c2047754c3
Compiler changes: * Change map assignment to use mapassign and assign value directly. * Change string iteration to use decoderune, faster for ASCII strings. * Change makeslice to take int, and use makeslice64 for larger values. * Add new noverflow field to hmap struct used for maps. Unresolved problems, to be fixed later: * Commented out test in go/types/sizes_test.go that doesn't compile. * Commented out reflect.TestStructOf test for padding after zero-sized field. Reviewed-on: https://go-review.googlesource.com/35231 gotools/: Updates for Go 1.8rc1. * Makefile.am (go_cmd_go_files): Add bug.go. (s-zdefaultcc): Write defaultPkgConfig. * Makefile.in: Rebuild. From-SVN: r244456
973 lines
30 KiB
Go
973 lines
30 KiB
Go
// Copyright 2011 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package template
|
|
|
|
import (
|
|
"bytes"
|
|
"fmt"
|
|
"io"
|
|
"reflect"
|
|
"runtime"
|
|
"sort"
|
|
"strings"
|
|
"text/template/parse"
|
|
)
|
|
|
|
// maxExecDepth specifies the maximum stack depth of templates within
|
|
// templates. This limit is only practically reached by accidentally
|
|
// recursive template invocations. This limit allows us to return
|
|
// an error instead of triggering a stack overflow.
|
|
// For gccgo we make this 1000 rather than 100000 to avoid stack overflow
|
|
// on non-split-stack systems.
|
|
const maxExecDepth = 1000
|
|
|
|
// state represents the state of an execution. It's not part of the
|
|
// template so that multiple executions of the same template
|
|
// can execute in parallel.
|
|
type state struct {
|
|
tmpl *Template
|
|
wr io.Writer
|
|
node parse.Node // current node, for errors
|
|
vars []variable // push-down stack of variable values.
|
|
depth int // the height of the stack of executing templates.
|
|
}
|
|
|
|
// variable holds the dynamic value of a variable such as $, $x etc.
|
|
type variable struct {
|
|
name string
|
|
value reflect.Value
|
|
}
|
|
|
|
// push pushes a new variable on the stack.
|
|
func (s *state) push(name string, value reflect.Value) {
|
|
s.vars = append(s.vars, variable{name, value})
|
|
}
|
|
|
|
// mark returns the length of the variable stack.
|
|
func (s *state) mark() int {
|
|
return len(s.vars)
|
|
}
|
|
|
|
// pop pops the variable stack up to the mark.
|
|
func (s *state) pop(mark int) {
|
|
s.vars = s.vars[0:mark]
|
|
}
|
|
|
|
// setVar overwrites the top-nth variable on the stack. Used by range iterations.
|
|
func (s *state) setVar(n int, value reflect.Value) {
|
|
s.vars[len(s.vars)-n].value = value
|
|
}
|
|
|
|
// varValue returns the value of the named variable.
|
|
func (s *state) varValue(name string) reflect.Value {
|
|
for i := s.mark() - 1; i >= 0; i-- {
|
|
if s.vars[i].name == name {
|
|
return s.vars[i].value
|
|
}
|
|
}
|
|
s.errorf("undefined variable: %s", name)
|
|
return zero
|
|
}
|
|
|
|
var zero reflect.Value
|
|
|
|
// at marks the state to be on node n, for error reporting.
|
|
func (s *state) at(node parse.Node) {
|
|
s.node = node
|
|
}
|
|
|
|
// doublePercent returns the string with %'s replaced by %%, if necessary,
|
|
// so it can be used safely inside a Printf format string.
|
|
func doublePercent(str string) string {
|
|
if strings.Contains(str, "%") {
|
|
str = strings.Replace(str, "%", "%%", -1)
|
|
}
|
|
return str
|
|
}
|
|
|
|
// TODO: It would be nice if ExecError was more broken down, but
|
|
// the way ErrorContext embeds the template name makes the
|
|
// processing too clumsy.
|
|
|
|
// ExecError is the custom error type returned when Execute has an
|
|
// error evaluating its template. (If a write error occurs, the actual
|
|
// error is returned; it will not be of type ExecError.)
|
|
type ExecError struct {
|
|
Name string // Name of template.
|
|
Err error // Pre-formatted error.
|
|
}
|
|
|
|
func (e ExecError) Error() string {
|
|
return e.Err.Error()
|
|
}
|
|
|
|
// errorf records an ExecError and terminates processing.
|
|
func (s *state) errorf(format string, args ...interface{}) {
|
|
name := doublePercent(s.tmpl.Name())
|
|
if s.node == nil {
|
|
format = fmt.Sprintf("template: %s: %s", name, format)
|
|
} else {
|
|
location, context := s.tmpl.ErrorContext(s.node)
|
|
format = fmt.Sprintf("template: %s: executing %q at <%s>: %s", location, name, doublePercent(context), format)
|
|
}
|
|
panic(ExecError{
|
|
Name: s.tmpl.Name(),
|
|
Err: fmt.Errorf(format, args...),
|
|
})
|
|
}
|
|
|
|
// writeError is the wrapper type used internally when Execute has an
|
|
// error writing to its output. We strip the wrapper in errRecover.
