gcc/libgfortran/io/fbuf.c
Janne Blomqvist ea99ec5bd6 PR 78534, 83704 Handle large formatted I/O
In order to handle large characters when doing formatted I/O, use
size_t and ptrdiff_t for lengths.  Compared to the previous patch,
based on discussions on IRC use size_t for sizes that don't need to be
negative rather than ptrdiff_t everywhere.

Regtested on x86_64-pc-linux-gnu, approved as part of the PR 78534
approval, committed to trunk.

libgfortran/ChangeLog:

2018-01-07  Janne Blomqvist  <jb@gcc.gnu.org>

	PR fortran/78534
	PR fortran/83704
	* io/fbuf.c (fbuf_init): Use size_t instead of int for length.
	(fbuf_debug): Convert debug output to unsigned long.
	(fbuf_reset): Use ptrdiff_t for return value.
	(fbuf_alloc): Use size_t for length argument.
	(fbuf_flush): Handle large buffers.
	(fbuf_flush_list): Likewise.
	(fbuf_seek): Use ptrdiff_t for offset and return value.
	(fbuf_read): Use size_t for length argument.
	(fbuf_getc_refill): Use size_t to match fbuf_read.
	* io/fbuf.h (struct fbuf): Use size_t for lengths.
	(fbuf_init): Use size_t instead of int for length.
	(fbuf_reset): Use ptrdiff_t for return value.
	(fbuf_alloc): Use size_t for length argument.
	(fbuf_seek): Use ptrdiff_t for offset and return value.
	(fbuf_read): Use size_t for length argument.
	* io/io.h (read_block_form): Likewise.
	(read_block_form4): Likewise.
	(write_block): Likewise.
	(read_a): Likewise.
	(read_a_char4): Likewise.
	(read_x): Likewise.
	(write_a): Likewise.
	(write_a_char4): Likewise.
	* io/list_read.c (list_formatted_read_scalar): Use size_t to
	handle large buffers.
	* io/read.c (read_l): Likewise.
	(read_utf8): Likewise.
	(read_utf8_char1): Likewise.
	(read_default_char1): Likewise.
	(read_utf8_char4): Likewise.
	(read_default_char4): Likewise.
	(read_a): Likewise.
	(read_a_char4): Likewise.
	(eat_leading_spaces): Likewise.
	(next_char): Likewise.
	(read_decimal): Likewise.
	(read_radix): Likewise.
	(read_f): Likewise.
	(read_x): Likewise.
	* io/transfer.c (read_sf_internal): Likewise.
	(read_sf): Likewise.
	(read_block_form): Likewise.
	(read_block_form4): Likewise.
	(write_block): Likewise.
	(formatted_transfer_scalar_write): Likewise.
	(next_record_w): Likewise.
	* io/unix.c (mem_alloc_r): Likewise.
	(mem_alloc_r4): Likewise.
	(mem_alloc_w): Likewise.
	(mem_alloc_w4): Likewise.
	(mem_read): Likewise.
	(mem_read4): Likewise.
	(mem_write): Likewise.
	(mem_write4): Likewise.
	(open_internal): Likewise.
	(open_internal4): Likewise.
	* io/unix.h (open_internal): Likewise.
	(open_internal4): Likewise.
	(mem_alloc_w): Likewise.
	(mem_alloc_r): Likewise.
	(mem_alloc_w4): Likewise.
	(mem_alloc_r4): Likewise.
	* io/write.c (write_check_cc): Likewise.
	(write_cc): Likewise.
	(write_a): Likewise.
	(write_a_char4): Likewise.

