndex > toIndex)
|
||
throw new IllegalArgumentException();
|
||
for (int i = fromIndex; i < toIndex; i++)
|
||
a[i] = val;
|
||
}
|
||
|
||
/**
|
||
* Fill an array with a double value.
|
||
*
|
||
* @param a the array to fill
|
||
* @param val the value to fill it with
|
||
*/
|
||
public static void fill(double[] a, double val)
|
||
{
|
||
fill(a, 0, a.length, val);
|
||
}
|
||
|
||
/**
|
||
* Fill a range of an array with a double value.
|
||
*
|
||
* @param a the array to fill
|
||
* @param fromIndex the index to fill from, inclusive
|
||
* @param toIndex the index to fill to, exclusive
|
||
* @param val the value to fill with
|
||
* @throws IllegalArgumentException if fromIndex > toIndex
|
||
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0
|
||
* || toIndex > a.length
|
||
*/
|
||
public static void fill(double[] a, int fromIndex, int toIndex, double val)
|
||
{
|
||
if (fromIndex > toIndex)
|
||
throw new IllegalArgumentException();
|
||
for (int i = fromIndex; i < toIndex; i++)
|
||
a[i] = val;
|
||
}
|
||
|
||
/**
|
||
* Fill an array with an Object value.
|
||
*
|
||
* @param a the array to fill
|
||
* @param val the value to fill it with
|
||
* @throws ClassCastException if val is not an instance of the element
|
||
* type of a.
|
||
*/
|
||
public static void fill(Object[] a, Object val)
|
||
{
|
||
fill(a, 0, a.length, val);
|
||
}
|
||
|
||
/**
|
||
* Fill a range of an array with an Object value.
|
||
*
|
||
* @param a the array to fill
|
||
* @param fromIndex the index to fill from, inclusive
|
||
* @param toIndex the index to fill to, exclusive
|
||
* @param val the value to fill with
|
||
* @throws ClassCastException if val is not an instance of the element
|
||
* type of a.
|
||
* @throws IllegalArgumentException if fromIndex > toIndex
|
||
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0
|
||
* || toIndex > a.length
|
||
*/
|
||
public static void fill(Object[] a, int fromIndex, int toIndex, Object val)
|
||
{
|
||
if (fromIndex > toIndex)
|
||
throw new IllegalArgumentException();
|
||
for (int i = fromIndex; i < toIndex; i++)
|
||
a[i] = val;
|
||
}
|
||
|
||
|
||
// sort
|
||
// Thanks to Paul Fisher (rao@gnu.org) for finding this quicksort algorithm
|
||
// as specified by Sun and porting it to Java. The algorithm is an optimised
|
||
// quicksort, as described in Jon L. Bentley and M. Douglas McIlroy's
|
||
// "Engineering a Sort Function", Software-Practice and Experience, Vol.
|
||
// 23(11) P. 1249-1265 (November 1993). This algorithm gives n*log(n)
|
||
// performance on many arrays that would take quadratic time with a standard
|
||
// quicksort.
|
||
|
||
/**
|
||
* Performs a stable sort on the elements, arranging them according to their
|
||
* natural order.
|
||
*
|
||
* @param a the byte array to sort
|
||
*/
|
||
public static void sort(byte[] a)
|
||
{
|
||
qsort(a, 0, a.length);
|
||
}
|
||
|
||
/**
|
||
* Performs a stable sort on the elements, arranging them according to their
|
||
* natural order.
|
||
*
|
||
* @param a the byte array to sort
|
||
* @param fromIndex the first index to sort (inclusive)
|
||
* @param toIndex the last index to sort (exclusive)
|
||
* @throws IllegalArgumentException if fromIndex > toIndex
|
||
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0
|
||
* || toIndex > a.length
|
||
*/
|
||
public static void sort(byte[] a, int fromIndex, int toIndex)
|
||
{
|
||
if (fromIndex > toIndex)
|
||
throw new IllegalArgumentException();
|
||
if (fromIndex < 0)
|
||
throw new ArrayIndexOutOfBoundsException();
|
||
qsort(a, fromIndex, toIndex - fromIndex);
|
||
}
|
||
|
||
/**
|
||
* Finds the index of the median of three array elements.
|
||
*
|
||
* @param a the first index
|
||
* @param b the second index
|
||
* @param c the third index
|
||
* @param d the array
|
||
* @return the index (a, b, or c) which has the middle value of the three
|
||
*/
|
||
private static int med3(int a, int b, int c, byte[] d)
|
||
{
|
||
return (d[a] < d[b]
|
||
? (d[b] < d[c] ? b : d[a] < d[c] ? c : a)
|
||
: (d[b] > d[c] ? b : d[a] > d[c] ? c : a));
|
||
}
|
||
|
||
/**
|
||
* Swaps the elements at two locations of an array
|
||
*
|
||
* @param i the first index
|
||
* @param j the second index
|
||
* @param a the array
|
||
*/
|
||
private static void swap(int i, int j, byte[] a)
|
||
{
|
||
byte c = a[i];
|
||
a[i] = a[j];
|
||
a[j] = c;
|
||
}
|
||
|
||
/**
|
||
* Swaps two ranges of an array.
|
||
*
|
||
* @param i the first range start
|
||
* @param j the second range start
|
||
* @param n the element count
|
||
* @param a the array
|
||
*/
|
||
private static void vecswap(int i, int j, int n, byte[] a)
|
||
{
|
||
for ( ; n > 0; i++, j++, n--)
|
||
swap(i, j, a);
|
||
}
|
||
|
||
/**
|
||
* Performs a recursive modified quicksort.
|
||
*
|
||
* @param array the array to sort
|
||
* @param from the start index (inclusive)
|
||
* @param count the number of elements to sort
|
||
*/
|
||
private static void qsort(byte[] array, int from, int count)
|
||
{
|
||
// Use an insertion sort on small arrays.
|
||
if (count <= 7)
|
||
{
|
||
for (int i = from + 1; i < from + count; i++)
|
||
for (int j = i; j > from && array[j - 1] > array[j]; j--)
|
||
swap(j, j - 1, array);
|
||
return;
|
||
}
|
||
|
||
// Determine a good median element.
|
||
int mid = from + count / 2;
|
||
int lo = from;
|
||
int hi = from + count - 1;
|
||
|
||
if (count > 40)
|
||
{ // big arrays, pseudomedian of 9
|
||
int s = count / 8;
|
||
lo = med3(lo, lo + s, lo + 2 * s, array);
|
||
mid = med3(mid - s, mid, mid + s, array);
|
||
hi = med3(hi - 2 * s, hi - s, hi, array);
|
||
}
|
||
mid = med3(lo, mid, hi, array);
|
||
|
||
int a, b, c, d;
|
||
int comp;
|
||
|
||
// Pull the median element out of the fray, and use it as a pivot.
|
||
swap(from, mid, array);
|
||
a = b = from;
|
||
c = d = from + count - 1;
|
||
|
||
// Repeatedly move b and c to each other, swapping elements so
|
||
// that all elements before index b are less than the pivot, and all
|
||
// elements after index c are greater than the pivot. a and b track
|
||
// the elements equal to the pivot.
|
||
while (true)
|
||
{
|
||
while (b <= c && (comp = array[b] - array[from]) <= 0)
|
||
{
|
||
if (comp == 0)
|
||
{
|
||
swap(a, b, array);
|
||
a++;
|
||
}
|
||
b++;
|
||
}
|
||
while (c >= b && (comp = array[c] - array[from]) >= 0)
|
||
{
|
||
if (comp == 0)
|
||
{
|
||
swap(c, d, array);
|
||
d--;
|
||
}
|
||
c--;
|
||
}
|
||
if (b > c)
|
||
break;
|
||
swap(b, c, array);
|
||
b++;
|
||
c--;
|
||
}
|
||
|
||
// Swap pivot(s) back in place, the recurse on left and right sections.
|
||
hi = from + count;
|
||
int span;
|
||
span = Math.min(a - from, b - a);
|
||
vecswap(from, b - span, span, array);
|
||
|
||
span = Math.min(d - c, hi - d - 1);
|
||
vecswap(b, hi - span, span, array);
|
||
|
||
span = b - a;
|
||
if (span > 1)
|
||
qsort(array, from, span);
|
||
|
||
span = d - c;
|
||
if (span > 1)
|
||
qsort(array, hi - span, span);
|
||
}
|
||
|
||
/**
|
||
* Performs a stable sort on the elements, arranging them according to their
|
||
* natural order.
|
||
*
|
||
* @param a the char array to sort
|
||
*/
|
||
public static void sort(char[] a)
|
||
{
|
||
qsort(a, 0, a.length);
|
||
}
|
||
|
||
/**
|
||
* Performs a stable sort on the elements, arranging them according to their
|
||
* natural order.
|
||
*
|
||
* @param a the char array to sort
|
||
* @param fromIndex the first index to sort (inclusive)
|
||
* @param toIndex the last index to sort (exclusive)
|
||
* @throws IllegalArgumentException if fromIndex > toIndex
|
||
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0
|
||
* || toIndex > a.length
|
||
*/
|
||
public static void sort(char[] a, int fromIndex, int toIndex)
|
||
{
|
||
if (fromIndex > toIndex)
|
||
throw new IllegalArgumentException();
|
||
if (fromIndex < 0)
|
||
throw new ArrayIndexOutOfBoundsException();
|
||
qsort(a, fromIndex, toIndex - fromIndex);
|
||
}
|
||
|
||
/**
|
||
* Finds the index of the median of three array elements.
|
||
*
|
||
* @param a the first index
|
||
* @param b the second index
|
||
* @param c the third index
|
||
* @param d the array
|
||
* @return the index (a, b, or c) which has the middle value of the three
|
||
*/
|
||
private static int med3(int a, int b, int c, char[] d)
|
||
{
|
||
return (d[a] < d[b]
|
||
? (d[b] < d[c] ? b : d[a] < d[c] ? c : a)
|
||
: (d[b] > d[c] ? b : d[a] > d[c] ? c : a));
|
||
}
|
||
|
||
/**
|
||
* Swaps the elements at two locations of an array
|
||
*
|
||
* @param i the first index
|
||
* @param j the second index
|
||
* @param a the array
|
||
*/
|
||
private static void swap(int i, int j, char[] a)
|
||
{
|
||
char c = a[i];
|
||
a[i] = a[j];
|
||
a[j] = c;
|
||
}
|
||
|
||
/**
|
||
* Swaps two ranges of an array.
|
||
*
|
||
* @param i the first range start
|
||
* @param j the second range start
|
||
* @param n the element count
|
||
* @param a the array
|
||
*/
|
||
private static void vecswap(int i, int j, int n, char[] a)
|
||
{
|
||
for ( ; n > 0; i++, j++, n--)
|
||
swap(i, j, a);
|
||
}
|
||
|
||
/**
|
||
* Performs a recursive modified quicksort.
|
||
*
|
||
* @param array the array to sort
|
||
* @param from the start index (inclusive)
|
||
* @param count the number of elements to sort
|
||
*/
|
||
private static void qsort(char[] array, int from, int count)
|
||
{
|
||
// Use an insertion sort on small arrays.
|
||
if (count <= 7)
|
||
{
|
||
for (int i = from + 1; i < from + count; i++)
|
||
for (int j = i; j > from && array[j - 1] > array[j]; j--)
|
||
swap(j, j - 1, array);
|
||
return;
|
||
}
|
||
|
||
// Determine a good median element.
|
||
int mid = from + count / 2;
|
||
int lo = from;
|
||
int hi = from + count - 1;
|
||
|
||
if (count > 40)
|
||
{ // big arrays, pseudomedian of 9
|
||
int s = count / 8;
|
||
lo = med3(lo, lo + s, lo + 2 * s, array);
|
||
mid = med3(mid - s, mid, mid + s, array);
|
||
hi = med3(hi - 2 * s, hi - s, hi, array);
|
||
}
|
||
mid = med3(lo, mid, hi, array);
|
||
|
||
int a, b, c, d;
|
||
int comp;
|
||
|
||
// Pull the median element out of the fray, and use it as a pivot.
|
||
swap(from, mid, array);
|
||
a = b = from;
|
||
c = d = from + count - 1;
|
||
|
||
// Repeatedly move b and c to each other, swapping elements so
|
||
// that all elements before index b are less than the pivot, and all
|
||
// elements after index c are greater than the pivot. a and b track
|
||
// the elements equal to the pivot.
|
||
while (true)
|
||
{
|
||
while (b <= c && (comp = array[b] - array[from]) <= 0)
|
||
{
|
||
if (comp == 0)
|
||
{
|
||
swap(a, b, array);
|
||
a++;
|
||
}
|
||
b++;
|
||
}
|
||
while (c >= b && (comp = array[c] - array[from]) >= 0)
|
||
{
|
||
if (comp == 0)
|
||
{
|
||
swap(c, d, array);
|
||
d--;
|
||
}
|
||
c--;
|
||
}
|
||
if (b > c)
|
||
break;
|
||
swap(b, c, array);
|
||
b++;
|
||
c--;
|
||
}
|
||
|
||
// Swap pivot(s) back in place, the recurse on left and right sections.
