gcc/libgcc/config/libbid/bid128_compare.c
H.J. Lu b2a00c8984 Makefile.in (dfp-filenames): Replace decimal_globals...
libgcc/

2007-09-27  H.J. Lu  <hongjiu.lu@intel.com>

	* Makefile.in (dfp-filenames): Replace decimal_globals,
	decimal_data, binarydecimal and convert_data with
	bid_decimal_globals, bid_decimal_data, bid_binarydecimal
	and bid_convert_data, respectively.

libgcc/config/libbid/

2007-09-27  H.J. Lu  <hongjiu.lu@intel.com>

	* bid128_fromstring.c: Removed.

	* bid_dpd.c: New from libbid 2007-09-26.
	* bid128_to_int16.c: Likewise.
	* bid128_to_int8.c: Likewise.
	* bid128_to_uint8.c: Likewise.
	* bid128_to_uint16.c: Likewise.
	* bid64_to_int16.c: Likewise.
	* bid64_to_int8.c: Likewise.
	* bid64_to_uint16.c: Likewise.
	* bid64_to_uint8.c: Likewise.

	* bid128_2_str.h: Updated from libbid 2007-09-26.
	* bid128_2_str_macros.h: Likewise.
	* bid128_2_str_tables.c: Likewise.
	* bid128_add.c: Likewise.
	* bid128.c: Likewise.
	* bid128_compare.c: Likewise.
	* bid128_div.c: Likewise.
	* bid128_fma.c: Likewise.
	* bid128_logb.c: Likewise.
	* bid128_minmax.c: Likewise.
	* bid128_mul.c: Likewise.
	* bid128_next.c: Likewise.
	* bid128_noncomp.c: Likewise.
	* bid128_quantize.c: Likewise.
	* bid128_rem.c: Likewise.
	* bid128_round_integral.c: Likewise.
	* bid128_scalb.c: Likewise.
	* bid128_sqrt.c: Likewise.
	* bid128_string.c: Likewise.
	* bid128_to_int32.c: Likewise.
	* bid128_to_int64.c: Likewise.
	* bid128_to_uint32.c: Likewise.
	* bid128_to_uint64.c: Likewise.
	* bid32_to_bid128.c: Likewise.
	* bid32_to_bid64.c: Likewise.
	* bid64_add.c: Likewise.
	* bid64_compare.c: Likewise.
	* bid64_div.c: Likewise.
	* bid64_fma.c: Likewise.
	* bid64_logb.c: Likewise.
	* bid64_minmax.c: Likewise.
	* bid64_mul.c: Likewise.
	* bid64_next.c: Likewise.
	* bid64_noncomp.c: Likewise.
	* bid64_quantize.c: Likewise.
	* bid64_rem.c: Likewise.
	* bid64_round_integral.c: Likewise.
	* bid64_scalb.c: Likewise.
	* bid64_sqrt.c: Likewise.
	* bid64_string.c: Likewise.
	* bid64_to_bid128.c: Likewise.
	* bid64_to_int32.c: Likewise.
	* bid64_to_int64.c: Likewise.
	* bid64_to_uint32.c: Likewise.
	* bid64_to_uint64.c: Likewise.
	* bid_b2d.h: Likewise.
	* bid_binarydecimal.c: Likewise.
	* bid_conf.h: Likewise.
	* bid_convert_data.c: Likewise.
	* bid_decimal_data.c: Likewise.
	* bid_decimal_globals.c: Likewise.
	* bid_div_macros.h: Likewise.
	* bid_flag_operations.c: Likewise.
	* bid_from_int.c: Likewise.
	* bid_functions.h: Likewise.
	* bid_gcc_intrinsics.h: Likewise.
	* bid_inline_add.h: Likewise.
	* bid_internal.h: Likewise.
	* bid_round.c: Likewise.
	* bid_sqrt_macros.h: Likewise.
	* _addsub_dd.c: Likewise.
	* _addsub_sd.c: Likewise.
	* _addsub_td.c: Likewise.
	* _dd_to_df.c: Likewise.
	* _dd_to_di.c: Likewise.
	* _dd_to_sd.c: Likewise.
	* _dd_to_sf.c: Likewise.
	* _dd_to_si.c: Likewise.
	* _dd_to_td.c: Likewise.
	* _dd_to_tf.c: Likewise.
	* _dd_to_udi.c: Likewise.
	* _dd_to_usi.c: Likewise.
	* _dd_to_xf.c: Likewise.
	* _df_to_dd.c: Likewise.
	* _df_to_sd.c: Likewise.
	* _df_to_td.c: Likewise.
	* _di_to_dd.c: Likewise.
	* _di_to_sd.c: Likewise.
	* _di_to_td.c: Likewise.
	* _div_dd.c: Likewise.
	* _div_sd.c: Likewise.
	* _div_td.c: Likewise.
	* _eq_dd.c: Likewise.
	* _eq_sd.c: Likewise.
	* _eq_td.c: Likewise.
	* _ge_dd.c: Likewise.
	* _ge_sd.c: Likewise.
	* _ge_td.c: Likewise.
	* _gt_dd.c: Likewise.
	* _gt_sd.c: Likewise.
	* _gt_td.c: Likewise.
	* _isinfd128.c: Likewise.
	* _isinfd32.c: Likewise.
	* _isinfd64.c: Likewise.
	* _le_dd.c: Likewise.
	* _le_sd.c: Likewise.
	* _le_td.c: Likewise.
	* _lt_dd.c: Likewise.
	* _lt_sd.c: Likewise.
	* _lt_td.c: Likewise.
	* _mul_dd.c: Likewise.
	* _mul_sd.c: Likewise.
	* _mul_td.c: Likewise.
	* _ne_dd.c: Likewise.
	* _ne_sd.c: Likewise.
	* _ne_td.c: Likewise.
	* _sd_to_dd.c: Likewise.
	* _sd_to_df.c: Likewise.
	* _sd_to_di.c: Likewise.
	* _sd_to_sf.c: Likewise.
	* _sd_to_si.c: Likewise.
	* _sd_to_td.c: Likewise.
	* _sd_to_tf.c: Likewise.
	* _sd_to_udi.c: Likewise.
	* _sd_to_usi.c: Likewise.
	* _sd_to_xf.c: Likewise.
	* _sf_to_dd.c: Likewise.
	* _sf_to_sd.c: Likewise.
	* _sf_to_td.c: Likewise.
	* _si_to_dd.c: Likewise.
	* _si_to_sd.c: Likewise.
	* _si_to_td.c: Likewise.
	* _td_to_dd.c: Likewise.
	* _td_to_df.c: Likewise.
	* _td_to_di.c: Likewise.
	* _td_to_sd.c: Likewise.
	* _td_to_sf.c: Likewise.
	* _td_to_si.c: Likewise.
	* _td_to_tf.c: Likewise.
	* _td_to_udi.c: Likewise.
	* _td_to_usi.c: Likewise.
	* _td_to_xf.c: Likewise.
	* _tf_to_dd.c: Likewise.
	* _tf_to_sd.c: Likewise.
	* _tf_to_td.c: Likewise.
	* _udi_to_dd.c: Likewise.
	* _udi_to_sd.c: Likewise.
	* _udi_to_td.c: Likewise.
	* _unord_dd.c: Likewise.
	* _unord_sd.c: Likewise.
	* _unord_td.c: Likewise.
	* _usi_to_dd.c: Likewise.
	* _usi_to_sd.c: Likewise.
	* _usi_to_td.c: Likewise.
	* _xf_to_dd.c: Likewise.
	* _xf_to_sd.c: Likewise.
	* _xf_to_td.c: Likewise.

2007-09-27  H.J. Lu  <hongjiu.lu@intel.com>

	* b2d.h: Renamed to ...
	* bid_b2d.h: This.

	* bid128_to_string.c: Renamed to ...
	* bid128_string.c: This.

	* bid_intrinsics.h: Renamed to ...
	* bid_gcc_intrinsics.h: This.

	* bid_string.c: Renamed to ...
	* bid64_string.c: This.

	* binarydecimal.c: Renamed to ...
	* bid_decimal_globals.c: This.

	* convert_data.c: Renamed to ...
	* bid_convert_data.c: This.

	* decimal_data.c: Renamed to ...
	* bid_decimal_data.c: This.

	* decimal_globals.c: Renamed to ...
	* bid_decimal_globals.c: This.

	* div_macros.h: Renamed to ...
	* bid_div_macros.h: This.

	* inline_bid_add.h: Renamed to ...
	* bid_inline_add.h: This.

	* sqrt_macros.h: Renamed to ...
	* bid_sqrt_macros.h: This.

