e4846be7dd
* include/bits/regex.tcc: Handle regex_constants::__polynomial. * include/bits/regex_automaton.tcc: Throw exception when parsing back-reference with flag __polynomial. * include/bits/regex_constants.h: Add extension flag syntax_option_type __polynomial. * bits/regex_executor.tcc: Still let BFS process ECMAScript. Alternative operation will be fixed in the coming refactoring. * testsuite/28_regex/algorithms/regex_search/61424.cc: Turn loose match_search_debug to use DFS only. From-SVN: r222500
436 lines
14 KiB
C++
436 lines
14 KiB
C++
// class template regex -*- C++ -*-
|
|
|
|
// Copyright (C) 2013-2015 Free Software Foundation, Inc.
|
|
//
|
|
// This file is part of the GNU ISO C++ Library. This library is free
|
|
// software; you can redistribute it and/or modify it under the
|
|
// terms of the GNU General Public License as published by the
|
|
// Free Software Foundation; either version 3, or (at your option)
|
|
// any later version.
|
|
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
|
|
// Under Section 7 of GPL version 3, you are granted additional
|
|
// permissions described in the GCC Runtime Library Exception, version
|
|
// 3.1, as published by the Free Software Foundation.
|
|
|
|
// You should have received a copy of the GNU General Public License and
|
|
// a copy of the GCC Runtime Library Exception along with this program;
|
|
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
|
// <http://www.gnu.org/licenses/>.
|
|
|
|
/**
|
|
* @file bits/regex_executor.tcc
|
|
* This is an internal header file, included by other library headers.
|
|
* Do not attempt to use it directly. @headername{regex}
|
|
*/
|
|
|
|
namespace std _GLIBCXX_VISIBILITY(default)
|
|
{
|
|
namespace __detail
|
|
{
|
|
_GLIBCXX_BEGIN_NAMESPACE_VERSION
|
|
|
|
template<typename _BiIter, typename _Alloc, typename _TraitsT,
|
|
bool __dfs_mode>
|
|
bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
|
|
_M_search()
|
|
{
|
|
if (_M_search_from_first())
|
|
return true;
|
|
if (_M_flags & regex_constants::match_continuous)
|
|
return false;
|
|
_M_flags |= regex_constants::match_prev_avail;
|
|
while (_M_begin != _M_end)
|
|
{
|
|
++_M_begin;
|
|
if (_M_search_from_first())
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// The _M_main function operates in different modes, DFS mode or BFS mode,
|
|
// indicated by template parameter __dfs_mode, and dispatches to one of the
|
|
// _M_main_dispatch overloads.
|
|
//
|
|
// ------------------------------------------------------------
|
|
//
|
|
// DFS mode:
|
|
//
|
|
// It applies a Depth-First-Search (aka backtracking) on given NFA and input
|
|
// string.
|
|
// At the very beginning the executor stands in the start state, then it
|
|
// tries every possible state transition in current state recursively. Some
|
|
// state transitions consume input string, say, a single-char-matcher or a
|
|
// back-reference matcher; some don't, like assertion or other anchor nodes.
|
|
// When the input is exhausted and/or the current state is an accepting
|
|
// state, the whole executor returns true.
|
|
//
|
|
// TODO: This approach is exponentially slow for certain input.
|
|
// Try to compile the NFA to a DFA.
|
|
//
|
|
// Time complexity: \Omega(match_length), O(2^(_M_nfa.size()))
|
|
// Space complexity: \theta(match_results.size() + match_length)
|
|
//
|
|
template<typename _BiIter, typename _Alloc, typename _TraitsT,
|
|
bool __dfs_mode>
|
|
bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
|
|
_M_main_dispatch(_Match_mode __match_mode, __dfs)
|
|
{
|
|
_M_has_sol = false;
|
|
*_M_states._M_get_sol_pos() = _BiIter();
|
|
_M_cur_results = _M_results;
|
|
_M_dfs(__match_mode, _M_states._M_start);
|
|
return _M_has_sol;
|
|
}
|
|
|
|
// ------------------------------------------------------------
|
|
//
|
|
// BFS mode:
|
|
//
|
|
// Russ Cox's article (http://swtch.com/~rsc/regexp/regexp1.html)
|
|
// explained this algorithm clearly.
|
|
//
|
|
// It first computes epsilon closure (states that can be achieved without
|
|
// consuming characters) for every state that's still matching,
|
|
// using the same DFS algorithm, but doesn't re-enter states (using
|
|
// _M_states._M_visited to check), nor follow _S_opcode_match.