|
||
hi = from + count;
|
||
int span;
|
||
span = Math.min(a - from, b - a);
|
||
vecswap(from, b - span, span, array);
|
||
|
||
span = Math.min(d - c, hi - d - 1);
|
||
vecswap(b, hi - span, span, array);
|
||
|
||
span = b - a;
|
||
if (span > 1)
|
||
qsort(array, from, span);
|
||
|
||
span = d - c;
|
||
if (span > 1)
|
||
qsort(array, hi - span, span);
|
||
}
|
||
|
||
/**
|
||
* Performs a stable sort on the elements, arranging them according to their
|
||
* natural order.
|
||
*
|
||
* @param a the short array to sort
|
||
*/
|
||
public static void sort(short[] a)
|
||
{
|
||
qsort(a, 0, a.length);
|
||
}
|
||
|
||
/**
|
||
* Performs a stable sort on the elements, arranging them according to their
|
||
* natural order.
|
||
*
|
||
* @param a the short array to sort
|
||
* @param fromIndex the first index to sort (inclusive)
|
||
* @param toIndex the last index to sort (exclusive)
|
||
* @throws IllegalArgumentException if fromIndex > toIndex
|
||
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0
|
||
* || toIndex > a.length
|
||
*/
|
||
public static void sort(short[] a, int fromIndex, int toIndex)
|
||
{
|
||
if (fromIndex > toIndex)
|
||
throw new IllegalArgumentException();
|
||
if (fromIndex < 0)
|
||
throw new ArrayIndexOutOfBoundsException();
|
||
qsort(a, fromIndex, toIndex - fromIndex);
|
||
}
|
||
|
||
/**
|
||
* Finds the index of the median of three array elements.
|
||
*
|
||
* @param a the first index
|
||
* @param b the second index
|
||
* @param c the third index
|
||
* @param d the array
|
||
* @return the index (a, b, or c) which has the middle value of the three
|
||
*/
|
||
private static int med3(int a, int b, int c, short[] d)
|
||
{
|
||
return (d[a] < d[b]
|
||
? (d[b] < d[c] ? b : d[a] < d[c] ? c : a)
|
||
: (d[b] > d[c] ? b : d[a] > d[c] ? c : a));
|
||
}
|
||
|
||
/**
|
||
* Swaps the elements at two locations of an array
|
||
*
|
||
* @param i the first index
|
||
* @param j the second index
|
||
* @param a the array
|
||
*/
|
||
private static void swap(int i, int j, short[] a)
|
||
{
|
||
short c = a[i];
|
||
a[i] = a[j];
|
||
a[j] = c;
|
||
}
|
||
|
||
/**
|
||
* Swaps two ranges of an array.
|
||
*
|
||
* @param i the first range start
|
||
* @param j the second range start
|
||
* @param n the element count
|
||
* @param a the array
|
||
*/
|
||
private static void vecswap(int i, int j, int n, short[] a)
|
||
{
|
||
for ( ; n > 0; i++, j++, n--)
|
||
swap(i, j, a);
|
||
}
|
||
|
||
/**
|
||
* Performs a recursive modified quicksort.
|
||
*
|
||
* @param array the array to sort
|
||
* @param from the start index (inclusive)
|
||
* @param count the number of elements to sort
|
||
*/
|
||
private static void qsort(short[] array, int from, int count)
|
||
{
|
||
// Use an insertion sort on small arrays.
|
||
if (count <= 7)
|
||
{
|
||
for (int i = from + 1; i < from + count; i++)
|
||
for (int j = i; j > from && array[j - 1] > array[j]; j--)
|
||
swap(j, j - 1, array);
|
||
return;
|
||
}
|
||
|
||
// Determine a good median element.
|
||
int mid = from + count / 2;
|
||
int lo = from;
|
||
int hi = from + count - 1;
|
||
|
||
if (count > 40)
|
||
{ // big arrays, pseudomedian of 9
|
||
int s = count / 8;
|
||
lo = med3(lo, lo + s, lo + 2 * s, array);
|
||
mid = med3(mid - s, mid, mid + s, array);
|
||
hi = med3(hi - 2 * s, hi - s, hi, array);
|
||
}
|
||
mid = med3(lo, mid, hi, array);
|
||
|
||
int a, b, c, d;
|
||
int comp;
|
||
|
||
// Pull the median element out of the fray, and use it as a pivot.
|
||
swap(from, mid, array);
|
||
a = b = from;
|
||
c = d = from + count - 1;
|
||
|
||
// Repeatedly move b and c to each other, swapping elements so
|
||
// that all elements before index b are less than the pivot, and all
|
||
// elements after index c are greater than the pivot. a and b track
|
||
// the elements equal to the pivot.
|
||
while (true)
|
||
{
|
||
while (b <= c && (comp = array[b] - array[from]) <= 0)
|
||
{
|
||
if (comp == 0)
|
||
{
|
||
swap(a, b, array);
|
||
a++;
|
||
}
|
||
b++;
|
||
}
|
||
while (c >= b && (comp = array[c] - array[from]) >= 0)
|
||
{
|
||
if (comp == 0)
|
||
{
|
||
swap(c, d, array);
|
||
d--;
|
||
}
|
||
c--;
|
||
}
|
||
if (b > c)
|
||
break;
|
||
swap(b, c, array);
|
||
b++;
|
||
c--;
|
||
}
|
||
|
||
// Swap pivot(s) back in place, the recurse on left and right sections.
|
||
hi = from + count;
|
||
int span;
|
||
span = Math.min(a - from, b - a);
|
||
vecswap(from, b - span, span, array);
|
||
|
||
span = Math.min(d - c, hi - d - 1);
|
||
vecswap(b, hi - span, span, array);
|
||
|
||
span = b - a;
|
||
if (span > 1)
|
||
qsort(array, from, span);
|
||
|
||
span = d - c;
|
||
if (span > 1)
|
||
qsort(array, hi - span, span);
|
||
}
|
||
|
||
/**
|
||
* Performs a stable sort on the elements, arranging them according to their
|
||
* natural order.
|
||
*
|
||
* @param a the int array to sort
|
||
*/
|
||
public static void sort(int[] a)
|
||
{
|
||
qsort(a, 0, a.length);
|
||
}
|
||
|
||
/**
|
||
* Performs a stable sort on the elements, arranging them according to their
|
||
* natural order.
|
||
*
|
||
* @param a the int array to sort
|
||
* @param fromIndex the first index to sort (inclusive)
|
||
* @param toIndex the last index to sort (exclusive)
|
||
* @throws IllegalArgumentException if fromIndex > toIndex
|
||
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0
|
||
* || toIndex > a.length
|
||
*/
|
||
public static void sort(int[] a, int fromIndex, int toIndex)
|
||
{
|
||
if (fromIndex > toIndex)
|
||
throw new IllegalArgumentException();
|
||
if (fromIndex < 0)
|
||
throw new ArrayIndexOutOfBoundsException();
|
||
qsort(a, fromIndex, toIndex - fromIndex);
|
||
}
|
||
|
||
/**
|
||
* Finds the index of the median of three array elements.
|
||
*
|
||
* @param a the first index
|
||
* @param b the second index
|
||
* @param c the third index
|
||
* @param d the array
|
||
* @return the index (a, b, or c) which has the middle value of the three
|
||
*/
|
||
private static int med3(int a, int b, int c, int[] d)
|
||
{
|
||
return (d[a] < d[b]
|
||
? (d[b] < d[c] ? b : d[a] < d[c] ? c : a)
|
||
: (d[b] > d[c] ? b : d[a] > d[c] ? c : a));
|
||
}
|
||
|
||
/**
|
||
* Swaps the elements at two locations of an array
|
||
*
|
||
* @param i the first index
|
||
* @param j the second index
|
||
* @param a the array
|
||
*/
|
||
private static void swap(int i, int j, int[] a)
|
||
{
|
||
int c = a[i];
|
||
a[i] = a[j];
|
||
a[j] = c;
|
||
}
|
||
|
||
/**
|
||
* Swaps two ranges of an array.
|
||
*
|
||
* @param i the first range start
|
||
* @param j the second range start
|
||
* @param n the element count
|
||
* @param a the array
|
||
*/
|
||
private static void vecswap(int i, int j, int n, int[] a)
|
||
{
|
||
for ( ; n > 0; i++, j++, n--)
|
||
swap(i, j, a);
|
||
}
|
||
|
||
/**
|
||
* Compares two integers in natural order, since a - b is inadequate.
|
||
*
|
||
* @param a the first int
|
||
* @param b the second int
|
||
* @return < 0, 0, or > 0 accorting to the comparison
|
||
*/
|
||
private static int compare(int a, int b)
|
||
{
|
||
return a < b ? -1 : a == b ? 0 : 1;
|
||
}
|
||
|
||
/**
|
||
* Performs a recursive modified quicksort.
|
||
*
|
||
* @param array the array to sort
|
||
* @param from the start index (inclusive)
|
||
* @param count the number of elements to sort
|
||
*/
|
||
private static void qsort(int[] array, int from, int count)
|
||
{
|
||
// Use an insertion sort on small arrays.
|
||
if (count <= 7)
|
||
{
|
||
for (int i = from + 1; i < from + count; i++)
|
||
for (int j = i; j > from && array[j - 1] > array[j]; j--)
|
||
swap(j, j - 1, array);
|
||
return;
|
||
}
|
||
|
||
// Determine a good median element.
|
||
int mid = from + count / 2;
|
||
int lo = from;
|
||
int hi = from + count - 1;
|
||
|
||
if (count > 40)
|
||
{ // big arrays, pseudomedian of 9
|
||
int s = count / 8;
|
||
lo = med3(lo, lo + s, lo + 2 * s, array);
|
||
mid = med3(mid - s, mid, mid + s, array);
|
||
hi = med3(hi - 2 * s, hi - s, hi, array);
|
||
}
|
||
mid = med3(lo, mid, hi, array);
|
||
|
||
int a, b, c, d;
|
||
int comp;
|
||
|
||
// Pull the median element out of the fray, and use it as a pivot.
|
||
swap(from, mid, array);
|
||
a = b = from;
|
||
c = d = from + count - 1;
|
||
|
||
// Repeatedly move b and c to each other, swapping elements so
|
||
// that all elements before index b are less than the pivot, and all
|
||
// elements after index c are greater than the pivot. a and b track
|
||
// the elements equal to the pivot.
|
||
while (true)
|
||
{
|
||
while (b <= c && (comp = compare(array[b], array[from])) <= 0)
|
||
{
|
||
if (comp == 0)
|
||
{
|
||
swap(a, b, array);
|
||
a++;
|
||
}
|
||
b++;
|
||
}
|
||
while (c >= b && (comp = compare(array[c], array[from])) >= 0)
|
||
{
|
||
if (comp == 0)
|
||
{
|
||
swap(c, d, array);
|
||
d--;
|
||
}
|
||
c--;
|
||
}
|
||
if (b > c)
|
||
break;
|
||
swap(b, c, array);
|
||
b++;
|
||
c--;
|
||
}
|
||
|
||
// Swap pivot(s) back in place, the recurse on left and right sections.
|
||
hi = from + count;
|
||
int span;
|
||
span = Math.min(a - from, b - a);
|
||
vecswap(from, b - span, span, array);
|
||
|
||
span = Math.min(d - c, hi - d - 1);
|
||
vecswap(b, hi - span, span, array);
|
||
|
||
span = b - a;
|
||
if (span > 1)
|
||
qsort(array, from, span);
|
||
|
||
span = d - c;
|
||
if (span > 1)
|
||
qsort(array, hi - span, span);
|
||
}
|
||
|
||
/**
|
||
* Performs a stable sort on the elements, arranging them according to their
|
||
* natural order.
|
||
*
|
||
* @param a the long array to sort
|
||
*/
|
||
public static void sort(long[] a)
|
||
{
|
||
qsort(a, 0, a.length);
|
||
}
|
||
|
||
/**
|
||
* Performs a stable sort on the elements, arranging them according to their
|
||
* natural order.
|
||
*
|
||
* @param a the long array to sort
|
||
* @param fromIndex the first index to sort (inclusive)
|
||
* @param toIndex the last index to sort (exclusive)
|
||
* @throws IllegalArgumentException if fromIndex > toIndex
|
||
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0
|
||
* || toIndex > a.length
|
||
*/
|
||
public static void sort(long[] a, int fromIndex, int toIndex)
|
||
{
|
||
if (fromIndex > toIndex)
|
||
throw new IllegalArgumentException();
|
||
if (fromIndex < 0)
|
||
throw new ArrayIndexOutOfBoundsException();
|
||
qsort(a, fromIndex, toIndex - fromIndex);
|
||
}
|
||
|
||
/**
|
||
* Finds the index of the median of three array elements.
|
||
*
|
||
* @param a the first index
|
||
* @param b the second index
|
||
* @param c the third index
|
||
* @param d the array
|
||
* @return the index (a, b, or c) which has the middle value of the three
|
||
*/
|
||
private static int med3(int a, int b, int c, long[] d)
|
||
{
|
||
return (d[a] < d[b]
|
||
? (d[b] < d[c] ? b : d[a] < d[c] ? c : a)
|
||
: (d[b] > d[c] ? b : d[a] > d[c] ? c : a));
|
||
}
|
||
|
||
/**
|
||
* Swaps the elements at two locations of an array
|
||
*
|
||
* @param i the first index
|
||
* @param j the second index
|
||
* @param a the array
|
||
*/
|
||
private static void swap(int i, int j, long[] a)
|
||
{
|
||
long c = a[i];
|
||
a[i] = a[j];
|
||
a[j] = c;
|
||
}
|
||
|
||
/**
|
||
* Swaps two ranges of an array.