From-SVN: r128841
2007-09-27 10:47:23 -07:00

4352 lines
131 KiB
C

/* Copyright (C) 2007 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file. (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
#include "bid_internal.h"
BID128_FUNCTION_ARG2_NORND_CUSTOMRESTYPE (int, bid128_quiet_equal, x, y)
int res;
int exp_x, exp_y, exp_t;
UINT128 sig_x, sig_y, sig_t;
UINT192 sig_n_prime192;
UINT256 sig_n_prime256;
char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
// NaN (CASE1)
// if either number is NAN, the comparison is unordered,
// rather than equal : return 0
if (((x.w[1] & MASK_NAN) == MASK_NAN)
|| ((y.w[1] & MASK_NAN) == MASK_NAN)) {
if ((x.w[1] & MASK_SNAN) == MASK_SNAN
|| (y.w[1] & MASK_SNAN) == MASK_SNAN) {
*pfpsf |= INVALID_EXCEPTION;
}
{
res = 0;
BID_RETURN (res);
}
}
// SIMPLE (CASE2)
// if all the bits are the same, these numbers are equivalent.
if (x.w[0] == y.w[0] && x.w[1] == y.w[1]) {
res = 1;
BID_RETURN (res);
}
// INFINITY (CASE3)
if ((x.w[1] & MASK_INF) == MASK_INF) {
if ((y.w[1] & MASK_INF) == MASK_INF) {
res = (((x.w[1] ^ y.w[1]) & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
} else {
res = 0;
BID_RETURN (res);
}
}
if ((y.w[1] & MASK_INF) == MASK_INF) {
res = 0;
BID_RETURN (res);
}
// CONVERT X
sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull;
sig_x.w[0] = x.w[0];
exp_x = (x.w[1] >> 49) & 0x000000000003fffull;
// CHECK IF X IS CANONICAL
// 9999999999999999999999999999999999(decimal) =
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
// [0, 10^34) is the 754r supported canonical range.
// If the value exceeds that, it is interpreted as 0.
if ((sig_x.w[1] > 0x0001ed09bead87c0ull)
|| ((sig_x.w[1] == 0x0001ed09bead87c0ull)
&& (sig_x.w[0] > 0x378d8e63ffffffffull))
|| ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull))
non_canon_x = 1;
else
non_canon_x = 0;
// CONVERT Y
exp_y = (y.w[1] >> 49) & 0x0000000000003fffull;
sig_y.w[1] = y.w[1] & 0x0001ffffffffffffull;
sig_y.w[0] = y.w[0];
// CHECK IF Y IS CANONICAL
// 9999999999999999999999999999999999(decimal) =
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
// [0, 10^34) is the 754r supported canonical range.
// If the value exceeds that, it is interpreted as 0.
if ((sig_y.w[1] > 0x0001ed09bead87c0ull)
|| ((sig_y.w[1] == 0x0001ed09bead87c0ull)
&& (sig_y.w[0] > 0x378d8e63ffffffffull))
|| ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull))
non_canon_y = 1;
else
non_canon_y = 0;
// some properties:
// (+ZERO == -ZERO) => therefore ignore the sign
// (ZERO x 10^A == ZERO x 10^B) for any valid A, B => therefore
// ignore the exponent field
// (Any non-canonical # is considered 0)
if (non_canon_x || ((sig_x.w[1] == 0) && (sig_x.w[0] == 0))) {
x_is_zero = 1;
}
if (non_canon_y || ((sig_y.w[1] == 0) && (sig_y.w[0] == 0))) {
y_is_zero = 1;
}
if (x_is_zero && y_is_zero) {
res = 1;
BID_RETURN (res);
} else if ((x_is_zero && !y_is_zero) || (!x_is_zero && y_is_zero)) {
res = 0;
BID_RETURN (res);
}
// OPPOSITE SIGN (CASE5)
// now, if the sign bits differ => not equal : return 0
if ((x.w[1] ^ y.w[1]) & MASK_SIGN) {
res = 0;
BID_RETURN (res);
}
// REDUNDANT REPRESENTATIONS (CASE6)
if (exp_x > exp_y) { // to simplify the loop below,
SWAP (exp_x, exp_y, exp_t); // put the larger exp in y,
SWAP (sig_x.w[1], sig_y.w[1], sig_t.w[1]); // and the smaller exp in x
SWAP (sig_x.w[0], sig_y.w[0], sig_t.w[0]); // and the smaller exp in x
}
if (exp_y - exp_x > 33) {
res = 0;
BID_RETURN (res);
} // difference cannot be greater than 10^33
if (exp_y - exp_x > 19) {
// recalculate y's significand upwards
__mul_128x128_to_256 (sig_n_prime256, sig_y,
ten2k128[exp_y - exp_x - 20]);
{
res = ((sig_n_prime256.w[3] == 0) && (sig_n_prime256.w[2] == 0)
&& (sig_n_prime256.w[1] == sig_x.w[1])
&& (sig_n_prime256.w[0] == sig_x.w[0]));
BID_RETURN (res);
}
}
//else{
// recalculate y's significand upwards
__mul_64x128_to_192 (sig_n_prime192, ten2k64[exp_y - exp_x], sig_y);
{
res = ((sig_n_prime192.w[2] == 0)
&& (sig_n_prime192.w[1] == sig_x.w[1])
&& (sig_n_prime192.w[0] == sig_x.w[0]));
BID_RETURN (res);
}
}
BID128_FUNCTION_ARG2_NORND_CUSTOMRESTYPE (int, bid128_quiet_greater, x,
y)
int res;
int exp_x, exp_y;
int diff;
UINT128 sig_x, sig_y;
UINT192 sig_n_prime192;
UINT256 sig_n_prime256;
char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
// NaN (CASE1)
// if either number is NAN, the comparison is unordered, rather than
// equal : return 0
if (((x.w[1] & MASK_NAN) == MASK_NAN)
|| ((y.w[1] & MASK_NAN) == MASK_NAN)) {
if ((x.w[1] & MASK_SNAN) == MASK_SNAN
|| (y.w[1] & MASK_SNAN) == MASK_SNAN) {
*pfpsf |= INVALID_EXCEPTION;
}
{
res = 0;
BID_RETURN (res);
}
}
// SIMPLE (CASE2)
// if all the bits are the same, these numbers are equal (not Greater).
if (x.w[0] == y.w[0] && x.w[1] == y.w[1]) {
res = 0;
BID_RETURN (res);
}
// INFINITY (CASE3)
if ((x.w[1] & MASK_INF) == MASK_INF) {
// if x is neg infinity, there is no way it is greater than y, return 0
if (((x.w[1] & MASK_SIGN) == MASK_SIGN)) {
res = 0;
BID_RETURN (res);
}
// x is pos infinity, it is greater, unless y is positive infinity =>
// return y!=pos_infinity
else {
res = (((y.w[1] & MASK_INF) != MASK_INF)
|| ((y.w[1] & MASK_SIGN) == MASK_SIGN));
BID_RETURN (res);
}
} else if ((y.w[1] & MASK_INF) == MASK_INF) {
// x is finite, so if y is positive infinity, then x is less, return 0
// if y is negative infinity, then x is greater, return 1
{
res = ((y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
}
// CONVERT X
sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull;
sig_x.w[0] = x.w[0];
exp_x = (x.w[1] >> 49) & 0x000000000003fffull;
// CHECK IF X IS CANONICAL
// 9999999999999999999999999999999999(decimal) =
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
// [0, 10^34) is the 754r supported canonical range.
// If the value exceeds that, it is interpreted as 0.
if ((sig_x.w[1] > 0x0001ed09bead87c0ull)
|| ((sig_x.w[1] == 0x0001ed09bead87c0ull)
&& (sig_x.w[0] > 0x378d8e63ffffffffull))
|| ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull))
non_canon_x = 1;
else
non_canon_x = 0;
// CONVERT Y
exp_y = (y.w[1] >> 49) & 0x0000000000003fffull;
sig_y.w[1] = y.w[1] & 0x0001ffffffffffffull;
sig_y.w[0] = y.w[0];
// CHECK IF Y IS CANONICAL
// 9999999999999999999999999999999999(decimal) =
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
// [0, 10^34) is the 754r supported canonical range.
// If the value exceeds that, it is interpreted as 0.
if ((sig_y.w[1] > 0x0001ed09bead87c0ull)
|| ((sig_y.w[1] == 0x0001ed09bead87c0ull)
&& (sig_y.w[0] > 0x378d8e63ffffffffull))
|| ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull))
non_canon_y = 1;
else
non_canon_y = 0;
// ZERO (CASE4)
// some properties:
// (+ZERO == -ZERO) => therefore ignore the sign
// (ZERO x 10^A == ZERO x 10^B) for any valid A, B => therefore
// ignore the exponent field
// (Any non-canonical # is considered 0)
if (non_canon_x || ((sig_x.w[1] == 0) && (sig_x.w[0] == 0))) {
x_is_zero = 1;
}
if (non_canon_y || ((sig_y.w[1] == 0) && (sig_y.w[0] == 0))) {
y_is_zero = 1;
}
// if both numbers are zero, neither is greater => return NOTGREATERTHAN
if (x_is_zero && y_is_zero) {
res = 0;
BID_RETURN (res);
}
// is x is zero, it is greater if Y is negative
else if (x_is_zero) {
res = ((y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
// is y is zero, X is greater if it is positive
else if (y_is_zero) {
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
// OPPOSITE SIGN (CASE5)
// now, if the sign bits differ, x is greater if y is negative
if (((x.w[1] ^ y.w[1]) & MASK_SIGN) == MASK_SIGN) {
res = ((y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
// REDUNDANT REPRESENTATIONS (CASE6)
// if exponents are the same, then we have a simple comparison
// of the significands
if (exp_y == exp_x) {
res = (((sig_x.w[1] > sig_y.w[1])
|| (sig_x.w[1] == sig_y.w[1]
&& sig_x.w[0] >= sig_y.w[0])) ^ ((x.w[1] & MASK_SIGN) ==
MASK_SIGN));
BID_RETURN (res);
}
// if both components are either bigger or smaller,
// it is clear what needs to be done
if ((sig_x.w[1] > sig_y.w[1]
|| (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] > sig_y.w[0]))
&& exp_x >= exp_y) {
{
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
}
if ((sig_x.w[1] < sig_y.w[1]
|| (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] < sig_y.w[0]))
&& exp_x <= exp_y) {
{
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
}
diff = exp_x - exp_y;
// if |exp_x - exp_y| < 33, it comes down to the compensated significand
if (diff > 0) { // to simplify the loop below,
// if exp_x is 33 greater than exp_y, no need for compensation
if (diff > 33) {
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
} // difference cannot be greater than 10^33
if (diff > 19) { //128 by 128 bit multiply -> 256 bits
__mul_128x128_to_256 (sig_n_prime256, sig_x, ten2k128[diff - 20]);
// if postitive, return whichever significand is larger
// (converse if negative)
if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0)
&& sig_n_prime256.w[1] == sig_y.w[1]
&& (sig_n_prime256.w[0] == sig_y.w[0])) {
res = 0;
BID_RETURN (res);
} // if equal, return 0
{
res = ((((sig_n_prime256.w[3] > 0) || sig_n_prime256.w[2] > 0)
|| (sig_n_prime256.w[1] > sig_y.w[1])
|| (sig_n_prime256.w[1] == sig_y.w[1]
&& sig_n_prime256.w[0] >
sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN));
BID_RETURN (res);
}
}
//else { //128 by 64 bit multiply -> 192 bits
__mul_64x128_to_192 (sig_n_prime192, ten2k64[diff], sig_x);
// if postitive, return whichever significand is larger
// (converse if negative)
if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_y.w[1]
&& (sig_n_prime192.w[0] == sig_y.w[0])) {
res = 0;
BID_RETURN (res);
} // if equal, return 0
{
res = (((sig_n_prime192.w[2] > 0) ||
(sig_n_prime192.w[1] > sig_y.w[1]) ||
(sig_n_prime192.w[1] == sig_y.w[1] &&
sig_n_prime192.w[0] > sig_y.w[0])) ^
((y.w[1] & MASK_SIGN) == MASK_SIGN));
BID_RETURN (res);
}
}
diff = exp_y - exp_x;
// if exp_x is 33 less than exp_y, no need for compensation
if (diff > 33) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
if (diff > 19) { //128 by 128 bit multiply -> 256 bits
// adjust the y significand upwards
__mul_128x128_to_256 (sig_n_prime256, sig_y, ten2k128[diff - 20]);
// if postitive, return whichever significand is larger
// (converse if negative)
if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0)
&& sig_n_prime256.w[1] == sig_x.w[1]
&& (sig_n_prime256.w[0] == sig_x.w[0])) {
res = 0;
BID_RETURN (res);
} // if equal, return 0
{
res = ((sig_n_prime256.w[3] != 0 || sig_n_prime256.w[2] != 0 ||
(sig_n_prime256.w[1] > sig_x.w[1] ||
(sig_n_prime256.w[1] == sig_x.w[1] &&
sig_n_prime256.w[0] > sig_x.w[0]))) ^
((x.w[1] & MASK_SIGN) != MASK_SIGN));
BID_RETURN (res);
}
}
//else { //128 by 64 bit multiply -> 192 bits
// adjust the y significand upwards
__mul_64x128_to_192 (sig_n_prime192, ten2k64[diff], sig_y);
// if postitive, return whichever significand is larger
// (converse if negative)
if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_x.w[1]
&& (sig_n_prime192.w[0] == sig_x.w[0])) {
res = 0;
BID_RETURN (res);
} // if equal, return 0
{
res = (sig_n_prime192.w[2] != 0
|| (sig_n_prime192.w[1] > sig_x.w[1]
|| (sig_n_prime192.w[1] == sig_x.w[1]
&& sig_n_prime192.w[0] >
sig_x.w[0]))) ^ ((y.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
}
BID128_FUNCTION_ARG2_NORND_CUSTOMRESTYPE (int,
bid128_quiet_greater_equal, x,
y)
int res;
int exp_x, exp_y;
int diff;
UINT128 sig_x, sig_y;
UINT192 sig_n_prime192;
UINT256 sig_n_prime256;
char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
// NaN (CASE1)
// if either number is NAN, the comparison is unordered,
// rather than equal : return 1
if (((x.w[1] & MASK_NAN) == MASK_NAN)
|| ((y.w[1] & MASK_NAN) == MASK_NAN)) {
if ((x.w[1] & MASK_SNAN) == MASK_SNAN
|| (y.w[1] & MASK_SNAN) == MASK_SNAN) {
*pfpsf |= INVALID_EXCEPTION;
}
{
res = 0;
BID_RETURN (res);
}
}
// SIMPLE (CASE2)
// if all the bits are the same, these numbers are equal (not Greater).
if (x.w[0] == y.w[0] && x.w[1] == y.w[1]) {
res = 1;
BID_RETURN (res);
}
// INFINITY (CASE3)
if ((x.w[1] & MASK_INF) == MASK_INF) {
// if x==neg_inf, { res = (y == neg_inf)?1:0; BID_RETURN (res) }
if ((x.w[1] & MASK_SIGN) == MASK_SIGN)
// x is -inf, so it is less than y unless y is -inf
{
res = (((y.w[1] & MASK_INF) == MASK_INF)
&& (y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
} else
// x is pos_inf, no way for it to be less than y
{
res = 1;
BID_RETURN (res);
}
} else if ((y.w[1] & MASK_INF) == MASK_INF) {
// x is finite, so if y is positive infinity, then x is less, return 0
// if y is negative infinity, then x is greater, return 1
{
res = ((y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
}
// CONVERT X
sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull;
sig_x.w[0] = x.w[0];
exp_x = (x.w[1] >> 49) & 0x000000000003fffull;
// CHECK IF X IS CANONICAL
// 9999999999999999999999999999999999(decimal) =
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
// [0, 10^34) is the 754r supported canonical range.
// If the value exceeds that, it is interpreted as 0.
if ((sig_x.w[1] > 0x0001ed09bead87c0ull)
|| ((sig_x.w[1] == 0x0001ed09bead87c0ull)
&& (sig_x.w[0] > 0x378d8e63ffffffffull))
|| ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull))
non_canon_x = 1;
else
non_canon_x = 0;
// CONVERT Y
exp_y = (y.w[1] >> 49) & 0x0000000000003fffull;
sig_y.w[1] = y.w[1] & 0x0001ffffffffffffull;
sig_y.w[0] = y.w[0];
// CHECK IF Y IS CANONICAL
// 9999999999999999999999999999999999(decimal) =
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
// [0, 10^34) is the 754r supported canonical range.
// If the value exceeds that, it is interpreted as 0.
if ((sig_y.w[1] > 0x0001ed09bead87c0ull)
|| ((sig_y.w[1] == 0x0001ed09bead87c0ull)
&& (sig_y.w[0] > 0x378d8e63ffffffffull))
|| ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull))
non_canon_y = 1;
else
non_canon_y = 0;
// ZERO (CASE4)
// some properties:
// (+ZERO == -ZERO) => therefore ignore the sign
// (ZERO x 10^A == ZERO x 10^B) for any valid A, B => therefore
// ignore the exponent field
// (Any non-canonical # is considered 0)
if (non_canon_x || ((sig_x.w[1] == 0) && (sig_x.w[0] == 0))) {
x_is_zero = 1;
}
if (non_canon_y || ((sig_y.w[1] == 0) && (sig_y.w[0] == 0))) {
y_is_zero = 1;
}
// if both numbers are zero, neither is greater => return NOTGREATERTHAN
if (x_is_zero && y_is_zero) {
res = 1;
BID_RETURN (res);
}
// is x is zero, it is greater if Y is negative
else if (x_is_zero) {
res = ((y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
// is y is zero, X is greater if it is positive
else if (y_is_zero) {
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
// OPPOSITE SIGN (CASE5)
// now, if the sign bits differ, x is greater if y is negative
if (((x.w[1] ^ y.w[1]) & MASK_SIGN) == MASK_SIGN) {
res = ((y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
// REDUNDANT REPRESENTATIONS (CASE6)
// if exponents are the same, then we have a simple comparison of the
// significands
if (exp_y == exp_x) {
res = (((sig_x.w[1] > sig_y.w[1])
|| (sig_x.w[1] == sig_y.w[1]
&& sig_x.w[0] >= sig_y.w[0])) ^ ((x.w[1] & MASK_SIGN) ==
MASK_SIGN));
BID_RETURN (res);
}
// if both components are either bigger or smaller,
// it is clear what needs to be done
if (sig_x.w[1] >= sig_y.w[1] && sig_x.w[0] >= sig_y.w[0]
&& exp_x > exp_y) {
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
if (sig_x.w[1] <= sig_y.w[1] && sig_x.w[0] <= sig_y.w[0]
&& exp_x < exp_y) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
diff = exp_x - exp_y;
// if |exp_x - exp_y| < 33, it comes down to the compensated significand
if (diff > 0) { // to simplify the loop below,
// if exp_x is 33 greater than exp_y, no need for compensation
if (diff > 33) {
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
} // difference cannot be greater than 10^33
if (diff > 19) { //128 by 128 bit multiply -> 256 bits
__mul_128x128_to_256 (sig_n_prime256, sig_x, ten2k128[diff - 20]);
// if postitive, return whichever significand is larger
// (converse if negative)
if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0)
&& sig_n_prime256.w[1] == sig_y.w[1]
&& (sig_n_prime256.w[0] == sig_y.w[0])) {
res = 1;
BID_RETURN (res);
} // if equal, return 1
{
res = ((((sig_n_prime256.w[3] > 0) || sig_n_prime256.w[2] > 0)
|| (sig_n_prime256.w[1] > sig_y.w[1])
|| (sig_n_prime256.w[1] == sig_y.w[1]
&& sig_n_prime256.w[0] >
sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN));
BID_RETURN (res);
}
}
//else { //128 by 64 bit multiply -> 192 bits
__mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_x);
// if postitive, return whichever significand is larger
// (converse if negative)
if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_y.w[1]
&& (sig_n_prime192.w[0] == sig_y.w[0])) {
res = 1;
BID_RETURN (res);
} // if equal, return 1
{
res = (((sig_n_prime192.w[2] > 0)
|| (sig_n_prime192.w[1] > sig_y.w[1])
|| (sig_n_prime192.w[1] == sig_y.w[1]
&& sig_n_prime192.w[0] >
sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN));
BID_RETURN (res);
}
}
diff = exp_y - exp_x;
// if exp_x is 33 less than exp_y, no need for compensation
if (diff > 33) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
if (diff > 19) { //128 by 128 bit multiply -> 256 bits
// adjust the y significand upwards
__mul_128x128_to_256 (sig_n_prime256, sig_y, ten2k128[diff - 20]);
// if postitive, return whichever significand is larger
// (converse if negative)
if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0)
&& sig_n_prime256.w[1] == sig_x.w[1]
&& (sig_n_prime256.w[0] == sig_x.w[0])) {
res = 1;
BID_RETURN (res);
} // if equal, return 1
{