|
|
// Note that this is not an implementation of error, so it cannot escape
|
|
// from the package as an error value.
|
|
type writeError struct {
|
|
Err error // Original error.
|
|
}
|
|
|
|
func (s *state) writeError(err error) {
|
|
panic(writeError{
|
|
Err: err,
|
|
})
|
|
}
|
|
|
|
// errRecover is the handler that turns panics into returns from the top
|
|
// level of Parse.
|
|
func errRecover(errp *error) {
|
|
e := recover()
|
|
if e != nil {
|
|
switch err := e.(type) {
|
|
case runtime.Error:
|
|
panic(e)
|
|
case writeError:
|
|
*errp = err.Err // Strip the wrapper.
|
|
case ExecError:
|
|
*errp = err // Keep the wrapper.
|
|
default:
|
|
panic(e)
|
|
}
|
|
}
|
|
}
|
|
|
|
// ExecuteTemplate applies the template associated with t that has the given name
|
|
// to the specified data object and writes the output to wr.
|
|
// If an error occurs executing the template or writing its output,
|
|
// execution stops, but partial results may already have been written to
|
|
// the output writer.
|
|
// A template may be executed safely in parallel.
|
|
func (t *Template) ExecuteTemplate(wr io.Writer, name string, data interface{}) error {
|
|
var tmpl *Template
|
|
if t.common != nil {
|
|
tmpl = t.tmpl[name]
|
|
}
|
|
if tmpl == nil {
|
|
return fmt.Errorf("template: no template %q associated with template %q", name, t.name)
|
|
}
|
|
return tmpl.Execute(wr, data)
|
|
}
|
|
|
|
// Execute applies a parsed template to the specified data object,
|
|
// and writes the output to wr.
|
|
// If an error occurs executing the template or writing its output,
|
|
// execution stops, but partial results may already have been written to
|
|
// the output writer.
|
|
// A template may be executed safely in parallel.
|
|
//
|
|
// If data is a reflect.Value, the template applies to the concrete
|
|
// value that the reflect.Value holds, as in fmt.Print.
|
|
func (t *Template) Execute(wr io.Writer, data interface{}) error {
|
|
return t.execute(wr, data)
|
|
}
|
|
|
|
func (t *Template) execute(wr io.Writer, data interface{}) (err error) {
|
|
defer errRecover(&err)
|
|
value, ok := data.(reflect.Value)
|
|
if !ok {
|
|
value = reflect.ValueOf(data)
|
|
}
|
|
state := &state{
|
|
tmpl: t,
|
|
wr: wr,
|
|
vars: []variable{{"$", value}},
|
|
}
|
|
if t.Tree == nil || t.Root == nil {
|
|
state.errorf("%q is an incomplete or empty template", t.Name())
|
|
}
|
|
state.walk(value, t.Root)
|
|
return
|
|
}
|
|
|
|
// DefinedTemplates returns a string listing the defined templates,
|
|
// prefixed by the string "; defined templates are: ". If there are none,
|
|
// it returns the empty string. For generating an error message here
|
|
// and in html/template.
|
|
func (t *Template) DefinedTemplates() string {
|
|
if t.common == nil {
|
|
return ""
|
|
}
|
|
var b bytes.Buffer
|
|
for name, tmpl := range t.tmpl {
|
|
if tmpl.Tree == nil || tmpl.Root == nil {
|
|
continue
|
|
}
|
|
if b.Len() > 0 {
|
|
b.WriteString(", ")
|
|
}
|
|
fmt.Fprintf(&b, "%q", name)
|
|
}
|
|
var s string
|
|
if b.Len() > 0 {
|
|
s = "; defined templates are: " + b.String()
|
|
}
|
|
return s
|
|
}
|
|
|
|
// Walk functions step through the major pieces of the template structure,
|
|
// generating output as they go.
|
|
func (s *state) walk(dot reflect.Value, node parse.Node) {
|
|
s.at(node)
|
|
switch node := node.(type) {
|
|
case *parse.ActionNode:
|
|
// Do not pop variables so they persist until next end.
|
|
// Also, if the action declares variables, don't print the result.
|
|
val := s.evalPipeline(dot, node.Pipe)
|
|
if len(node.Pipe.Decl) == 0 {
|
|
s.printValue(node, val)
|
|
}
|
|
case *parse.IfNode:
|
|
s.walkIfOrWith(parse.NodeIf, dot, node.Pipe, node.List, node.ElseList)
|
|
case *parse.ListNode:
|
|
for _, node := range node.Nodes {
|
|
s.walk(dot, node)
|
|
}
|
|
case *parse.RangeNode:
|
|
s.walkRange(dot, node)
|
|
case *parse.TemplateNode:
|
|
s.walkTemplate(dot, node)
|
|
case *parse.TextNode:
|
|
if _, err := s.wr.Write(node.Text); err != nil {
|
|
s.writeError(err)
|
|
}
|
|
case *parse.WithNode:
|
|
s.walkIfOrWith(parse.NodeWith, dot, node.Pipe, node.List, node.ElseList)
|
|
default:
|
|
s.errorf("unknown node: %s", node)
|
|
}
|
|
}
|
|
|
|
// walkIfOrWith walks an 'if' or 'with' node. The two control structures
|
|
// are identical in behavior except that 'with' sets dot.