|
||
*
|
||
* @param i the first range start
|
||
* @param j the second range start
|
||
* @param n the element count
|
||
* @param a the array
|
||
*/
|
||
private static void vecswap(int i, int j, int n, long[] a)
|
||
{
|
||
for ( ; n > 0; i++, j++, n--)
|
||
swap(i, j, a);
|
||
}
|
||
|
||
/**
|
||
* Compares two longs in natural order, since a - b is inadequate.
|
||
*
|
||
* @param a the first long
|
||
* @param b the second long
|
||
* @return < 0, 0, or > 0 accorting to the comparison
|
||
*/
|
||
private static int compare(long a, long b)
|
||
{
|
||
return a < b ? -1 : a == b ? 0 : 1;
|
||
}
|
||
|
||
/**
|
||
* Performs a recursive modified quicksort.
|
||
*
|
||
* @param array the array to sort
|
||
* @param from the start index (inclusive)
|
||
* @param count the number of elements to sort
|
||
*/
|
||
private static void qsort(long[] array, int from, int count)
|
||
{
|
||
// Use an insertion sort on small arrays.
|
||
if (count <= 7)
|
||
{
|
||
for (int i = from + 1; i < from + count; i++)
|
||
for (int j = i; j > from && array[j - 1] > array[j]; j--)
|
||
swap(j, j - 1, array);
|
||
return;
|
||
}
|
||
|
||
// Determine a good median element.
|
||
int mid = from + count / 2;
|
||
int lo = from;
|
||
int hi = from + count - 1;
|
||
|
||
if (count > 40)
|
||
{ // big arrays, pseudomedian of 9
|
||
int s = count / 8;
|
||
lo = med3(lo, lo + s, lo + 2 * s, array);
|
||
mid = med3(mid - s, mid, mid + s, array);
|
||
hi = med3(hi - 2 * s, hi - s, hi, array);
|
||
}
|
||
mid = med3(lo, mid, hi, array);
|
||
|
||
int a, b, c, d;
|
||
int comp;
|
||
|
||
// Pull the median element out of the fray, and use it as a pivot.
|
||
swap(from, mid, array);
|
||
a = b = from;
|
||
c = d = from + count - 1;
|
||
|
||
// Repeatedly move b and c to each other, swapping elements so
|
||
// that all elements before index b are less than the pivot, and all
|
||
// elements after index c are greater than the pivot. a and b track
|
||
// the elements equal to the pivot.
|
||
while (true)
|
||
{
|
||
while (b <= c && (comp = compare(array[b], array[from])) <= 0)
|
||
{
|
||
if (comp == 0)
|
||
{
|
||
swap(a, b, array);
|
||
a++;
|
||
}
|
||
b++;
|
||
}
|
||
while (c >= b && (comp = compare(array[c], array[from])) >= 0)
|
||
{
|
||
if (comp == 0)
|
||
{
|
||
swap(c, d, array);
|
||
d--;
|
||
}
|
||
c--;
|
||
}
|
||
if (b > c)
|
||
break;
|
||
swap(b, c, array);
|
||
b++;
|
||
c--;
|
||
}
|
||
|
||
// Swap pivot(s) back in place, the recurse on left and right sections.
|
||
hi = from + count;
|
||
int span;
|
||
span = Math.min(a - from, b - a);
|
||
vecswap(from, b - span, span, array);
|
||
|
||
span = Math.min(d - c, hi - d - 1);
|
||
vecswap(b, hi - span, span, array);
|
||
|
||
span = b - a;
|
||
if (span > 1)
|
||
qsort(array, from, span);
|
||
|
||
span = d - c;
|
||
if (span > 1)
|
||
qsort(array, hi - span, span);
|
||
}
|
||
|
||
/**
|
||
* Performs a stable sort on the elements, arranging them according to their
|
||
* natural order.
|
||
*
|
||
* @param a the float array to sort
|
||
*/
|
||
public static void sort(float[] a)
|
||
{
|
||
qsort(a, 0, a.length);
|
||
}
|
||
|
||
/**
|
||
* Performs a stable sort on the elements, arranging them according to their
|
||
* natural order.
|
||
*
|
||
* @param a the float array to sort
|
||
* @param fromIndex the first index to sort (inclusive)
|
||
* @param toIndex the last index to sort (exclusive)
|
||
* @throws IllegalArgumentException if fromIndex > toIndex
|
||
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0
|
||
* || toIndex > a.length
|
||
*/
|
||
public static void sort(float[] a, int fromIndex, int toIndex)
|
||
{
|
||
if (fromIndex > toIndex)
|
||
throw new IllegalArgumentException();
|
||
if (fromIndex < 0)
|
||
throw new ArrayIndexOutOfBoundsException();
|
||
qsort(a, fromIndex, toIndex - fromIndex);
|
||
}
|
||
|
||
/**
|
||
* Finds the index of the median of three array elements.
|
||
*
|
||
* @param a the first index
|
||
* @param b the second index
|
||
* @param c the third index
|
||
* @param d the array
|
||
* @return the index (a, b, or c) which has the middle value of the three
|
||
*/
|
||
private static int med3(int a, int b, int c, float[] d)
|
||
{
|
||
return (Float.compare(d[a], d[b]) < 0
|
||
? (Float.compare(d[b], d[c]) < 0 ? b
|
||
: Float.compare(d[a], d[c]) < 0 ? c : a)
|
||
: (Float.compare(d[b], d[c]) > 0 ? b
|
||
: Float.compare(d[a], d[c]) > 0 ? c : a));
|
||
}
|
||
|
||
/**
|
||
* Swaps the elements at two locations of an array
|
||
*
|
||
* @param i the first index
|
||
* @param j the second index
|
||
* @param a the array
|
||
*/
|
||
private static void swap(int i, int j, float[] a)
|
||
{
|
||
float c = a[i];
|
||
a[i] = a[j];
|
||
a[j] = c;
|
||
}
|
||
|
||
/**
|
||
* Swaps two ranges of an array.
|
||
*
|
||
* @param i the first range start
|
||
* @param j the second range start
|
||
* @param n the element count
|
||
* @param a the array
|
||
*/
|
||
private static void vecswap(int i, int j, int n, float[] a)
|
||
{
|
||
for ( ; n > 0; i++, j++, n--)
|
||
swap(i, j, a);
|
||
}
|
||
|
||
/**
|
||
* Performs a recursive modified quicksort.
|
||
*
|
||
* @param array the array to sort
|
||
* @param from the start index (inclusive)
|
||
* @param count the number of elements to sort
|
||
*/
|
||
private static void qsort(float[] array, int from, int count)
|
||
{
|
||
// Use an insertion sort on small arrays.
|
||
if (count <= 7)
|
||
{
|
||
for (int i = from + 1; i < from + count; i++)
|
||
for (int j = i;
|
||
j > from && Float.compare(array[j - 1], array[j]) > 0;
|
||
j--)
|
||
{
|
||
swap(j, j - 1, array);
|
||
}
|
||
return;
|
||
}
|
||
|
||
// Determine a good median element.
|
||
int mid = from + count / 2;
|
||
int lo = from;
|
||
int hi = from + count - 1;
|
||
|
||
if (count > 40)
|
||
{ // big arrays, pseudomedian of 9
|
||
int s = count / 8;
|
||
lo = med3(lo, lo + s, lo + 2 * s, array);
|
||
mid = med3(mid - s, mid, mid + s, array);
|
||
hi = med3(hi - 2 * s, hi - s, hi, array);
|
||
}
|
||
mid = med3(lo, mid, hi, array);
|
||
|
||
int a, b, c, d;
|
||
int comp;
|
||
|
||
// Pull the median element out of the fray, and use it as a pivot.
|
||
swap(from, mid, array);
|
||
a = b = from;
|
||
c = d = from + count - 1;
|
||
|
||
// Repeatedly move b and c to each other, swapping elements so
|
||
// that all elements before index b are less than the pivot, and all
|
||
// elements after index c are greater than the pivot. a and b track
|
||
// the elements equal to the pivot.
|
||
while (true)
|
||
{
|
||
while (b <= c && (comp = Float.compare(array[b], array[from])) <= 0)
|
||
{
|
||
if (comp == 0)
|
||
{
|
||
swap(a, b, array);
|
||
a++;
|
||
}
|
||
b++;
|
||
}
|
||
while (c >= b && (comp = Float.compare(array[c], array[from])) >= 0)
|
||
{
|
||
if (comp == 0)
|
||
{
|
||
swap(c, d, array);
|
||
d--;
|
||
}
|
||
c--;
|
||
}
|
||
if (b > c)
|
||
break;
|
||
swap(b, c, array);
|
||
b++;
|
||
c--;
|
||
}
|
||
|
||
// Swap pivot(s) back in place, the recurse on left and right sections.
|
||
hi = from + count;
|
||
int span;
|
||
span = Math.min(a - from, b - a);
|
||
vecswap(from, b - span, span, array);
|
||
|
||
span = Math.min(d - c, hi - d - 1);
|
||
vecswap(b, hi - span, span, array);
|
||
|
||
span = b - a;
|
||
if (span > 1)
|
||
qsort(array, from, span);
|
||
|
||
span = d - c;
|
||
if (span > 1)
|
||
qsort(array, hi - span, span);
|
||
}
|
||
|
||
/**
|
||
* Performs a stable sort on the elements, arranging them according to their
|
||
* natural order.
|
||
*
|
||
* @param a the double array to sort
|
||
*/
|
||
public static void sort(double[] a)
|
||
{
|
||
qsort(a, 0, a.length);
|
||
}
|
||
|
||
/**
|
||
* Performs a stable sort on the elements, arranging them according to their
|
||
* natural order.
|
||
*
|
||
* @param a the double array to sort
|
||
* @param fromIndex the first index to sort (inclusive)
|
||
* @param toIndex the last index to sort (exclusive)
|
||
* @throws IllegalArgumentException if fromIndex > toIndex
|
||
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0
|
||
* || toIndex > a.length
|
||
*/
|
||
public static void sort(double[] a, int fromIndex, int toIndex)
|
||
{
|
||
if (fromIndex > toIndex)
|
||
throw new IllegalArgumentException();
|
||
if (fromIndex < 0)
|
||
throw new ArrayIndexOutOfBoundsException();
|
||
qsort(a, fromIndex, toIndex - fromIndex);
|
||
}
|
||
|
||
/**
|
||
* Finds the index of the median of three array elements.
|
||
*
|
||
* @param a the first index
|
||
* @param b the second index
|
||
* @param c the third index
|
||
* @param d the array
|
||
* @return the index (a, b, or c) which has the middle value of the three
|
||
*/
|
||
private static int med3(int a, int b, int c, double[] d)
|
||
{
|
||
return (Double.compare(d[a], d[b]) < 0
|
||
? (Double.compare(d[b], d[c]) < 0 ? b
|
||
: Double.compare(d[a], d[c]) < 0 ? c : a)
|
||
: (Double.compare(d[b], d[c]) > 0 ? b
|
||
: Double.compare(d[a], d[c]) > 0 ? c : a));
|
||
}
|
||
|
||
/**
|
||
* Swaps the elements at two locations of an array
|
||
*
|
||
* @param i the first index
|
||
* @param j the second index
|
||
* @param a the array
|
||
*/
|
||
private static void swap(int i, int j, double[] a)
|
||
{
|
||
double c = a[i];
|
||
a[i] = a[j];
|
||
a[j] = c;
|
||
}
|
||
|
||
/**
|
||
* Swaps two ranges of an array.
|
||
*
|
||
* @param i the first range start
|
||
* @param j the second range start
|
||
* @param n the element count
|
||
* @param a the array
|
||
*/
|
||
private static void vecswap(int i, int j, int n, double[] a)
|
||
{
|
||
for ( ; n > 0; i++, j++, n--)
|
||
swap(i, j, a);
|
||
}
|
||
|
||
/**
|
||
* Performs a recursive modified quicksort.
|
||
*
|
||
* @param array the array to sort
|
||
* @param from the start index (inclusive)
|
||
* @param count the number of elements to sort
|
||
*/
|
||
private static void qsort(double[] array, int from, int count)
|
||
{
|
||
// Use an insertion sort on small arrays.
|
||
if (count <= 7)
|
||
{
|
||
for (int i = from + 1; i < from + count; i++)
|
||
for (int j = i;
|
||
j > from && Double.compare(array[j - 1], array[j]) > 0;
|
||
j--)
|
||
{
|
||
swap(j, j - 1, array);
|
||
}
|
||
return;
|
||
}
|
||
|
||
// Determine a good median element.
|
||
int mid = from + count / 2;
|
||
int lo = from;
|
||
int hi = from + count - 1;
|
||
|
||
if (count > 40)
|
||
{ // big arrays, pseudomedian of 9
|
||
int s = count / 8;
|
||
lo = med3(lo, lo + s, lo + 2 * s, array);
|
||
mid = med3(mid - s, mid, mid + s, array);
|
||
hi = med3(hi - 2 * s, hi - s, hi, array);
|
||
}
|
||
mid = med3(lo, mid, hi, array);
|
||
|
||
int a, b, c, d;
|
||
int comp;
|
||
|
||
// Pull the median element out of the fray, and use it as a pivot.