|
|
//
|
|
// Then apply DFS using every _S_opcode_match (in _M_states._M_match_queue)
|
|
// as the start state.
|
|
//
|
|
// It significantly reduces potential duplicate states, so has a better
|
|
// upper bound; but it requires more overhead.
|
|
//
|
|
// Time complexity: \Omega(match_length * match_results.size())
|
|
// O(match_length * _M_nfa.size() * match_results.size())
|
|
// Space complexity: \Omega(_M_nfa.size() + match_results.size())
|
|
// O(_M_nfa.size() * match_results.size())
|
|
template<typename _BiIter, typename _Alloc, typename _TraitsT,
|
|
bool __dfs_mode>
|
|
bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
|
|
_M_main_dispatch(_Match_mode __match_mode, __bfs)
|
|
{
|
|
_M_states._M_queue(_M_states._M_start, _M_results);
|
|
bool __ret = false;
|
|
while (1)
|
|
{
|
|
_M_has_sol = false;
|
|
if (_M_states._M_match_queue.empty())
|
|
break;
|
|
std::fill_n(_M_states._M_visited_states.get(), _M_nfa.size(), false);
|
|
auto __old_queue = std::move(_M_states._M_match_queue);
|
|
for (auto& __task : __old_queue)
|
|
{
|
|
_M_cur_results = std::move(__task.second);
|
|
_M_dfs(__match_mode, __task.first);
|
|
}
|
|
if (__match_mode == _Match_mode::_Prefix)
|
|
__ret |= _M_has_sol;
|
|
if (_M_current == _M_end)
|
|
break;
|
|
++_M_current;
|
|
}
|
|
if (__match_mode == _Match_mode::_Exact)
|
|
__ret = _M_has_sol;
|
|
_M_states._M_match_queue.clear();
|
|
return __ret;
|
|
}
|
|
|
|
// Return whether now match the given sub-NFA.
|
|
template<typename _BiIter, typename _Alloc, typename _TraitsT,
|
|
bool __dfs_mode>
|
|
bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
|
|
_M_lookahead(_State<_TraitsT> __state)
|
|
{
|
|
_ResultsVec __what(_M_cur_results.size());
|
|
_Executor __sub(_M_current, _M_end, __what, _M_re, _M_flags);
|
|
__sub._M_states._M_start = __state._M_alt;
|
|
if (__sub._M_search_from_first())
|
|
{
|
|
for (size_t __i = 0; __i < __what.size(); __i++)
|
|
if (__what[__i].matched)
|
|
_M_cur_results[__i] = __what[__i];
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// __rep_count records how many times (__rep_count.second)
|
|
// this node is visited under certain input iterator
|
|
// (__rep_count.first). This prevent the executor from entering
|
|
// infinite loop by refusing to continue when it's already been
|
|
// visited more than twice. It's `twice` instead of `once` because
|
|
// we need to spare one more time for potential group capture.
|
|
template<typename _BiIter, typename _Alloc, typename _TraitsT,
|
|
bool __dfs_mode>
|
|
void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
|
|
_M_rep_once_more(_Match_mode __match_mode, _StateIdT __i)
|
|
{
|
|
const auto& __state = _M_nfa[__i];
|
|
auto& __rep_count = _M_rep_count[__i];
|
|
if (__rep_count.second == 0 || __rep_count.first != _M_current)
|
|
{
|
|
auto __back = __rep_count;
|
|
__rep_count.first = _M_current;
|
|
__rep_count.second = 1;
|
|
_M_dfs(__match_mode, __state._M_alt);
|
|
__rep_count = __back;
|
|
}
|
|
else
|
|
{
|
|
if (__rep_count.second < 2)
|
|
{
|
|
__rep_count.second++;
|
|
_M_dfs(__match_mode, __state._M_alt);
|
|
__rep_count.second--;
|
|
}
|
|
}
|
|
};
|
|
|
|
template<typename _BiIter, typename _Alloc, typename _TraitsT,
|
|
bool __dfs_mode>
|
|
void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
|
|
_M_dfs(_Match_mode __match_mode, _StateIdT __i)
|
|
{
|
|
if (_M_states._M_visited(__i))
|
|
return;
|
|
|
|
const auto& __state = _M_nfa[__i];
|
|
// Every change on _M_cur_results and _M_current will be rolled back after
|
|
// finishing the recursion step.
