1b78544ffe
From-SVN: r195820
167 lines
3.9 KiB
C
167 lines
3.9 KiB
C
/* Complex sine hyperbole function for complex __float128.
|
|
Copyright (C) 1997-2012 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "quadmath-imp.h"
|
|
|
|
#ifdef HAVE_FENV_H
|
|
# include <fenv.h>
|
|
#endif
|
|
|
|
|
|
__complex128
|
|
csinhq (__complex128 x)
|
|
{
|
|
__complex128 retval;
|
|
int negate = signbitq (__real__ x);
|
|
int rcls = fpclassifyq (__real__ x);
|
|
int icls = fpclassifyq (__imag__ x);
|
|
|
|
__real__ x = fabsq (__real__ x);
|
|
|
|
if (__builtin_expect (rcls >= QUADFP_ZERO, 1))
|
|
{
|
|
/* Real part is finite. */
|
|
if (__builtin_expect (icls >= QUADFP_ZERO, 1))
|
|
{
|
|
/* Imaginary part is finite. */
|
|
const int t = (int) ((FLT128_MAX_EXP - 1) * M_LN2q);
|
|
__float128 sinix, cosix;
|
|
|
|
if (__builtin_expect (icls != QUADFP_SUBNORMAL, 1))
|
|
{
|
|
sincosq (__imag__ x, &sinix, &cosix);
|
|
}
|
|
else
|
|
{
|
|
sinix = __imag__ x;
|
|
cosix = 1.0Q;
|
|
}
|
|
|
|
if (fabsq (__real__ x) > t)
|
|
{
|
|
__float128 exp_t = expq (t);
|
|
__float128 rx = fabsq (__real__ x);
|
|
if (signbitq (__real__ x))
|
|
cosix = -cosix;
|
|
rx -= t;
|
|
sinix *= exp_t / 2.0Q;
|
|
cosix *= exp_t / 2.0Q;
|
|
if (rx > t)
|
|
{
|
|
rx -= t;
|
|
sinix *= exp_t;
|
|
cosix *= exp_t;
|
|
}
|
|
if (rx > t)
|
|
{
|
|
/* Overflow (original real part of x > 3t). */
|
|
__real__ retval = FLT128_MAX * cosix;
|
|
__imag__ retval = FLT128_MAX * sinix;
|
|
}
|
|
else
|
|
{
|
|
__float128 exp_val = expq (rx);
|
|
__real__ retval = exp_val * cosix;
|
|
__imag__ retval = exp_val * sinix;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
__real__ retval = sinhq (__real__ x) * cosix;
|
|
__imag__ retval = coshq (__real__ x) * sinix;
|
|
}
|
|
|
|
if (negate)
|
|
__real__ retval = -__real__ retval;
|
|
}
|
|
else
|
|
{
|
|
if (rcls == QUADFP_ZERO)
|
|
{
|
|
/* Real part is 0.0. */
|
|
__real__ retval = copysignq (0.0Q, negate ? -1.0Q : 1.0Q);
|
|
__imag__ retval = nanq ("") + nanq ("");
|
|
|
|
#ifdef HAVE_FENV_H
|
|
if (icls == QUADFP_INFINITE)
|
|
feraiseexcept (FE_INVALID);
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
__real__ retval = nanq ("");
|
|
__imag__ retval = nanq ("");
|
|
|
|
#ifdef HAVE_FENV_H
|
|
feraiseexcept (FE_INVALID);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
else if (rcls == QUADFP_INFINITE)
|
|
{
|
|
/* Real part is infinite. */
|
|
if (__builtin_expect (icls > QUADFP_ZERO, 1))
|
|
{
|
|
/* Imaginary part is finite. */
|
|
__float128 sinix, cosix;
|
|
|
|
if (__builtin_expect (icls != QUADFP_SUBNORMAL, 1))
|
|
{
|
|
sincosq (__imag__ x, &sinix, &cosix);
|
|
}
|
|
else
|
|
{
|
|
sinix = __imag__ x;
|
|
cosix = 1.0;
|
|
}
|
|
|
|
__real__ retval = copysignq (HUGE_VALQ, cosix);
|
|
__imag__ retval = copysignq (HUGE_VALQ, sinix);
|
|
|
|
if (negate)
|
|
__real__ retval = -__real__ retval;
|
|
}
|
|
else if (icls == QUADFP_ZERO)
|
|
{
|
|
/* Imaginary part is 0.0. */
|
|
__real__ retval = negate ? -HUGE_VALQ : HUGE_VALQ;
|
|
__imag__ retval = __imag__ x;
|
|
}
|
|
else
|
|
{
|
|
/* The addition raises the invalid exception. */
|
|
__real__ retval = HUGE_VALQ;
|
|
__imag__ retval = nanq ("") + nanq ("");
|
|
|
|
#ifdef HAVE_FENV_H
|
|
if (icls == QUADFP_INFINITE)
|
|
feraiseexcept (FE_INVALID);
|
|
#endif
|
|
}
|
|
}
|
|
else
|
|
{
|
|
__real__ retval = nanq ("");
|
|
__imag__ retval = __imag__ x == 0.0Q ? __imag__ x : nanq ("");
|
|
}
|
|
|
|
return retval;
|
|
}
|