res = ((sig_n_prime256.w[3] == 0 && sig_n_prime256.w[2] == 0
&& (sig_n_prime256.w[1] < sig_x.w[1]
|| (sig_n_prime256.w[1] == sig_x.w[1]
&& sig_n_prime256.w[0] <
sig_x.w[0]))) ^ ((x.w[1] & MASK_SIGN) ==
MASK_SIGN));
BID_RETURN (res);
}
}
//else { //128 by 64 bit multiply -> 192 bits
// adjust the y significand upwards
__mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_y);
// if postitive, return whichever significand is larger
// (converse if negative)
if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_x.w[1]
&& (sig_n_prime192.w[0] == sig_x.w[0])) {
res = 1;
BID_RETURN (res);
} // if equal, return 1
{
res = (sig_n_prime192.w[2] == 0
&& (sig_n_prime192.w[1] < sig_x.w[1]
|| (sig_n_prime192.w[1] == sig_x.w[1]
&& sig_n_prime192.w[0] <
sig_x.w[0]))) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
}
BID128_FUNCTION_ARG2_NORND_CUSTOMRESTYPE (int,
bid128_quiet_greater_unordered,
x, y)
int res;
int exp_x, exp_y;
int diff;
UINT128 sig_x, sig_y;
UINT192 sig_n_prime192;
UINT256 sig_n_prime256;
char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
// NaN (CASE1)
// if either number is NAN, the comparison is unordered,
// rather than
// equal : return 1
if (((x.w[1] & MASK_NAN) == MASK_NAN)
|| ((y.w[1] & MASK_NAN) == MASK_NAN)) {
if ((x.w[1] & MASK_SNAN) == MASK_SNAN
|| (y.w[1] & MASK_SNAN) == MASK_SNAN) {
*pfpsf |= INVALID_EXCEPTION;
}
{
res = 1;
BID_RETURN (res);
}
}
// SIMPLE (CASE2)
// if all the bits are the same, these numbers are equal (not Greater).
if (x.w[0] == y.w[0] && x.w[1] == y.w[1]) {
res = 0;
BID_RETURN (res);
}
// INFINITY (CASE3)
if ((x.w[1] & MASK_INF) == MASK_INF) {
// if x is neg infinity, there is no way it is greater than y, return 0
if (((x.w[1] & MASK_SIGN) == MASK_SIGN)) {
res = 0;
BID_RETURN (res);
}
// x is pos infinity, it is greater, unless y is positive infinity =>
// return y!=pos_infinity
else {
res = (((y.w[1] & MASK_INF) != MASK_INF)
|| ((y.w[1] & MASK_SIGN) == MASK_SIGN));
BID_RETURN (res);
}
} else if ((y.w[1] & MASK_INF) == MASK_INF) {
// x is finite, so if y is positive infinity, then x is less, return 0
// if y is negative infinity, then x is greater, return 1
{
res = ((y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
}
// CONVERT X
sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull;
sig_x.w[0] = x.w[0];
exp_x = (x.w[1] >> 49) & 0x000000000003fffull;
// CHECK IF X IS CANONICAL
// 9999999999999999999999999999999999(decimal) =
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
// [0, 10^34) is the 754r supported canonical range.
// If the value exceeds that, it is interpreted as 0.
if ((sig_x.w[1] > 0x0001ed09bead87c0ull)
|| ((sig_x.w[1] == 0x0001ed09bead87c0ull)
&& (sig_x.w[0] > 0x378d8e63ffffffffull))
|| ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull))
non_canon_x = 1;
else
non_canon_x = 0;
// CONVERT Y
exp_y = (y.w[1] >> 49) & 0x0000000000003fffull;
sig_y.w[1] = y.w[1] & 0x0001ffffffffffffull;
sig_y.w[0] = y.w[0];
// CHECK IF Y IS CANONICAL
// 9999999999999999999999999999999999(decimal) =
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
// [0, 10^34) is the 754r supported canonical range.
// If the value exceeds that, it is interpreted as 0.
if ((sig_y.w[1] > 0x0001ed09bead87c0ull)
|| ((sig_y.w[1] == 0x0001ed09bead87c0ull)
&& (sig_y.w[0] > 0x378d8e63ffffffffull))
|| ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull))
non_canon_y = 1;
else
non_canon_y = 0;
// ZERO (CASE4)
// some properties:
// (+ZERO == -ZERO) => therefore ignore the sign
// (ZERO x 10^A == ZERO x 10^B) for any valid A, B => therefore
// ignore the exponent field
// (Any non-canonical # is considered 0)
if (non_canon_x || ((sig_x.w[1] == 0) && (sig_x.w[0] == 0))) {
x_is_zero = 1;
}
if (non_canon_y || ((sig_y.w[1] == 0) && (sig_y.w[0] == 0))) {
y_is_zero = 1;
}
// if both numbers are zero, neither is greater => return NOTGREATERTHAN
if (x_is_zero && y_is_zero) {
res = 0;
BID_RETURN (res);
}
// is x is zero, it is greater if Y is negative
else if (x_is_zero) {
res = ((y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
// is y is zero, X is greater if it is positive
else if (y_is_zero) {
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
// OPPOSITE SIGN (CASE5)
// now, if the sign bits differ, x is greater if y is negative
if (((x.w[1] ^ y.w[1]) & MASK_SIGN) == MASK_SIGN) {
res = ((y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
// REDUNDANT REPRESENTATIONS (CASE6)
// if exponents are the same, then we have a simple comparison of the
// significands
if (exp_y == exp_x) {
res = (((sig_x.w[1] > sig_y.w[1])
|| (sig_x.w[1] == sig_y.w[1]
&& sig_x.w[0] >= sig_y.w[0])) ^ ((x.w[1] & MASK_SIGN) ==
MASK_SIGN));
BID_RETURN (res);
}
// if both components are either bigger or smaller,
// it is clear what needs to be done
if (sig_x.w[1] >= sig_y.w[1] && sig_x.w[0] >= sig_y.w[0]
&& exp_x > exp_y) {
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
if (sig_x.w[1] <= sig_y.w[1] && sig_x.w[0] <= sig_y.w[0]
&& exp_x < exp_y) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
diff = exp_x - exp_y;
// if |exp_x - exp_y| < 33, it comes down to the compensated significand
if (diff > 0) { // to simplify the loop below,
// if exp_x is 33 greater than exp_y, no need for compensation
if (diff > 33) {
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
} // difference cannot be greater than 10^33
if (diff > 19) { //128 by 128 bit multiply -> 256 bits
__mul_128x128_to_256 (sig_n_prime256, sig_x, ten2k128[diff - 20]);
// if postitive, return whichever significand is larger
// (converse if negative)
if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0)
&& sig_n_prime256.w[1] == sig_y.w[1]
&& (sig_n_prime256.w[0] == sig_y.w[0])) {
res = 0;
BID_RETURN (res);
} // if equal, return 0
{
res = ((((sig_n_prime256.w[3] > 0) || sig_n_prime256.w[2] > 0)
|| (sig_n_prime256.w[1] > sig_y.w[1])
|| (sig_n_prime256.w[1] == sig_y.w[1]
&& sig_n_prime256.w[0] >
sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN));
BID_RETURN (res);
}
}
//else { //128 by 64 bit multiply -> 192 bits
__mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_x);
// if postitive, return whichever significand is larger
// (converse if negative)
if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_y.w[1]
&& (sig_n_prime192.w[0] == sig_y.w[0])) {
res = 0;
BID_RETURN (res);
} // if equal, return 0
{
res = (((sig_n_prime192.w[2] > 0)
|| (sig_n_prime192.w[1] > sig_y.w[1])
|| (sig_n_prime192.w[1] == sig_y.w[1]
&& sig_n_prime192.w[0] >
sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN));
BID_RETURN (res);
}
}
diff = exp_y - exp_x;
// if exp_x is 33 less than exp_y, no need for compensation
if (diff > 33) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
if (diff > 19) { //128 by 128 bit multiply -> 256 bits
// adjust the y significand upwards
__mul_128x128_to_256 (sig_n_prime256, sig_y, ten2k128[diff - 20]);
// if postitive, return whichever significand is larger
// (converse if negative)
if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0)
&& sig_n_prime256.w[1] == sig_x.w[1]
&& (sig_n_prime256.w[0] == sig_x.w[0])) {
res = 0;
BID_RETURN (res);
} // if equal, return 0
{
res = ((sig_n_prime256.w[3] == 0 && sig_n_prime256.w[2] == 0
&& (sig_n_prime256.w[1] < sig_x.w[1]
|| (sig_n_prime256.w[1] == sig_x.w[1]
&& sig_n_prime256.w[0] <
sig_x.w[0]))) ^ ((x.w[1] & MASK_SIGN) ==
MASK_SIGN));
BID_RETURN (res);
}
}
//else { //128 by 64 bit multiply -> 192 bits
// adjust the y significand upwards
__mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_y);
// if postitive, return whichever significand is larger
// (converse if negative)
if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_x.w[1]
&& (sig_n_prime192.w[0] == sig_x.w[0])) {
res = 0;
BID_RETURN (res);
} // if equal, return 0
{
res = (sig_n_prime192.w[2] == 0
&& (sig_n_prime192.w[1] < sig_x.w[1]
|| (sig_n_prime192.w[1] == sig_x.w[1]
&& sig_n_prime192.w[0] <
sig_x.w[0]))) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
}
BID128_FUNCTION_ARG2_NORND_CUSTOMRESTYPE (int, bid128_quiet_less, x, y)
int res;
int exp_x, exp_y;
int diff;
UINT128 sig_x, sig_y;
UINT192 sig_n_prime192;
UINT256 sig_n_prime256;
char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
// NaN (CASE1)
// if either number is NAN, the comparison is unordered,
// rather than equal : return 0
if (((x.w[1] & MASK_NAN) == MASK_NAN)
|| ((y.w[1] & MASK_NAN) == MASK_NAN)) {
if ((x.w[1] & MASK_SNAN) == MASK_SNAN
|| (y.w[1] & MASK_SNAN) == MASK_SNAN) {
*pfpsf |= INVALID_EXCEPTION;
}
{
res = 0;
BID_RETURN (res);
}
}
// SIMPLE (CASE2)
// if all the bits are the same, these numbers are equal.
if (x.w[0] == y.w[0] && x.w[1] == y.w[1]) {
res = 0;
BID_RETURN (res);
}
// INFINITY (CASE3)
if ((x.w[1] & MASK_INF) == MASK_INF) {
// if x==neg_inf, { res = (y == neg_inf)?1:0; BID_RETURN (res) }
if ((x.w[1] & MASK_SIGN) == MASK_SIGN)
// x is -inf, so it is less than y unless y is -inf
{
res = (((y.w[1] & MASK_INF) != MASK_INF)
|| (y.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
} else
// x is pos_inf, no way for it to be less than y
{
res = 0;
BID_RETURN (res);
}
} else if ((y.w[1] & MASK_INF) == MASK_INF) {
// x is finite, so if y is positive infinity, then x is less, return 0
// if y is negative infinity, then x is greater, return 1
{
res = ((y.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
}
// CONVERT X
sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull;
sig_x.w[0] = x.w[0];
exp_x = (x.w[1] >> 49) & 0x000000000003fffull;
// CHECK IF X IS CANONICAL
// 9999999999999999999999999999999999(decimal) =
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
// [0, 10^34) is the 754r supported canonical range.
// If the value exceeds that, it is interpreted as 0.
if ((sig_x.w[1] > 0x0001ed09bead87c0ull)
|| ((sig_x.w[1] == 0x0001ed09bead87c0ull)
&& (sig_x.w[0] > 0x378d8e63ffffffffull))
|| ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull))
non_canon_x = 1;
else
non_canon_x = 0;
// CONVERT Y
exp_y = (y.w[1] >> 49) & 0x0000000000003fffull;
sig_y.w[1] = y.w[1] & 0x0001ffffffffffffull;
sig_y.w[0] = y.w[0];
// CHECK IF Y IS CANONICAL
// 9999999999999999999999999999999999(decimal) =
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
// [0, 10^34) is the 754r supported canonical range.
// If the value exceeds that, it is interpreted as 0.
if ((sig_y.w[1] > 0x0001ed09bead87c0ull)
|| ((sig_y.w[1] == 0x0001ed09bead87c0ull)
&& (sig_y.w[0] > 0x378d8e63ffffffffull))
|| ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull))
non_canon_y = 1;
else
non_canon_y = 0;
// ZERO (CASE4)
// some properties:
// (+ZERO == -ZERO) => therefore ignore the sign
// (ZERO x 10^A == ZERO x 10^B) for any valid A, B => therefore
// ignore the exponent field
// (Any non-canonical # is considered 0)
if (non_canon_x || ((sig_x.w[1] == 0) && (sig_x.w[0] == 0))) {
x_is_zero = 1;
}
if (non_canon_y || ((sig_y.w[1] == 0) && (sig_y.w[0] == 0))) {
y_is_zero = 1;
}
// if both numbers are zero, neither is greater => return NOTGREATERTHAN
if (x_is_zero && y_is_zero) {
res = 0;
BID_RETURN (res);
}
// is x is zero, it is greater if Y is negative
else if (x_is_zero) {
res = ((y.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
// is y is zero, X is greater if it is positive
else if (y_is_zero) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
// OPPOSITE SIGN (CASE5)
// now, if the sign bits differ, x is greater if y is negative
if (((x.w[1] ^ y.w[1]) & MASK_SIGN) == MASK_SIGN) {
res = ((y.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
// REDUNDANT REPRESENTATIONS (CASE6)
// if exponents are the same, then we have a simple comparison of the
// significands
if (exp_y == exp_x) {
res = (((sig_x.w[1] > sig_y.w[1])
|| (sig_x.w[1] == sig_y.w[1]
&& sig_x.w[0] >= sig_y.w[0])) ^ ((x.w[1] & MASK_SIGN) !=
MASK_SIGN));
BID_RETURN (res);
}
// if both components are either bigger or smaller,
// it is clear what needs to be done
if ((sig_x.w[1] > sig_y.w[1]
|| (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] > sig_y.w[0]))
&& exp_x >= exp_y) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
if ((sig_x.w[1] < sig_y.w[1]
|| (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] < sig_y.w[0]))
&& exp_x <= exp_y) {
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
diff = exp_x - exp_y;
// if |exp_x - exp_y| < 33, it comes down to the compensated significand
if (diff > 0) { // to simplify the loop below,
// if exp_x is 33 greater than exp_y, no need for compensation
if (diff > 33) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
} // difference cannot be greater than 10^33
if (diff > 19) { //128 by 128 bit multiply -> 256 bits
__mul_128x128_to_256 (sig_n_prime256, sig_x, ten2k128[diff - 20]);
// if postitive, return whichever significand is larger
// (converse if negative)
if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0)
&& sig_n_prime256.w[1] == sig_y.w[1]
&& (sig_n_prime256.w[0] == sig_y.w[0])) {
res = 0;
BID_RETURN (res);
} // if equal, return 0
{
res = ((((sig_n_prime256.w[3] > 0) || sig_n_prime256.w[2] > 0)
|| (sig_n_prime256.w[1] > sig_y.w[1])
|| (sig_n_prime256.w[1] == sig_y.w[1]
&& sig_n_prime256.w[0] >
sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) != MASK_SIGN));
BID_RETURN (res);
}
}
//else { //128 by 64 bit multiply -> 192 bits
__mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_x);
// if postitive, return whichever significand is larger
// (converse if negative)
if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_y.w[1]
&& (sig_n_prime192.w[0] == sig_y.w[0])) {
res = 0;
BID_RETURN (res);
} // if equal, return 0
{
res = (((sig_n_prime192.w[2] > 0)
|| (sig_n_prime192.w[1] > sig_y.w[1])
|| (sig_n_prime192.w[1] == sig_y.w[1]
&& sig_n_prime192.w[0] >
sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) != MASK_SIGN));
BID_RETURN (res);
}
}
diff = exp_y - exp_x;
// if exp_x is 33 less than exp_y, no need for compensation
if (diff > 33) {
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
if (diff > 19) { //128 by 128 bit multiply -> 256 bits
// adjust the y significand upwards
__mul_128x128_to_256 (sig_n_prime256, sig_y, ten2k128[diff - 20]);
// if postitive, return whichever significand is larger
// (converse if negative)
if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0)
&& sig_n_prime256.w[1] == sig_x.w[1]
&& (sig_n_prime256.w[0] == sig_x.w[0])) {
res = 0;
BID_RETURN (res);
} // if equal, return 1
{
res = ((sig_n_prime256.w[3] != 0 || sig_n_prime256.w[2] != 0
|| (sig_n_prime256.w[1] > sig_x.w[1]
|| (sig_n_prime256.w[1] == sig_x.w[1]
&& sig_n_prime256.w[0] >
sig_x.w[0]))) ^ ((x.w[1] & MASK_SIGN) ==
MASK_SIGN));
BID_RETURN (res);
}
}
//else { //128 by 64 bit multiply -> 192 bits
// adjust the y significand upwards
__mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_y);
// if postitive, return whichever significand is larger
// (converse if negative)
if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_x.w[1]
&& (sig_n_prime192.w[0] == sig_x.w[0])) {
res = 0;
BID_RETURN (res);
} // if equal, return 0
{
res = (sig_n_prime192.w[2] != 0
|| (sig_n_prime192.w[1] > sig_x.w[1]
|| (sig_n_prime192.w[1] == sig_x.w[1]
&& sig_n_prime192.w[0] >
sig_x.w[0]))) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
}
BID128_FUNCTION_ARG2_NORND_CUSTOMRESTYPE (int, bid128_quiet_less_equal,
x, y)
int res;
int exp_x, exp_y;
int diff;
UINT128 sig_x, sig_y;
UINT192 sig_n_prime192;
UINT256 sig_n_prime256;
char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
// NaN (CASE1)
// if either number is NAN, the comparison is unordered,
// rather than equal : return 0
if (((x.w[1] & MASK_NAN) == MASK_NAN)
|| ((y.w[1] & MASK_NAN) == MASK_NAN)) {
if ((x.w[1] & MASK_SNAN) == MASK_SNAN
|| (y.w[1] & MASK_SNAN) == MASK_SNAN) {
*pfpsf |= INVALID_EXCEPTION;
}
{
res = 0;
BID_RETURN (res);
}
}
// SIMPLE (CASE2)
// if all the bits are the same, these numbers are equal (not Greater).
if (x.w[0] == y.w[0] && x.w[1] == y.w[1]) {
res = 1;
BID_RETURN (res);
}
// INFINITY (CASE3)
if ((x.w[1] & MASK_INF) == MASK_INF) {
// if x is neg infinity, there is no way it is greater than y, return 1
if (((x.w[1] & MASK_SIGN) == MASK_SIGN)) {
res = 1;
BID_RETURN (res);
}
// x is pos infinity, it is greater, unless y is positive infinity =>
// return y!=pos_infinity
else {
res = (((y.w[1] & MASK_INF) == MASK_INF)
&& ((y.w[1] & MASK_SIGN) != MASK_SIGN));
BID_RETURN (res);
}
} else if ((y.w[1] & MASK_INF) == MASK_INF) {
// x is finite, so if y is positive infinity, then x is less, return 0
// if y is negative infinity, then x is greater, return 1
{
res = ((y.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
}
// CONVERT X
sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull;
sig_x.w[0] = x.w[0];
exp_x = (x.w[1] >> 49) & 0x000000000003fffull;
// CHECK IF X IS CANONICAL
// 9999999999999999999999999999999999(decimal) =
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
// [0, 10^34) is the 754r supported canonical range.
// If the value exceeds that, it is interpreted as 0.
if ((sig_x.w[1] > 0x0001ed09bead87c0ull)
|| ((sig_x.w[1] == 0x0001ed09bead87c0ull)
&& (sig_x.w[0] > 0x378d8e63ffffffffull))
|| ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull))
non_canon_x = 1;
else
non_canon_x = 0;
// CONVERT Y
exp_y = (y.w[1] >> 49) & 0x0000000000003fffull;
sig_y.w[1] = y.w[1] & 0x0001ffffffffffffull;
sig_y.w[0] = y.w[0];
// CHECK IF Y IS CANONICAL
// 9999999999999999999999999999999999(decimal) =
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
// [0, 10^34) is the 754r supported canonical range.
// If the value exceeds that, it is interpreted as 0.
if ((sig_y.w[1] > 0x0001ed09bead87c0ull)
|| ((sig_y.w[1] == 0x0001ed09bead87c0ull)
