a142a99626
* java/util/TreeMap.java: New file. * java/util/TreeSet.java: New file. * Makefile.am: Add TreeMap and TreeSet. Enable WeakHashMap. * Makefile.in: Rebuilt. * java/util/HashSet.java (clone): Use constructor instead of calling clone on itself. * java/util/SortedSet.java: Sync with classpath. * java/util/HashMap.java (hash): Use if statement instead of ternary, for clarity. Resolves PR libgcj/1758. Resolves PR java/1684. From-SVN: r39657
713 lines
18 KiB
Java
713 lines
18 KiB
Java
/* HashMap.java -- a class providing a basic hashtable data structure,
|
|
mapping Object --> Object
|
|
Copyright (C) 1998, 1999, 2000 Free Software Foundation, Inc.
|
|
|
|
This file is part of GNU Classpath.
|
|
|
|
GNU Classpath is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2, or (at your option)
|
|
any later version.
|
|
|
|
GNU Classpath is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GNU Classpath; see the file COPYING. If not, write to the
|
|
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
|
02111-1307 USA.
|
|
|
|
As a special exception, if you link this library with other files to
|
|
produce an executable, this library does not by itself cause the
|
|
resulting executable to be covered by the GNU General Public License.
|
|
This exception does not however invalidate any other reasons why the
|
|
executable file might be covered by the GNU General Public License. */
|
|
|
|
|
|
package java.util;
|
|
|
|
import java.io.IOException;
|
|
import java.io.Serializable;
|
|
import java.io.ObjectInputStream;
|
|
import java.io.ObjectOutputStream;
|
|
|
|
// NOTE: This implementation is very similar to that of Hashtable. If you fix
|
|
// a bug in here, chances are you should make a similar change to the Hashtable
|
|
// code.
|
|
|
|
/**
|
|
* This class provides a hashtable-backed implementation of the
|
|
* Map interface.
|
|
*
|
|
* It uses a hash-bucket approach; that is, hash
|
|
* collisions are handled by linking the new node off of the
|
|
* pre-existing node (or list of nodes). In this manner, techniques
|
|
* such as linear probing (which can casue primary clustering) and
|
|
* rehashing (which does not fit very well with Java's method of
|
|
* precomputing hash codes) are avoided.
|
|
*
|
|
* Under ideal circumstances (no collisions, HashMap offers O(1)
|
|
* performance on most operations (<pre>containsValue()</pre> is,
|
|
* of course, O(n)). In the worst case (all keys map to the same
|
|
* hash code -- very unlikely), most operations are O(n).
|
|
*
|
|
* HashMap is part of the JDK1.2 Collections API. It differs from
|
|
* Hashtable in that it accepts the null key and null values, and it
|
|
* does not support "Enumeration views."
|
|
*
|
|
* @author Jon Zeppieri
|
|
* @author Jochen Hoenicke
|
|
* @author Bryce McKinlay
|
|
* @version $Revision: 1.4 $
|
|
* @modified $Id: HashMap.java,v 1.4 2000/12/21 02:00:15 bryce Exp $
|
|
*/
|
|
public class HashMap extends AbstractMap
|
|
implements Map, Cloneable, Serializable
|
|
{
|
|
/** Default number of buckets. This is the value the JDK 1.3 uses. Some
|
|
* early documentation specified this value as 101. That is incorrect. */
|
|
private static final int DEFAULT_CAPACITY = 11;
|
|
/** The defaulty load factor; this is explicitly specified by the spec. */
|
|
private static final float DEFAULT_LOAD_FACTOR = 0.75f;
|
|
|
|
private static final long serialVersionUID = 362498820763181265L;
|
|
|
|
/**
|
|
* The rounded product of the capacity and the load factor; when the number
|
|
* of elements exceeds the threshold, the HashMap calls <pre>rehash()</pre>.
|
|
* @serial
|
|
*/
|
|
int threshold;
|
|
|
|
/** Load factor of this HashMap: used in computing the threshold.
|
|
* @serial
|
|
*/
|
|
float loadFactor = DEFAULT_LOAD_FACTOR;
|
|
|
|
/**
|
|
* Array containing the actual key-value mappings
|
|
*/
|
|
transient Entry[] buckets;
|
|
|
|
/**
|
|
* counts the number of modifications this HashMap has undergone, used
|
|
* by Iterators to know when to throw ConcurrentModificationExceptions.
|
|
*/
|
|
transient int modCount;
|
|
|
|
/** the size of this HashMap: denotes the number of key-value pairs */
|
|
transient int size;
|
|
|
|
/**
|
|
* Class to represent an entry in the hash table. Holds a single key-value
|
|
* pair.