|
||
swap(from, mid, array);
|
||
a = b = from;
|
||
c = d = from + count - 1;
|
||
|
||
// Repeatedly move b and c to each other, swapping elements so
|
||
// that all elements before index b are less than the pivot, and all
|
||
// elements after index c are greater than the pivot. a and b track
|
||
// the elements equal to the pivot.
|
||
while (true)
|
||
{
|
||
while (b <= c && (comp = Double.compare(array[b], array[from])) <= 0)
|
||
{
|
||
if (comp == 0)
|
||
{
|
||
swap(a, b, array);
|
||
a++;
|
||
}
|
||
b++;
|
||
}
|
||
while (c >= b && (comp = Double.compare(array[c], array[from])) >= 0)
|
||
{
|
||
if (comp == 0)
|
||
{
|
||
swap(c, d, array);
|
||
d--;
|
||
}
|
||
c--;
|
||
}
|
||
if (b > c)
|
||
break;
|
||
swap(b, c, array);
|
||
b++;
|
||
c--;
|
||
}
|
||
|
||
// Swap pivot(s) back in place, the recurse on left and right sections.
|
||
hi = from + count;
|
||
int span;
|
||
span = Math.min(a - from, b - a);
|
||
vecswap(from, b - span, span, array);
|
||
|
||
span = Math.min(d - c, hi - d - 1);
|
||
vecswap(b, hi - span, span, array);
|
||
|
||
span = b - a;
|
||
if (span > 1)
|
||
qsort(array, from, span);
|
||
|
||
span = d - c;
|
||
if (span > 1)
|
||
qsort(array, hi - span, span);
|
||
}
|
||
|
||
/**
|
||
* Sort an array of Objects according to their natural ordering. The sort is
|
||
* guaranteed to be stable, that is, equal elements will not be reordered.
|
||
* The sort algorithm is a mergesort with the merge omitted if the last
|
||
* element of one half comes before the first element of the other half. This
|
||
* algorithm gives guaranteed O(n*log(n)) time, at the expense of making a
|
||
* copy of the array.
|
||
*
|
||
* @param a the array to be sorted
|
||
* @throws ClassCastException if any two elements are not mutually
|
||
* comparable
|
||
* @throws NullPointerException if an element is null (since
|
||
* null.compareTo cannot work)
|
||
* @see Comparable
|
||
*/
|
||
public static void sort(Object[] a)
|
||
{
|
||
sort(a, 0, a.length, null);
|
||
}
|
||
|
||
/**
|
||
* Sort an array of Objects according to a Comparator. The sort is
|
||
* guaranteed to be stable, that is, equal elements will not be reordered.
|
||
* The sort algorithm is a mergesort with the merge omitted if the last
|
||
* element of one half comes before the first element of the other half. This
|
||
* algorithm gives guaranteed O(n*log(n)) time, at the expense of making a
|
||
* copy of the array.
|
||
*
|
||
* @param a the array to be sorted
|
||
* @param c a Comparator to use in sorting the array; or null to indicate
|
||
* the elements' natural order
|
||
* @throws ClassCastException if any two elements are not mutually
|
||
* comparable by the Comparator provided
|
||
* @throws NullPointerException if a null element is compared with natural
|
||
* ordering (only possible when c is null)
|
||
*/
|
||
public static <T> void sort(T[] a, Comparator<? super T> c)
|
||
{
|
||
sort(a, 0, a.length, c);
|
||
}
|
||
|
||
/**
|
||
* Sort an array of Objects according to their natural ordering. The sort is
|
||
* guaranteed to be stable, that is, equal elements will not be reordered.
|
||
* The sort algorithm is a mergesort with the merge omitted if the last
|
||
* element of one half comes before the first element of the other half. This
|
||
* algorithm gives guaranteed O(n*log(n)) time, at the expense of making a
|
||
* copy of the array.
|
||
*
|
||
* @param a the array to be sorted
|
||
* @param fromIndex the index of the first element to be sorted
|
||
* @param toIndex the index of the last element to be sorted plus one
|
||
* @throws ClassCastException if any two elements are not mutually
|
||
* comparable
|
||
* @throws NullPointerException if an element is null (since
|
||
* null.compareTo cannot work)
|
||
* @throws ArrayIndexOutOfBoundsException if fromIndex and toIndex
|
||
* are not in range.
|
||
* @throws IllegalArgumentException if fromIndex > toIndex
|
||
*/
|
||
public static void sort(Object[] a, int fromIndex, int toIndex)
|
||
{
|
||
sort(a, fromIndex, toIndex, null);
|
||
}
|
||
|
||
/**
|
||
* Sort an array of Objects according to a Comparator. The sort is
|
||
* guaranteed to be stable, that is, equal elements will not be reordered.
|
||
* The sort algorithm is a mergesort with the merge omitted if the last
|
||
* element of one half comes before the first element of the other half. This
|
||
* algorithm gives guaranteed O(n*log(n)) time, at the expense of making a
|
||
* copy of the array.
|
||
*
|
||
* @param a the array to be sorted
|
||
* @param fromIndex the index of the first element to be sorted
|
||
* @param toIndex the index of the last element to be sorted plus one
|
||
* @param c a Comparator to use in sorting the array; or null to indicate
|
||
* the elements' natural order
|
||
* @throws ClassCastException if any two elements are not mutually
|
||
* comparable by the Comparator provided
|
||
* @throws ArrayIndexOutOfBoundsException if fromIndex and toIndex
|
||
* are not in range.
|
||
* @throws IllegalArgumentException if fromIndex > toIndex
|
||
* @throws NullPointerException if a null element is compared with natural
|
||
* ordering (only possible when c is null)
|
||
*/
|
||
public static <T> void sort(T[] a, int fromIndex, int toIndex,
|
||
Comparator<? super T> c)
|
||
{
|
||
if (fromIndex > toIndex)
|
||
throw new IllegalArgumentException("fromIndex " + fromIndex
|
||
+ " > toIndex " + toIndex);
|
||
if (fromIndex < 0)
|
||
throw new ArrayIndexOutOfBoundsException();
|
||
|
||
// In general, the code attempts to be simple rather than fast, the
|
||
// idea being that a good optimising JIT will be able to optimise it
|
||
// better than I can, and if I try it will make it more confusing for
|
||
// the JIT. First presort the array in chunks of length 6 with insertion
|
||
// sort. A mergesort would give too much overhead for this length.
|
||
for (int chunk = fromIndex; chunk < toIndex; chunk += 6)
|
||
{
|
||
int end = Math.min(chunk + 6, toIndex);
|
||
for (int i = chunk + 1; i < end; i++)
|
||
{
|
||
if (Collections.compare(a[i - 1], a[i], c) > 0)
|
||
{
|
||
// not already sorted
|
||
int j = i;
|
||
T elem = a[j];
|
||
do
|
||
{
|
||
a[j] = a[j - 1];
|
||
j--;
|
||
}
|
||
while (j > chunk
|
||
&& Collections.compare(a[j - 1], elem, c) > 0);
|
||
a[j] = elem;
|
||
}
|
||
}
|
||
}
|
||
|
||
int len = toIndex - fromIndex;
|
||
// If length is smaller or equal 6 we are done.
|
||
if (len <= 6)
|
||
return;
|
||
|
||
T[] src = a;
|
||
T[] dest = (T[]) new Object[len];
|
||
T[] t = null; // t is used for swapping src and dest
|
||
|
||
// The difference of the fromIndex of the src and dest array.
|
||
int srcDestDiff = -fromIndex;
|
||
|
||
// The merges are done in this loop
|
||
for (int size = 6; size < len; size <<= 1)
|
||
{
|
||
for (int start = fromIndex; start < toIndex; start += size << 1)
|
||
{
|
||
// mid is the start of the second sublist;
|
||
// end the start of the next sublist (or end of array).
|
||
int mid = start + size;
|
||
int end = Math.min(toIndex, mid + size);
|
||
|
||
// The second list is empty or the elements are already in
|
||
// order - no need to merge
|
||
if (mid >= end
|
||
|| Collections.compare(src[mid - 1], src[mid], c) <= 0)
|
||
{
|
||
System.arraycopy(src, start,
|
||
dest, start + srcDestDiff, end - start);
|
||
|
||
// The two halves just need swapping - no need to merge
|
||
}
|
||
else if (Collections.compare(src[start], src[end - 1], c) > 0)
|
||
{
|
||
System.arraycopy(src, start,
|
||
dest, end - size + srcDestDiff, size);
|
||
System.arraycopy(src, mid,
|
||
dest, start + srcDestDiff, end - mid);
|
||
|
||
}
|
||
else
|
||
{
|
||
// Declare a lot of variables to save repeating
|
||
// calculations. Hopefully a decent JIT will put these
|
||
// in registers and make this fast
|
||
int p1 = start;
|
||
int p2 = mid;
|
||
int i = start + srcDestDiff;
|
||
|
||
// The main merge loop; terminates as soon as either
|
||
// half is ended
|
||
while (p1 < mid && p2 < end)
|
||
{
|
||
dest[i++] =
|
||
src[(Collections.compare(src[p1], src[p2], c) <= 0
|
||
? p1++ : p2++)];
|
||
}
|
||
|
||
// Finish up by copying the remainder of whichever half
|
||
// wasn't finished.
|
||
if (p1 < mid)
|
||
System.arraycopy(src, p1, dest, i, mid - p1);
|
||
else
|
||
System.arraycopy(src, p2, dest, i, end - p2);
|
||
}
|
||
}
|
||
// swap src and dest ready for the next merge
|
||
t = src;
|
||
src = dest;
|
||
dest = t;
|
||
fromIndex += srcDestDiff;
|
||
toIndex += srcDestDiff;
|
||
srcDestDiff = -srcDestDiff;
|
||
}
|
||
|
||
// make sure the result ends up back in the right place. Note
|
||
// that src and dest may have been swapped above, so src
|
||
// contains the sorted array.
|
||
if (src != a)
|
||
{
|
||
// Note that fromIndex == 0.
|
||
System.arraycopy(src, 0, a, srcDestDiff, toIndex);
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Returns a list "view" of the specified array. This method is intended to
|
||
* make it easy to use the Collections API with existing array-based APIs and
|
||
* programs. Changes in the list or the array show up in both places. The
|
||
* list does not support element addition or removal, but does permit
|
||
* value modification. The returned list implements both Serializable and
|
||
* RandomAccess.
|
||
*
|
||
* @param a the array to return a view of (<code>null</code> not permitted)
|
||
* @return a fixed-size list, changes to which "write through" to the array
|
||
*
|
||
* @throws NullPointerException if <code>a</code> is <code>null</code>.
|
||
* @see Serializable
|
||
* @see RandomAccess
|
||
* @see Arrays.ArrayList
|
||
*/
|
||
public static <T> List<T> asList(final T... a)
|
||
{
|
||
return new Arrays.ArrayList(a);
|
||
}
|
||
|
||
/**
|
||
* Returns the hashcode of an array of long numbers. If two arrays
|
||
* are equal, according to <code>equals()</code>, they should have the
|
||
* same hashcode. The hashcode returned by the method is equal to that
|
||
* obtained by the corresponding <code>List</code> object. This has the same
|
||
* data, but represents longs in their wrapper class, <code>Long</code>.
|
||
* For <code>null</code>, 0 is returned.
|
||
*
|
||
* @param v an array of long numbers for which the hash code should be
|
||
* computed.
|
||
* @return the hash code of the array, or 0 if null was given.
|
||
* @since 1.5
|
||
*/
|
||
public static int hashCode(long[] v)
|
||
{
|
||
if (v == null)
|
||
return 0;
|
||
int result = 1;
|
||
for (int i = 0; i < v.length; ++i)
|
||
{
|
||
int elt = (int) (v[i] ^ (v[i] >>> 32));
|
||
result = 31 * result + elt;
|
||
}
|
||
return result;
|
||
}
|
||
|
||
/**
|
||
* Returns the hashcode of an array of integer numbers. If two arrays
|
||
* are equal, according to <code>equals()</code>, they should have the
|
||
* same hashcode. The hashcode returned by the method is equal to that
|
||
* obtained by the corresponding <code>List</code> object. This has the same
|
||
* data, but represents ints in their wrapper class, <code>Integer</code>.
|
||
* For <code>null</code>, 0 is returned.
|
||
*
|
||
* @param v an array of integer numbers for which the hash code should be
|
||
* computed.
|
||
* @return the hash code of the array, or 0 if null was given.
|
||
* @since 1.5
|
||
*/
|
||
public static int hashCode(int[] v)
|
||
{
|
||
if (v == null)
|
||
return 0;
|
||
int result = 1;
|
||
for (int i = 0; i < v.length; ++i)
|
||
result = 31 * result + v[i];
|
||
return result;
|
||
}
|
||
|
||
/**
|
||
* Returns the hashcode of an array of short numbers. If two arrays
|
||
* are equal, according to <code>equals()</code>, they should have the
|
||
* same hashcode. The hashcode returned by the method is equal to that
|
||
* obtained by the corresponding <code>List</code> object. This has the same
|
||
* data, but represents shorts in their wrapper class, <code>Short</code>.
|
||
* For <code>null</code>, 0 is returned.