&& (sig_y.w[0] > 0x378d8e63ffffffffull))
|| ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull))
non_canon_y = 1;
else
non_canon_y = 0;
// ZERO (CASE4)
// some properties:
// (+ZERO == -ZERO) => therefore ignore the sign
// (ZERO x 10^A == ZERO x 10^B) for any valid A, B => therefore
// ignore the exponent field
// (Any non-canonical # is considered 0)
if (non_canon_x || ((sig_x.w[1] == 0) && (sig_x.w[0] == 0))) {
x_is_zero = 1;
}
if (non_canon_y || ((sig_y.w[1] == 0) && (sig_y.w[0] == 0))) {
y_is_zero = 1;
}
// if both numbers are zero, neither is greater => return NOTGREATERTHAN
if (x_is_zero && y_is_zero) {
res = 1;
BID_RETURN (res);
}
// is x is zero, it is greater if Y is negative
else if (x_is_zero) {
res = ((y.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
// is y is zero, X is greater if it is positive
else if (y_is_zero) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
// OPPOSITE SIGN (CASE5)
// now, if the sign bits differ, x is greater if y is negative
if (((x.w[1] ^ y.w[1]) & MASK_SIGN) == MASK_SIGN) {
res = ((y.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
// REDUNDANT REPRESENTATIONS (CASE6)
// if exponents are the same, then we have a simple comparison of the
// significands
if (exp_y == exp_x) {
res = (((sig_x.w[1] > sig_y.w[1]) || (sig_x.w[1] == sig_y.w[1] &&
sig_x.w[0] >=
sig_y.w[0])) ^ ((x.
w[1] &
MASK_SIGN) !=
MASK_SIGN));
BID_RETURN (res);
}
// if both components are either bigger or smaller,
// it is clear what needs to be done
if ((sig_x.w[1] > sig_y.w[1]
|| (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] > sig_y.w[0]))
&& exp_x >= exp_y) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
if ((sig_x.w[1] < sig_y.w[1]
|| (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] < sig_y.w[0]))
&& exp_x <= exp_y) {
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
diff = exp_x - exp_y;
// if |exp_x - exp_y| < 33, it comes down to the compensated significand
if (diff > 0) { // to simplify the loop below,
// if exp_x is 33 greater than exp_y, no need for compensation
if (diff > 33) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
} // difference cannot be greater than 10^33
if (diff > 19) { //128 by 128 bit multiply -> 256 bits
__mul_128x128_to_256 (sig_n_prime256, sig_x, ten2k128[diff - 20]);
// if postitive, return whichever significand is larger
// (converse if negative)
if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0)
&& sig_n_prime256.w[1] == sig_y.w[1]
&& (sig_n_prime256.w[0] == sig_y.w[0])) {
res = 1;
BID_RETURN (res);
} // if equal, return 0
{
res = ((((sig_n_prime256.w[3] > 0) || sig_n_prime256.w[2] > 0)
|| (sig_n_prime256.w[1] > sig_y.w[1])
|| (sig_n_prime256.w[1] == sig_y.w[1]
&& sig_n_prime256.w[0] >
sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) != MASK_SIGN));
BID_RETURN (res);
}
}
//else { //128 by 64 bit multiply -> 192 bits
__mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_x);
// if postitive, return whichever significand is larger
// (converse if negative)
if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_y.w[1]
&& (sig_n_prime192.w[0] == sig_y.w[0])) {
res = 1;
BID_RETURN (res);
} // if equal, return 0
{
res = (((sig_n_prime192.w[2] > 0)
|| (sig_n_prime192.w[1] > sig_y.w[1])
|| (sig_n_prime192.w[1] == sig_y.w[1]
&& sig_n_prime192.w[0] >
sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) != MASK_SIGN));
BID_RETURN (res);
}
}
diff = exp_y - exp_x;
// if exp_x is 33 less than exp_y, no need for compensation
if (diff > 33) {
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
if (diff > 19) { //128 by 128 bit multiply -> 256 bits
// adjust the y significand upwards
__mul_128x128_to_256 (sig_n_prime256, sig_y, ten2k128[diff - 20]);
// if postitive, return whichever significand is larger
// (converse if negative)
if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0)
&& sig_n_prime256.w[1] == sig_x.w[1]
&& (sig_n_prime256.w[0] == sig_x.w[0])) {
res = 1;
BID_RETURN (res);
} // if equal, return 0
{
res =
((sig_n_prime256.w[3] != 0 || sig_n_prime256.w[2] != 0
|| (sig_n_prime256.w[1] > sig_x.w[1]
|| (sig_n_prime256.w[1] == sig_x.w[1]
&& sig_n_prime256.w[0] >
sig_x.w[0]))) ^ ((x.w[1] & MASK_SIGN) == MASK_SIGN));
BID_RETURN (res);
}
}
//else { //128 by 64 bit multiply -> 192 bits
// adjust the y significand upwards
__mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_y);
// if postitive, return whichever significand is larger
// (converse if negative)
if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_x.w[1]
&& (sig_n_prime192.w[0] == sig_x.w[0])) {
res = 1;
BID_RETURN (res);
} // if equal, return 0
{
res = (sig_n_prime192.w[2] != 0
|| (sig_n_prime192.w[1] > sig_x.w[1]
|| (sig_n_prime192.w[1] == sig_x.w[1]
&& sig_n_prime192.w[0] >
sig_x.w[0]))) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
}
BID128_FUNCTION_ARG2_NORND_CUSTOMRESTYPE (int,
bid128_quiet_less_unordered,
x, y)
int res;
int exp_x, exp_y;
int diff;
UINT128 sig_x, sig_y;
UINT192 sig_n_prime192;
UINT256 sig_n_prime256;
char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
// NaN (CASE1)
// if either number is NAN, the comparison is unordered
if (((x.w[1] & MASK_NAN) == MASK_NAN)
|| ((y.w[1] & MASK_NAN) == MASK_NAN)) {
if ((x.w[1] & MASK_SNAN) == MASK_SNAN
|| (y.w[1] & MASK_SNAN) == MASK_SNAN) {
*pfpsf |= INVALID_EXCEPTION;
}
{
res = 1;
BID_RETURN (res);
}
}
// SIMPLE (CASE2)
// if all the bits are the same, these numbers are equal.
if (x.w[0] == y.w[0] && x.w[1] == y.w[1]) {
res = 0;
BID_RETURN (res);
}
// INFINITY (CASE3)
if ((x.w[1] & MASK_INF) == MASK_INF) {
// if x==neg_inf, { res = (y == neg_inf)?1:0; BID_RETURN (res) }
if ((x.w[1] & MASK_SIGN) == MASK_SIGN)
// x is -inf, so it is less than y unless y is -inf
{
res = (((y.w[1] & MASK_INF) != MASK_INF)
|| (y.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
} else
// x is pos_inf, no way for it to be less than y
{
res = 0;
BID_RETURN (res);
}
} else if ((y.w[1] & MASK_INF) == MASK_INF) {
// x is finite, so if y is positive infinity, then x is less, return 0
// if y is negative infinity, then x is greater, return 1
{
res = ((y.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
}
// CONVERT X
sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull;
sig_x.w[0] = x.w[0];
exp_x = (x.w[1] >> 49) & 0x000000000003fffull;
// CHECK IF X IS CANONICAL
// 9999999999999999999999999999999999(decimal) =
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
// [0, 10^34) is the 754r supported canonical range.
// If the value exceeds that, it is interpreted as 0.
if ((sig_x.w[1] > 0x0001ed09bead87c0ull)
|| ((sig_x.w[1] == 0x0001ed09bead87c0ull)
&& (sig_x.w[0] > 0x378d8e63ffffffffull))
|| ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull))
non_canon_x = 1;
else
non_canon_x = 0;
// CONVERT Y
exp_y = (y.w[1] >> 49) & 0x0000000000003fffull;
sig_y.w[1] = y.w[1] & 0x0001ffffffffffffull;
sig_y.w[0] = y.w[0];
// CHECK IF Y IS CANONICAL
// 9999999999999999999999999999999999(decimal) =
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
// [0, 10^34) is the 754r supported canonical range.
// If the value exceeds that, it is interpreted as 0.
if ((sig_y.w[1] > 0x0001ed09bead87c0ull)
|| ((sig_y.w[1] == 0x0001ed09bead87c0ull)
&& (sig_y.w[0] > 0x378d8e63ffffffffull))
|| ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull))
non_canon_y = 1;
else
non_canon_y = 0;
// ZERO (CASE4)
// some properties:
// (+ZERO == -ZERO) => therefore ignore the sign
// (ZERO x 10^A == ZERO x 10^B) for any valid A, B => therefore
// ignore the exponent field
// (Any non-canonical # is considered 0)
if (non_canon_x || ((sig_x.w[1] == 0) && (sig_x.w[0] == 0))) {
x_is_zero = 1;
}
if (non_canon_y || ((sig_y.w[1] == 0) && (sig_y.w[0] == 0))) {
y_is_zero = 1;
}
// if both numbers are zero, neither is greater => return NOTGREATERTHAN
if (x_is_zero && y_is_zero) {
res = 0;
BID_RETURN (res);
}
// is x is zero, it is greater if Y is negative
else if (x_is_zero) {
res = ((y.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
// is y is zero, X is greater if it is positive
else if (y_is_zero) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
// OPPOSITE SIGN (CASE5)
// now, if the sign bits differ, x is greater if y is negative
if (((x.w[1] ^ y.w[1]) & MASK_SIGN) == MASK_SIGN) {
res = ((y.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
// REDUNDANT REPRESENTATIONS (CASE6)
// if exponents are the same, then we have a simple comparison
// of the significands
if (exp_y == exp_x) {
res = (((sig_x.w[1] > sig_y.w[1])
|| (sig_x.w[1] == sig_y.w[1]
&& sig_x.w[0] >= sig_y.w[0])) ^ ((x.w[1] & MASK_SIGN) !=
MASK_SIGN));
BID_RETURN (res);
}
// if both components are either bigger or smaller,
// it is clear what needs to be done
if ((sig_x.w[1] > sig_y.w[1]
|| (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] > sig_y.w[0]))
&& exp_x >= exp_y) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
if ((sig_x.w[1] < sig_y.w[1]
|| (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] < sig_y.w[0]))
&& exp_x <= exp_y) {
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
diff = exp_x - exp_y;
// if |exp_x - exp_y| < 33, it comes down to the compensated significand
if (diff > 0) { // to simplify the loop below,
// if exp_x is 33 greater than exp_y, no need for compensation
if (diff > 33) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
} // difference cannot be greater than 10^33
if (diff > 19) { //128 by 128 bit multiply -> 256 bits
__mul_128x128_to_256 (sig_n_prime256, sig_x, ten2k128[diff - 20]);
// if postitive, return whichever significand is larger
// (converse if negative)
if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0)
&& sig_n_prime256.w[1] == sig_y.w[1]
&& (sig_n_prime256.w[0] == sig_y.w[0])) {
res = 0;
BID_RETURN (res);
} // if equal, return 0
{
res = ((((sig_n_prime256.w[3] > 0) || sig_n_prime256.w[2] > 0)
|| (sig_n_prime256.w[1] > sig_y.w[1])
|| (sig_n_prime256.w[1] == sig_y.w[1]
&& sig_n_prime256.w[0] >
sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) != MASK_SIGN));
BID_RETURN (res);
}
}
//else { //128 by 64 bit multiply -> 192 bits
__mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_x);
// if postitive, return whichever significand is larger
// (converse if negative)
if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_y.w[1]
&& (sig_n_prime192.w[0] == sig_y.w[0])) {
res = 0;
BID_RETURN (res);
} // if equal, return 0
{
res = (((sig_n_prime192.w[2] > 0)
|| (sig_n_prime192.w[1] > sig_y.w[1])
|| (sig_n_prime192.w[1] == sig_y.w[1]
&& sig_n_prime192.w[0] >
sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) != MASK_SIGN));
BID_RETURN (res);
}
}
diff = exp_y - exp_x;
// if exp_x is 33 less than exp_y, no need for compensation
if (diff > 33) {
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
if (diff > 19) { //128 by 128 bit multiply -> 256 bits
// adjust the y significand upwards
__mul_128x128_to_256 (sig_n_prime256, sig_y, ten2k128[diff - 20]);
// if postitive, return whichever significand is larger
// (converse if negative)
if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0)
&& sig_n_prime256.w[1] == sig_x.w[1]
&& (sig_n_prime256.w[0] == sig_x.w[0])) {
res = 0;
BID_RETURN (res);
} // if equal, return 1
{
res =
((sig_n_prime256.w[3] != 0 || sig_n_prime256.w[2] != 0
|| (sig_n_prime256.w[1] > sig_x.w[1]
|| (sig_n_prime256.w[1] == sig_x.w[1]
&& sig_n_prime256.w[0] >
sig_x.w[0]))) ^ ((x.w[1] & MASK_SIGN) == MASK_SIGN));
BID_RETURN (res);
}
}
//else { //128 by 64 bit multiply -> 192 bits
// adjust the y significand upwards
__mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_y);
// if postitive, return whichever significand is larger
// (converse if negative)
if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_x.w[1]
&& (sig_n_prime192.w[0] == sig_x.w[0])) {
res = 0;
BID_RETURN (res);
} // if equal, return 0
{
res = (sig_n_prime192.w[2] != 0
|| (sig_n_prime192.w[1] > sig_x.w[1]
|| (sig_n_prime192.w[1] == sig_x.w[1]
&& sig_n_prime192.w[0] >
sig_x.w[0]))) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
}
BID128_FUNCTION_ARG2_NORND_CUSTOMRESTYPE (int, bid128_quiet_not_equal,
x, y)
int res;
int exp_x, exp_y, exp_t;
UINT128 sig_x, sig_y, sig_t;
UINT192 sig_n_prime192;
UINT256 sig_n_prime256;
char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
// NaN (CASE1)
// if either number is NAN, the comparison is unordered,
// rather than equal : return 0
if (((x.w[1] & MASK_NAN) == MASK_NAN)
|| ((y.w[1] & MASK_NAN) == MASK_NAN)) {
if ((x.w[1] & MASK_SNAN) == MASK_SNAN
|| (y.w[1] & MASK_SNAN) == MASK_SNAN) {
*pfpsf |= INVALID_EXCEPTION;
}
{
res = 1;
BID_RETURN (res);
}
}
// SIMPLE (CASE2)
// if all the bits are the same, these numbers are equivalent.
if (x.w[0] == y.w[0] && x.w[1] == y.w[1]) {
res = 0;
BID_RETURN (res);
}
// INFINITY (CASE3)
if ((x.w[1] & MASK_INF) == MASK_INF) {
if ((y.w[1] & MASK_INF) == MASK_INF) {
res = (((x.w[1] ^ y.w[1]) & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
} else {
res = 1;
BID_RETURN (res);
}
}
if ((y.w[1] & MASK_INF) == MASK_INF) {
res = 1;
BID_RETURN (res);
}
// CONVERT X
sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull;
sig_x.w[0] = x.w[0];
exp_x = (x.w[1] >> 49) & 0x000000000003fffull;
// CHECK IF X IS CANONICAL
// 9999999999999999999999999999999999(decimal) =
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
// [0, 10^34) is the 754r supported canonical range.
// If the value exceeds that, it is interpreted as 0.
if ((sig_x.w[1] > 0x0001ed09bead87c0ull)
|| ((sig_x.w[1] == 0x0001ed09bead87c0ull)
&& (sig_x.w[0] > 0x378d8e63ffffffffull))
|| ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull))
non_canon_x = 1;
else
non_canon_x = 0;
// CONVERT Y
exp_y = (y.w[1] >> 49) & 0x0000000000003fffull;
sig_y.w[1] = y.w[1] & 0x0001ffffffffffffull;
sig_y.w[0] = y.w[0];
// CHECK IF Y IS CANONICAL
// 9999999999999999999999999999999999(decimal) =
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
// [0, 10^34) is the 754r supported canonical range.
// If the value exceeds that, it is interpreted as 0.
if ((sig_y.w[1] > 0x0001ed09bead87c0ull)
|| ((sig_y.w[1] == 0x0001ed09bead87c0ull)
&& (sig_y.w[0] > 0x378d8e63ffffffffull))
|| ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull))
non_canon_y = 1;
else
non_canon_y = 0;
// some properties:
// (+ZERO == -ZERO) => therefore ignore the sign
// (ZERO x 10^A == ZERO x 10^B) for any valid A, B => therefore
// ignore the exponent field
// (Any non-canonical # is considered 0)
if (non_canon_x || ((sig_x.w[1] == 0) && (sig_x.w[0] == 0))) {
x_is_zero = 1;
}
if (non_canon_y || ((sig_y.w[1] == 0) && (sig_y.w[0] == 0))) {
y_is_zero = 1;
}
if (x_is_zero && y_is_zero) {
res = 0;
BID_RETURN (res);
} else if ((x_is_zero && !y_is_zero) || (!x_is_zero && y_is_zero)) {
res = 1;
BID_RETURN (res);
}
// OPPOSITE SIGN (CASE5)
// now, if the sign bits differ => not equal : return 0
if ((x.w[1] ^ y.w[1]) & MASK_SIGN) {
res = 1;
BID_RETURN (res);
}
// REDUNDANT REPRESENTATIONS (CASE6)
if (exp_x > exp_y) { // to simplify the loop below,
SWAP (exp_x, exp_y, exp_t); // put the larger exp in y,
SWAP (sig_x.w[1], sig_y.w[1], sig_t.w[1]); // and the smaller exp in x
SWAP (sig_x.w[0], sig_y.w[0], sig_t.w[0]); // and the smaller exp in x
}
if (exp_y - exp_x > 33) {
res = 1;
BID_RETURN (res);
} // difference cannot be greater than 10^33
if (exp_y - exp_x > 19) {
// recalculate y's significand upwards
__mul_128x128_to_256 (sig_n_prime256, sig_y,
ten2k128[exp_y - exp_x - 20]);
{
res = ((sig_n_prime256.w[3] != 0) || (sig_n_prime256.w[2] != 0)
|| (sig_n_prime256.w[1] != sig_x.w[1])
|| (sig_n_prime256.w[0] != sig_x.w[0]));
BID_RETURN (res);
}
}
//else{
// recalculate y's significand upwards
__mul_64x128_to192 (sig_n_prime192, ten2k64[exp_y - exp_x], sig_y);
{
res = ((sig_n_prime192.w[2] != 0)
|| (sig_n_prime192.w[1] != sig_x.w[1])
|| (sig_n_prime192.w[0] != sig_x.w[0]));
BID_RETURN (res);
}
}
BID128_FUNCTION_ARG2_NORND_CUSTOMRESTYPE (int, bid128_quiet_not_greater,
x, y)
int res;
int exp_x, exp_y;
int diff;
UINT128 sig_x, sig_y;
UINT192 sig_n_prime192;
UINT256 sig_n_prime256;
char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
// NaN (CASE1)
// if either number is NAN, the comparison is unordered,
// rather than equal : return 0
if (((x.w[1] & MASK_NAN) == MASK_NAN)
|| ((y.w[1] & MASK_NAN) == MASK_NAN)) {
if ((x.w[1] & MASK_SNAN) == MASK_SNAN
|| (y.w[1] & MASK_SNAN) == MASK_SNAN) {
*pfpsf |= INVALID_EXCEPTION;
}
{
res = 1;
BID_RETURN (res);
}
}
// SIMPLE (CASE2)
// if all the bits are the same, these numbers are equal (not Greater).
if (x.w[0] == y.w[0] && x.w[1] == y.w[1]) {
res = 1;
BID_RETURN (res);
}
// INFINITY (CASE3)
if ((x.w[1] & MASK_INF) == MASK_INF) {
// if x is neg infinity, there is no way it is greater than y, return 1
if (((x.w[1] & MASK_SIGN) == MASK_SIGN)) {
res = 1;
BID_RETURN (res);
}
// x is pos infinity, it is greater, unless y is positive infinity => return y!=pos_infinity
else {
res = (((y.w[1] & MASK_INF) == MASK_INF)
&& ((y.w[1] & MASK_SIGN) != MASK_SIGN));
BID_RETURN (res);
}
} else if ((y.w[1] & MASK_INF) == MASK_INF) {
// x is finite, so if y is positive infinity, then x is less, return 0
// if y is negative infinity, then x is greater, return 1
{
res = ((y.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
}
// CONVERT X
sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull;
sig_x.w[0] = x.w[0];
exp_x = (x.w[1] >> 49) & 0x000000000003fffull;
// CHECK IF X IS CANONICAL
// 9999999999999999999999999999999999(decimal) =
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
// [0, 10^34) is the 754r supported canonical range.
// If the value exceeds that, it is interpreted as 0.