|
|
func (s *state) walkIfOrWith(typ parse.NodeType, dot reflect.Value, pipe *parse.PipeNode, list, elseList *parse.ListNode) {
|
|
defer s.pop(s.mark())
|
|
val := s.evalPipeline(dot, pipe)
|
|
truth, ok := isTrue(val)
|
|
if !ok {
|
|
s.errorf("if/with can't use %v", val)
|
|
}
|
|
if truth {
|
|
if typ == parse.NodeWith {
|
|
s.walk(val, list)
|
|
} else {
|
|
s.walk(dot, list)
|
|
}
|
|
} else if elseList != nil {
|
|
s.walk(dot, elseList)
|
|
}
|
|
}
|
|
|
|
// IsTrue reports whether the value is 'true', in the sense of not the zero of its type,
|
|
// and whether the value has a meaningful truth value. This is the definition of
|
|
// truth used by if and other such actions.
|
|
func IsTrue(val interface{}) (truth, ok bool) {
|
|
return isTrue(reflect.ValueOf(val))
|
|
}
|
|
|
|
func isTrue(val reflect.Value) (truth, ok bool) {
|
|
if !val.IsValid() {
|
|
// Something like var x interface{}, never set. It's a form of nil.
|
|
return false, true
|
|
}
|
|
switch val.Kind() {
|
|
case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
|
|
truth = val.Len() > 0
|
|
case reflect.Bool:
|
|
truth = val.Bool()
|
|
case reflect.Complex64, reflect.Complex128:
|
|
truth = val.Complex() != 0
|
|
case reflect.Chan, reflect.Func, reflect.Ptr, reflect.Interface:
|
|
truth = !val.IsNil()
|
|
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
|
|
truth = val.Int() != 0
|
|
case reflect.Float32, reflect.Float64:
|
|
truth = val.Float() != 0
|
|
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
|
|
truth = val.Uint() != 0
|
|
case reflect.Struct:
|
|
truth = true // Struct values are always true.
|
|
default:
|
|
return
|
|
}
|
|
return truth, true
|
|
}
|
|
|
|
func (s *state) walkRange(dot reflect.Value, r *parse.RangeNode) {
|
|
s.at(r)
|
|
defer s.pop(s.mark())
|
|
val, _ := indirect(s.evalPipeline(dot, r.Pipe))
|
|
// mark top of stack before any variables in the body are pushed.
|
|
mark := s.mark()
|
|
oneIteration := func(index, elem reflect.Value) {
|
|
// Set top var (lexically the second if there are two) to the element.
|
|
if len(r.Pipe.Decl) > 0 {
|
|
s.setVar(1, elem)
|
|
}
|
|
// Set next var (lexically the first if there are two) to the index.
|
|
if len(r.Pipe.Decl) > 1 {
|
|
s.setVar(2, index)
|
|
}
|
|
s.walk(elem, r.List)
|
|
s.pop(mark)
|
|
}
|
|
switch val.Kind() {
|
|
case reflect.Array, reflect.Slice:
|
|
if val.Len() == 0 {
|
|
break
|
|
}
|
|
for i := 0; i < val.Len(); i++ {
|
|
oneIteration(reflect.ValueOf(i), val.Index(i))
|
|
}
|
|
return
|
|
case reflect.Map:
|
|
if val.Len() == 0 {
|
|
break
|
|
}
|
|
for _, key := range sortKeys(val.MapKeys()) {
|
|
oneIteration(key, val.MapIndex(key))
|
|
}
|
|
return
|
|
case reflect.Chan:
|
|
if val.IsNil() {
|
|
break
|
|
}
|
|
i := 0
|
|
for ; ; i++ {
|
|
elem, ok := val.Recv()
|
|
if !ok {
|
|
break
|
|
}
|
|
oneIteration(reflect.ValueOf(i), elem)
|
|
}
|
|
if i == 0 {
|
|
break
|
|
}
|
|
return
|
|
case reflect.Invalid:
|
|
break // An invalid value is likely a nil map, etc. and acts like an empty map.
|
|
default:
|
|
s.errorf("range can't iterate over %v", val)
|
|
}
|
|
if r.ElseList != nil {
|
|
s.walk(dot, r.ElseList)
|
|
}
|
|
}
|
|
|
|
func (s *state) walkTemplate(dot reflect.Value, t *parse.TemplateNode) {
|
|
s.at(t)
|
|
tmpl := s.tmpl.tmpl[t.Name]
|
|
if tmpl == nil {
|
|
s.errorf("template %q not defined", t.Name)
|
|
}
|
|
if s.depth == maxExecDepth {
|
|
s.errorf("exceeded maximum template depth (%v)", maxExecDepth)
|
|
}
|
|
// Variables declared by the pipeline persist.
|
|
dot = s.evalPipeline(dot, t.Pipe)
|
|
newState := *s
|
|
newState.depth++
|
|
newState.tmpl = tmpl
|
|
// No dynamic scoping: template invocations inherit no variables.
|
|
newState.vars = []variable{{"$", dot}}
|
|
newState.walk(dot, tmpl.Root)
|
|
}
|
|
|
|
// Eval functions evaluate pipelines, commands, and their elements and extract
|
|
// values from the data structure by examining fields, calling methods, and so on.