|
||
*
|
||
* @param v an array of short numbers for which the hash code should be
|
||
* computed.
|
||
* @return the hash code of the array, or 0 if null was given.
|
||
* @since 1.5
|
||
*/
|
||
public static int hashCode(short[] v)
|
||
{
|
||
if (v == null)
|
||
return 0;
|
||
int result = 1;
|
||
for (int i = 0; i < v.length; ++i)
|
||
result = 31 * result + v[i];
|
||
return result;
|
||
}
|
||
|
||
/**
|
||
* Returns the hashcode of an array of characters. If two arrays
|
||
* are equal, according to <code>equals()</code>, they should have the
|
||
* same hashcode. The hashcode returned by the method is equal to that
|
||
* obtained by the corresponding <code>List</code> object. This has the same
|
||
* data, but represents chars in their wrapper class, <code>Character</code>.
|
||
* For <code>null</code>, 0 is returned.
|
||
*
|
||
* @param v an array of characters for which the hash code should be
|
||
* computed.
|
||
* @return the hash code of the array, or 0 if null was given.
|
||
* @since 1.5
|
||
*/
|
||
public static int hashCode(char[] v)
|
||
{
|
||
if (v == null)
|
||
return 0;
|
||
int result = 1;
|
||
for (int i = 0; i < v.length; ++i)
|
||
result = 31 * result + v[i];
|
||
return result;
|
||
}
|
||
|
||
/**
|
||
* Returns the hashcode of an array of bytes. If two arrays
|
||
* are equal, according to <code>equals()</code>, they should have the
|
||
* same hashcode. The hashcode returned by the method is equal to that
|
||
* obtained by the corresponding <code>List</code> object. This has the same
|
||
* data, but represents bytes in their wrapper class, <code>Byte</code>.
|
||
* For <code>null</code>, 0 is returned.
|
||
*
|
||
* @param v an array of bytes for which the hash code should be
|
||
* computed.
|
||
* @return the hash code of the array, or 0 if null was given.
|
||
* @since 1.5
|
||
*/
|
||
public static int hashCode(byte[] v)
|
||
{
|
||
if (v == null)
|
||
return 0;
|
||
int result = 1;
|
||
for (int i = 0; i < v.length; ++i)
|
||
result = 31 * result + v[i];
|
||
return result;
|
||
}
|
||
|
||
/**
|
||
* Returns the hashcode of an array of booleans. If two arrays
|
||
* are equal, according to <code>equals()</code>, they should have the
|
||
* same hashcode. The hashcode returned by the method is equal to that
|
||
* obtained by the corresponding <code>List</code> object. This has the same
|
||
* data, but represents booleans in their wrapper class,
|
||
* <code>Boolean</code>. For <code>null</code>, 0 is returned.
|
||
*
|
||
* @param v an array of booleans for which the hash code should be
|
||
* computed.
|
||
* @return the hash code of the array, or 0 if null was given.
|
||
* @since 1.5
|
||
*/
|
||
public static int hashCode(boolean[] v)
|
||
{
|
||
if (v == null)
|
||
return 0;
|
||
int result = 1;
|
||
for (int i = 0; i < v.length; ++i)
|
||
result = 31 * result + (v[i] ? 1231 : 1237);
|
||
return result;
|
||
}
|
||
|
||
/**
|
||
* Returns the hashcode of an array of floats. If two arrays
|
||
* are equal, according to <code>equals()</code>, they should have the
|
||
* same hashcode. The hashcode returned by the method is equal to that
|
||
* obtained by the corresponding <code>List</code> object. This has the same
|
||
* data, but represents floats in their wrapper class, <code>Float</code>.
|
||
* For <code>null</code>, 0 is returned.
|
||
*
|
||
* @param v an array of floats for which the hash code should be
|
||
* computed.
|
||
* @return the hash code of the array, or 0 if null was given.
|
||
* @since 1.5
|
||
*/
|
||
public static int hashCode(float[] v)
|
||
{
|
||
if (v == null)
|
||
return 0;
|
||
int result = 1;
|
||
for (int i = 0; i < v.length; ++i)
|
||
result = 31 * result + Float.floatToIntBits(v[i]);
|
||
return result;
|
||
}
|
||
|
||
/**
|
||
* Returns the hashcode of an array of doubles. If two arrays
|
||
* are equal, according to <code>equals()</code>, they should have the
|
||
* same hashcode. The hashcode returned by the method is equal to that
|
||
* obtained by the corresponding <code>List</code> object. This has the same
|
||
* data, but represents doubles in their wrapper class, <code>Double</code>.
|
||
* For <code>null</code>, 0 is returned.
|
||
*
|
||
* @param v an array of doubles for which the hash code should be
|
||
* computed.
|
||
* @return the hash code of the array, or 0 if null was given.
|
||
* @since 1.5
|
||
*/
|
||
public static int hashCode(double[] v)
|
||
{
|
||
if (v == null)
|
||
return 0;
|
||
int result = 1;
|
||
for (int i = 0; i < v.length; ++i)
|
||
{
|
||
long l = Double.doubleToLongBits(v[i]);
|
||
int elt = (int) (l ^ (l >>> 32));
|
||
result = 31 * result + elt;
|
||
}
|
||
return result;
|
||
}
|
||
|
||
/**
|
||
* Returns the hashcode of an array of objects. If two arrays
|
||
* are equal, according to <code>equals()</code>, they should have the
|
||
* same hashcode. The hashcode returned by the method is equal to that
|
||
* obtained by the corresponding <code>List</code> object.
|
||
* For <code>null</code>, 0 is returned.
|
||
*
|
||
* @param v an array of integer numbers for which the hash code should be
|
||
* computed.
|
||
* @return the hash code of the array, or 0 if null was given.
|
||
* @since 1.5
|
||
*/
|
||
public static int hashCode(Object[] v)
|
||
{
|
||
if (v == null)
|
||
return 0;
|
||
int result = 1;
|
||
for (int i = 0; i < v.length; ++i)
|
||
{
|
||
int elt = v[i] == null ? 0 : v[i].hashCode();
|
||
result = 31 * result + elt;
|
||
}
|
||
return result;
|
||
}
|
||
|
||
public static int deepHashCode(Object[] v)
|
||
{
|
||
if (v == null)
|
||
return 0;
|
||
int result = 1;
|
||
for (int i = 0; i < v.length; ++i)
|
||
{
|
||
int elt;
|
||
if (v[i] == null)
|
||
elt = 0;
|
||
else if (v[i] instanceof boolean[])
|
||
elt = hashCode((boolean[]) v[i]);
|
||
else if (v[i] instanceof byte[])
|
||
elt = hashCode((byte[]) v[i]);
|
||
else if (v[i] instanceof char[])
|
||
elt = hashCode((char[]) v[i]);
|
||
else if (v[i] instanceof short[])
|
||
elt = hashCode((short[]) v[i]);
|
||
else if (v[i] instanceof int[])
|
||
elt = hashCode((int[]) v[i]);
|
||
else if (v[i] instanceof long[])
|
||
elt = hashCode((long[]) v[i]);
|
||
else if (v[i] instanceof float[])
|
||
elt = hashCode((float[]) v[i]);
|
||
else if (v[i] instanceof double[])
|
||
elt = hashCode((double[]) v[i]);
|
||
else if (v[i] instanceof Object[])
|
||
elt = hashCode((Object[]) v[i]);
|
||
else
|
||
elt = v[i].hashCode();
|
||
result = 31 * result + elt;
|
||
}
|
||
return result;
|
||
}
|
||
|
||
/** @since 1.5 */
|
||
public static boolean deepEquals(Object[] v1, Object[] v2)
|
||
{
|
||
if (v1 == null)
|
||
return v2 == null;
|
||
if (v2 == null || v1.length != v2.length)
|
||
return false;
|
||
|
||
for (int i = 0; i < v1.length; ++i)
|
||
{
|
||
Object e1 = v1[i];
|
||
Object e2 = v2[i];
|
||
|
||
if (e1 == e2)
|
||
continue;
|
||
if (e1 == null || e2 == null)
|
||
return false;
|
||
|
||
boolean check;
|
||
if (e1 instanceof boolean[] && e2 instanceof boolean[])
|
||
check = equals((boolean[]) e1, (boolean[]) e2);
|
||
else if (e1 instanceof byte[] && e2 instanceof byte[])
|
||
check = equals((byte[]) e1, (byte[]) e2);
|
||
else if (e1 instanceof char[] && e2 instanceof char[])
|
||
check = equals((char[]) e1, (char[]) e2);
|
||
else if (e1 instanceof short[] && e2 instanceof short[])
|
||
check = equals((short[]) e1, (short[]) e2);
|
||
else if (e1 instanceof int[] && e2 instanceof int[])
|
||
check = equals((int[]) e1, (int[]) e2);
|
||
else if (e1 instanceof long[] && e2 instanceof long[])
|
||
check = equals((long[]) e1, (long[]) e2);
|
||
else if (e1 instanceof float[] && e2 instanceof float[])
|
||
check = equals((float[]) e1, (float[]) e2);
|
||
else if (e1 instanceof double[] && e2 instanceof double[])
|
||
check = equals((double[]) e1, (double[]) e2);
|
||
else if (e1 instanceof Object[] && e2 instanceof Object[])
|
||
check = equals((Object[]) e1, (Object[]) e2);
|
||
else
|
||
check = e1.equals(e2);
|
||
if (! check)
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/**
|
||
* Returns a String representation of the argument array. Returns "null"
|
||
* if <code>a</code> is null.
|
||
* @param v the array to represent
|
||
* @return a String representing this array
|
||
* @since 1.5
|
||
*/
|
||
public static String toString(boolean[] v)
|
||
{
|
||
if (v == null)
|
||
return "null";
|
||
StringBuilder b = new StringBuilder("[");
|
||
for (int i = 0; i < v.length; ++i)
|
||
{
|
||
if (i > 0)
|
||
b.append(", ");
|
||
b.append(v[i]);
|
||
}
|
||
b.append("]");
|
||
return b.toString();
|
||
}
|
||
|
||
/**
|
||
* Returns a String representation of the argument array. Returns "null"
|
||
* if <code>a</code> is null.
|
||
* @param v the array to represent
|
||
* @return a String representing this array
|
||
* @since 1.5
|
||
*/
|
||
public static String toString(byte[] v)
|
||
{
|
||
if (v == null)
|
||
return "null";
|
||
StringBuilder b = new StringBuilder("[");
|
||
for (int i = 0; i < v.length; ++i)
|
||
{
|
||
if (i > 0)
|
||
b.append(", ");
|
||
b.append(v[i]);
|
||
}
|
||
b.append("]");
|
||
return b.toString();
|
||
}
|
||
|
||
/**
|
||
* Returns a String representation of the argument array. Returns "null"
|
||
* if <code>a</code> is null.
|
||
* @param v the array to represent
|
||
* @return a String representing this array
|
||
* @since 1.5
|
||
*/
|
||
public static String toString(char[] v)
|
||
{
|
||
if (v == null)
|
||
return "null";
|
||
StringBuilder b = new StringBuilder("[");
|
||
for (int i = 0; i < v.length; ++i)
|
||
{
|
||
if (i > 0)
|
||
b.append(", ");
|
||
b.append(v[i]);
|
||
}
|
||
b.append("]");
|
||
return b.toString();
|
||
}
|
||
|
||
/**
|
||
* Returns a String representation of the argument array. Returns "null"
|
||
* if <code>a</code> is null.
|
||
* @param v the array to represent
|
||
* @return a String representing this array
|
||
* @since 1.5
|
||
*/
|
||
public static String toString(short[] v)
|
||
{
|
||
if (v == null)
|
||
return "null";
|
||
StringBuilder b = new StringBuilder("[");
|
||
for (int i = 0; i < v.length; ++i)
|
||
{
|
||
if (i > 0)
|
||
b.append(", ");
|
||
b.append(v[i]);
|
||
}
|
||
b.append("]");
|
||
return b.toString();
|
||
}
|
||
|
||
/**
|
||
* Returns a String representation of the argument array. Returns "null"
|
||
* if <code>a</code> is null.
|
||
* @param v the array to represent
|
||
* @return a String representing this array
|
||
* @since 1.5
|
||
*/
|
||
public static String toString(int[] v)
|
||
{
|
||
if (v == null)
|
||
return "null";
|
||
StringBuilder b = new StringBuilder("[");
|
||
for (int i = 0; i < v.length; ++i)
|
||
{
|
||
if (i > 0)
|
||
b.append(", ");
|
||
b.append(v[i]);
|
||
}
|
||
b.append("]");
|
||
return b.toString();
|
||
}
|
||
|
||
/**
|
||
* Returns a String representation of the argument array. Returns "null"
|
||
* if <code>a</code> is null.
|
||
* @param v the array to represent
|
||
* @return a String representing this array
|
||
* @since 1.5
|
||
*/
|
||
public static String toString(long[] v)
|
||
{
|
||
if (v == null)
|
||
return "null";
|
||
StringBuilder b = new StringBuilder("[");
|
||
for (int i = 0; i < v.length; ++i)
|
||
{
|
||
if (i > 0)
|
||
b.append(", ");
|
||
b.append(v[i]);
|
||
}
|
||
b.append("]");
|
||
return b.toString();
|
||
}
|
||
|
||
/**
|
||
* Returns a String representation of the argument array. Returns "null"
|
||
* if <code>a</code> is null.