if ((sig_x.w[1] > 0x0001ed09bead87c0ull)
|| ((sig_x.w[1] == 0x0001ed09bead87c0ull)
&& (sig_x.w[0] > 0x378d8e63ffffffffull))
|| ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull))
non_canon_x = 1;
else
non_canon_x = 0;
// CONVERT Y
exp_y = (y.w[1] >> 49) & 0x0000000000003fffull;
sig_y.w[1] = y.w[1] & 0x0001ffffffffffffull;
sig_y.w[0] = y.w[0];
// CHECK IF Y IS CANONICAL
// 9999999999999999999999999999999999(decimal) =
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
// [0, 10^34) is the 754r supported canonical range.
// If the value exceeds that, it is interpreted as 0.
if ((sig_y.w[1] > 0x0001ed09bead87c0ull)
|| ((sig_y.w[1] == 0x0001ed09bead87c0ull)
&& (sig_y.w[0] > 0x378d8e63ffffffffull))
|| ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull))
non_canon_y = 1;
else
non_canon_y = 0;
// ZERO (CASE4)
// some properties:
// (+ZERO == -ZERO) => therefore ignore the sign
// (ZERO x 10^A == ZERO x 10^B) for any valid A, B => therefore
// ignore the exponent field
// (Any non-canonical # is considered 0)
if (non_canon_x || ((sig_x.w[1] == 0) && (sig_x.w[0] == 0))) {
x_is_zero = 1;
}
if (non_canon_y || ((sig_y.w[1] == 0) && (sig_y.w[0] == 0))) {
y_is_zero = 1;
}
// if both numbers are zero, neither is greater => return NOTGREATERTHAN
if (x_is_zero && y_is_zero) {
res = 1;
BID_RETURN (res);
}
// is x is zero, it is greater if Y is negative
else if (x_is_zero) {
res = ((y.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
// is y is zero, X is greater if it is positive
else if (y_is_zero) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
// OPPOSITE SIGN (CASE5)
// now, if the sign bits differ, x is greater if y is negative
if (((x.w[1] ^ y.w[1]) & MASK_SIGN) == MASK_SIGN) {
res = ((y.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
// REDUNDANT REPRESENTATIONS (CASE6)
// if exponents are the same, then we have a simple comparison
// of the significands
if (exp_y == exp_x) {
res = (((sig_x.w[1] > sig_y.w[1])
|| (sig_x.w[1] == sig_y.w[1]
&& sig_x.w[0] >= sig_y.w[0])) ^ ((x.w[1] & MASK_SIGN) !=
MASK_SIGN));
BID_RETURN (res);
}
// if both components are either bigger or smaller,
// it is clear what needs to be done
if ((sig_x.w[1] > sig_y.w[1]
|| (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] > sig_y.w[0]))
&& exp_x >= exp_y) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
if ((sig_x.w[1] < sig_y.w[1]
|| (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] < sig_y.w[0]))
&& exp_x <= exp_y) {
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
diff = exp_x - exp_y;
// if |exp_x - exp_y| < 33, it comes down to the compensated significand
if (diff > 0) { // to simplify the loop below,
// if exp_x is 33 greater than exp_y, no need for compensation
if (diff > 33) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
} // difference cannot be greater than 10^33
if (diff > 19) { //128 by 128 bit multiply -> 256 bits
__mul_128x128_to_256 (sig_n_prime256, sig_x, ten2k128[diff - 20]);
// if postitive, return whichever significand is larger
// (converse if negative)
if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0)
&& sig_n_prime256.w[1] == sig_y.w[1]
&& (sig_n_prime256.w[0] == sig_y.w[0])) {
res = 1;
BID_RETURN (res);
} // if equal, return 0
{
res = ((((sig_n_prime256.w[3] > 0) || sig_n_prime256.w[2] > 0)
|| (sig_n_prime256.w[1] > sig_y.w[1])
|| (sig_n_prime256.w[1] == sig_y.w[1]
&& sig_n_prime256.w[0] >
sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) != MASK_SIGN));
BID_RETURN (res);
}
}
//else { //128 by 64 bit multiply -> 192 bits
__mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_x);
// if postitive, return whichever significand is larger
// (converse if negative)
if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_y.w[1]
&& (sig_n_prime192.w[0] == sig_y.w[0])) {
res = 1;
BID_RETURN (res);
} // if equal, return 0
{
res = (((sig_n_prime192.w[2] > 0)
|| (sig_n_prime192.w[1] > sig_y.w[1])
|| (sig_n_prime192.w[1] == sig_y.w[1]
&& sig_n_prime192.w[0] >
sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) != MASK_SIGN));
BID_RETURN (res);
}
}
diff = exp_y - exp_x;
// if exp_x is 33 less than exp_y, no need for compensation
if (diff > 33) {
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
if (diff > 19) { //128 by 128 bit multiply -> 256 bits
// adjust the y significand upwards
__mul_128x128_to_256 (sig_n_prime256, sig_y, ten2k128[diff - 20]);
// if postitive, return whichever significand is larger
// (converse if negative)
if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0)
&& sig_n_prime256.w[1] == sig_x.w[1]
&& (sig_n_prime256.w[0] == sig_x.w[0])) {
res = 1;
BID_RETURN (res);
} // if equal, return 0
{
res =
((sig_n_prime256.w[3] != 0 || sig_n_prime256.w[2] != 0
|| (sig_n_prime256.w[1] > sig_x.w[1]
|| (sig_n_prime256.w[1] == sig_x.w[1]
&& sig_n_prime256.w[0] >
sig_x.w[0]))) ^ ((x.w[1] & MASK_SIGN) == MASK_SIGN));
BID_RETURN (res);
}
}
//else { //128 by 64 bit multiply -> 192 bits
// adjust the y significand upwards
__mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_y);
// if postitive, return whichever significand is larger
// (converse if negative)
if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_x.w[1]
&& (sig_n_prime192.w[0] == sig_x.w[0])) {
res = 1;
BID_RETURN (res);
} // if equal, return 0
{
res = (sig_n_prime192.w[2] != 0
|| (sig_n_prime192.w[1] > sig_x.w[1]
|| (sig_n_prime192.w[1] == sig_x.w[1]
&& sig_n_prime192.w[0] >
sig_x.w[0]))) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
}
BID128_FUNCTION_ARG2_NORND_CUSTOMRESTYPE (int, bid128_quiet_not_less, x,
y)
int res;
int exp_x, exp_y;
int diff;
UINT128 sig_x, sig_y;
UINT192 sig_n_prime192;
UINT256 sig_n_prime256;
char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
// NaN (CASE1)
// if either number is NAN, the comparison is unordered,
// rather than equal : return 1
if (((x.w[1] & MASK_NAN) == MASK_NAN)
|| ((y.w[1] & MASK_NAN) == MASK_NAN)) {
if ((x.w[1] & MASK_SNAN) == MASK_SNAN
|| (y.w[1] & MASK_SNAN) == MASK_SNAN) {
*pfpsf |= INVALID_EXCEPTION;
}
{
res = 1;
BID_RETURN (res);
}
}
// SIMPLE (CASE2)
// if all the bits are the same, these numbers are equal (not Greater).
if (x.w[0] == y.w[0] && x.w[1] == y.w[1]) {
res = 1;
BID_RETURN (res);
}
// INFINITY (CASE3)
if ((x.w[1] & MASK_INF) == MASK_INF) {
// if x==neg_inf, { res = (y == neg_inf)?1:0; BID_RETURN (res) }
if ((x.w[1] & MASK_SIGN) == MASK_SIGN)
// x is -inf, so it is less than y unless y is -inf
{
res = (((y.w[1] & MASK_INF) == MASK_INF)
&& (y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
} else
// x is pos_inf, no way for it to be less than y
{
res = 1;
BID_RETURN (res);
}
} else if ((y.w[1] & MASK_INF) == MASK_INF) {
// x is finite, so if y is positive infinity, then x is less, return 0
// if y is negative infinity, then x is greater, return 1
{
res = ((y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
}
// CONVERT X
sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull;
sig_x.w[0] = x.w[0];
exp_x = (x.w[1] >> 49) & 0x000000000003fffull;
// CHECK IF X IS CANONICAL
// 9999999999999999999999999999999999(decimal) =
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
// [0, 10^34) is the 754r supported canonical range.
// If the value exceeds that, it is interpreted as 0.
if ((sig_x.w[1] > 0x0001ed09bead87c0ull)
|| ((sig_x.w[1] == 0x0001ed09bead87c0ull)
&& (sig_x.w[0] > 0x378d8e63ffffffffull))
|| ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull))
non_canon_x = 1;
else
non_canon_x = 0;
// CONVERT Y
exp_y = (y.w[1] >> 49) & 0x0000000000003fffull;
sig_y.w[1] = y.w[1] & 0x0001ffffffffffffull;
sig_y.w[0] = y.w[0];
// CHECK IF Y IS CANONICAL
// 9999999999999999999999999999999999(decimal) =
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
// [0, 10^34) is the 754r supported canonical range.
// If the value exceeds that, it is interpreted as 0.
if ((sig_y.w[1] > 0x0001ed09bead87c0ull)
|| ((sig_y.w[1] == 0x0001ed09bead87c0ull)
&& (sig_y.w[0] > 0x378d8e63ffffffffull))
|| ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull))
non_canon_y = 1;
else
non_canon_y = 0;
// ZERO (CASE4)
// some properties:
// (+ZERO == -ZERO) => therefore ignore the sign
// (ZERO x 10^A == ZERO x 10^B) for any valid A, B => therefore
// ignore the exponent field
// (Any non-canonical # is considered 0)
if (non_canon_x || ((sig_x.w[1] == 0) && (sig_x.w[0] == 0))) {
x_is_zero = 1;
}
if (non_canon_y || ((sig_y.w[1] == 0) && (sig_y.w[0] == 0))) {
y_is_zero = 1;
}
// if both numbers are zero, neither is greater => return NOTGREATERTHAN
if (x_is_zero && y_is_zero) {
res = 1;
BID_RETURN (res);
}
// is x is zero, it is greater if Y is negative
else if (x_is_zero) {
res = ((y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
// is y is zero, X is greater if it is positive
else if (y_is_zero) {
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
// OPPOSITE SIGN (CASE5)
// now, if the sign bits differ, x is greater if y is negative
if (((x.w[1] ^ y.w[1]) & MASK_SIGN) == MASK_SIGN) {
res = ((y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
// REDUNDANT REPRESENTATIONS (CASE6)
// if exponents are the same, then we have a simple comparison
// of the significands
if (exp_y == exp_x) {
res = (((sig_x.w[1] > sig_y.w[1])
|| (sig_x.w[1] == sig_y.w[1]
&& sig_x.w[0] >= sig_y.w[0])) ^ ((x.w[1] & MASK_SIGN) ==
MASK_SIGN));
BID_RETURN (res);
}
// if both components are either bigger or smaller,
// it is clear what needs to be done
if (sig_x.w[1] >= sig_y.w[1] && sig_x.w[0] >= sig_y.w[0]
&& exp_x > exp_y) {
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
if (sig_x.w[1] <= sig_y.w[1] && sig_x.w[0] <= sig_y.w[0]
&& exp_x < exp_y) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
diff = exp_x - exp_y;
// if |exp_x - exp_y| < 33, it comes down to the compensated significand
if (diff > 0) { // to simplify the loop below,
// if exp_x is 33 greater than exp_y, no need for compensation
if (diff > 33) {
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
} // difference cannot be greater than 10^33
if (diff > 19) { //128 by 128 bit multiply -> 256 bits
__mul_128x128_to_256 (sig_n_prime256, sig_x, ten2k128[diff - 20]);
// if postitive, return whichever significand is larger
// (converse if negative)
if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0)
&& sig_n_prime256.w[1] == sig_y.w[1]
&& (sig_n_prime256.w[0] == sig_y.w[0])) {
res = 1;
BID_RETURN (res);
} // if equal, return 1
{
res = ((((sig_n_prime256.w[3] > 0) || sig_n_prime256.w[2] > 0)
|| (sig_n_prime256.w[1] > sig_y.w[1])
|| (sig_n_prime256.w[1] == sig_y.w[1]
&& sig_n_prime256.w[0] >
sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN));
BID_RETURN (res);
}
}
//else { //128 by 64 bit multiply -> 192 bits
__mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_x);
// if postitive, return whichever significand is larger
// (converse if negative)
if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_y.w[1]
&& (sig_n_prime192.w[0] == sig_y.w[0])) {
res = 1;
BID_RETURN (res);
} // if equal, return 1
{
res = (((sig_n_prime192.w[2] > 0)
|| (sig_n_prime192.w[1] > sig_y.w[1])
|| (sig_n_prime192.w[1] == sig_y.w[1]
&& sig_n_prime192.w[0] >
sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN));
BID_RETURN (res);
}
}
diff = exp_y - exp_x;
// if exp_x is 33 less than exp_y, no need for compensation
if (diff > 33) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
if (diff > 19) { //128 by 128 bit multiply -> 256 bits
// adjust the y significand upwards
__mul_128x128_to_256 (sig_n_prime256, sig_y, ten2k128[diff - 20]);
// if postitive, return whichever significand is larger
// (converse if negative)
if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0)
&& sig_n_prime256.w[1] == sig_x.w[1]
&& (sig_n_prime256.w[0] == sig_x.w[0])) {
res = 1;
BID_RETURN (res);
} // if equal, return 1
{
res =
((sig_n_prime256.w[3] == 0 && sig_n_prime256.w[2] == 0
&& (sig_n_prime256.w[1] < sig_x.w[1]
|| (sig_n_prime256.w[1] == sig_x.w[1]
&& sig_n_prime256.w[0] <
sig_x.w[0]))) ^ ((x.w[1] & MASK_SIGN) == MASK_SIGN));
BID_RETURN (res);
}
}
//else { //128 by 64 bit multiply -> 192 bits
// adjust the y significand upwards
__mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_y);
// if postitive, return whichever significand is larger
// (converse if negative)
if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_x.w[1]
&& (sig_n_prime192.w[0] == sig_x.w[0])) {
res = 1;
BID_RETURN (res);
} // if equal, return 1
{
res = (sig_n_prime192.w[2] == 0
&& (sig_n_prime192.w[1] < sig_x.w[1]
|| (sig_n_prime192.w[1] == sig_x.w[1]
&& sig_n_prime192.w[0] <
sig_x.w[0]))) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
}
BID128_FUNCTION_ARG2_NORND_CUSTOMRESTYPE (int, bid128_quiet_ordered, x,
y)
int res;
// NaN (CASE1)
// if either number is NAN, the comparison is ordered : return 1
if (((x.w[1] & MASK_NAN) == MASK_NAN)
|| ((y.w[1] & MASK_NAN) == MASK_NAN)) {
if ((x.w[1] & MASK_SNAN) == MASK_SNAN
|| (y.w[1] & MASK_SNAN) == MASK_SNAN) {
*pfpsf |= INVALID_EXCEPTION;
}
{
res = 0;
BID_RETURN (res);
}
}
{
res = 1;
BID_RETURN (res);
}
}
BID128_FUNCTION_ARG2_NORND_CUSTOMRESTYPE (int, bid128_quiet_unordered,
x, y)
int res;
// NaN (CASE1)
// if either number is NAN, the comparison is unordered : return 1
if (((x.w[1] & MASK_NAN) == MASK_NAN)
|| ((y.w[1] & MASK_NAN) == MASK_NAN)) {
if ((x.w[1] & MASK_SNAN) == MASK_SNAN
|| (y.w[1] & MASK_SNAN) == MASK_SNAN) {
*pfpsf |= INVALID_EXCEPTION;
}
{
res = 1;
BID_RETURN (res);
}
}
{
res = 0;
BID_RETURN (res);
}
}
BID128_FUNCTION_ARG2_NORND_CUSTOMRESTYPE (int, bid128_signaling_greater,
x, y)
int res;
int exp_x, exp_y;
int diff;
UINT128 sig_x, sig_y;
UINT192 sig_n_prime192;
UINT256 sig_n_prime256;
char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
// NaN (CASE1)
// if either number is NAN, the comparison is unordered,
// rather than equal : return 0
if (((x.w[1] & MASK_NAN) == MASK_NAN)
|| ((y.w[1] & MASK_NAN) == MASK_NAN)) {
*pfpsf |= INVALID_EXCEPTION;
{
res = 0;
BID_RETURN (res);
}
}
// SIMPLE (CASE2)
// if all the bits are the same, these numbers are equal (not Greater).
if (x.w[0] == y.w[0] && x.w[1] == y.w[1]) {
res = 0;
BID_RETURN (res);
}
// INFINITY (CASE3)
if ((x.w[1] & MASK_INF) == MASK_INF) {
// if x is neg infinity, there is no way it is greater than y, return 0
if (((x.w[1] & MASK_SIGN) == MASK_SIGN)) {
res = 0;
BID_RETURN (res);
}
// x is pos infinity, it is greater, unless y is positive infinity => return y!=pos_infinity
else {
res = (((y.w[1] & MASK_INF) != MASK_INF)
|| ((y.w[1] & MASK_SIGN) == MASK_SIGN));
BID_RETURN (res);
}
} else if ((y.w[1] & MASK_INF) == MASK_INF) {
// x is finite, so if y is positive infinity, then x is less, return 0
// if y is negative infinity, then x is greater, return 1
{
res = ((y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
}
// CONVERT X
sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull;
sig_x.w[0] = x.w[0];
exp_x = (x.w[1] >> 49) & 0x000000000003fffull;
// CHECK IF X IS CANONICAL
// 9999999999999999999999999999999999(decimal) =
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
// [0, 10^34) is the 754r supported canonical range.
// If the value exceeds that, it is interpreted as 0.
if ((sig_x.w[1] > 0x0001ed09bead87c0ull)
|| ((sig_x.w[1] == 0x0001ed09bead87c0ull)
&& (sig_x.w[0] > 0x378d8e63ffffffffull))
|| ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull))
non_canon_x = 1;
else
non_canon_x = 0;
// CONVERT Y
exp_y = (y.w[1] >> 49) & 0x0000000000003fffull;
sig_y.w[1] = y.w[1] & 0x0001ffffffffffffull;
sig_y.w[0] = y.w[0];
// CHECK IF Y IS CANONICAL
// 9999999999999999999999999999999999(decimal) =
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
// [0, 10^34) is the 754r supported canonical range.
// If the value exceeds that, it is interpreted as 0.
if ((sig_y.w[1] > 0x0001ed09bead87c0ull)
|| ((sig_y.w[1] == 0x0001ed09bead87c0ull)
&& (sig_y.w[0] > 0x378d8e63ffffffffull))
|| ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull))
non_canon_y = 1;
else
non_canon_y = 0;
// ZERO (CASE4)
// some properties:
// (+ZERO == -ZERO) => therefore ignore the sign
// (ZERO x 10^A == ZERO x 10^B) for any valid A, B => therefore
// ignore the exponent field
// (Any non-canonical # is considered 0)
if (non_canon_x || ((sig_x.w[1] == 0) && (sig_x.w[0] == 0))) {
x_is_zero = 1;
}
if (non_canon_y || ((sig_y.w[1] == 0) && (sig_y.w[0] == 0))) {
y_is_zero = 1;
}
// if both numbers are zero, neither is greater => return NOTGREATERTHAN
if (x_is_zero && y_is_zero) {
res = 0;
BID_RETURN (res);
}
// is x is zero, it is greater if Y is negative
else if (x_is_zero) {
res = ((y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
// is y is zero, X is greater if it is positive
else if (y_is_zero) {
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
// OPPOSITE SIGN (CASE5)
// now, if the sign bits differ, x is greater if y is negative
if (((x.w[1] ^ y.w[1]) & MASK_SIGN) == MASK_SIGN) {
res = ((y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
// REDUNDANT REPRESENTATIONS (CASE6)
// if exponents are the same, then we have a simple comparison
// of the significands
if (exp_y == exp_x) {
res = (((sig_x.w[1] > sig_y.w[1])
|| (sig_x.w[1] == sig_y.w[1]
&& sig_x.w[0] >= sig_y.w[0])) ^ ((x.w[1] & MASK_SIGN) ==
MASK_SIGN));
BID_RETURN (res);
}
// if both components are either bigger or smaller,
// it is clear what needs to be done
if ((sig_x.w[1] > sig_y.w[1]
|| (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] > sig_y.w[0]))
&& exp_x >= exp_y) {
{
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
}
if ((sig_x.w[1] < sig_y.w[1]
|| (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] < sig_y.w[0]))