|
|
// The printing of those values happens only through walk functions.
|
|
|
|
// evalPipeline returns the value acquired by evaluating a pipeline. If the
|
|
// pipeline has a variable declaration, the variable will be pushed on the
|
|
// stack. Callers should therefore pop the stack after they are finished
|
|
// executing commands depending on the pipeline value.
|
|
func (s *state) evalPipeline(dot reflect.Value, pipe *parse.PipeNode) (value reflect.Value) {
|
|
if pipe == nil {
|
|
return
|
|
}
|
|
s.at(pipe)
|
|
for _, cmd := range pipe.Cmds {
|
|
value = s.evalCommand(dot, cmd, value) // previous value is this one's final arg.
|
|
// If the object has type interface{}, dig down one level to the thing inside.
|
|
if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 {
|
|
value = reflect.ValueOf(value.Interface()) // lovely!
|
|
}
|
|
}
|
|
for _, variable := range pipe.Decl {
|
|
s.push(variable.Ident[0], value)
|
|
}
|
|
return value
|
|
}
|
|
|
|
func (s *state) notAFunction(args []parse.Node, final reflect.Value) {
|
|
if len(args) > 1 || final.IsValid() {
|
|
s.errorf("can't give argument to non-function %s", args[0])
|
|
}
|
|
}
|
|
|
|
func (s *state) evalCommand(dot reflect.Value, cmd *parse.CommandNode, final reflect.Value) reflect.Value {
|
|
firstWord := cmd.Args[0]
|
|
switch n := firstWord.(type) {
|
|
case *parse.FieldNode:
|
|
return s.evalFieldNode(dot, n, cmd.Args, final)
|
|
case *parse.ChainNode:
|
|
return s.evalChainNode(dot, n, cmd.Args, final)
|
|
case *parse.IdentifierNode:
|
|
// Must be a function.
|
|
return s.evalFunction(dot, n, cmd, cmd.Args, final)
|
|
case *parse.PipeNode:
|
|
// Parenthesized pipeline. The arguments are all inside the pipeline; final is ignored.
|
|
return s.evalPipeline(dot, n)
|
|
case *parse.VariableNode:
|
|
return s.evalVariableNode(dot, n, cmd.Args, final)
|
|
}
|
|
s.at(firstWord)
|
|
s.notAFunction(cmd.Args, final)
|
|
switch word := firstWord.(type) {
|
|
case *parse.BoolNode:
|
|
return reflect.ValueOf(word.True)
|
|
case *parse.DotNode:
|
|
return dot
|
|
case *parse.NilNode:
|
|
s.errorf("nil is not a command")
|
|
case *parse.NumberNode:
|
|
return s.idealConstant(word)
|
|
case *parse.StringNode:
|
|
return reflect.ValueOf(word.Text)
|
|
}
|
|
s.errorf("can't evaluate command %q", firstWord)
|
|
panic("not reached")
|
|
}
|
|
|
|
// idealConstant is called to return the value of a number in a context where
|
|
// we don't know the type. In that case, the syntax of the number tells us
|
|
// its type, and we use Go rules to resolve. Note there is no such thing as
|
|
// a uint ideal constant in this situation - the value must be of int type.
|
|
func (s *state) idealConstant(constant *parse.NumberNode) reflect.Value {
|
|
// These are ideal constants but we don't know the type
|
|
// and we have no context. (If it was a method argument,
|
|
// we'd know what we need.) The syntax guides us to some extent.
|
|
s.at(constant)
|
|
switch {
|
|
case constant.IsComplex:
|
|
return reflect.ValueOf(constant.Complex128) // incontrovertible.
|
|
case constant.IsFloat && !isHexConstant(constant.Text) && strings.ContainsAny(constant.Text, ".eE"):
|
|
return reflect.ValueOf(constant.Float64)
|
|
case constant.IsInt:
|
|
n := int(constant.Int64)
|
|
if int64(n) != constant.Int64 {
|
|
s.errorf("%s overflows int", constant.Text)
|
|
}
|
|
return reflect.ValueOf(n)
|
|
case constant.IsUint:
|
|
s.errorf("%s overflows int", constant.Text)
|
|
}
|
|
return zero
|
|
}
|
|
|
|
func isHexConstant(s string) bool {
|
|
return len(s) > 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X')
|
|
}
|
|
|
|
func (s *state) evalFieldNode(dot reflect.Value, field *parse.FieldNode, args []parse.Node, final reflect.Value) reflect.Value {
|
|
s.at(field)
|
|
return s.evalFieldChain(dot, dot, field, field.Ident, args, final)
|
|
}
|
|
|
|
func (s *state) evalChainNode(dot reflect.Value, chain *parse.ChainNode, args []parse.Node, final reflect.Value) reflect.Value {
|
|
s.at(chain)
|
|
if len(chain.Field) == 0 {
|
|
s.errorf("internal error: no fields in evalChainNode")
|
|
}
|
|
if chain.Node.Type() == parse.NodeNil {
|
|
s.errorf("indirection through explicit nil in %s", chain)
|
|
}
|
|
// (pipe).Field1.Field2 has pipe as .Node, fields as .Field. Eval the pipeline, then the fields.
