gcc/libgfortran/generated/minval_i1.c
Thomas Koenig 567c915b04 re PR libfortran/30533 ([4.1 only] minval, maxval missing for kind=1 and kind=2)
2007-02-19  Thomas Koenig  <Thomas.Koenig@online.de>

	PR libfortran/30533
	PR libfortran/30765
	* Makefile.am: Add $(srcdir) too all files in generated/.
	(i_maxloc0_c): Add maxloc0_4_i1.c, maxloc0_8_i1.c,
	maxloc0_16_i1.c, maxloc0_4_i2.c, maxloc0_8_i2.c and
	maxloc0_16_i2.c.
	(i_maxloc1_c): Add maxloc1_4_i1.c, maxloc1_8_i1.c,
	maxloc1_16_i1.c, maxloc1_4_i2.c, maxloc1_8_i2.c and
	maxloc1_16_i2.c.
	(i_maxval_c): Add maxval_i1.c and maxval_i2.c.
	(i_minloc0_c):  Add minloc0_4_i1.c, minloc0_8_i1.c,
	minloc0_16_i1.c, minloc0_4_i2.c, minloc0_8_i2.c and
	minloc0_16_i2.c.
	(i_minloc_1.c): Add minloc1_4_i1.c, minloc1_8_i1.c,
	minloc1_16_i1.c, minloc1_4_i2.c, minloc1_8_i2.c and
	minloc1_16_i2.c.
	(i_minval_c):  Add minval_i1.c and minval_i2.c.
	(i_sum_c):  Add sum_i1.c and sum_i2.c.
	(i_product_c):  Add product_i1.c and product_i2.c.
	(i_matmul_c):  Add matmul_i1.c and matmul_i2.c.
	(gfor_built_specific_src):  Remove $(srcdir) from target.
	(gfor_bulit_specific2_src):  Likewise.
	Makefile.in:  Regenerated.
	libgfortran.h:  Add GFC_INTEGER_1_HUGE and GFC_INTEGER_2_HUGE.
	Add gfc_array_i1 and gfc_array_i2.
	* generated/matmul_i1.c: New file.
	* generated/matmul_i2.c: New file.
	* generated/maxloc0_16_i1.c: New file.
	* generated/maxloc0_16_i2.c: New file.
	* generated/maxloc0_4_i1.c: New file.
	* generated/maxloc0_4_i2.c: New file.
	* generated/maxloc0_8_i1.c: New file.
	* generated/maxloc0_8_i2.c: New file.
	* generated/maxloc1_16_i1.c: New file.
	* generated/maxloc1_16_i2.c: New file.
	* generated/maxloc1_4_i1.c: New file.
	* generated/maxloc1_4_i2.c: New file.
	* generated/maxloc1_8_i1.c: New file.
	* generated/maxloc1_8_i2.c: New file.
	* generated/maxval_i1.c: New file.
	* generated/maxval_i2.c: New file.
	* generated/minloc0_16_i1.c: New file.
	* generated/minloc0_16_i2.c: New file.
	* generated/minloc0_4_i1.c: New file.
	* generated/minloc0_4_i2.c: New file.
	* generated/minloc0_8_i1.c: New file.
	* generated/minloc0_8_i2.c: New file.
	* generated/minloc1_16_i1.c: New file.
	* generated/minloc1_16_i2.c: New file.
	* generated/minloc1_4_i1.c: New file.
	* generated/minloc1_4_i2.c: New file.
	* generated/minloc1_8_i1.c: New file.
	* generated/minloc1_8_i2.c: New file.
	* generated/minval_i1.c: New file.
	* generated/minval_i2.c: New file.
	* generated/product_i1.c: New file.
	* generated/product_i2.c: New file.
	* generated/sum_i1.c: New file.
	* generated/sum_i2.c: New file.

2007-02-19  Thomas Koenig  <Thomas.Koenig@online.de>

	PR libfortran/30533
	* fortran/iresolve.c(gfc_resolve_maxloc):  Remove coercion of
	argument to default integer.
	(gfc_resolve_minloc):  Likewise.

2007-02-19  Thomas Koenig  <Thomas.Koenig@online.de>

	PR libfortran/30533
	* gfortran.dg/intrinsic_intkinds_1.f90:  New test.