From-SVN: r256322
2018-01-07 12:17:52 +02:00

298 lines
7.6 KiB
C

/* Copyright (C) 2008-2018 Free Software Foundation, Inc.
Contributed by Janne Blomqvist
This file is part of the GNU Fortran runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include "io.h"
#include "fbuf.h"
#include "unix.h"
#include <string.h>
//#define FBUF_DEBUG
void
fbuf_init (gfc_unit *u, size_t len)
{
if (len == 0)
len = 512; /* Default size. */
u->fbuf = xmalloc (sizeof (struct fbuf));
u->fbuf->buf = xmalloc (len);
u->fbuf->len = len;
u->fbuf->act = u->fbuf->pos = 0;
}
void
fbuf_destroy (gfc_unit *u)
{
if (u->fbuf == NULL)
return;
free (u->fbuf->buf);
free (u->fbuf);
u->fbuf = NULL;
}
static void
#ifdef FBUF_DEBUG
fbuf_debug (gfc_unit *u, const char *format, ...)
{
va_list args;
va_start(args, format);
vfprintf(stderr, format, args);
va_end(args);
fprintf (stderr, "fbuf_debug pos: %lu, act: %lu, buf: ''",
(long unsigned) u->fbuf->pos, (long unsigned) u->fbuf->act);
for (size_t ii = 0; ii < u->fbuf->act; ii++)
{
putc (u->fbuf->buf[ii], stderr);
}
fprintf (stderr, "''\n");
}
#else
fbuf_debug (gfc_unit *u __attribute__ ((unused)),
const char *format __attribute__ ((unused)),
...) {}
#endif
/* You should probably call this before doing a physical seek on the
underlying device. Returns how much the physical position was
modified. */
ptrdiff_t
fbuf_reset (gfc_unit *u)
{
ptrdiff_t seekval = 0;
if (!u->fbuf)
return 0;
fbuf_debug (u, "fbuf_reset: ");
fbuf_flush (u, u->mode);
/* If we read past the current position, seek the underlying device
back. */
if (u->mode == READING && u->fbuf->act > u->fbuf->pos)
{
seekval = - (u->fbuf->act - u->fbuf->pos);
fbuf_debug (u, "fbuf_reset seekval %ld, ", (long) seekval);
}
u->fbuf->act = u->fbuf->pos = 0;
return seekval;
}
/* Return a pointer to the current position in the buffer, and increase
the pointer by len. Makes sure that the buffer is big enough,
reallocating if necessary. */
char *
fbuf_alloc (gfc_unit *u, size_t len)
{
size_t newlen;
char *dest;
fbuf_debug (u, "fbuf_alloc len %lu, ", (long unsigned) len);
if (u->fbuf->pos + len > u->fbuf->len)
{
/* Round up to nearest multiple of the current buffer length. */
newlen = ((u->fbuf->pos + len) / u->fbuf->len + 1) *u->fbuf->len;
u->fbuf->buf = xrealloc (u->fbuf->buf, newlen);
u->fbuf->len = newlen;
}
dest = u->fbuf->buf + u->fbuf->pos;
u->fbuf->pos += len;
if (u->fbuf->pos > u->fbuf->act)
u->fbuf->act = u->fbuf->pos;
return dest;
}
/* mode argument is WRITING for write mode and READING for read
mode. Return value is 0 for success, -1 on failure. */
int
fbuf_flush (gfc_unit *u, unit_mode mode)
{
if (!u->fbuf)
return 0;
fbuf_debug (u, "fbuf_flush with mode %d: ", mode);
if (mode == WRITING)
{
if (u->fbuf->pos > 0)
{
ptrdiff_t nwritten = swrite (u->s, u->fbuf->buf, u->fbuf->pos);
if (nwritten < 0)
return -1;
}
}
/* Salvage remaining bytes for both reading and writing. This
happens with the combination of advance='no' and T edit
descriptors leaving the final position somewhere not at the end
of the record. For reading, this also happens if we sread() past
the record boundary. */
if (u->fbuf->act > u->fbuf->pos && u->fbuf->pos > 0)
memmove (u->fbuf->buf, u->fbuf->buf + u->fbuf->pos,
u->fbuf->act - u->fbuf->pos);
u->fbuf->act -= u->fbuf->pos;
u->fbuf->pos = 0;
return 0;
}
/* The mode argument is LIST_WRITING for write mode and LIST_READING for
read. This should only be used for list directed I/O.
Return value is 0 for success, -1 on failure. */
int
fbuf_flush_list (gfc_unit *u, unit_mode mode)
{
if (!u->fbuf)
return 0;
if (u->fbuf->pos < 524288) /* Upper limit for list writing. */
return 0;
fbuf_debug (u, "fbuf_flush_list with mode %d: ", mode);
if (mode == LIST_WRITING)
{
ptrdiff_t nwritten = swrite (u->s, u->fbuf->buf, u->fbuf->pos);
if (nwritten < 0)
return -1;
}
/* Salvage remaining bytes for both reading and writing. */
if (u->fbuf->act > u->fbuf->pos)
memmove (u->fbuf->buf, u->fbuf->buf + u->fbuf->pos,
u->fbuf->act - u->fbuf->pos);
u->fbuf->act -= u->fbuf->pos;
u->fbuf->pos = 0;
return 0;
}
ptrdiff_t
fbuf_seek (gfc_unit *u, ptrdiff_t off, int whence)
{
if (!u->fbuf)
return -1;
switch (whence)
{
case SEEK_SET:
break;
case SEEK_CUR:
off += u->fbuf->pos;
break;
case SEEK_END:
off += u->fbuf->act;
break;
default:
return -1;
}
fbuf_debug (u, "fbuf_seek, off %ld ", (long) off);
/* The start of the buffer is always equal to the left tab
limit. Moving to the left past the buffer is illegal in C and
would also imply moving past the left tab limit, which is never
allowed in Fortran. Similarly, seeking past the end of the buffer
is not possible, in that case the user must make sure to allocate
space with fbuf_alloc(). So return error if that is
attempted. */
if (off < 0 || off > (ptrdiff_t) u->fbuf->act)
return -1;
u->fbuf->pos = off;
return off;
}
/* Fill the buffer with bytes for reading. Returns a pointer to start
reading from. If we hit EOF, returns a short read count. If any
other error occurs, return NULL. After reading, the caller is
expected to call fbuf_seek to update the position with the number
of bytes actually processed. */
char *
fbuf_read (gfc_unit *u, size_t *len)
{
char *ptr;
size_t oldact, oldpos;
ptrdiff_t readlen = 0;
fbuf_debug (u, "fbuf_read, len %lu: ", (unsigned long) *len);
oldact = u->fbuf->act;
oldpos = u->fbuf->pos;
ptr = fbuf_alloc (u, *len);
u->fbuf->pos = oldpos;
if (oldpos + *len > oldact)
{
fbuf_debug (u, "reading %lu bytes starting at %lu ",
(long unsigned) oldpos + *len - oldact,
(long unsigned) oldact);
readlen = sread (u->s, u->fbuf->buf + oldact, oldpos + *len - oldact);
if (readlen < 0)
return NULL;
*len = oldact - oldpos + readlen;
}
u->fbuf->act = oldact + readlen;
fbuf_debug (u, "fbuf_read done: ");
return ptr;
}
/* When the fbuf_getc() inline function runs out of buffer space, it
calls this function to fill the buffer with bytes for
reading. Never call this function directly. */
int
fbuf_getc_refill (gfc_unit *u)
{
char *p;
fbuf_debug (u, "fbuf_getc_refill ");
/* Read 80 bytes (average line length?). This is a compromise
between not needing to call the read() syscall all the time and
not having to memmove unnecessary stuff when switching to the
next record. */
size_t nread = 80;
p = fbuf_read (u, &nread);
if (p && nread > 0)
return (unsigned char) u->fbuf->buf[u->fbuf->pos++];
else
return EOF;
}