|
|
pipe := s.evalArg(dot, nil, chain.Node)
|
|
return s.evalFieldChain(dot, pipe, chain, chain.Field, args, final)
|
|
}
|
|
|
|
func (s *state) evalVariableNode(dot reflect.Value, variable *parse.VariableNode, args []parse.Node, final reflect.Value) reflect.Value {
|
|
// $x.Field has $x as the first ident, Field as the second. Eval the var, then the fields.
|
|
s.at(variable)
|
|
value := s.varValue(variable.Ident[0])
|
|
if len(variable.Ident) == 1 {
|
|
s.notAFunction(args, final)
|
|
return value
|
|
}
|
|
return s.evalFieldChain(dot, value, variable, variable.Ident[1:], args, final)
|
|
}
|
|
|
|
// evalFieldChain evaluates .X.Y.Z possibly followed by arguments.
|
|
// dot is the environment in which to evaluate arguments, while
|
|
// receiver is the value being walked along the chain.
|
|
func (s *state) evalFieldChain(dot, receiver reflect.Value, node parse.Node, ident []string, args []parse.Node, final reflect.Value) reflect.Value {
|
|
n := len(ident)
|
|
for i := 0; i < n-1; i++ {
|
|
receiver = s.evalField(dot, ident[i], node, nil, zero, receiver)
|
|
}
|
|
// Now if it's a method, it gets the arguments.
|
|
return s.evalField(dot, ident[n-1], node, args, final, receiver)
|
|
}
|
|
|
|
func (s *state) evalFunction(dot reflect.Value, node *parse.IdentifierNode, cmd parse.Node, args []parse.Node, final reflect.Value) reflect.Value {
|
|
s.at(node)
|
|
name := node.Ident
|
|
function, ok := findFunction(name, s.tmpl)
|
|
if !ok {
|
|
s.errorf("%q is not a defined function", name)
|
|
}
|
|
return s.evalCall(dot, function, cmd, name, args, final)
|
|
}
|
|
|
|
// evalField evaluates an expression like (.Field) or (.Field arg1 arg2).
|
|
// The 'final' argument represents the return value from the preceding
|
|
// value of the pipeline, if any.
|
|
func (s *state) evalField(dot reflect.Value, fieldName string, node parse.Node, args []parse.Node, final, receiver reflect.Value) reflect.Value {
|
|
if !receiver.IsValid() {
|
|
if s.tmpl.option.missingKey == mapError { // Treat invalid value as missing map key.
|
|
s.errorf("nil data; no entry for key %q", fieldName)
|
|
}
|
|
return zero
|
|
}
|
|
typ := receiver.Type()
|
|
receiver, isNil := indirect(receiver)
|
|
// Unless it's an interface, need to get to a value of type *T to guarantee
|
|
// we see all methods of T and *T.
|
|
ptr := receiver
|
|
if ptr.Kind() != reflect.Interface && ptr.CanAddr() {
|
|
ptr = ptr.Addr()
|
|
}
|
|
if method := ptr.MethodByName(fieldName); method.IsValid() {
|
|
return s.evalCall(dot, method, node, fieldName, args, final)
|
|
}
|
|
hasArgs := len(args) > 1 || final.IsValid()
|
|
// It's not a method; must be a field of a struct or an element of a map.
|
|
switch receiver.Kind() {
|
|
case reflect.Struct:
|
|
tField, ok := receiver.Type().FieldByName(fieldName)
|
|
if ok {
|
|
if isNil {
|
|
s.errorf("nil pointer evaluating %s.%s", typ, fieldName)
|
|
}
|
|
field := receiver.FieldByIndex(tField.Index)
|
|
if tField.PkgPath != "" { // field is unexported
|
|
s.errorf("%s is an unexported field of struct type %s", fieldName, typ)
|
|
}
|
|
// If it's a function, we must call it.
|
|
if hasArgs {
|
|
s.errorf("%s has arguments but cannot be invoked as function", fieldName)
|
|
}
|
|
return field
|
|
}
|
|
case reflect.Map:
|
|
if isNil {
|
|
s.errorf("nil pointer evaluating %s.%s", typ, fieldName)
|
|
}
|
|
// If it's a map, attempt to use the field name as a key.
|
|
nameVal := reflect.ValueOf(fieldName)
|
|
if nameVal.Type().AssignableTo(receiver.Type().Key()) {
|
|
if hasArgs {
|
|
s.errorf("%s is not a method but has arguments", fieldName)
|
|
}
|
|
result := receiver.MapIndex(nameVal)
|
|
if !result.IsValid() {
|
|
switch s.tmpl.option.missingKey {
|
|
case mapInvalid:
|
|
// Just use the invalid value.