From-SVN: r122137
2007-02-19 20:49:10 +00:00

411 lines
10 KiB
C

/* Implementation of the MINVAL intrinsic
Copyright 2002 Free Software Foundation, Inc.
Contributed by Paul Brook <paul@nowt.org>
This file is part of the GNU Fortran 95 runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file. (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public
License along with libgfortran; see the file COPYING. If not,
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "config.h"
#include <stdlib.h>
#include <assert.h>
#include <float.h>
#include "libgfortran.h"
#if defined (HAVE_GFC_INTEGER_1) && defined (HAVE_GFC_INTEGER_1)
extern void minval_i1 (gfc_array_i1 * const restrict,
gfc_array_i1 * const restrict, const index_type * const restrict);
export_proto(minval_i1);
void
minval_i1 (gfc_array_i1 * const restrict retarray,
gfc_array_i1 * const restrict array,
const index_type * const restrict pdim)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type sstride[GFC_MAX_DIMENSIONS];
index_type dstride[GFC_MAX_DIMENSIONS];
const GFC_INTEGER_1 * restrict base;
GFC_INTEGER_1 * restrict dest;
index_type rank;
index_type n;
index_type len;
index_type delta;
index_type dim;
/* Make dim zero based to avoid confusion. */
dim = (*pdim) - 1;
rank = GFC_DESCRIPTOR_RANK (array) - 1;
len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
delta = array->dim[dim].stride;
for (n = 0; n < dim; n++)
{
sstride[n] = array->dim[n].stride;
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
if (extent[n] < 0)
extent[n] = 0;
}
for (n = dim; n < rank; n++)
{
sstride[n] = array->dim[n + 1].stride;
extent[n] =
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
if (extent[n] < 0)
extent[n] = 0;
}
if (retarray->data == NULL)
{
size_t alloc_size;
for (n = 0; n < rank; n++)
{
retarray->dim[n].lbound = 0;
retarray->dim[n].ubound = extent[n]-1;
if (n == 0)
retarray->dim[n].stride = 1;
else
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
}
retarray->offset = 0;
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
alloc_size = sizeof (GFC_INTEGER_1) * retarray->dim[rank-1].stride
* extent[rank-1];
if (alloc_size == 0)
{
/* Make sure we have a zero-sized array. */
retarray->dim[0].lbound = 0;
retarray->dim[0].ubound = -1;
return;
}
else
retarray->data = internal_malloc_size (alloc_size);
}
else
{
if (rank != GFC_DESCRIPTOR_RANK (retarray))
runtime_error ("rank of return array incorrect");
}
for (n = 0; n < rank; n++)
{
count[n] = 0;
dstride[n] = retarray->dim[n].stride;
if (extent[n] <= 0)
len = 0;
}
base = array->data;
dest = retarray->data;
while (base)
{
const GFC_INTEGER_1 * restrict src;
GFC_INTEGER_1 result;
src = base;
{
result = GFC_INTEGER_1_HUGE;
if (len <= 0)
*dest = GFC_INTEGER_1_HUGE;
else
{
for (n = 0; n < len; n++, src += delta)
{
if (*src < result)
result = *src;
}
*dest = result;
}
}
/* Advance to the next element. */
count[0]++;
base += sstride[0];
dest += dstride[0];
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
base -= sstride[n] * extent[n];
dest -= dstride[n] * extent[n];
n++;
if (n == rank)
{
/* Break out of the look. */
base = NULL;
break;
}
else
{
count[n]++;
base += sstride[n];
dest += dstride[n];
}
}
}
}
extern void mminval_i1 (gfc_array_i1 * const restrict,
gfc_array_i1 * const restrict, const index_type * const restrict,
gfc_array_l4 * const restrict);
export_proto(mminval_i1);
void
mminval_i1 (gfc_array_i1 * const restrict retarray,
gfc_array_i1 * const restrict array,
const index_type * const restrict pdim,
gfc_array_l4 * const restrict mask)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type sstride[GFC_MAX_DIMENSIONS];
index_type dstride[GFC_MAX_DIMENSIONS];
index_type mstride[GFC_MAX_DIMENSIONS];
GFC_INTEGER_1 * restrict dest;
const GFC_INTEGER_1 * restrict base;
const GFC_LOGICAL_4 * restrict mbase;