&& exp_x <= exp_y) {
{
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
}
diff = exp_x - exp_y;
// if |exp_x - exp_y| < 33, it comes down to the compensated significand
if (diff > 0) { // to simplify the loop below,
// if exp_x is 33 greater than exp_y, no need for compensation
if (diff > 33) {
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
} // difference cannot be greater than 10^33
if (diff > 19) { //128 by 128 bit multiply -> 256 bits
__mul_128x128_to_256 (sig_n_prime256, sig_x, ten2k128[diff - 20]);
// if postitive, return whichever significand is larger
// (converse if negative)
if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0)
&& sig_n_prime256.w[1] == sig_y.w[1]
&& (sig_n_prime256.w[0] == sig_y.w[0])) {
res = 0;
BID_RETURN (res);
} // if equal, return 0
{
res = ((((sig_n_prime256.w[3] > 0) || sig_n_prime256.w[2] > 0)
|| (sig_n_prime256.w[1] > sig_y.w[1])
|| (sig_n_prime256.w[1] == sig_y.w[1]
&& sig_n_prime256.w[0] >
sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN));
BID_RETURN (res);
}
}
//else { //128 by 64 bit multiply -> 192 bits
__mul_64x128_to_192 (sig_n_prime192, ten2k64[diff], sig_x);
// if postitive, return whichever significand is larger
// (converse if negative)
if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_y.w[1]
&& (sig_n_prime192.w[0] == sig_y.w[0])) {
res = 0;
BID_RETURN (res);
} // if equal, return 0
{
res = (((sig_n_prime192.w[2] > 0)
|| (sig_n_prime192.w[1] > sig_y.w[1])
|| (sig_n_prime192.w[1] == sig_y.w[1]
&& sig_n_prime192.w[0] >
sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN));
BID_RETURN (res);
}
}
diff = exp_y - exp_x;
// if exp_x is 33 less than exp_y, no need for compensation
if (diff > 33) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
if (diff > 19) { //128 by 128 bit multiply -> 256 bits
// adjust the y significand upwards
__mul_128x128_to_256 (sig_n_prime256, sig_y, ten2k128[diff - 20]);
// if postitive, return whichever significand is larger
// (converse if negative)
if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0)
&& sig_n_prime256.w[1] == sig_x.w[1]
&& (sig_n_prime256.w[0] == sig_x.w[0])) {
res = 0;
BID_RETURN (res);
} // if equal, return 0
{
res =
((sig_n_prime256.w[3] != 0 || sig_n_prime256.w[2] != 0
|| (sig_n_prime256.w[1] > sig_x.w[1]
|| (sig_n_prime256.w[1] == sig_x.w[1]
&& sig_n_prime256.w[0] >
sig_x.w[0]))) ^ ((x.w[1] & MASK_SIGN) != MASK_SIGN));
BID_RETURN (res);
}
}
//else { //128 by 64 bit multiply -> 192 bits
// adjust the y significand upwards
__mul_64x128_to_192 (sig_n_prime192, ten2k64[diff], sig_y);
// if postitive, return whichever significand is larger
// (converse if negative)
if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_x.w[1]
&& (sig_n_prime192.w[0] == sig_x.w[0])) {
res = 0;
BID_RETURN (res);
} // if equal, return 0
{
res = (sig_n_prime192.w[2] != 0
|| (sig_n_prime192.w[1] > sig_x.w[1]
|| (sig_n_prime192.w[1] == sig_x.w[1]
&& sig_n_prime192.w[0] >
sig_x.w[0]))) ^ ((y.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
}
BID128_FUNCTION_ARG2_NORND_CUSTOMRESTYPE (int,
bid128_signaling_greater_equal,
x, y)
int res;
int exp_x, exp_y;
int diff;
UINT128 sig_x, sig_y;
UINT192 sig_n_prime192;
UINT256 sig_n_prime256;
char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
// NaN (CASE1)
// if either number is NAN, the comparison is unordered,
// rather than equal : return 1
if (((x.w[1] & MASK_NAN) == MASK_NAN)
|| ((y.w[1] & MASK_NAN) == MASK_NAN)) {
*pfpsf |= INVALID_EXCEPTION;
{
res = 0;
BID_RETURN (res);
}
}
// SIMPLE (CASE2)
// if all the bits are the same, these numbers are equal (not Greater).
if (x.w[0] == y.w[0] && x.w[1] == y.w[1]) {
res = 1;
BID_RETURN (res);
}
// INFINITY (CASE3)
if ((x.w[1] & MASK_INF) == MASK_INF) {
// if x==neg_inf, { res = (y == neg_inf)?1:0; BID_RETURN (res) }
if ((x.w[1] & MASK_SIGN) == MASK_SIGN)
// x is -inf, so it is less than y unless y is -inf
{
res = (((y.w[1] & MASK_INF) == MASK_INF)
&& (y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
} else
// x is pos_inf, no way for it to be less than y
{
res = 1;
BID_RETURN (res);
}
} else if ((y.w[1] & MASK_INF) == MASK_INF) {
// x is finite, so if y is positive infinity, then x is less, return 0
// if y is negative infinity, then x is greater, return 1
{
res = ((y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
}
// CONVERT X
sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull;
sig_x.w[0] = x.w[0];
exp_x = (x.w[1] >> 49) & 0x000000000003fffull;
// CHECK IF X IS CANONICAL
// 9999999999999999999999999999999999(decimal) =
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
// [0, 10^34) is the 754r supported canonical range.
// If the value exceeds that, it is interpreted as 0.
if ((sig_x.w[1] > 0x0001ed09bead87c0ull)
|| ((sig_x.w[1] == 0x0001ed09bead87c0ull)
&& (sig_x.w[0] > 0x378d8e63ffffffffull))
|| ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull))
non_canon_x = 1;
else
non_canon_x = 0;
// CONVERT Y
exp_y = (y.w[1] >> 49) & 0x0000000000003fffull;
sig_y.w[1] = y.w[1] & 0x0001ffffffffffffull;
sig_y.w[0] = y.w[0];
// CHECK IF Y IS CANONICAL
// 9999999999999999999999999999999999(decimal) =
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
// [0, 10^34) is the 754r supported canonical range.
// If the value exceeds that, it is interpreted as 0.
if ((sig_y.w[1] > 0x0001ed09bead87c0ull)
|| ((sig_y.w[1] == 0x0001ed09bead87c0ull)
&& (sig_y.w[0] > 0x378d8e63ffffffffull))
|| ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull))
non_canon_y = 1;
else
non_canon_y = 0;
// ZERO (CASE4)
// some properties:
// (+ZERO == -ZERO) => therefore ignore the sign
// (ZERO x 10^A == ZERO x 10^B) for any valid A, B => therefore
// ignore the exponent field
// (Any non-canonical # is considered 0)
if (non_canon_x || ((sig_x.w[1] == 0) && (sig_x.w[0] == 0))) {
x_is_zero = 1;
}
if (non_canon_y || ((sig_y.w[1] == 0) && (sig_y.w[0] == 0))) {
y_is_zero = 1;
}
// if both numbers are zero, neither is greater => return NOTGREATERTHAN
if (x_is_zero && y_is_zero) {
res = 1;
BID_RETURN (res);
}
// is x is zero, it is greater if Y is negative
else if (x_is_zero) {
res = ((y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
// is y is zero, X is greater if it is positive
else if (y_is_zero) {
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
// OPPOSITE SIGN (CASE5)
// now, if the sign bits differ, x is greater if y is negative
if (((x.w[1] ^ y.w[1]) & MASK_SIGN) == MASK_SIGN) {
res = ((y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
// REDUNDANT REPRESENTATIONS (CASE6)
// if exponents are the same, then we have a simple comparison
// of the significands
if (exp_y == exp_x) {
res = (((sig_x.w[1] > sig_y.w[1])
|| (sig_x.w[1] == sig_y.w[1]
&& sig_x.w[0] >= sig_y.w[0])) ^ ((x.w[1] & MASK_SIGN) ==
MASK_SIGN));
BID_RETURN (res);
}
// if both components are either bigger or smaller,
// it is clear what needs to be done
if (sig_x.w[1] >= sig_y.w[1] && sig_x.w[0] >= sig_y.w[0]
&& exp_x > exp_y) {
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
if (sig_x.w[1] <= sig_y.w[1] && sig_x.w[0] <= sig_y.w[0]
&& exp_x < exp_y) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
diff = exp_x - exp_y;
// if |exp_x - exp_y| < 33, it comes down to the compensated significand
if (diff > 0) { // to simplify the loop below,
// if exp_x is 33 greater than exp_y, no need for compensation
if (diff > 33) {
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
} // difference cannot be greater than 10^33
if (diff > 19) { //128 by 128 bit multiply -> 256 bits
__mul_128x128_to_256 (sig_n_prime256, sig_x, ten2k128[diff - 20]);
// if postitive, return whichever significand is larger
// (converse if negative)
if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0)
&& sig_n_prime256.w[1] == sig_y.w[1]
&& (sig_n_prime256.w[0] == sig_y.w[0])) {
res = 1;
BID_RETURN (res);
} // if equal, return 1
{
res = ((((sig_n_prime256.w[3] > 0) || sig_n_prime256.w[2] > 0)
|| (sig_n_prime256.w[1] > sig_y.w[1])
|| (sig_n_prime256.w[1] == sig_y.w[1]
&& sig_n_prime256.w[0] >
sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN));
BID_RETURN (res);
}
}
//else { //128 by 64 bit multiply -> 192 bits
__mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_x);
// if postitive, return whichever significand is larger
// (converse if negative)
if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_y.w[1]
&& (sig_n_prime192.w[0] == sig_y.w[0])) {
res = 1;
BID_RETURN (res);
} // if equal, return 1
{
res = (((sig_n_prime192.w[2] > 0)
|| (sig_n_prime192.w[1] > sig_y.w[1])
|| (sig_n_prime192.w[1] == sig_y.w[1]
&& sig_n_prime192.w[0] >
sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN));
BID_RETURN (res);
}
}
diff = exp_y - exp_x;
// if exp_x is 33 less than exp_y, no need for compensation
if (diff > 33) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
if (diff > 19) { //128 by 128 bit multiply -> 256 bits
// adjust the y significand upwards
__mul_128x128_to_256 (sig_n_prime256, sig_y, ten2k128[diff - 20]);
// if postitive, return whichever significand is larger
// (converse if negative)
if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0)
&& sig_n_prime256.w[1] == sig_x.w[1]
&& (sig_n_prime256.w[0] == sig_x.w[0])) {
res = 1;
BID_RETURN (res);
} // if equal, return 1
{
res =
((sig_n_prime256.w[3] == 0 && sig_n_prime256.w[2] == 0
&& (sig_n_prime256.w[1] < sig_x.w[1]
|| (sig_n_prime256.w[1] == sig_x.w[1]
&& sig_n_prime256.w[0] <
sig_x.w[0]))) ^ ((x.w[1] & MASK_SIGN) == MASK_SIGN));
BID_RETURN (res);
}
}
//else { //128 by 64 bit multiply -> 192 bits
// adjust the y significand upwards
__mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_y);
// if postitive, return whichever significand is larger
// (converse if negative)
if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_x.w[1]
&& (sig_n_prime192.w[0] == sig_x.w[0])) {
res = 1;
BID_RETURN (res);
} // if equal, return 1
{
res = (sig_n_prime192.w[2] == 0
&& (sig_n_prime192.w[1] < sig_x.w[1]
|| (sig_n_prime192.w[1] == sig_x.w[1]
&& sig_n_prime192.w[0] <
sig_x.w[0]))) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
}
BID128_FUNCTION_ARG2_NORND_CUSTOMRESTYPE (int,
bid128_signaling_greater_unordered,
x, y)
int res;
int exp_x, exp_y;
int diff;
UINT128 sig_x, sig_y;
UINT192 sig_n_prime192;
UINT256 sig_n_prime256;
char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
// NaN (CASE1)
// if either number is NAN, the comparison is unordered,
// rather than equal : return 1
if (((x.w[1] & MASK_NAN) == MASK_NAN)
|| ((y.w[1] & MASK_NAN) == MASK_NAN)) {
*pfpsf |= INVALID_EXCEPTION;
{
res = 1;
BID_RETURN (res);
}
}
// SIMPLE (CASE2)
// if all the bits are the same, these numbers are equal (not Greater).
if (x.w[0] == y.w[0] && x.w[1] == y.w[1]) {
res = 0;
BID_RETURN (res);
}
// INFINITY (CASE3)
if ((x.w[1] & MASK_INF) == MASK_INF) {
// if x is neg infinity, there is no way it is greater than y, return 0
if (((x.w[1] & MASK_SIGN) == MASK_SIGN)) {
res = 0;
BID_RETURN (res);
}
// x is pos infinity, it is greater, unless y is positive infinity => return y!=pos_infinity
else {
res = (((y.w[1] & MASK_INF) != MASK_INF)
|| ((y.w[1] & MASK_SIGN) == MASK_SIGN));
BID_RETURN (res);
}
} else if ((y.w[1] & MASK_INF) == MASK_INF) {
// x is finite, so if y is positive infinity, then x is less, return 0
// if y is negative infinity, then x is greater, return 1
{
res = ((y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
}
// CONVERT X
sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull;
sig_x.w[0] = x.w[0];
exp_x = (x.w[1] >> 49) & 0x000000000003fffull;
// CHECK IF X IS CANONICAL
// 9999999999999999999999999999999999(decimal) =
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
// [0, 10^34) is the 754r supported canonical range.
// If the value exceeds that, it is interpreted as 0.
if ((sig_x.w[1] > 0x0001ed09bead87c0ull)
|| ((sig_x.w[1] == 0x0001ed09bead87c0ull)
&& (sig_x.w[0] > 0x378d8e63ffffffffull))
|| ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull))
non_canon_x = 1;
else
non_canon_x = 0;
// CONVERT Y
exp_y = (y.w[1] >> 49) & 0x0000000000003fffull;
sig_y.w[1] = y.w[1] & 0x0001ffffffffffffull;
sig_y.w[0] = y.w[0];
// CHECK IF Y IS CANONICAL
// 9999999999999999999999999999999999(decimal) =
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
// [0, 10^34) is the 754r supported canonical range.
// If the value exceeds that, it is interpreted as 0.
if ((sig_y.w[1] > 0x0001ed09bead87c0ull)
|| ((sig_y.w[1] == 0x0001ed09bead87c0ull)
&& (sig_y.w[0] > 0x378d8e63ffffffffull))
|| ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull))
non_canon_y = 1;
else
non_canon_y = 0;
// ZERO (CASE4)
// some properties:
// (+ZERO == -ZERO) => therefore ignore the sign
// (ZERO x 10^A == ZERO x 10^B) for any valid A, B => therefore
// ignore the exponent field
// (Any non-canonical # is considered 0)
if (non_canon_x || ((sig_x.w[1] == 0) && (sig_x.w[0] == 0))) {
x_is_zero = 1;
}
if (non_canon_y || ((sig_y.w[1] == 0) && (sig_y.w[0] == 0))) {
y_is_zero = 1;
}
// if both numbers are zero, neither is greater => return NOTGREATERTHAN
if (x_is_zero && y_is_zero) {
res = 0;
BID_RETURN (res);
}
// is x is zero, it is greater if Y is negative
else if (x_is_zero) {
res = ((y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
// is y is zero, X is greater if it is positive
else if (y_is_zero) {
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
// OPPOSITE SIGN (CASE5)
// now, if the sign bits differ, x is greater if y is negative
if (((x.w[1] ^ y.w[1]) & MASK_SIGN) == MASK_SIGN) {
res = ((y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
// REDUNDANT REPRESENTATIONS (CASE6)
// if exponents are the same, then we have a simple comparison
// of the significands
if (exp_y == exp_x) {
res = (((sig_x.w[1] > sig_y.w[1])
|| (sig_x.w[1] == sig_y.w[1]
&& sig_x.w[0] >= sig_y.w[0])) ^ ((x.w[1] & MASK_SIGN) ==
MASK_SIGN));
BID_RETURN (res);
}
// if both components are either bigger or smaller,
// it is clear what needs to be done
if (sig_x.w[1] >= sig_y.w[1] && sig_x.w[0] >= sig_y.w[0]
&& exp_x > exp_y) {
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
if (sig_x.w[1] <= sig_y.w[1] && sig_x.w[0] <= sig_y.w[0]
&& exp_x < exp_y) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
diff = exp_x - exp_y;
// if |exp_x - exp_y| < 33, it comes down to the compensated significand
if (diff > 0) { // to simplify the loop below,
// if exp_x is 33 greater than exp_y, no need for compensation
if (diff > 33) {
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
} // difference cannot be greater than 10^33
if (diff > 19) { //128 by 128 bit multiply -> 256 bits
__mul_128x128_to_256 (sig_n_prime256, sig_x, ten2k128[diff - 20]);
// if postitive, return whichever significand is larger
// (converse if negative)
if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0)
&& sig_n_prime256.w[1] == sig_y.w[1]
&& (sig_n_prime256.w[0] == sig_y.w[0])) {
res = 0;
BID_RETURN (res);
} // if equal, return 0
{
res = ((((sig_n_prime256.w[3] > 0) || sig_n_prime256.w[2] > 0)
|| (sig_n_prime256.w[1] > sig_y.w[1])
|| (sig_n_prime256.w[1] == sig_y.w[1]
&& sig_n_prime256.w[0] >
sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN));
BID_RETURN (res);
}
}
//else { //128 by 64 bit multiply -> 192 bits
__mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_x);
// if postitive, return whichever significand is larger
// (converse if negative)
if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_y.w[1]
&& (sig_n_prime192.w[0] == sig_y.w[0])) {
res = 0;
BID_RETURN (res);
} // if equal, return 0
{
res = (((sig_n_prime192.w[2] > 0)
|| (sig_n_prime192.w[1] > sig_y.w[1])
|| (sig_n_prime192.w[1] == sig_y.w[1]
&& sig_n_prime192.w[0] >
sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN));
BID_RETURN (res);
}
}
diff = exp_y - exp_x;
// if exp_x is 33 less than exp_y, no need for compensation
if (diff > 33) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
if (diff > 19) { //128 by 128 bit multiply -> 256 bits
// adjust the y significand upwards
__mul_128x128_to_256 (sig_n_prime256, sig_y, ten2k128[diff - 20]);
// if postitive, return whichever significand is larger
// (converse if negative)
if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0)
&& sig_n_prime256.w[1] == sig_x.w[1]
&& (sig_n_prime256.w[0] == sig_x.w[0])) {
res = 0;
BID_RETURN (res);
} // if equal, return 0
{
res =
((sig_n_prime256.w[3] == 0 && sig_n_prime256.w[2] == 0
&& (sig_n_prime256.w[1] < sig_x.w[1]
|| (sig_n_prime256.w[1] == sig_x.w[1]
&& sig_n_prime256.w[0] <
sig_x.w[0]))) ^ ((x.w[1] & MASK_SIGN) == MASK_SIGN));
BID_RETURN (res);
}
}
//else { //128 by 64 bit multiply -> 192 bits
// adjust the y significand upwards
__mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_y);
// if postitive, return whichever significand is larger
// (converse if negative)
if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_x.w[1]
&& (sig_n_prime192.w[0] == sig_x.w[0])) {
res = 0;
BID_RETURN (res);
} // if equal, return 0
{
res = (sig_n_prime192.w[2] == 0
&& (sig_n_prime192.w[1] < sig_x.w[1]
|| (sig_n_prime192.w[1] == sig_x.w[1]
&& sig_n_prime192.w[0] <
sig_x.w[0]))) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
}
BID128_FUNCTION_ARG2_NORND_CUSTOMRESTYPE (int, bid128_signaling_less, x,
y)
int res;
int exp_x, exp_y;
int diff;
UINT128 sig_x, sig_y;
UINT192 sig_n_prime192;
UINT256 sig_n_prime256;
char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
// NaN (CASE1)
// if either number is NAN, the comparison is unordered,
// rather than equal : return 0
if (((x.w[1] & MASK_NAN) == MASK_NAN)
|| ((y.w[1] & MASK_NAN) == MASK_NAN)) {
*pfpsf |= INVALID_EXCEPTION;
{
res = 0;