|
||
* @param v the array to represent
|
||
* @return a String representing this array
|
||
* @since 1.5
|
||
*/
|
||
public static String toString(float[] v)
|
||
{
|
||
if (v == null)
|
||
return "null";
|
||
StringBuilder b = new StringBuilder("[");
|
||
for (int i = 0; i < v.length; ++i)
|
||
{
|
||
if (i > 0)
|
||
b.append(", ");
|
||
b.append(v[i]);
|
||
}
|
||
b.append("]");
|
||
return b.toString();
|
||
}
|
||
|
||
/**
|
||
* Returns a String representation of the argument array. Returns "null"
|
||
* if <code>a</code> is null.
|
||
* @param v the array to represent
|
||
* @return a String representing this array
|
||
* @since 1.5
|
||
*/
|
||
public static String toString(double[] v)
|
||
{
|
||
if (v == null)
|
||
return "null";
|
||
StringBuilder b = new StringBuilder("[");
|
||
for (int i = 0; i < v.length; ++i)
|
||
{
|
||
if (i > 0)
|
||
b.append(", ");
|
||
b.append(v[i]);
|
||
}
|
||
b.append("]");
|
||
return b.toString();
|
||
}
|
||
|
||
/**
|
||
* Returns a String representation of the argument array. Returns "null"
|
||
* if <code>a</code> is null.
|
||
* @param v the array to represent
|
||
* @return a String representing this array
|
||
* @since 1.5
|
||
*/
|
||
public static String toString(Object[] v)
|
||
{
|
||
if (v == null)
|
||
return "null";
|
||
StringBuilder b = new StringBuilder("[");
|
||
for (int i = 0; i < v.length; ++i)
|
||
{
|
||
if (i > 0)
|
||
b.append(", ");
|
||
b.append(v[i]);
|
||
}
|
||
b.append("]");
|
||
return b.toString();
|
||
}
|
||
|
||
private static void deepToString(Object[] v, StringBuilder b, HashSet seen)
|
||
{
|
||
b.append("[");
|
||
for (int i = 0; i < v.length; ++i)
|
||
{
|
||
if (i > 0)
|
||
b.append(", ");
|
||
Object elt = v[i];
|
||
if (elt == null)
|
||
b.append("null");
|
||
else if (elt instanceof boolean[])
|
||
b.append(toString((boolean[]) elt));
|
||
else if (elt instanceof byte[])
|
||
b.append(toString((byte[]) elt));
|
||
else if (elt instanceof char[])
|
||
b.append(toString((char[]) elt));
|
||
else if (elt instanceof short[])
|
||
b.append(toString((short[]) elt));
|
||
else if (elt instanceof int[])
|
||
b.append(toString((int[]) elt));
|
||
else if (elt instanceof long[])
|
||
b.append(toString((long[]) elt));
|
||
else if (elt instanceof float[])
|
||
b.append(toString((float[]) elt));
|
||
else if (elt instanceof double[])
|
||
b.append(toString((double[]) elt));
|
||
else if (elt instanceof Object[])
|
||
{
|
||
Object[] os = (Object[]) elt;
|
||
if (seen.contains(os))
|
||
b.append("[...]");
|
||
else
|
||
{
|
||
seen.add(os);
|
||
deepToString(os, b, seen);
|
||
}
|
||
}
|
||
else
|
||
b.append(elt);
|
||
}
|
||
b.append("]");
|
||
}
|
||
|
||
/** @since 1.5 */
|
||
public static String deepToString(Object[] v)
|
||
{
|
||
if (v == null)
|
||
return "null";
|
||
HashSet seen = new HashSet();
|
||
StringBuilder b = new StringBuilder();
|
||
deepToString(v, b, seen);
|
||
return b.toString();
|
||
}
|
||
|
||
/**
|
||
* Inner class used by {@link #asList(Object[])} to provide a list interface
|
||
* to an array. The name, though it clashes with java.util.ArrayList, is
|
||
* Sun's choice for Serialization purposes. Element addition and removal
|
||
* is prohibited, but values can be modified.
|
||
*
|
||
* @author Eric Blake (ebb9@email.byu.edu)
|
||
* @status updated to 1.4
|
||
*/
|
||
private static final class ArrayList<E> extends AbstractList<E>
|
||
implements Serializable, RandomAccess
|
||
{
|
||
// We override the necessary methods, plus others which will be much
|
||
// more efficient with direct iteration rather than relying on iterator().
|
||
|
||
/**
|
||
* Compatible with JDK 1.4.
|
||
*/
|
||
private static final long serialVersionUID = -2764017481108945198L;
|
||
|
||
/**
|
||
* The array we are viewing.
|
||
* @serial the array
|
||
*/
|
||
private final E[] a;
|
||
|
||
/**
|
||
* Construct a list view of the array.
|
||
* @param a the array to view
|
||
* @throws NullPointerException if a is null
|
||
*/
|
||
ArrayList(E[] a)
|
||
{
|
||
// We have to explicitly check.
|
||
if (a == null)
|
||
throw new NullPointerException();
|
||
this.a = a;
|
||
}
|
||
|
||
/**
|
||
* Returns the object at the specified index in
|
||
* the array.
|
||
*
|
||
* @param index The index to retrieve an object from.
|
||
* @return The object at the array index specified.
|
||
*/
|
||
public E get(int index)
|
||
{
|
||
return a[index];
|
||
}
|
||
|
||
/**
|
||
* Returns the size of the array.
|
||
*
|
||
* @return The size.
|
||
*/
|
||
public int size()
|
||
{
|
||
return a.length;
|
||
}
|
||
|
||
/**
|
||
* Replaces the object at the specified index
|
||
* with the supplied element.
|
||
*
|
||
* @param index The index at which to place the new object.
|
||
* @param element The new object.
|
||
* @return The object replaced by this operation.
|
||
*/
|
||
public E set(int index, E element)
|
||
{
|
||
E old = a[index];
|
||
a[index] = element;
|
||
return old;
|
||
}
|
||
|
||
/**
|
||
* Returns true if the array contains the
|
||
* supplied object.
|
||
*
|
||
* @param o The object to look for.
|
||
* @return True if the object was found.
|
||
*/
|
||
public boolean contains(Object o)
|
||
{
|
||
return lastIndexOf(o) >= 0;
|
||
}
|
||
|
||
/**
|
||
* Returns the first index at which the
|
||
* object, o, occurs in the array.
|
||
*
|
||
* @param o The object to search for.
|
||
* @return The first relevant index.
|
||
*/
|
||
public int indexOf(Object o)
|
||
{
|
||
int size = a.length;
|
||
for (int i = 0; i < size; i++)
|
||
if (ArrayList.equals(o, a[i]))
|
||
return i;
|
||
return -1;
|
||
}
|
||
|
||
/**
|
||
* Returns the last index at which the
|
||
* object, o, occurs in the array.
|
||
*
|
||
* @param o The object to search for.
|
||
* @return The last relevant index.
|
||
*/
|
||
public int lastIndexOf(Object o)
|
||
{
|
||
int i = a.length;
|
||
while (--i >= 0)
|
||
if (ArrayList.equals(o, a[i]))
|
||
return i;
|
||
return -1;
|
||
}
|
||
|
||
/**
|
||
* Transforms the list into an array of
|
||
* objects, by simplying cloning the array
|
||
* wrapped by this list.
|
||
*
|
||
* @return A clone of the internal array.
|
||
*/
|
||
public Object[] toArray()
|
||
{
|
||
return (Object[]) a.clone();
|
||
}
|
||
|
||
/**
|
||
* Copies the objects from this list into
|
||
* the supplied array. The supplied array
|
||
* is shrunk or enlarged to the size of the
|
||
* internal array, and filled with its objects.
|
||
*
|
||
* @param array The array to fill with the objects in this list.
|
||
* @return The array containing the objects in this list,
|
||
* which may or may not be == to array.
|
||
*/
|
||
public <T> T[] toArray(T[] array)
|
||
{
|
||
int size = a.length;
|
||
if (array.length < size)
|
||
array = (T[]) Array.newInstance(array.getClass().getComponentType(),
|
||
size);
|
||
else if (array.length > size)
|
||
array[size] = null;
|
||
|
||
System.arraycopy(a, 0, array, 0, size);
|
||
return array;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Returns a copy of the supplied array, truncating or padding as
|
||
* necessary with <code>false</code> to obtain the specified length.
|
||
* Indices that are valid for both arrays will return the same value.
|
||
* Indices that only exist in the returned array (due to the new length
|
||
* being greater than the original length) will return <code>false</code>.
|
||
* This is equivalent to calling
|
||
* <code>copyOfRange(original, 0, newLength)</code>.
|
||
*
|
||
* @param original the original array to be copied.
|
||
* @param newLength the length of the returned array.
|
||
* @return a copy of the original array, truncated or padded with
|
||
* <code>false</code> to obtain the required length.
|
||
* @throws NegativeArraySizeException if <code>newLength</code> is negative.
|
||
* @throws NullPointerException if <code>original</code> is <code>null</code>.
|
||
* @since 1.6
|
||
* @see #copyOfRange(boolean[],int,int)
|
||
*/
|
||
public static boolean[] copyOf(boolean[] original, int newLength)
|
||
{
|
||
if (newLength < 0)
|
||
throw new NegativeArraySizeException("The array size is negative.");
|
||
return copyOfRange(original, 0, newLength);
|
||
}
|
||
|
||
/**
|
||
* Copies the specified range of the supplied array to a new
|
||
* array, padding as necessary with <code>false</code>
|
||
* if <code>to</code> is greater than the length of the original
|
||
* array. <code>from</code> must be in the range zero to
|
||
* <code>original.length</code> and can not be greater than
|
||
* <code>to</code>. The initial element of the
|
||
* returned array will be equal to <code>original[from]</code>,
|
||
* except where <code>from</code> is equal to <code>to</code>
|
||
* (where a zero-length array will be returned) or <code>
|
||
* <code>from</code> is equal to <code>original.length</code>
|
||
* (where an array padded with <code>false</code> will be
|
||
* returned). The returned array is always of length
|
||
* <code>to - from</code>.
|
||
*
|
||
* @param original the array from which to copy.
|
||
* @param from the initial index of the range, inclusive.
|
||
* @param to the final index of the range, exclusive.
|
||
* @return a copy of the specified range, with padding to
|
||
* obtain the required length.
|
||
* @throws ArrayIndexOutOfBoundsException if <code>from < 0</code>
|
||
* or <code>from > original.length</code>
|
||
* @throws IllegalArgumentException if <code>from > to</code>
|
||
* @throws NullPointerException if <code>original</code> is <code>null</code>.
|
||
* @since 1.6
|
||
* @see #copyOf(boolean[],int)
|
||
*/
|
||
public static boolean[] copyOfRange(boolean[] original, int from, int to)
|
||
{
|
||
if (from > to)
|
||
throw new IllegalArgumentException("The initial index is after " +
|
||
"the final index.");
|
||
boolean[] newArray = new boolean[to - from];
|
||
if (to > original.length)
|
||
{
|
||
System.arraycopy(original, from, newArray, 0,
|
||
original.length - from);
|
||
fill(newArray, original.length, newArray.length, false);
|
||
}
|
||
else
|
||
System.arraycopy(original, from, newArray, 0, to - from);
|
||
return newArray;
|
||
}
|
||
|
||
/**
|
||
* Returns a copy of the supplied array, truncating or padding as
|
||
* necessary with <code>(byte)0</code> to obtain the specified length.
|
||
* Indices that are valid for both arrays will return the same value.
|
||
* Indices that only exist in the returned array (due to the new length
|
||
* being greater than the original length) will return <code>(byte)0</code>.
|
||
* This is equivalent to calling
|
||
* <code>copyOfRange(original, 0, newLength)</code>.
|
||
*
|
||
* @param original the original array to be copied.
|
||
* @param newLength the length of the returned array.
|
||
* @return a copy of the original array, truncated or padded with
|
||
* <code>(byte)0</code> to obtain the required length.
|
||
* @throws NegativeArraySizeException if <code>newLength</code> is negative.
|
||
* @throws NullPointerException if <code>original</code> is <code>null</code>.
|
||
* @since 1.6
|
||
* @see #copyOfRange(byte[],int,int)
|
||
*/
|
||
public static byte[] copyOf(byte[] original, int newLength)
|
||
{
|
||
if (newLength < 0)
|
||
throw new NegativeArraySizeException("The array size is negative.");
|
||
return copyOfRange(original, 0, newLength);
|
||
}
|
||
|
||
/**
|
||
* Copies the specified range of the supplied array to a new
|
||
* array, padding as necessary with <code>(byte)0</code>
|
||
* if <code>to</code> is greater than the length of the original
|
||
* array. <code>from</code> must be in the range zero to
|
||
* <code>original.length</code> and can not be greater than
|
||
* <code>to</code>. The initial element of the
|
||
* returned array will be equal to <code>original[from]</code>,
|
||
* except where <code>from</code> is equal to <code>to</code>
|
||
* (where a zero-length array will be returned) or <code>
|
||
* <code>from</code> is equal to <code>original.length</code>
|
||
* (where an array padded with <code>(byte)0</code> will be
|
||
* returned). The returned array is always of length
|
||
* <code>to - from</code>.