|
|
switch (__state._M_opcode)
|
|
{
|
|
// _M_alt branch is "match once more", while _M_next is "get me out
|
|
// of this quantifier". Executing _M_next first or _M_alt first don't
|
|
// mean the same thing, and we need to choose the correct order under
|
|
// given greedy mode.
|
|
case _S_opcode_repeat:
|
|
{
|
|
// Greedy.
|
|
if (!__state._M_neg)
|
|
{
|
|
_M_rep_once_more(__match_mode, __i);
|
|
// If it's DFS executor and already accepted, we're done.
|
|
if (!__dfs_mode || !_M_has_sol)
|
|
_M_dfs(__match_mode, __state._M_next);
|
|
}
|
|
else // Non-greedy mode
|
|
{
|
|
if (__dfs_mode)
|
|
{
|
|
// vice-versa.
|
|
_M_dfs(__match_mode, __state._M_next);
|
|
if (!_M_has_sol)
|
|
_M_rep_once_more(__match_mode, __i);
|
|
}
|
|
else
|
|
{
|
|
// DON'T attempt anything, because there's already another
|
|
// state with higher priority accepted. This state cannot
|
|
// be better by attempting its next node.
|
|
if (!_M_has_sol)
|
|
{
|
|
_M_dfs(__match_mode, __state._M_next);
|
|
// DON'T attempt anything if it's already accepted. An
|
|
// accepted state *must* be better than a solution that
|
|
// matches a non-greedy quantifier one more time.
|
|
if (!_M_has_sol)
|
|
_M_rep_once_more(__match_mode, __i);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case _S_opcode_subexpr_begin:
|
|
{
|
|
auto& __res = _M_cur_results[__state._M_subexpr];
|
|
auto __back = __res.first;
|
|
__res.first = _M_current;
|
|
_M_dfs(__match_mode, __state._M_next);
|
|
__res.first = __back;
|
|
}
|
|
break;
|
|
case _S_opcode_subexpr_end:
|
|
{
|
|
auto& __res = _M_cur_results[__state._M_subexpr];
|
|
auto __back = __res;
|
|
__res.second = _M_current;
|
|
__res.matched = true;
|
|
_M_dfs(__match_mode, __state._M_next);
|
|
__res = __back;
|
|
}
|
|
break;
|
|
case _S_opcode_line_begin_assertion:
|
|
if (_M_at_begin())
|
|
_M_dfs(__match_mode, __state._M_next);
|
|
break;
|
|
case _S_opcode_line_end_assertion:
|
|
if (_M_at_end())
|
|
_M_dfs(__match_mode, __state._M_next);
|
|
break;
|
|
case _S_opcode_word_boundary:
|
|
if (_M_word_boundary() == !__state._M_neg)
|
|
_M_dfs(__match_mode, __state._M_next);
|
|
break;
|
|
// Here __state._M_alt offers a single start node for a sub-NFA.
|
|
// We recursively invoke our algorithm to match the sub-NFA.
|
|
case _S_opcode_subexpr_lookahead:
|
|
if (_M_lookahead(__state) == !__state._M_neg)
|
|
_M_dfs(__match_mode, __state._M_next);
|
|
break;
|
|
case _S_opcode_match:
|
|
if (_M_current == _M_end)
|
|
break;
|
|
if (__dfs_mode)
|
|
{
|
|
if (__state._M_matches(*_M_current))
|
|
{
|
|
++_M_current;
|
|
_M_dfs(__match_mode, __state._M_next);
|
|
--_M_current;
|
|
}
|
|
}
|
|
else
|
|
if (__state._M_matches(*_M_current))
|
|
_M_states._M_queue(__state._M_next, _M_cur_results);
|
|
break;
|
|
// First fetch the matched result from _M_cur_results as __submatch;
|
|
// then compare it with
|
|
// (_M_current, _M_current + (__submatch.second - __submatch.first)).
|
|
// If matched, keep going; else just return and try another state.