|
|
case mapZeroValue:
|
|
result = reflect.Zero(receiver.Type().Elem())
|
|
case mapError:
|
|
s.errorf("map has no entry for key %q", fieldName)
|
|
}
|
|
}
|
|
return result
|
|
}
|
|
}
|
|
s.errorf("can't evaluate field %s in type %s", fieldName, typ)
|
|
panic("not reached")
|
|
}
|
|
|
|
var (
|
|
errorType = reflect.TypeOf((*error)(nil)).Elem()
|
|
fmtStringerType = reflect.TypeOf((*fmt.Stringer)(nil)).Elem()
|
|
reflectValueType = reflect.TypeOf((*reflect.Value)(nil)).Elem()
|
|
)
|
|
|
|
// evalCall executes a function or method call. If it's a method, fun already has the receiver bound, so
|
|
// it looks just like a function call. The arg list, if non-nil, includes (in the manner of the shell), arg[0]
|
|
// as the function itself.
|
|
func (s *state) evalCall(dot, fun reflect.Value, node parse.Node, name string, args []parse.Node, final reflect.Value) reflect.Value {
|
|
if args != nil {
|
|
args = args[1:] // Zeroth arg is function name/node; not passed to function.
|
|
}
|
|
typ := fun.Type()
|
|
numIn := len(args)
|
|
if final.IsValid() {
|
|
numIn++
|
|
}
|
|
numFixed := len(args)
|
|
if typ.IsVariadic() {
|
|
numFixed = typ.NumIn() - 1 // last arg is the variadic one.
|
|
if numIn < numFixed {
|
|
s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args))
|
|
}
|
|
} else if numIn < typ.NumIn()-1 || !typ.IsVariadic() && numIn != typ.NumIn() {
|
|
s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), len(args))
|
|
}
|
|
if !goodFunc(typ) {
|
|
// TODO: This could still be a confusing error; maybe goodFunc should provide info.
|
|
s.errorf("can't call method/function %q with %d results", name, typ.NumOut())
|
|
}
|
|
// Build the arg list.
|
|
argv := make([]reflect.Value, numIn)
|
|
// Args must be evaluated. Fixed args first.
|
|
i := 0
|
|
for ; i < numFixed && i < len(args); i++ {
|
|
argv[i] = s.evalArg(dot, typ.In(i), args[i])
|
|
}
|
|
// Now the ... args.
|
|
if typ.IsVariadic() {
|
|
argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice.
|
|
for ; i < len(args); i++ {
|
|
argv[i] = s.evalArg(dot, argType, args[i])
|
|
}
|
|
}
|
|
// Add final value if necessary.
|
|
if final.IsValid() {
|
|
t := typ.In(typ.NumIn() - 1)
|
|
if typ.IsVariadic() {
|
|
if numIn-1 < numFixed {
|
|
// The added final argument corresponds to a fixed parameter of the function.
|
|
// Validate against the type of the actual parameter.
|
|
t = typ.In(numIn - 1)
|
|
} else {
|
|
// The added final argument corresponds to the variadic part.
|
|
// Validate against the type of the elements of the variadic slice.
|
|
t = t.Elem()
|
|
}
|
|
}
|
|
argv[i] = s.validateType(final, t)
|
|
}
|
|
result := fun.Call(argv)
|
|
// If we have an error that is not nil, stop execution and return that error to the caller.
|
|
if len(result) == 2 && !result[1].IsNil() {
|
|
s.at(node)
|
|
s.errorf("error calling %s: %s", name, result[1].Interface().(error))
|
|
}
|
|
v := result[0]
|
|
if v.Type() == reflectValueType {
|
|
v = v.Interface().(reflect.Value)
|
|
}
|
|
return v
|
|
}
|
|
|
|
// canBeNil reports whether an untyped nil can be assigned to the type. See reflect.Zero.
|
|
func canBeNil(typ reflect.Type) bool {
|
|
switch typ.Kind() {
|
|
case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice:
|
|
return true
|
|
case reflect.Struct:
|
|
return typ == reflectValueType
|
|
}
|
|
return false
|
|
}
|
|
|
|
// validateType guarantees that the value is valid and assignable to the type.
|
|
func (s *state) validateType(value reflect.Value, typ reflect.Type) reflect.Value {
|
|
if !value.IsValid() {
|
|
if typ == nil || canBeNil(typ) {
|
|
// An untyped nil interface{}. Accept as a proper nil value.
|
|
return reflect.Zero(typ)
|
|
}
|
|
s.errorf("invalid value; expected %s", typ)
|
|
}
|
|
if typ == reflectValueType && value.Type() != typ {
|
|
return reflect.ValueOf(value)
|
|
}
|
|
if typ != nil && !value.Type().AssignableTo(typ) {
|
|
if value.Kind() == reflect.Interface && !value.IsNil() {
|
|
value = value.Elem()
|
|
if value.Type().AssignableTo(typ) {
|
|
return value
|
|
}
|
|
// fallthrough
|
|
}
|
|
// Does one dereference or indirection work? We could do more, as we
|
|
// do with method receivers, but that gets messy and method receivers
|
|
// are much more constrained, so it makes more sense there than here.
|
|
// Besides, one is almost always all you need.
