gcc/libquadmath/math/csinhq.c
Richard Sandiford 1b78544ffe Revert libquadmath and libssp copyright patches.
From-SVN: r195820
2013-02-06 22:03:54 +00:00

167 lines
3.9 KiB
C

/* Complex sine hyperbole function for complex __float128.
Copyright (C) 1997-2012 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include "quadmath-imp.h"
#ifdef HAVE_FENV_H
# include <fenv.h>
#endif
__complex128
csinhq (__complex128 x)
{
__complex128 retval;
int negate = signbitq (__real__ x);
int rcls = fpclassifyq (__real__ x);
int icls = fpclassifyq (__imag__ x);
__real__ x = fabsq (__real__ x);
if (__builtin_expect (rcls >= QUADFP_ZERO, 1))
{
/* Real part is finite. */
if (__builtin_expect (icls >= QUADFP_ZERO, 1))
{
/* Imaginary part is finite. */
const int t = (int) ((FLT128_MAX_EXP - 1) * M_LN2q);
__float128 sinix, cosix;
if (__builtin_expect (icls != QUADFP_SUBNORMAL, 1))
{
sincosq (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1.0Q;
}
if (fabsq (__real__ x) > t)
{
__float128 exp_t = expq (t);
__float128 rx = fabsq (__real__ x);
if (signbitq (__real__ x))
cosix = -cosix;
rx -= t;
sinix *= exp_t / 2.0Q;
cosix *= exp_t / 2.0Q;
if (rx > t)
{
rx -= t;
sinix *= exp_t;
cosix *= exp_t;
}
if (rx > t)
{
/* Overflow (original real part of x > 3t). */
__real__ retval = FLT128_MAX * cosix;
__imag__ retval = FLT128_MAX * sinix;
}
else
{
__float128 exp_val = expq (rx);
__real__ retval = exp_val * cosix;
__imag__ retval = exp_val * sinix;
}
}
else
{
__real__ retval = sinhq (__real__ x) * cosix;
__imag__ retval = coshq (__real__ x) * sinix;
}
if (negate)
__real__ retval = -__real__ retval;
}
else
{
if (rcls == QUADFP_ZERO)
{
/* Real part is 0.0. */
__real__ retval = copysignq (0.0Q, negate ? -1.0Q : 1.0Q);
__imag__ retval = nanq ("") + nanq ("");
#ifdef HAVE_FENV_H
if (icls == QUADFP_INFINITE)
feraiseexcept (FE_INVALID);
#endif
}
else
{
__real__ retval = nanq ("");
__imag__ retval = nanq ("");
#ifdef HAVE_FENV_H
feraiseexcept (FE_INVALID);
#endif
}
}
}
else if (rcls == QUADFP_INFINITE)
{
/* Real part is infinite. */
if (__builtin_expect (icls > QUADFP_ZERO, 1))
{
/* Imaginary part is finite. */
__float128 sinix, cosix;
if (__builtin_expect (icls != QUADFP_SUBNORMAL, 1))
{
sincosq (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1.0;
}
__real__ retval = copysignq (HUGE_VALQ, cosix);
__imag__ retval = copysignq (HUGE_VALQ, sinix);
if (negate)
__real__ retval = -__real__ retval;
}
else if (icls == QUADFP_ZERO)
{
/* Imaginary part is 0.0. */
__real__ retval = negate ? -HUGE_VALQ : HUGE_VALQ;
__imag__ retval = __imag__ x;
}
else
{
/* The addition raises the invalid exception. */
__real__ retval = HUGE_VALQ;
__imag__ retval = nanq ("") + nanq ("");
#ifdef HAVE_FENV_H
if (icls == QUADFP_INFINITE)
feraiseexcept (FE_INVALID);
#endif
}
}
else
{
__real__ retval = nanq ("");
__imag__ retval = __imag__ x == 0.0Q ? __imag__ x : nanq ("");
}
return retval;
}