|
|
case _S_opcode_backref:
|
|
{
|
|
_GLIBCXX_DEBUG_ASSERT(__dfs_mode);
|
|
auto& __submatch = _M_cur_results[__state._M_backref_index];
|
|
if (!__submatch.matched)
|
|
break;
|
|
auto __last = _M_current;
|
|
for (auto __tmp = __submatch.first;
|
|
__last != _M_end && __tmp != __submatch.second;
|
|
++__tmp)
|
|
++__last;
|
|
if (_M_re._M_automaton->_M_traits.transform(__submatch.first,
|
|
__submatch.second)
|
|
== _M_re._M_automaton->_M_traits.transform(_M_current, __last))
|
|
{
|
|
if (__last != _M_current)
|
|
{
|
|
auto __backup = _M_current;
|
|
_M_current = __last;
|
|
_M_dfs(__match_mode, __state._M_next);
|
|
_M_current = __backup;
|
|
}
|
|
else
|
|
_M_dfs(__match_mode, __state._M_next);
|
|
}
|
|
}
|
|
break;
|
|
case _S_opcode_accept:
|
|
if (__dfs_mode)
|
|
{
|
|
_GLIBCXX_DEBUG_ASSERT(!_M_has_sol);
|
|
if (__match_mode == _Match_mode::_Exact)
|
|
_M_has_sol = _M_current == _M_end;
|
|
else
|
|
_M_has_sol = true;
|
|
if (_M_current == _M_begin
|
|
&& (_M_flags & regex_constants::match_not_null))
|
|
_M_has_sol = false;
|
|
if (_M_has_sol)
|
|
{
|
|
if (_M_nfa._M_flags & regex_constants::ECMAScript)
|
|
_M_results = _M_cur_results;
|
|
else // POSIX
|
|
{
|
|
_GLIBCXX_DEBUG_ASSERT(_M_states._M_get_sol_pos());
|
|
// Here's POSIX's logic: match the longest one. However
|
|
// we never know which one (lhs or rhs of "|") is longer
|
|
// unless we try both of them and compare the results.
|
|
// The member variable _M_sol_pos records the end
|
|
// position of the last successful match. It's better
|
|
// to be larger, because POSIX regex is always greedy.
|
|
// TODO: This could be slow.
|
|
if (*_M_states._M_get_sol_pos() == _BiIter()
|
|
|| std::distance(_M_begin,
|
|
*_M_states._M_get_sol_pos())
|
|
< std::distance(_M_begin, _M_current))
|
|
{
|
|
*_M_states._M_get_sol_pos() = _M_current;
|
|
_M_results = _M_cur_results;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (_M_current == _M_begin
|
|
&& (_M_flags & regex_constants::match_not_null))
|
|
break;
|
|
if (__match_mode == _Match_mode::_Prefix || _M_current == _M_end)
|
|
if (!_M_has_sol)
|
|
{
|
|
_M_has_sol = true;
|
|
_M_results = _M_cur_results;
|
|
}
|
|
}
|
|
break;
|
|
case _S_opcode_alternative:
|
|
if (_M_nfa._M_flags & regex_constants::ECMAScript)
|
|
{
|
|
// TODO: Fix BFS support. It is wrong.
|
|
_M_dfs(__match_mode, __state._M_alt);
|
|
// Pick lhs if it matches. Only try rhs if it doesn't.
|
|
if (!_M_has_sol)
|
|
_M_dfs(__match_mode, __state._M_next);
|
|
}
|
|
else
|
|
{
|
|
// Try both and compare the result.
|
|
// See "case _S_opcode_accept:" handling above.
|
|
_M_dfs(__match_mode, __state._M_alt);
|
|
auto __has_sol = _M_has_sol;
|
|
_M_has_sol = false;
|
|
_M_dfs(__match_mode, __state._M_next);
|
|
_M_has_sol |= __has_sol;
|
|
}
|
|
break;
|
|
default:
|
|
_GLIBCXX_DEBUG_ASSERT(false);
|
|
}
|
|
}
|
|
|
|
// Return whether now is at some word boundary.
|
|
template<typename _BiIter, typename _Alloc, typename _TraitsT,
|
|
bool __dfs_mode>
|
|
bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
|
|
_M_word_boundary() const
|
|
{
|
|
bool __left_is_word = false;
|
|
if (_M_current != _M_begin
|
|
|| (_M_flags & regex_constants::match_prev_avail))
|
|
{
|
|
auto __prev = _M_current;
|
|
if (_M_is_word(*std::prev(__prev)))
|
|
__left_is_word = true;
|
|
}
|
|
bool __right_is_word =
|
|
_M_current != _M_end && _M_is_word(*_M_current);
|
|
|
|
if (__left_is_word == __right_is_word)
|
|
return false;
|
|
if (__left_is_word && !(_M_flags & regex_constants::match_not_eow))
|
|
return true;
|
|
if (__right_is_word && !(_M_flags & regex_constants::match_not_bow))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
_GLIBCXX_END_NAMESPACE_VERSION
|
|
} // namespace __detail
|
|
} // namespace
|