|
|
switch {
|
|
case value.Kind() == reflect.Ptr && value.Type().Elem().AssignableTo(typ):
|
|
value = value.Elem()
|
|
if !value.IsValid() {
|
|
s.errorf("dereference of nil pointer of type %s", typ)
|
|
}
|
|
case reflect.PtrTo(value.Type()).AssignableTo(typ) && value.CanAddr():
|
|
value = value.Addr()
|
|
default:
|
|
s.errorf("wrong type for value; expected %s; got %s", typ, value.Type())
|
|
}
|
|
}
|
|
return value
|
|
}
|
|
|
|
func (s *state) evalArg(dot reflect.Value, typ reflect.Type, n parse.Node) reflect.Value {
|
|
s.at(n)
|
|
switch arg := n.(type) {
|
|
case *parse.DotNode:
|
|
return s.validateType(dot, typ)
|
|
case *parse.NilNode:
|
|
if canBeNil(typ) {
|
|
return reflect.Zero(typ)
|
|
}
|
|
s.errorf("cannot assign nil to %s", typ)
|
|
case *parse.FieldNode:
|
|
return s.validateType(s.evalFieldNode(dot, arg, []parse.Node{n}, zero), typ)
|
|
case *parse.VariableNode:
|
|
return s.validateType(s.evalVariableNode(dot, arg, nil, zero), typ)
|
|
case *parse.PipeNode:
|
|
return s.validateType(s.evalPipeline(dot, arg), typ)
|
|
case *parse.IdentifierNode:
|
|
return s.validateType(s.evalFunction(dot, arg, arg, nil, zero), typ)
|
|
case *parse.ChainNode:
|
|
return s.validateType(s.evalChainNode(dot, arg, nil, zero), typ)
|
|
}
|
|
switch typ.Kind() {
|
|
case reflect.Bool:
|
|
return s.evalBool(typ, n)
|
|
case reflect.Complex64, reflect.Complex128:
|
|
return s.evalComplex(typ, n)
|
|
case reflect.Float32, reflect.Float64:
|
|
return s.evalFloat(typ, n)
|
|
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
|
|
return s.evalInteger(typ, n)
|
|
case reflect.Interface:
|
|
if typ.NumMethod() == 0 {
|
|
return s.evalEmptyInterface(dot, n)
|
|
}
|
|
case reflect.Struct:
|
|
if typ == reflectValueType {
|
|
return reflect.ValueOf(s.evalEmptyInterface(dot, n))
|
|
}
|
|
case reflect.String:
|
|
return s.evalString(typ, n)
|
|
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
|
|
return s.evalUnsignedInteger(typ, n)
|
|
}
|
|
s.errorf("can't handle %s for arg of type %s", n, typ)
|
|
panic("not reached")
|
|
}
|
|
|
|
func (s *state) evalBool(typ reflect.Type, n parse.Node) reflect.Value {
|
|
s.at(n)
|
|
if n, ok := n.(*parse.BoolNode); ok {
|
|
value := reflect.New(typ).Elem()
|
|
value.SetBool(n.True)
|
|
return value
|
|
}
|
|
s.errorf("expected bool; found %s", n)
|
|
panic("not reached")
|
|
}
|
|
|
|
func (s *state) evalString(typ reflect.Type, n parse.Node) reflect.Value {
|
|
s.at(n)
|
|
if n, ok := n.(*parse.StringNode); ok {
|
|
value := reflect.New(typ).Elem()
|
|
value.SetString(n.Text)
|
|
return value
|
|
}
|
|
s.errorf("expected string; found %s", n)
|
|
panic("not reached")
|
|
}
|
|
|
|
func (s *state) evalInteger(typ reflect.Type, n parse.Node) reflect.Value {
|
|
s.at(n)
|
|
if n, ok := n.(*parse.NumberNode); ok && n.IsInt {
|
|
value := reflect.New(typ).Elem()
|
|
value.SetInt(n.Int64)
|
|
return value
|
|
}
|
|
s.errorf("expected integer; found %s", n)
|
|
panic("not reached")
|
|
}
|
|
|
|
func (s *state) evalUnsignedInteger(typ reflect.Type, n parse.Node) reflect.Value {
|
|
s.at(n)
|
|
if n, ok := n.(*parse.NumberNode); ok && n.IsUint {
|
|
value := reflect.New(typ).Elem()
|
|
value.SetUint(n.Uint64)
|
|
return value
|
|
}
|
|
s.errorf("expected unsigned integer; found %s", n)
|
|
panic("not reached")
|
|
}
|
|
|
|
func (s *state) evalFloat(typ reflect.Type, n parse.Node) reflect.Value {
|
|
s.at(n)
|
|
if n, ok := n.(*parse.NumberNode); ok && n.IsFloat {
|
|
value := reflect.New(typ).Elem()
|
|
value.SetFloat(n.Float64)
|
|
return value
|
|
}
|
|
s.errorf("expected float; found %s", n)
|
|
panic("not reached")
|
|
}
|
|
|
|
func (s *state) evalComplex(typ reflect.Type, n parse.Node) reflect.Value {
|
|
if n, ok := n.(*parse.NumberNode); ok && n.IsComplex {
|
|
value := reflect.New(typ).Elem()
|
|
value.SetComplex(n.Complex128)
|
|
return value
|
|
}
|
|
s.errorf("expected complex; found %s", n)
|
|
panic("not reached")
|
|
}
|
|
|
|
func (s *state) evalEmptyInterface(dot reflect.Value, n parse.Node) reflect.Value {
|
|
s.at(n)
|
|
switch n := n.(type) {
|
|
case *parse.BoolNode:
|
|
return reflect.ValueOf(n.True)
|
|
case *parse.DotNode:
|
|
return dot
|
|
case *parse.FieldNode:
|
|
return s.evalFieldNode(dot, n, nil, zero)
|
|
case *parse.IdentifierNode:
|
|
return s.evalFunction(dot, n, n, nil, zero)
|
|
case *parse.NilNode:
|
|
// NilNode is handled in evalArg, the only place that calls here.