|
||
*
|
||
* @param original the array from which to copy.
|
||
* @param from the initial index of the range, inclusive.
|
||
* @param to the final index of the range, exclusive.
|
||
* @return a copy of the specified range, with padding to
|
||
* obtain the required length.
|
||
* @throws ArrayIndexOutOfBoundsException if <code>from < 0</code>
|
||
* or <code>from > original.length</code>
|
||
* @throws IllegalArgumentException if <code>from > to</code>
|
||
* @throws NullPointerException if <code>original</code> is <code>null</code>.
|
||
* @since 1.6
|
||
* @see #copyOf(byte[],int)
|
||
*/
|
||
public static byte[] copyOfRange(byte[] original, int from, int to)
|
||
{
|
||
if (from > to)
|
||
throw new IllegalArgumentException("The initial index is after " +
|
||
"the final index.");
|
||
byte[] newArray = new byte[to - from];
|
||
if (to > original.length)
|
||
{
|
||
System.arraycopy(original, from, newArray, 0,
|
||
original.length - from);
|
||
fill(newArray, original.length, newArray.length, (byte)0);
|
||
}
|
||
else
|
||
System.arraycopy(original, from, newArray, 0, to - from);
|
||
return newArray;
|
||
}
|
||
|
||
/**
|
||
* Returns a copy of the supplied array, truncating or padding as
|
||
* necessary with <code>'\0'</code> to obtain the specified length.
|
||
* Indices that are valid for both arrays will return the same value.
|
||
* Indices that only exist in the returned array (due to the new length
|
||
* being greater than the original length) will return <code>'\0'</code>.
|
||
* This is equivalent to calling
|
||
* <code>copyOfRange(original, 0, newLength)</code>.
|
||
*
|
||
* @param original the original array to be copied.
|
||
* @param newLength the length of the returned array.
|
||
* @return a copy of the original array, truncated or padded with
|
||
* <code>'\0'</code> to obtain the required length.
|
||
* @throws NegativeArraySizeException if <code>newLength</code> is negative.
|
||
* @throws NullPointerException if <code>original</code> is <code>null</code>.
|
||
* @since 1.6
|
||
* @see #copyOfRange(char[],int,int)
|
||
*/
|
||
public static char[] copyOf(char[] original, int newLength)
|
||
{
|
||
if (newLength < 0)
|
||
throw new NegativeArraySizeException("The array size is negative.");
|
||
return copyOfRange(original, 0, newLength);
|
||
}
|
||
|
||
/**
|
||
* Copies the specified range of the supplied array to a new
|
||
* array, padding as necessary with <code>'\0'</code>
|
||
* if <code>to</code> is greater than the length of the original
|
||
* array. <code>from</code> must be in the range zero to
|
||
* <code>original.length</code> and can not be greater than
|
||
* <code>to</code>. The initial element of the
|
||
* returned array will be equal to <code>original[from]</code>,
|
||
* except where <code>from</code> is equal to <code>to</code>
|
||
* (where a zero-length array will be returned) or <code>
|
||
* <code>from</code> is equal to <code>original.length</code>
|
||
* (where an array padded with <code>'\0'</code> will be
|
||
* returned). The returned array is always of length
|
||
* <code>to - from</code>.
|
||
*
|
||
* @param original the array from which to copy.
|
||
* @param from the initial index of the range, inclusive.
|
||
* @param to the final index of the range, exclusive.
|
||
* @return a copy of the specified range, with padding to
|
||
* obtain the required length.
|
||
* @throws ArrayIndexOutOfBoundsException if <code>from < 0</code>
|
||
* or <code>from > original.length</code>
|
||
* @throws IllegalArgumentException if <code>from > to</code>
|
||
* @throws NullPointerException if <code>original</code> is <code>null</code>.
|
||
* @since 1.6
|
||
* @see #copyOf(char[],int)
|
||
*/
|
||
public static char[] copyOfRange(char[] original, int from, int to)
|
||
{
|
||
if (from > to)
|
||
throw new IllegalArgumentException("The initial index is after " +
|
||
"the final index.");
|
||
char[] newArray = new char[to - from];
|
||
if (to > original.length)
|
||
{
|
||
System.arraycopy(original, from, newArray, 0,
|
||
original.length - from);
|
||
fill(newArray, original.length, newArray.length, '\0');
|
||
}
|
||
else
|
||
System.arraycopy(original, from, newArray, 0, to - from);
|
||
return newArray;
|
||
}
|
||
|
||
/**
|
||
* Returns a copy of the supplied array, truncating or padding as
|
||
* necessary with <code>0d</code> to obtain the specified length.
|
||
* Indices that are valid for both arrays will return the same value.
|
||
* Indices that only exist in the returned array (due to the new length
|
||
* being greater than the original length) will return <code>0d</code>.
|
||
* This is equivalent to calling
|
||
* <code>copyOfRange(original, 0, newLength)</code>.
|
||
*
|
||
* @param original the original array to be copied.
|
||
* @param newLength the length of the returned array.
|
||
* @return a copy of the original array, truncated or padded with
|
||
* <code>0d</code> to obtain the required length.
|
||
* @throws NegativeArraySizeException if <code>newLength</code> is negative.
|
||
* @throws NullPointerException if <code>original</code> is <code>null</code>.
|
||
* @since 1.6
|
||
* @see #copyOfRange(double[],int,int)
|
||
*/
|
||
public static double[] copyOf(double[] original, int newLength)
|
||
{
|
||
if (newLength < 0)
|
||
throw new NegativeArraySizeException("The array size is negative.");
|
||
return copyOfRange(original, 0, newLength);
|
||
}
|
||
|
||
/**
|
||
* Copies the specified range of the supplied array to a new
|
||
* array, padding as necessary with <code>0d</code>
|
||
* if <code>to</code> is greater than the length of the original
|
||
* array. <code>from</code> must be in the range zero to
|
||
* <code>original.length</code> and can not be greater than
|
||
* <code>to</code>. The initial element of the
|
||
* returned array will be equal to <code>original[from]</code>,
|
||
* except where <code>from</code> is equal to <code>to</code>
|
||
* (where a zero-length array will be returned) or <code>
|
||
* <code>from</code> is equal to <code>original.length</code>
|
||
* (where an array padded with <code>0d</code> will be
|
||
* returned). The returned array is always of length
|
||
* <code>to - from</code>.
|
||
*
|
||
* @param original the array from which to copy.
|
||
* @param from the initial index of the range, inclusive.
|
||
* @param to the final index of the range, exclusive.
|
||
* @return a copy of the specified range, with padding to
|
||
* obtain the required length.
|
||
* @throws ArrayIndexOutOfBoundsException if <code>from < 0</code>
|
||
* or <code>from > original.length</code>
|
||
* @throws IllegalArgumentException if <code>from > to</code>
|
||
* @throws NullPointerException if <code>original</code> is <code>null</code>.
|
||
* @since 1.6
|
||
* @see #copyOf(double[],int)
|
||
*/
|
||
public static double[] copyOfRange(double[] original, int from, int to)
|
||
{
|
||
if (from > to)
|
||
throw new IllegalArgumentException("The initial index is after " +
|
||
"the final index.");
|
||
double[] newArray = new double[to - from];
|
||
if (to > original.length)
|
||
{
|
||
System.arraycopy(original, from, newArray, 0,
|
||
original.length - from);
|
||
fill(newArray, original.length, newArray.length, 0d);
|
||
}
|
||
else
|
||
System.arraycopy(original, from, newArray, 0, to - from);
|
||
return newArray;
|
||
}
|
||
|
||
/**
|
||
* Returns a copy of the supplied array, truncating or padding as
|
||
* necessary with <code>0f</code> to obtain the specified length.
|
||
* Indices that are valid for both arrays will return the same value.
|
||
* Indices that only exist in the returned array (due to the new length
|
||
* being greater than the original length) will return <code>0f</code>.
|
||
* This is equivalent to calling
|
||
* <code>copyOfRange(original, 0, newLength)</code>.
|
||
*
|
||
* @param original the original array to be copied.
|
||
* @param newLength the length of the returned array.
|
||
* @return a copy of the original array, truncated or padded with
|
||
* <code>0f</code> to obtain the required length.
|
||
* @throws NegativeArraySizeException if <code>newLength</code> is negative.
|
||
* @throws NullPointerException if <code>original</code> is <code>null</code>.
|
||
* @since 1.6
|
||
* @see #copyOfRange(float[],int,int)
|
||
*/
|
||
public static float[] copyOf(float[] original, int newLength)
|
||
{
|
||
if (newLength < 0)
|
||
throw new NegativeArraySizeException("The array size is negative.");
|
||
return copyOfRange(original, 0, newLength);
|
||
}
|
||
|
||
/**
|
||
* Copies the specified range of the supplied array to a new
|
||
* array, padding as necessary with <code>0f</code>
|
||
* if <code>to</code> is greater than the length of the original
|
||
* array. <code>from</code> must be in the range zero to
|
||
* <code>original.length</code> and can not be greater than
|
||
* <code>to</code>. The initial element of the
|
||
* returned array will be equal to <code>original[from]</code>,
|
||
* except where <code>from</code> is equal to <code>to</code>
|
||
* (where a zero-length array will be returned) or <code>
|
||
* <code>from</code> is equal to <code>original.length</code>
|
||
* (where an array padded with <code>0f</code> will be
|
||
* returned). The returned array is always of length
|
||
* <code>to - from</code>.
|
||
*
|
||
* @param original the array from which to copy.
|
||
* @param from the initial index of the range, inclusive.
|
||
* @param to the final index of the range, exclusive.
|
||
* @return a copy of the specified range, with padding to
|
||
* obtain the required length.
|
||
* @throws ArrayIndexOutOfBoundsException if <code>from < 0</code>
|
||
* or <code>from > original.length</code>
|
||
* @throws IllegalArgumentException if <code>from > to</code>
|
||
* @throws NullPointerException if <code>original</code> is <code>null</code>.
|
||
* @since 1.6
|
||
* @see #copyOf(float[],int)
|
||
*/
|
||
public static float[] copyOfRange(float[] original, int from, int to)
|
||
{
|
||
if (from > to)
|
||
throw new IllegalArgumentException("The initial index is after " +
|
||
"the final index.");
|
||
float[] newArray = new float[to - from];
|
||
if (to > original.length)
|
||
{
|
||
System.arraycopy(original, from, newArray, 0,
|
||
original.length - from);
|
||
fill(newArray, original.length, newArray.length, 0f);
|
||
}
|
||
else
|
||
System.arraycopy(original, from, newArray, 0, to - from);
|
||
return newArray;
|
||
}
|
||
|
||
/**
|
||
* Returns a copy of the supplied array, truncating or padding as
|
||
* necessary with <code>0</code> to obtain the specified length.
|
||
* Indices that are valid for both arrays will return the same value.
|
||
* Indices that only exist in the returned array (due to the new length
|
||
* being greater than the original length) will return <code>0</code>.
|
||
* This is equivalent to calling
|
||
* <code>copyOfRange(original, 0, newLength)</code>.
|
||
*
|
||
* @param original the original array to be copied.
|
||
* @param newLength the length of the returned array.
|
||
* @return a copy of the original array, truncated or padded with
|
||
* <code>0</code> to obtain the required length.
|
||
* @throws NegativeArraySizeException if <code>newLength</code> is negative.
|
||
* @throws NullPointerException if <code>original</code> is <code>null</code>.
|
||
* @since 1.6
|
||
* @see #copyOfRange(int[],int,int)
|
||
*/
|
||
public static int[] copyOf(int[] original, int newLength)
|
||
{
|
||
if (newLength < 0)
|
||
throw new NegativeArraySizeException("The array size is negative.");
|
||
return copyOfRange(original, 0, newLength);
|
||
}
|
||
|
||
/**
|
||
* Copies the specified range of the supplied array to a new
|
||
* array, padding as necessary with <code>0</code>
|
||
* if <code>to</code> is greater than the length of the original
|
||
* array. <code>from</code> must be in the range zero to
|
||
* <code>original.length</code> and can not be greater than
|
||
* <code>to</code>. The initial element of the
|
||
* returned array will be equal to <code>original[from]</code>,
|
||
* except where <code>from</code> is equal to <code>to</code>
|
||
* (where a zero-length array will be returned) or <code>
|
||
* <code>from</code> is equal to <code>original.length</code>
|
||
* (where an array padded with <code>0</code> will be
|
||
* returned). The returned array is always of length
|
||
* <code>to - from</code>.
|
||
*
|
||
* @param original the array from which to copy.
|
||
* @param from the initial index of the range, inclusive.
|
||
* @param to the final index of the range, exclusive.
|
||
* @return a copy of the specified range, with padding to
|
||
* obtain the required length.
|
||
* @throws ArrayIndexOutOfBoundsException if <code>from < 0</code>
|
||
* or <code>from > original.length</code>
|
||
* @throws IllegalArgumentException if <code>from > to</code>
|
||
* @throws NullPointerException if <code>original</code> is <code>null</code>.