BID_RETURN (res);
}
}
// SIMPLE (CASE2)
// if all the bits are the same, these numbers are equal.
if (x.w[0] == y.w[0] && x.w[1] == y.w[1]) {
res = 0;
BID_RETURN (res);
}
// INFINITY (CASE3)
if ((x.w[1] & MASK_INF) == MASK_INF) {
// if x==neg_inf, { res = (y == neg_inf)?1:0; BID_RETURN (res) }
if ((x.w[1] & MASK_SIGN) == MASK_SIGN)
// x is -inf, so it is less than y unless y is -inf
{
res = (((y.w[1] & MASK_INF) != MASK_INF)
|| (y.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
} else
// x is pos_inf, no way for it to be less than y
{
res = 0;
BID_RETURN (res);
}
} else if ((y.w[1] & MASK_INF) == MASK_INF) {
// x is finite, so if y is positive infinity, then x is less, return 0
// if y is negative infinity, then x is greater, return 1
{
res = ((y.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
}
// CONVERT X
sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull;
sig_x.w[0] = x.w[0];
exp_x = (x.w[1] >> 49) & 0x000000000003fffull;
// CHECK IF X IS CANONICAL
// 9999999999999999999999999999999999(decimal) =
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
// [0, 10^34) is the 754r supported canonical range.
// If the value exceeds that, it is interpreted as 0.
if ((sig_x.w[1] > 0x0001ed09bead87c0ull)
|| ((sig_x.w[1] == 0x0001ed09bead87c0ull)
&& (sig_x.w[0] > 0x378d8e63ffffffffull))
|| ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull))
non_canon_x = 1;
else
non_canon_x = 0;
// CONVERT Y
exp_y = (y.w[1] >> 49) & 0x0000000000003fffull;
sig_y.w[1] = y.w[1] & 0x0001ffffffffffffull;
sig_y.w[0] = y.w[0];
// CHECK IF Y IS CANONICAL
// 9999999999999999999999999999999999(decimal) =
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
// [0, 10^34) is the 754r supported canonical range.
// If the value exceeds that, it is interpreted as 0.
if ((sig_y.w[1] > 0x0001ed09bead87c0ull)
|| ((sig_y.w[1] == 0x0001ed09bead87c0ull)
&& (sig_y.w[0] > 0x378d8e63ffffffffull))
|| ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull))
non_canon_y = 1;
else
non_canon_y = 0;
// ZERO (CASE4)
// some properties:
// (+ZERO == -ZERO) => therefore ignore the sign
// (ZERO x 10^A == ZERO x 10^B) for any valid A, B => therefore
// ignore the exponent field
// (Any non-canonical # is considered 0)
if (non_canon_x || ((sig_x.w[1] == 0) && (sig_x.w[0] == 0))) {
x_is_zero = 1;
}
if (non_canon_y || ((sig_y.w[1] == 0) && (sig_y.w[0] == 0))) {
y_is_zero = 1;
}
// if both numbers are zero, neither is greater => return NOTGREATERTHAN
if (x_is_zero && y_is_zero) {
res = 0;
BID_RETURN (res);
}
// is x is zero, it is greater if Y is negative
else if (x_is_zero) {
res = ((y.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
// is y is zero, X is greater if it is positive
else if (y_is_zero) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
// OPPOSITE SIGN (CASE5)
// now, if the sign bits differ, x is greater if y is negative
if (((x.w[1] ^ y.w[1]) & MASK_SIGN) == MASK_SIGN) {
res = ((y.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
// REDUNDANT REPRESENTATIONS (CASE6)
// if exponents are the same, then we have a simple comparison
// of the significands
if (exp_y == exp_x) {
res = (((sig_x.w[1] > sig_y.w[1])
|| (sig_x.w[1] == sig_y.w[1]
&& sig_x.w[0] >= sig_y.w[0])) ^ ((x.w[1] & MASK_SIGN) !=
MASK_SIGN));
BID_RETURN (res);
}
// if both components are either bigger or smaller,
// it is clear what needs to be done
if ((sig_x.w[1] > sig_y.w[1]
|| (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] > sig_y.w[0]))
&& exp_x >= exp_y) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
if ((sig_x.w[1] < sig_y.w[1]
|| (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] < sig_y.w[0]))
&& exp_x <= exp_y) {
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
diff = exp_x - exp_y;
// if |exp_x - exp_y| < 33, it comes down to the compensated significand
if (diff > 0) { // to simplify the loop below,
// if exp_x is 33 greater than exp_y, no need for compensation
if (diff > 33) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
} // difference cannot be greater than 10^33
if (diff > 19) { //128 by 128 bit multiply -> 256 bits
__mul_128x128_to_256 (sig_n_prime256, sig_x, ten2k128[diff - 20]);
// if postitive, return whichever significand is larger
// (converse if negative)
if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0)
&& sig_n_prime256.w[1] == sig_y.w[1]
&& (sig_n_prime256.w[0] == sig_y.w[0])) {
res = 0;
BID_RETURN (res);
} // if equal, return 0
{
res = ((((sig_n_prime256.w[3] > 0) || sig_n_prime256.w[2] > 0)
|| (sig_n_prime256.w[1] > sig_y.w[1])
|| (sig_n_prime256.w[1] == sig_y.w[1]
&& sig_n_prime256.w[0] >
sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) != MASK_SIGN));
BID_RETURN (res);
}
}
//else { //128 by 64 bit multiply -> 192 bits
__mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_x);
// if postitive, return whichever significand is larger
// (converse if negative)
if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_y.w[1]
&& (sig_n_prime192.w[0] == sig_y.w[0])) {
res = 0;
BID_RETURN (res);
} // if equal, return 0
{
res = (((sig_n_prime192.w[2] > 0)
|| (sig_n_prime192.w[1] > sig_y.w[1])
|| (sig_n_prime192.w[1] == sig_y.w[1]
&& sig_n_prime192.w[0] >
sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) != MASK_SIGN));
BID_RETURN (res);
}
}
diff = exp_y - exp_x;
// if exp_x is 33 less than exp_y, |x| < |y|, return 1 if positive
if (diff > 33) {
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
if (diff > 19) { //128 by 128 bit multiply -> 256 bits
// adjust the y significand upwards
__mul_128x128_to_256 (sig_n_prime256, sig_y, ten2k128[diff - 20]);
// if postitive, return whichever significand is larger
// (converse if negative)
if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0)
&& sig_n_prime256.w[1] == sig_x.w[1]
&& (sig_n_prime256.w[0] == sig_x.w[0])) {
res = 0;
BID_RETURN (res);
} // if equal, return 1
{
res =
((sig_n_prime256.w[3] != 0 || sig_n_prime256.w[2] != 0
|| (sig_n_prime256.w[1] > sig_x.w[1]
|| (sig_n_prime256.w[1] == sig_x.w[1]
&& sig_n_prime256.w[0] >
sig_x.w[0]))) ^ ((x.w[1] & MASK_SIGN) == MASK_SIGN));
BID_RETURN (res);
}
}
//else { //128 by 64 bit multiply -> 192 bits
// adjust the y significand upwards
__mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_y);
// if postitive, return whichever significand is larger
// (converse if negative)
if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_x.w[1]
&& (sig_n_prime192.w[0] == sig_x.w[0])) {
res = 0;
BID_RETURN (res);
} // if equal, return 0
{
res = (sig_n_prime192.w[2] != 0
|| (sig_n_prime192.w[1] > sig_x.w[1]
|| (sig_n_prime192.w[1] == sig_x.w[1]
&& sig_n_prime192.w[0] >
sig_x.w[0]))) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
}
BID128_FUNCTION_ARG2_NORND_CUSTOMRESTYPE (int,
bid128_signaling_less_equal,
x, y)
int res;
int exp_x, exp_y;
int diff;
UINT128 sig_x, sig_y;
UINT192 sig_n_prime192;
UINT256 sig_n_prime256;
char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
// NaN (CASE1)
// if either number is NAN, the comparison is unordered,
// rather than equal : return 0
if (((x.w[1] & MASK_NAN) == MASK_NAN)
|| ((y.w[1] & MASK_NAN) == MASK_NAN)) {
*pfpsf |= INVALID_EXCEPTION;
{
res = 0;
BID_RETURN (res);
}
}
// SIMPLE (CASE2)
// if all the bits are the same, these numbers are equal (not Greater).
if (x.w[0] == y.w[0] && x.w[1] == y.w[1]) {
res = 1;
BID_RETURN (res);
}
// INFINITY (CASE3)
if ((x.w[1] & MASK_INF) == MASK_INF) {
// if x is neg infinity, there is no way it is greater than y, return 1
if (((x.w[1] & MASK_SIGN) == MASK_SIGN)) {
res = 1;
BID_RETURN (res);
}
// x is pos infinity, it is greater, unless y is positive infinity => return y!=pos_infinity
else {
res = (((y.w[1] & MASK_INF) == MASK_INF)
&& ((y.w[1] & MASK_SIGN) != MASK_SIGN));
BID_RETURN (res);
}
} else if ((y.w[1] & MASK_INF) == MASK_INF) {
// x is finite, so if y is positive infinity, then x is less, return 0
// if y is negative infinity, then x is greater, return 1
{
res = ((y.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
}
// CONVERT X
sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull;
sig_x.w[0] = x.w[0];
exp_x = (x.w[1] >> 49) & 0x000000000003fffull;
// CHECK IF X IS CANONICAL
// 9999999999999999999999999999999999(decimal) =
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
// [0, 10^34) is the 754r supported canonical range.
// If the value exceeds that, it is interpreted as 0.
if ((sig_x.w[1] > 0x0001ed09bead87c0ull)
|| ((sig_x.w[1] == 0x0001ed09bead87c0ull)
&& (sig_x.w[0] > 0x378d8e63ffffffffull))
|| ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull))
non_canon_x = 1;
else
non_canon_x = 0;
// CONVERT Y
exp_y = (y.w[1] >> 49) & 0x0000000000003fffull;
sig_y.w[1] = y.w[1] & 0x0001ffffffffffffull;
sig_y.w[0] = y.w[0];
// CHECK IF Y IS CANONICAL
// 9999999999999999999999999999999999(decimal) =
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
// [0, 10^34) is the 754r supported canonical range.
// If the value exceeds that, it is interpreted as 0.
if ((sig_y.w[1] > 0x0001ed09bead87c0ull)
|| ((sig_y.w[1] == 0x0001ed09bead87c0ull)
&& (sig_y.w[0] > 0x378d8e63ffffffffull))
|| ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull))
non_canon_y = 1;
else
non_canon_y = 0;
// ZERO (CASE4)
// some properties:
// (+ZERO == -ZERO) => therefore ignore the sign
// (ZERO x 10^A == ZERO x 10^B) for any valid A, B => therefore
// ignore the exponent field
// (Any non-canonical # is considered 0)
if (non_canon_x || ((sig_x.w[1] == 0) && (sig_x.w[0] == 0))) {
x_is_zero = 1;
}
if (non_canon_y || ((sig_y.w[1] == 0) && (sig_y.w[0] == 0))) {
y_is_zero = 1;
}
// if both numbers are zero, neither is greater => return NOTGREATERTHAN
if (x_is_zero && y_is_zero) {
res = 1;
BID_RETURN (res);
}
// is x is zero, it is greater if Y is negative
else if (x_is_zero) {
res = ((y.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
// is y is zero, X is greater if it is positive
else if (y_is_zero) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
// OPPOSITE SIGN (CASE5)
// now, if the sign bits differ, x is greater if y is negative
if (((x.w[1] ^ y.w[1]) & MASK_SIGN) == MASK_SIGN) {
res = ((y.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
// REDUNDANT REPRESENTATIONS (CASE6)
// if exponents are the same, then we have a simple comparison
// of the significands
if (exp_y == exp_x) {
res = (((sig_x.w[1] > sig_y.w[1])
|| (sig_x.w[1] == sig_y.w[1]
&& sig_x.w[0] >= sig_y.w[0])) ^ ((x.w[1] & MASK_SIGN) !=
MASK_SIGN));
BID_RETURN (res);
}
// if both components are either bigger or smaller,
// it is clear what needs to be done
if ((sig_x.w[1] > sig_y.w[1]
|| (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] > sig_y.w[0]))
&& exp_x >= exp_y) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
if ((sig_x.w[1] < sig_y.w[1]
|| (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] < sig_y.w[0]))
&& exp_x <= exp_y) {
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
diff = exp_x - exp_y;
// if |exp_x - exp_y| < 33, it comes down to the compensated significand
if (diff > 0) { // to simplify the loop below,
// if exp_x is 33 greater than exp_y, no need for compensation
if (diff > 33) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
} // difference cannot be greater than 10^33
if (diff > 19) { //128 by 128 bit multiply -> 256 bits
__mul_128x128_to_256 (sig_n_prime256, sig_x, ten2k128[diff - 20]);
// if postitive, return whichever significand is larger
// (converse if negative)
if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0)
&& sig_n_prime256.w[1] == sig_y.w[1]
&& (sig_n_prime256.w[0] == sig_y.w[0])) {
res = 1;
BID_RETURN (res);
} // if equal, return 0
{
res = ((((sig_n_prime256.w[3] > 0) || sig_n_prime256.w[2] > 0)
|| (sig_n_prime256.w[1] > sig_y.w[1])
|| (sig_n_prime256.w[1] == sig_y.w[1]
&& sig_n_prime256.w[0] >
sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) != MASK_SIGN));
BID_RETURN (res);
}
}
//else { //128 by 64 bit multiply -> 192 bits
__mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_x);
// if postitive, return whichever significand is larger
// (converse if negative)
if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_y.w[1]
&& (sig_n_prime192.w[0] == sig_y.w[0])) {
res = 1;
BID_RETURN (res);
} // if equal, return 0
{
res = (((sig_n_prime192.w[2] > 0)
|| (sig_n_prime192.w[1] > sig_y.w[1])
|| (sig_n_prime192.w[1] == sig_y.w[1]
&& sig_n_prime192.w[0] >
sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) != MASK_SIGN));
BID_RETURN (res);
}
}
diff = exp_y - exp_x;
// if exp_x is 33 less than exp_y, no need for compensation
if (diff > 33) {
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
if (diff > 19) { //128 by 128 bit multiply -> 256 bits
// adjust the y significand upwards
__mul_128x128_to_256 (sig_n_prime256, sig_y, ten2k128[diff - 20]);
// if postitive, return whichever significand is larger
// (converse if negative)
if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0)
&& sig_n_prime256.w[1] == sig_x.w[1]
&& (sig_n_prime256.w[0] == sig_x.w[0])) {
res = 1;
BID_RETURN (res);
} // if equal, return 0
{
res =
((sig_n_prime256.w[3] != 0 || sig_n_prime256.w[2] != 0
|| (sig_n_prime256.w[1] > sig_x.w[1]
|| (sig_n_prime256.w[1] == sig_x.w[1]
&& sig_n_prime256.w[0] >
sig_x.w[0]))) ^ ((x.w[1] & MASK_SIGN) == MASK_SIGN));
BID_RETURN (res);
}
}
//else { //128 by 64 bit multiply -> 192 bits
// adjust the y significand upwards
__mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_y);
// if postitive, return whichever significand is larger
// (converse if negative)
if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_x.w[1]
&& (sig_n_prime192.w[0] == sig_x.w[0])) {
res = 1;
BID_RETURN (res);
} // if equal, return 0
{
res = (sig_n_prime192.w[2] != 0
|| (sig_n_prime192.w[1] > sig_x.w[1]
|| (sig_n_prime192.w[1] == sig_x.w[1]
&& sig_n_prime192.w[0] >
sig_x.w[0]))) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
}
BID128_FUNCTION_ARG2_NORND_CUSTOMRESTYPE (int,
bid128_signaling_less_unordered,
x, y)
int res;
int exp_x, exp_y;
int diff;
UINT128 sig_x, sig_y;
UINT192 sig_n_prime192;
UINT256 sig_n_prime256;
char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
// NaN (CASE1)
// if either number is NAN, the comparison is unordered
if (((x.w[1] & MASK_NAN) == MASK_NAN)
|| ((y.w[1] & MASK_NAN) == MASK_NAN)) {
*pfpsf |= INVALID_EXCEPTION;
{
res = 1;
BID_RETURN (res);
}
}
// SIMPLE (CASE2)
// if all the bits are the same, these numbers are equal.
if (x.w[0] == y.w[0] && x.w[1] == y.w[1]) {
res = 0;
BID_RETURN (res);
}
// INFINITY (CASE3)
if ((x.w[1] & MASK_INF) == MASK_INF) {
// if x==neg_inf, { res = (y == neg_inf)?1:0; BID_RETURN (res) }
if ((x.w[1] & MASK_SIGN) == MASK_SIGN)
// x is -inf, so it is less than y unless y is -inf
{
res = (((y.w[1] & MASK_INF) != MASK_INF)
|| (y.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
} else
// x is pos_inf, no way for it to be less than y
{
res = 0;
BID_RETURN (res);
}
} else if ((y.w[1] & MASK_INF) == MASK_INF) {
// x is finite, so if y is positive infinity, then x is less, return 0
// if y is negative infinity, then x is greater, return 1
{
res = ((y.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
}
// CONVERT X
sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull;
sig_x.w[0] = x.w[0];
exp_x = (x.w[1] >> 49) & 0x000000000003fffull;
// CHECK IF X IS CANONICAL
// 9999999999999999999999999999999999(decimal) =
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
// [0, 10^34) is the 754r supported canonical range.
// If the value exceeds that, it is interpreted as 0.
if ((sig_x.w[1] > 0x0001ed09bead87c0ull)
|| ((sig_x.w[1] == 0x0001ed09bead87c0ull)
&& (sig_x.w[0] > 0x378d8e63ffffffffull))
|| ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull))
non_canon_x = 1;
else
non_canon_x = 0;
// CONVERT Y
exp_y = (y.w[1] >> 49) & 0x0000000000003fffull;
sig_y.w[1] = y.w[1] & 0x0001ffffffffffffull;
sig_y.w[0] = y.w[0];
// CHECK IF Y IS CANONICAL
// 9999999999999999999999999999999999(decimal) =
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
// [0, 10^34) is the 754r supported canonical range.
// If the value exceeds that, it is interpreted as 0.
if ((sig_y.w[1] > 0x0001ed09bead87c0ull)
|| ((sig_y.w[1] == 0x0001ed09bead87c0ull)
&& (sig_y.w[0] > 0x378d8e63ffffffffull))
|| ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull))
non_canon_y = 1;
else
non_canon_y = 0;
// ZERO (CASE4)
// some properties:
// (+ZERO == -ZERO) => therefore ignore the sign
// (ZERO x 10^A == ZERO x 10^B) for any valid A, B => therefore
// ignore the exponent field
// (Any non-canonical # is considered 0)
if (non_canon_x || ((sig_x.w[1] == 0) && (sig_x.w[0] == 0))) {
x_is_zero = 1;
}
if (non_canon_y || ((sig_y.w[1] == 0) && (sig_y.w[0] == 0))) {
y_is_zero = 1;
}
// if both numbers are zero, neither is greater => return NOTGREATERTHAN
if (x_is_zero && y_is_zero) {
res = 0;
BID_RETURN (res);
}
// is x is zero, it is greater if Y is negative
else if (x_is_zero) {
res = ((y.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
// is y is zero, X is greater if it is positive
else if (y_is_zero) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
// OPPOSITE SIGN (CASE5)
// now, if the sign bits differ, x is greater if y is negative
if (((x.w[1] ^ y.w[1]) & MASK_SIGN) == MASK_SIGN) {
res = ((y.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
// REDUNDANT REPRESENTATIONS (CASE6)
// if exponents are the same, then we have a simple comparison
// of the significands
if (exp_y == exp_x) {
res = (((sig_x.w[1] > sig_y.w[1])
|| (sig_x.w[1] == sig_y.w[1]
&& sig_x.w[0] >= sig_y.w[0])) ^ ((x.w[1] & MASK_SIGN) !=
MASK_SIGN));
BID_RETURN (res);
}