int rank;
int dim;
index_type n;
index_type len;
index_type delta;
index_type mdelta;
dim = (*pdim) - 1;
rank = GFC_DESCRIPTOR_RANK (array) - 1;
len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
if (len <= 0)
return;
delta = array->dim[dim].stride;
mdelta = mask->dim[dim].stride;
for (n = 0; n < dim; n++)
{
sstride[n] = array->dim[n].stride;
mstride[n] = mask->dim[n].stride;
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
if (extent[n] < 0)
extent[n] = 0;
}
for (n = dim; n < rank; n++)
{
sstride[n] = array->dim[n + 1].stride;
mstride[n] = mask->dim[n + 1].stride;
extent[n] =
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
if (extent[n] < 0)
extent[n] = 0;
}
if (retarray->data == NULL)
{
size_t alloc_size;
for (n = 0; n < rank; n++)
{
retarray->dim[n].lbound = 0;
retarray->dim[n].ubound = extent[n]-1;
if (n == 0)
retarray->dim[n].stride = 1;
else
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
}
alloc_size = sizeof (GFC_INTEGER_1) * retarray->dim[rank-1].stride
* extent[rank-1];
retarray->offset = 0;
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
if (alloc_size == 0)
{
/* Make sure we have a zero-sized array. */
retarray->dim[0].lbound = 0;
retarray->dim[0].ubound = -1;
return;
}
else
retarray->data = internal_malloc_size (alloc_size);
}
else
{
if (rank != GFC_DESCRIPTOR_RANK (retarray))
runtime_error ("rank of return array incorrect");
}
for (n = 0; n < rank; n++)
{
count[n] = 0;
dstride[n] = retarray->dim[n].stride;
if (extent[n] <= 0)
return;
}
dest = retarray->data;
base = array->data;
mbase = mask->data;
if (GFC_DESCRIPTOR_SIZE (mask) != 4)
{
/* This allows the same loop to be used for all logical types. */
assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
for (n = 0; n < rank; n++)
mstride[n] <<= 1;
mdelta <<= 1;
mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
}
while (base)
{
const GFC_INTEGER_1 * restrict src;
const GFC_LOGICAL_4 * restrict msrc;
GFC_INTEGER_1 result;
src = base;
msrc = mbase;
{
result = GFC_INTEGER_1_HUGE;
if (len <= 0)
*dest = GFC_INTEGER_1_HUGE;
else
{
for (n = 0; n < len; n++, src += delta, msrc += mdelta)
{
if (*msrc && *src < result)
result = *src;
}
*dest = result;
}
}
/* Advance to the next element. */
count[0]++;
base += sstride[0];
mbase += mstride[0];
dest += dstride[0];
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
base -= sstride[n] * extent[n];
mbase -= mstride[n] * extent[n];
dest -= dstride[n] * extent[n];
n++;
if (n == rank)
{
/* Break out of the look. */
base = NULL;
break;
}
else
{
count[n]++;
base += sstride[n];
mbase += mstride[n];
dest += dstride[n];
}
}
}
}
extern void sminval_i1 (gfc_array_i1 * const restrict,
gfc_array_i1 * const restrict, const index_type * const restrict,
GFC_LOGICAL_4 *);
export_proto(sminval_i1);
void
sminval_i1 (gfc_array_i1 * const restrict retarray,
gfc_array_i1 * const restrict array,
const index_type * const restrict pdim,
GFC_LOGICAL_4 * mask)
{
index_type rank;
index_type n;
index_type dstride;
GFC_INTEGER_1 *dest;
if (*mask)
{
minval_i1 (retarray, array, pdim);
return;
}
rank = GFC_DESCRIPTOR_RANK (array);
if (rank <= 0)
runtime_error ("Rank of array needs to be > 0");
if (retarray->data == NULL)
{
retarray->dim[0].lbound = 0;
retarray->dim[0].ubound = rank-1;
retarray->dim[0].stride = 1;
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
retarray->offset = 0;
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_1) * rank);
}
else
{
if (GFC_DESCRIPTOR_RANK (retarray) != 1)
runtime_error ("rank of return array does not equal 1");
if (retarray->dim[0].ubound + 1 - retarray->dim[0].lbound != rank)
runtime_error ("dimension of return array incorrect");
}
dstride = retarray->dim[0].stride;
dest = retarray->data;
for (n = 0; n < rank; n++)
dest[n * dstride] = GFC_INTEGER_1_HUGE ;
}
#endif