|
||
* @since 1.6
|
||
* @see #copyOf(int[],int)
|
||
*/
|
||
public static int[] copyOfRange(int[] original, int from, int to)
|
||
{
|
||
if (from > to)
|
||
throw new IllegalArgumentException("The initial index is after " +
|
||
"the final index.");
|
||
int[] newArray = new int[to - from];
|
||
if (to > original.length)
|
||
{
|
||
System.arraycopy(original, from, newArray, 0,
|
||
original.length - from);
|
||
fill(newArray, original.length, newArray.length, 0);
|
||
}
|
||
else
|
||
System.arraycopy(original, from, newArray, 0, to - from);
|
||
return newArray;
|
||
}
|
||
|
||
/**
|
||
* Returns a copy of the supplied array, truncating or padding as
|
||
* necessary with <code>0L</code> to obtain the specified length.
|
||
* Indices that are valid for both arrays will return the same value.
|
||
* Indices that only exist in the returned array (due to the new length
|
||
* being greater than the original length) will return <code>0L</code>.
|
||
* This is equivalent to calling
|
||
* <code>copyOfRange(original, 0, newLength)</code>.
|
||
*
|
||
* @param original the original array to be copied.
|
||
* @param newLength the length of the returned array.
|
||
* @return a copy of the original array, truncated or padded with
|
||
* <code>0L</code> to obtain the required length.
|
||
* @throws NegativeArraySizeException if <code>newLength</code> is negative.
|
||
* @throws NullPointerException if <code>original</code> is <code>null</code>.
|
||
* @since 1.6
|
||
* @see #copyOfRange(long[],int,int)
|
||
*/
|
||
public static long[] copyOf(long[] original, int newLength)
|
||
{
|
||
if (newLength < 0)
|
||
throw new NegativeArraySizeException("The array size is negative.");
|
||
return copyOfRange(original, 0, newLength);
|
||
}
|
||
|
||
/**
|
||
* Copies the specified range of the supplied array to a new
|
||
* array, padding as necessary with <code>0L</code>
|
||
* if <code>to</code> is greater than the length of the original
|
||
* array. <code>from</code> must be in the range zero to
|
||
* <code>original.length</code> and can not be greater than
|
||
* <code>to</code>. The initial element of the
|
||
* returned array will be equal to <code>original[from]</code>,
|
||
* except where <code>from</code> is equal to <code>to</code>
|
||
* (where a zero-length array will be returned) or <code>
|
||
* <code>from</code> is equal to <code>original.length</code>
|
||
* (where an array padded with <code>0L</code> will be
|
||
* returned). The returned array is always of length
|
||
* <code>to - from</code>.
|
||
*
|
||
* @param original the array from which to copy.
|
||
* @param from the initial index of the range, inclusive.
|
||
* @param to the final index of the range, exclusive.
|
||
* @return a copy of the specified range, with padding to
|
||
* obtain the required length.
|
||
* @throws ArrayIndexOutOfBoundsException if <code>from < 0</code>
|
||
* or <code>from > original.length</code>
|
||
* @throws IllegalArgumentException if <code>from > to</code>
|
||
* @throws NullPointerException if <code>original</code> is <code>null</code>.
|
||
* @since 1.6
|
||
* @see #copyOf(long[],int)
|
||
*/
|
||
public static long[] copyOfRange(long[] original, int from, int to)
|
||
{
|
||
if (from > to)
|
||
throw new IllegalArgumentException("The initial index is after " +
|
||
"the final index.");
|
||
long[] newArray = new long[to - from];
|
||
if (to > original.length)
|
||
{
|
||
System.arraycopy(original, from, newArray, 0,
|
||
original.length - from);
|
||
fill(newArray, original.length, newArray.length, 0L);
|
||
}
|
||
else
|
||
System.arraycopy(original, from, newArray, 0, to - from);
|
||
return newArray;
|
||
}
|
||
|
||
/**
|
||
* Returns a copy of the supplied array, truncating or padding as
|
||
* necessary with <code>(short)0</code> to obtain the specified length.
|
||
* Indices that are valid for both arrays will return the same value.
|
||
* Indices that only exist in the returned array (due to the new length
|
||
* being greater than the original length) will return <code>(short)0</code>.
|
||
* This is equivalent to calling
|
||
* <code>copyOfRange(original, 0, newLength)</code>.
|
||
*
|
||
* @param original the original array to be copied.
|
||
* @param newLength the length of the returned array.
|
||
* @return a copy of the original array, truncated or padded with
|
||
* <code>(short)0</code> to obtain the required length.
|
||
* @throws NegativeArraySizeException if <code>newLength</code> is negative.
|
||
* @throws NullPointerException if <code>original</code> is <code>null</code>.
|
||
* @since 1.6
|
||
* @see #copyOfRange(short[],int,int)
|
||
*/
|
||
public static short[] copyOf(short[] original, int newLength)
|
||
{
|
||
if (newLength < 0)
|
||
throw new NegativeArraySizeException("The array size is negative.");
|
||
return copyOfRange(original, 0, newLength);
|
||
}
|
||
|
||
/**
|
||
* Copies the specified range of the supplied array to a new
|
||
* array, padding as necessary with <code>(short)0</code>
|
||
* if <code>to</code> is greater than the length of the original
|
||
* array. <code>from</code> must be in the range zero to
|
||
* <code>original.length</code> and can not be greater than
|
||
* <code>to</code>. The initial element of the
|
||
* returned array will be equal to <code>original[from]</code>,
|
||
* except where <code>from</code> is equal to <code>to</code>
|
||
* (where a zero-length array will be returned) or <code>
|
||
* <code>from</code> is equal to <code>original.length</code>
|
||
* (where an array padded with <code>(short)0</code> will be
|
||
* returned). The returned array is always of length
|
||
* <code>to - from</code>.
|
||
*
|
||
* @param original the array from which to copy.
|
||
* @param from the initial index of the range, inclusive.
|
||
* @param to the final index of the range, exclusive.
|
||
* @return a copy of the specified range, with padding to
|
||
* obtain the required length.
|
||
* @throws ArrayIndexOutOfBoundsException if <code>from < 0</code>
|
||
* or <code>from > original.length</code>
|
||
* @throws IllegalArgumentException if <code>from > to</code>
|
||
* @throws NullPointerException if <code>original</code> is <code>null</code>.
|
||
* @since 1.6
|
||
* @see #copyOf(short[],int)
|
||
*/
|
||
public static short[] copyOfRange(short[] original, int from, int to)
|
||
{
|
||
if (from > to)
|
||
throw new IllegalArgumentException("The initial index is after " +
|
||
"the final index.");
|
||
short[] newArray = new short[to - from];
|
||
if (to > original.length)
|
||
{
|
||
System.arraycopy(original, from, newArray, 0,
|
||
original.length - from);
|
||
fill(newArray, original.length, newArray.length, (short)0);
|
||
}
|
||
else
|
||
System.arraycopy(original, from, newArray, 0, to - from);
|
||
return newArray;
|
||
}
|
||
|
||
/**
|
||
* Returns a copy of the supplied array, truncating or padding as
|
||
* necessary with <code>null</code> to obtain the specified length.
|
||
* Indices that are valid for both arrays will return the same value.
|
||
* Indices that only exist in the returned array (due to the new length
|
||
* being greater than the original length) will return <code>null</code>.
|
||
* This is equivalent to calling
|
||
* <code>copyOfRange(original, 0, newLength)</code>.
|
||
*
|
||
* @param original the original array to be copied.
|
||
* @param newLength the length of the returned array.
|
||
* @return a copy of the original array, truncated or padded with
|
||
* <code>null</code> to obtain the required length.
|
||
* @throws NegativeArraySizeException if <code>newLength</code> is negative.
|
||
* @throws NullPointerException if <code>original</code> is <code>null</code>.
|
||
* @since 1.6
|
||
* @see #copyOfRange(T[],int,int)
|
||
*/
|
||
public static <T> T[] copyOf(T[] original, int newLength)
|
||
{
|
||
if (newLength < 0)
|
||
throw new NegativeArraySizeException("The array size is negative.");
|
||
return copyOfRange(original, 0, newLength);
|
||
}
|
||
|
||
/**
|
||
* Copies the specified range of the supplied array to a new
|
||
* array, padding as necessary with <code>null</code>
|
||
* if <code>to</code> is greater than the length of the original
|
||
* array. <code>from</code> must be in the range zero to
|
||
* <code>original.length</code> and can not be greater than
|
||
* <code>to</code>. The initial element of the
|
||
* returned array will be equal to <code>original[from]</code>,
|
||
* except where <code>from</code> is equal to <code>to</code>
|
||
* (where a zero-length array will be returned) or <code>
|
||
* <code>from</code> is equal to <code>original.length</code>
|
||
* (where an array padded with <code>null</code> will be
|
||
* returned). The returned array is always of length
|
||
* <code>to - from</code>.
|
||
*
|
||
* @param original the array from which to copy.
|
||
* @param from the initial index of the range, inclusive.
|
||
* @param to the final index of the range, exclusive.
|
||
* @return a copy of the specified range, with padding to
|
||
* obtain the required length.
|
||
* @throws ArrayIndexOutOfBoundsException if <code>from < 0</code>
|
||
* or <code>from > original.length</code>
|
||
* @throws IllegalArgumentException if <code>from > to</code>
|
||
* @throws NullPointerException if <code>original</code> is <code>null</code>.
|
||
* @since 1.6
|
||
* @see #copyOf(T[],int)
|
||
*/
|
||
public static <T> T[] copyOfRange(T[] original, int from, int to)
|
||
{
|
||
if (from > to)
|
||
throw new IllegalArgumentException("The initial index is after " +
|
||
"the final index.");
|
||
Class elemType = original.getClass().getComponentType();
|
||
T[] newArray = (T[]) Array.newInstance(elemType, to - from);
|
||
if (to > original.length)
|
||
{
|
||
System.arraycopy(original, from, newArray, 0,
|
||
original.length - from);
|
||
fill(newArray, original.length, newArray.length, null);
|
||
}
|
||
else
|
||
System.arraycopy(original, from, newArray, 0, to - from);
|
||
return newArray;
|
||
}
|
||
|
||
/**
|
||
* Returns a copy of the supplied array, truncating or padding as
|
||
* necessary with <code>null</code> to obtain the specified length.
|
||
* Indices that are valid for both arrays will return the same value.
|
||
* Indices that only exist in the returned array (due to the new length
|
||
* being greater than the original length) will return <code>null</code>.
|
||
* This is equivalent to calling
|
||
* <code>copyOfRange(original, 0, newLength, newType)</code>. The returned
|
||
* array will be of the specified type, <code>newType</code>.
|
||
*
|
||
* @param original the original array to be copied.
|
||
* @param newLength the length of the returned array.
|
||
* @param newType the type of the returned array.
|
||
* @return a copy of the original array, truncated or padded with
|
||
* <code>null</code> to obtain the required length.
|
||
* @throws NegativeArraySizeException if <code>newLength</code> is negative.
|
||
* @throws NullPointerException if <code>original</code> is <code>null</code>.
|
||
* @since 1.6
|
||
* @see #copyOfRange(U[],int,int,Class)
|
||
*/
|
||
public static <T,U> T[] copyOf(U[] original, int newLength,
|
||
Class<? extends T[]> newType)
|
||
{
|
||
if (newLength < 0)
|
||
throw new NegativeArraySizeException("The array size is negative.");
|
||
return copyOfRange(original, 0, newLength, newType);
|
||
}
|
||
|
||
/**
|
||
* Copies the specified range of the supplied array to a new
|
||
* array, padding as necessary with <code>null</code>
|
||
* if <code>to</code> is greater than the length of the original
|
||
* array. <code>from</code> must be in the range zero to
|
||
* <code>original.length</code> and can not be greater than
|
||
* <code>to</code>. The initial element of the
|
||
* returned array will be equal to <code>original[from]</code>,
|
||
* except where <code>from</code> is equal to <code>to</code>
|
||
* (where a zero-length array will be returned) or <code>
|
||
* <code>from</code> is equal to <code>original.length</code>
|
||
* (where an array padded with <code>null</code> will be
|
||
* returned). The returned array is always of length
|
||
* <code>to - from</code> and will be of the specified type,
|
||
* <code>newType</code>.
|
||
*
|
||
* @param original the array from which to copy.
|
||
* @param from the initial index of the range, inclusive.
|
||
* @param to the final index of the range, exclusive.
|
||
* @param newType the type of the returned array.
|
||
* @return a copy of the specified range, with padding to
|
||
* obtain the required length.
|
||
* @throws ArrayIndexOutOfBoundsException if <code>from < 0</code>
|
||
* or <code>from > original.length</code>
|
||
* @throws IllegalArgumentException if <code>from > to</code>
|
||
* @throws NullPointerException if <code>original</code> is <code>null</code>.
|
||
* @since 1.6
|
||
* @see #copyOf(T[],int)
|
||
*/
|
||
public static <T,U> T[] copyOfRange(U[] original, int from, int to,
|
||
Class<? extends T[]> newType)
|
||
{
|
||
if (from > to)
|
||
throw new IllegalArgumentException("The initial index is after " +
|
||
"the final index.");
|
||
T[] newArray = (T[]) Array.newInstance(newType.getComponentType(),
|
||
to - from);
|
||
if (to > original.length)
|
||
{
|
||
System.arraycopy(original, from, newArray, 0,
|
||
original.length - from);
|
||
fill(newArray, original.length, newArray.length, null);
|
||
}
|
||
else
|
||
System.arraycopy(original, from, newArray, 0, to - from);
|
||
return newArray;
|
||
}
|
||
}
|