|
|
s.errorf("evalEmptyInterface: nil (can't happen)")
|
|
case *parse.NumberNode:
|
|
return s.idealConstant(n)
|
|
case *parse.StringNode:
|
|
return reflect.ValueOf(n.Text)
|
|
case *parse.VariableNode:
|
|
return s.evalVariableNode(dot, n, nil, zero)
|
|
case *parse.PipeNode:
|
|
return s.evalPipeline(dot, n)
|
|
}
|
|
s.errorf("can't handle assignment of %s to empty interface argument", n)
|
|
panic("not reached")
|
|
}
|
|
|
|
// indirect returns the item at the end of indirection, and a bool to indicate if it's nil.
|
|
func indirect(v reflect.Value) (rv reflect.Value, isNil bool) {
|
|
for ; v.Kind() == reflect.Ptr || v.Kind() == reflect.Interface; v = v.Elem() {
|
|
if v.IsNil() {
|
|
return v, true
|
|
}
|
|
}
|
|
return v, false
|
|
}
|
|
|
|
// indirectInterface returns the concrete value in an interface value,
|
|
// or else the zero reflect.Value.
|
|
// That is, if v represents the interface value x, the result is the same as reflect.ValueOf(x):
|
|
// the fact that x was an interface value is forgotten.
|
|
func indirectInterface(v reflect.Value) reflect.Value {
|
|
if v.Kind() != reflect.Interface {
|
|
return v
|
|
}
|
|
if v.IsNil() {
|
|
return reflect.Value{}
|
|
}
|
|
return v.Elem()
|
|
}
|
|
|
|
// printValue writes the textual representation of the value to the output of
|
|
// the template.
|
|
func (s *state) printValue(n parse.Node, v reflect.Value) {
|
|
s.at(n)
|
|
iface, ok := printableValue(v)
|
|
if !ok {
|
|
s.errorf("can't print %s of type %s", n, v.Type())
|
|
}
|
|
_, err := fmt.Fprint(s.wr, iface)
|
|
if err != nil {
|
|
s.writeError(err)
|
|
}
|
|
}
|
|
|
|
// printableValue returns the, possibly indirected, interface value inside v that
|
|
// is best for a call to formatted printer.
|
|
func printableValue(v reflect.Value) (interface{}, bool) {
|
|
if v.Kind() == reflect.Ptr {
|
|
v, _ = indirect(v) // fmt.Fprint handles nil.
|
|
}
|
|
if !v.IsValid() {
|
|
return "<no value>", true
|
|
}
|
|
|
|
if !v.Type().Implements(errorType) && !v.Type().Implements(fmtStringerType) {
|
|
if v.CanAddr() && (reflect.PtrTo(v.Type()).Implements(errorType) || reflect.PtrTo(v.Type()).Implements(fmtStringerType)) {
|
|
v = v.Addr()
|
|
} else {
|
|
switch v.Kind() {
|
|
case reflect.Chan, reflect.Func:
|
|
return nil, false
|
|
}
|
|
}
|
|
}
|
|
return v.Interface(), true
|
|
}
|
|
|
|
// Types to help sort the keys in a map for reproducible output.
|
|
|
|
type rvs []reflect.Value
|
|
|
|
func (x rvs) Len() int { return len(x) }
|
|
func (x rvs) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
|
|
|
|
type rvInts struct{ rvs }
|
|
|
|
func (x rvInts) Less(i, j int) bool { return x.rvs[i].Int() < x.rvs[j].Int() }
|
|
|
|
type rvUints struct{ rvs }
|
|
|
|
func (x rvUints) Less(i, j int) bool { return x.rvs[i].Uint() < x.rvs[j].Uint() }
|
|
|
|
type rvFloats struct{ rvs }
|
|
|
|
func (x rvFloats) Less(i, j int) bool { return x.rvs[i].Float() < x.rvs[j].Float() }
|
|
|
|
type rvStrings struct{ rvs }
|
|
|
|
func (x rvStrings) Less(i, j int) bool { return x.rvs[i].String() < x.rvs[j].String() }
|
|
|
|
// sortKeys sorts (if it can) the slice of reflect.Values, which is a slice of map keys.
|
|
func sortKeys(v []reflect.Value) []reflect.Value {
|
|
if len(v) <= 1 {
|
|
return v
|
|
}
|
|
switch v[0].Kind() {
|
|
case reflect.Float32, reflect.Float64:
|
|
sort.Sort(rvFloats{v})
|
|
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
|
|
sort.Sort(rvInts{v})
|
|
case reflect.String:
|
|
sort.Sort(rvStrings{v})
|
|
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
|
|
sort.Sort(rvUints{v})
|
|
}
|
|
return v
|
|
}
|