// if both components are either bigger or smaller,
// it is clear what needs to be done
if ((sig_x.w[1] > sig_y.w[1]
|| (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] > sig_y.w[0]))
&& exp_x >= exp_y) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
if ((sig_x.w[1] < sig_y.w[1]
|| (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] < sig_y.w[0]))
&& exp_x <= exp_y) {
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
diff = exp_x - exp_y;
// if |exp_x - exp_y| < 33, it comes down to the compensated significand
if (diff > 0) { // to simplify the loop below,
// if exp_x is 33 greater than exp_y, no need for compensation
if (diff > 33) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
} // difference cannot be greater than 10^33
if (diff > 19) { //128 by 128 bit multiply -> 256 bits
__mul_128x128_to_256 (sig_n_prime256, sig_x, ten2k128[diff - 20]);
// if postitive, return whichever significand is larger
// (converse if negative)
if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0)
&& sig_n_prime256.w[1] == sig_y.w[1]
&& (sig_n_prime256.w[0] == sig_y.w[0])) {
res = 0;
BID_RETURN (res);
} // if equal, return 0
{
res = ((((sig_n_prime256.w[3] > 0) || sig_n_prime256.w[2] > 0)
|| (sig_n_prime256.w[1] > sig_y.w[1])
|| (sig_n_prime256.w[1] == sig_y.w[1]
&& sig_n_prime256.w[0] >
sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) != MASK_SIGN));
BID_RETURN (res);
}
}
//else { //128 by 64 bit multiply -> 192 bits
__mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_x);
// if postitive, return whichever significand is larger
// (converse if negative)
if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_y.w[1]
&& (sig_n_prime192.w[0] == sig_y.w[0])) {
res = 0;
BID_RETURN (res);
} // if equal, return 0
{
res = (((sig_n_prime192.w[2] > 0)
|| (sig_n_prime192.w[1] > sig_y.w[1])
|| (sig_n_prime192.w[1] == sig_y.w[1]
&& sig_n_prime192.w[0] >
sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) != MASK_SIGN));
BID_RETURN (res);
}
}
diff = exp_y - exp_x;
// if exp_x is 33 less than exp_y, no need for compensation
if (diff > 33) {
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
if (diff > 19) { //128 by 128 bit multiply -> 256 bits
// adjust the y significand upwards
__mul_128x128_to_256 (sig_n_prime256, sig_y, ten2k128[diff - 20]);
// if postitive, return whichever significand is larger
// (converse if negative)
if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0)
&& sig_n_prime256.w[1] == sig_x.w[1]
&& (sig_n_prime256.w[0] == sig_x.w[0])) {
res = 0;
BID_RETURN (res);
} // if equal, return 1
{
res =
((sig_n_prime256.w[3] != 0 || sig_n_prime256.w[2] != 0
|| (sig_n_prime256.w[1] > sig_x.w[1]
|| (sig_n_prime256.w[1] == sig_x.w[1]
&& sig_n_prime256.w[0] >
sig_x.w[0]))) ^ ((x.w[1] & MASK_SIGN) == MASK_SIGN));
BID_RETURN (res);
}
}
//else { //128 by 64 bit multiply -> 192 bits
// adjust the y significand upwards
__mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_y);
// if postitive, return whichever significand is larger (converse if negative)
if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_x.w[1]
&& (sig_n_prime192.w[0] == sig_x.w[0])) {
res = 0;
BID_RETURN (res);
} // if equal, return 0
{
res = (sig_n_prime192.w[2] != 0
|| (sig_n_prime192.w[1] > sig_x.w[1]
|| (sig_n_prime192.w[1] == sig_x.w[1]
&& sig_n_prime192.w[0] >
sig_x.w[0]))) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
}
BID128_FUNCTION_ARG2_NORND_CUSTOMRESTYPE (int,
bid128_signaling_not_greater,
x, y)
int res;
int exp_x, exp_y;
int diff;
UINT128 sig_x, sig_y;
UINT192 sig_n_prime192;
UINT256 sig_n_prime256;
char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
// NaN (CASE1)
// if either number is NAN, the comparison is unordered,
// rather than equal : return 0
if (((x.w[1] & MASK_NAN) == MASK_NAN)
|| ((y.w[1] & MASK_NAN) == MASK_NAN)) {
*pfpsf |= INVALID_EXCEPTION;
{
res = 1;
BID_RETURN (res);
}
}
// SIMPLE (CASE2)
// if all the bits are the same, these numbers are equal (not Greater).
if (x.w[0] == y.w[0] && x.w[1] == y.w[1]) {
res = 1;
BID_RETURN (res);
}
// INFINITY (CASE3)
if ((x.w[1] & MASK_INF) == MASK_INF) {
// if x is neg infinity, there is no way it is greater than y, return 1
if (((x.w[1] & MASK_SIGN) == MASK_SIGN)) {
res = 1;
BID_RETURN (res);
}
// x is pos infinity, it is greater, unless y is positive infinity => return y!=pos_infinity
else {
res = (((y.w[1] & MASK_INF) == MASK_INF)
&& ((y.w[1] & MASK_SIGN) != MASK_SIGN));
BID_RETURN (res);
}
} else if ((y.w[1] & MASK_INF) == MASK_INF) {
// x is finite, so if y is positive infinity, then x is less, return 0
// if y is negative infinity, then x is greater, return 1
{
res = ((y.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
}
// CONVERT X
sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull;
sig_x.w[0] = x.w[0];
exp_x = (x.w[1] >> 49) & 0x000000000003fffull;
// CHECK IF X IS CANONICAL
// 9999999999999999999999999999999999(decimal) =
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
// [0, 10^34) is the 754r supported canonical range.
// If the value exceeds that, it is interpreted as 0.
if ((sig_x.w[1] > 0x0001ed09bead87c0ull)
|| ((sig_x.w[1] == 0x0001ed09bead87c0ull)
&& (sig_x.w[0] > 0x378d8e63ffffffffull))
|| ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull))
non_canon_x = 1;
else
non_canon_x = 0;
// CONVERT Y
exp_y = (y.w[1] >> 49) & 0x0000000000003fffull;
sig_y.w[1] = y.w[1] & 0x0001ffffffffffffull;
sig_y.w[0] = y.w[0];
// CHECK IF Y IS CANONICAL
// 9999999999999999999999999999999999(decimal) =
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
// [0, 10^34) is the 754r supported canonical range.
// If the value exceeds that, it is interpreted as 0.
if ((sig_y.w[1] > 0x0001ed09bead87c0ull)
|| ((sig_y.w[1] == 0x0001ed09bead87c0ull)
&& (sig_y.w[0] > 0x378d8e63ffffffffull))
|| ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull))
non_canon_y = 1;
else
non_canon_y = 0;
// ZERO (CASE4)
// some properties:
// (+ZERO == -ZERO) => therefore ignore the sign
// (ZERO x 10^A == ZERO x 10^B) for any valid A, B => therefore
// ignore the exponent field
// (Any non-canonical # is considered 0)
if (non_canon_x || ((sig_x.w[1] == 0) && (sig_x.w[0] == 0))) {
x_is_zero = 1;
}
if (non_canon_y || ((sig_y.w[1] == 0) && (sig_y.w[0] == 0))) {
y_is_zero = 1;
}
// if both numbers are zero, neither is greater => return NOTGREATERTHAN
if (x_is_zero && y_is_zero) {
res = 1;
BID_RETURN (res);
}
// is x is zero, it is greater if Y is negative
else if (x_is_zero) {
res = ((y.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
// is y is zero, X is greater if it is positive
else if (y_is_zero) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
// OPPOSITE SIGN (CASE5)
// now, if the sign bits differ, x is greater if y is negative
if (((x.w[1] ^ y.w[1]) & MASK_SIGN) == MASK_SIGN) {
res = ((y.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
// REDUNDANT REPRESENTATIONS (CASE6)
// if exponents are the same, then we have a simple comparison
// of the significands
if (exp_y == exp_x) {
res = (((sig_x.w[1] > sig_y.w[1])
|| (sig_x.w[1] == sig_y.w[1]
&& sig_x.w[0] >= sig_y.w[0])) ^ ((x.w[1] & MASK_SIGN) !=
MASK_SIGN));
BID_RETURN (res);
}
// if both components are either bigger or smaller,
// it is clear what needs to be done
if ((sig_x.w[1] > sig_y.w[1]
|| (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] > sig_y.w[0]))
&& exp_x >= exp_y) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
if ((sig_x.w[1] < sig_y.w[1]
|| (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] < sig_y.w[0]))
&& exp_x <= exp_y) {
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
diff = exp_x - exp_y;
// if |exp_x - exp_y| < 33, it comes down to the compensated significand
if (diff > 0) { // to simplify the loop below,
// if exp_x is 33 greater than exp_y, no need for compensation
if (diff > 33) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
} // difference cannot be greater than 10^33
if (diff > 19) { //128 by 128 bit multiply -> 256 bits
__mul_128x128_to_256 (sig_n_prime256, sig_x, ten2k128[diff - 20]);
// if postitive, return whichever significand is larger
// (converse if negative)
if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0)
&& sig_n_prime256.w[1] == sig_y.w[1]
&& (sig_n_prime256.w[0] == sig_y.w[0])) {
res = 1;
BID_RETURN (res);
} // if equal, return 0
{
res = ((((sig_n_prime256.w[3] > 0) || sig_n_prime256.w[2] > 0)
|| (sig_n_prime256.w[1] > sig_y.w[1])
|| (sig_n_prime256.w[1] == sig_y.w[1]
&& sig_n_prime256.w[0] >
sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) != MASK_SIGN));
BID_RETURN (res);
}
}
//else { //128 by 64 bit multiply -> 192 bits
__mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_x);
// if postitive, return whichever significand is larger
// (converse if negative)
if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_y.w[1]
&& (sig_n_prime192.w[0] == sig_y.w[0])) {
res = 1;
BID_RETURN (res);
} // if equal, return 0
{
res = (((sig_n_prime192.w[2] > 0)
|| (sig_n_prime192.w[1] > sig_y.w[1])
|| (sig_n_prime192.w[1] == sig_y.w[1]
&& sig_n_prime192.w[0] >
sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) != MASK_SIGN));
BID_RETURN (res);
}
}
diff = exp_y - exp_x;
// if exp_x is 33 less than exp_y, no need for compensation
if (diff > 33) {
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
if (diff > 19) { //128 by 128 bit multiply -> 256 bits
// adjust the y significand upwards
__mul_128x128_to_256 (sig_n_prime256, sig_y, ten2k128[diff - 20]);
// if postitive, return whichever significand is larger
// (converse if negative)
if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0)
&& sig_n_prime256.w[1] == sig_x.w[1]
&& (sig_n_prime256.w[0] == sig_x.w[0])) {
res = 1;
BID_RETURN (res);
} // if equal, return 0
{
res =
((sig_n_prime256.w[3] != 0 || sig_n_prime256.w[2] != 0
|| (sig_n_prime256.w[1] > sig_x.w[1]
|| (sig_n_prime256.w[1] == sig_x.w[1]
&& sig_n_prime256.w[0] >
sig_x.w[0]))) ^ ((x.w[1] & MASK_SIGN) == MASK_SIGN));
BID_RETURN (res);
}
}
//else { //128 by 64 bit multiply -> 192 bits
// adjust the y significand upwards
__mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_y);
// if postitive, return whichever significand is larger
// (converse if negative)
if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_x.w[1]
&& (sig_n_prime192.w[0] == sig_x.w[0])) {
res = 1;
BID_RETURN (res);
} // if equal, return 0
{
res = (sig_n_prime192.w[2] != 0
|| (sig_n_prime192.w[1] > sig_x.w[1]
|| (sig_n_prime192.w[1] == sig_x.w[1]
&& sig_n_prime192.w[0] >
sig_x.w[0]))) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
}
BID128_FUNCTION_ARG2_NORND_CUSTOMRESTYPE (int,
bid128_signaling_not_less, x,
y)
int res;
int exp_x, exp_y;
int diff;
UINT128 sig_x, sig_y;
UINT192 sig_n_prime192;
UINT256 sig_n_prime256;
char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
// NaN (CASE1)
// if either number is NAN, the comparison is unordered,
// rather than equal : return 1
if (((x.w[1] & MASK_NAN) == MASK_NAN)
|| ((y.w[1] & MASK_NAN) == MASK_NAN)) {
*pfpsf |= INVALID_EXCEPTION;
{
res = 1;
BID_RETURN (res);
}
}
// SIMPLE (CASE2)
// if all the bits are the same, these numbers are equal (not Greater).
if (x.w[0] == y.w[0] && x.w[1] == y.w[1]) {
res = 1;
BID_RETURN (res);
}
// INFINITY (CASE3)
if ((x.w[1] & MASK_INF) == MASK_INF) {
// if x==neg_inf, { res = (y == neg_inf)?1:0; BID_RETURN (res) }
if ((x.w[1] & MASK_SIGN) == MASK_SIGN)
// x is -inf, so it is less than y unless y is -inf
{
res = (((y.w[1] & MASK_INF) == MASK_INF)
&& (y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
} else
// x is pos_inf, no way for it to be less than y
{
res = 1;
BID_RETURN (res);
}
} else if ((y.w[1] & MASK_INF) == MASK_INF) {
// x is finite, so if y is positive infinity, then x is less, return 0
// if y is negative infinity, then x is greater, return 1
{
res = ((y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
}
// CONVERT X
sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull;
sig_x.w[0] = x.w[0];
exp_x = (x.w[1] >> 49) & 0x000000000003fffull;
// CHECK IF X IS CANONICAL
// 9999999999999999999999999999999999(decimal) =
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
// [0, 10^34) is the 754r supported canonical range.
// If the value exceeds that, it is interpreted as 0.
if ((sig_x.w[1] > 0x0001ed09bead87c0ull)
|| ((sig_x.w[1] == 0x0001ed09bead87c0ull)
&& (sig_x.w[0] > 0x378d8e63ffffffffull))
|| ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull))
non_canon_x = 1;
else
non_canon_x = 0;
// CONVERT Y
exp_y = (y.w[1] >> 49) & 0x0000000000003fffull;
sig_y.w[1] = y.w[1] & 0x0001ffffffffffffull;
sig_y.w[0] = y.w[0];
// CHECK IF Y IS CANONICAL
// 9999999999999999999999999999999999(decimal) =
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
// [0, 10^34) is the 754r supported canonical range.
// If the value exceeds that, it is interpreted as 0.
if ((sig_y.w[1] > 0x0001ed09bead87c0ull)
|| ((sig_y.w[1] == 0x0001ed09bead87c0ull)
&& (sig_y.w[0] > 0x378d8e63ffffffffull))
|| ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull))
non_canon_y = 1;
else
non_canon_y = 0;
// ZERO (CASE4)
// some properties:
// (+ZERO == -ZERO) => therefore ignore the sign
// (ZERO x 10^A == ZERO x 10^B) for any valid A, B => therefore
// ignore the exponent field
// (Any non-canonical # is considered 0)
if (non_canon_x || ((sig_x.w[1] == 0) && (sig_x.w[0] == 0))) {
x_is_zero = 1;
}
if (non_canon_y || ((sig_y.w[1] == 0) && (sig_y.w[0] == 0))) {
y_is_zero = 1;
}
// if both numbers are zero, neither is greater => return NOTGREATERTHAN
if (x_is_zero && y_is_zero) {
res = 1;
BID_RETURN (res);
}
// is x is zero, it is greater if Y is negative
else if (x_is_zero) {
res = ((y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
// is y is zero, X is greater if it is positive
else if (y_is_zero) {
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
// OPPOSITE SIGN (CASE5)
// now, if the sign bits differ, x is greater if y is negative
if (((x.w[1] ^ y.w[1]) & MASK_SIGN) == MASK_SIGN) {
res = ((y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
// REDUNDANT REPRESENTATIONS (CASE6)
// if exponents are the same, then we have a simple comparison
// of the significands
if (exp_y == exp_x) {
res = (((sig_x.w[1] > sig_y.w[1])
|| (sig_x.w[1] == sig_y.w[1]
&& sig_x.w[0] >= sig_y.w[0])) ^ ((x.w[1] & MASK_SIGN) ==
MASK_SIGN));
BID_RETURN (res);
}
// if both components are either bigger or smaller,
// it is clear what needs to be done
if (sig_x.w[1] >= sig_y.w[1] && sig_x.w[0] >= sig_y.w[0]
&& exp_x > exp_y) {
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
if (sig_x.w[1] <= sig_y.w[1] && sig_x.w[0] <= sig_y.w[0]
&& exp_x < exp_y) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
diff = exp_x - exp_y;
// if |exp_x - exp_y| < 33, it comes down to the compensated significand
if (diff > 0) { // to simplify the loop below,
// if exp_x is 33 greater than exp_y, no need for compensation
if (diff > 33) {
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
} // difference cannot be greater than 10^33
if (diff > 19) { //128 by 128 bit multiply -> 256 bits
__mul_128x128_to_256 (sig_n_prime256, sig_x, ten2k128[diff - 20]);
// if postitive, return whichever significand is larger
// (converse if negative)
if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0)
&& sig_n_prime256.w[1] == sig_y.w[1]
&& (sig_n_prime256.w[0] == sig_y.w[0])) {
res = 1;
BID_RETURN (res);
} // if equal, return 1
{
res = ((((sig_n_prime256.w[3] > 0) || sig_n_prime256.w[2] > 0)
|| (sig_n_prime256.w[1] > sig_y.w[1])
|| (sig_n_prime256.w[1] == sig_y.w[1]
&& sig_n_prime256.w[0] >
sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN));
BID_RETURN (res);
}
}
//else { //128 by 64 bit multiply -> 192 bits
__mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_x);
// if postitive, return whichever significand is larger
// (converse if negative)
if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_y.w[1]
&& (sig_n_prime192.w[0] == sig_y.w[0])) {
res = 1;
BID_RETURN (res);
} // if equal, return 1
{
res = (((sig_n_prime192.w[2] > 0)
|| (sig_n_prime192.w[1] > sig_y.w[1])
|| (sig_n_prime192.w[1] == sig_y.w[1]
&& sig_n_prime192.w[0] >
sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN));
BID_RETURN (res);
}
}
diff = exp_y - exp_x;
// if exp_x is 33 less than exp_y, no need for compensation
if (diff > 33) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
if (diff > 19) { //128 by 128 bit multiply -> 256 bits
// adjust the y significand upwards
__mul_128x128_to_256 (sig_n_prime256, sig_y, ten2k128[diff - 20]);
// if postitive, return whichever significand is larger
// (converse if negative)
if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0)
&& sig_n_prime256.w[1] == sig_x.w[1]
&& (sig_n_prime256.w[0] == sig_x.w[0])) {
res = 1;
BID_RETURN (res);
} // if equal, return 1
{
res =
((sig_n_prime256.w[3] == 0 && sig_n_prime256.w[2] == 0
&& (sig_n_prime256.w[1] < sig_x.w[1]
|| (sig_n_prime256.w[1] == sig_x.w[1]
&& sig_n_prime256.w[0] <
sig_x.w[0]))) ^ ((x.w[1] & MASK_SIGN) == MASK_SIGN));
BID_RETURN (res);
}
}
//else { //128 by 64 bit multiply -> 192 bits
// adjust the y significand upwards
__mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_y);
// if postitive, return whichever significand is larger (converse if negative)
if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_x.w[1]
&& (sig_n_prime192.w[0] == sig_x.w[0])) {
res = 1;
BID_RETURN (res);
} // if equal, return 1
{
res = (sig_n_prime192.w[2] == 0
&& (sig_n_prime192.w[1] < sig_x.w[1]
|| (sig_n_prime192.w[1] == sig_x.w[1]
&& sig_n_prime192.w[0] <
sig_x.w[0]))) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
}