|
|
*/
|
|
static class Entry extends BasicMapEntry
|
|
{
|
|
Entry next;
|
|
|
|
Entry(Object key, Object value)
|
|
{
|
|
super(key, value);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* construct a new HashMap with the default capacity (11) and the default
|
|
* load factor (0.75).
|
|
*/
|
|
public HashMap()
|
|
{
|
|
this(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR);
|
|
}
|
|
|
|
/**
|
|
* construct a new HashMap from the given Map
|
|
*
|
|
* every element in Map t will be put into this new HashMap
|
|
*
|
|
* @param t a Map whose key / value pairs will be put into
|
|
* the new HashMap. <b>NOTE: key / value pairs
|
|
* are not cloned in this constructor</b>
|
|
*/
|
|
public HashMap(Map m)
|
|
{
|
|
int size = Math.max(m.size() * 2, DEFAULT_CAPACITY);
|
|
buckets = new Entry[size];
|
|
threshold = (int) (size * loadFactor);
|
|
putAll(m);
|
|
}
|
|
|
|
/**
|
|
* construct a new HashMap with a specific inital capacity
|
|
*
|
|
* @param initialCapacity the initial capacity of this HashMap (>=0)
|
|
*
|
|
* @throws IllegalArgumentException if (initialCapacity < 0)
|
|
*/
|
|
public HashMap(int initialCapacity) throws IllegalArgumentException
|
|
{
|
|
this(initialCapacity, DEFAULT_LOAD_FACTOR);
|
|
}
|
|
|
|
/**
|
|
* construct a new HashMap with a specific inital capacity and load factor
|
|
*
|
|
* @param initialCapacity the initial capacity (>=0)
|
|
* @param loadFactor the load factor
|
|
*
|
|
* @throws IllegalArgumentException if (initialCapacity < 0) ||
|
|
* (initialLoadFactor > 1.0) ||
|
|
* (initialLoadFactor <= 0.0)
|
|
*/
|
|
public HashMap(int initialCapacity, float loadFactor)
|
|
throws IllegalArgumentException
|
|
{
|
|
if (initialCapacity < 0 || loadFactor <= 0 || loadFactor > 1)
|
|
throw new IllegalArgumentException();
|
|
|
|
buckets = new Entry[initialCapacity];
|
|
this.loadFactor = loadFactor;
|
|
this.threshold = (int) (initialCapacity * loadFactor);
|
|
}
|
|
|
|
/** returns the number of kay-value mappings currently in this Map */
|
|
public int size()
|
|
{
|
|
return size;
|
|
}
|
|
|
|
/** returns true if there are no key-value mappings currently in this Map */
|
|
public boolean isEmpty()
|
|
{
|
|
return size == 0;
|
|
}
|
|
|
|
/**
|
|
* returns true if this HashMap contains a value <pre>o</pre>, such that
|
|
* <pre>o.equals(value)</pre>.
|
|
*
|
|
* @param value the value to search for in this Hashtable
|
|
*/
|
|
public boolean containsValue(Object value)
|
|
{
|
|
for (int i = 0; i < buckets.length; i++)
|
|
{
|
|
Entry e = buckets[i];
|
|
while (e != null)
|
|
{
|
|
if (value == null ? e.value == null : value.equals(e.value))
|
|
return true;
|
|
e = e.next;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* returns true if the supplied object equals (<pre>equals()</pre>) a key
|
|
* in this HashMap
|
|
*
|
|
* @param key the key to search for in this HashMap
|
|
*/
|
|
public boolean containsKey(Object key)
|
|
{
|
|
int idx = hash(key);
|
|
Entry e = buckets[idx];
|
|
while (e != null)
|
|
{
|
|
if (key == null ? e.key == null : key.equals(e.key))
|
|
return true;
|
|
e = e.next;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* return the value in this Hashtable associated with the supplied key, or <pre>null</pre>
|
|
* if the key maps to nothing
|
|
*
|
|
* @param key the key for which to fetch an associated value
|
|
*/
|
|
public Object get(Object key)
|
|
{
|
|
int idx = hash(key);
|
|
Entry e = buckets[idx];
|
|
while (e != null)
|
|
{
|
|
if (key == null ? e.key == null : key.equals(e.key))
|
|
return e.value;
|
|
e = e.next;
|
|
}
|
|
return null;
|
|
}
|
|
|
|
/**
|
|
* puts the supplied value into the Map, mapped by the supplied key
|
|
*
|
|
* @param key the HashMap key used to locate the value
|
|
* @param value the value to be stored in the HashMap
|
|
*/
|
|
public Object put(Object key, Object value)
|
|
{
|
|
modCount++;
|
|
int idx = hash(key);
|
|
Entry e = buckets[idx];
|
|
|
|
while (e != null)
|
|
{
|
|
if (key == null ? e.key == null : key.equals(e.key))
|
|
{
|
|
Object r = e.value;
|
|
e.value = value;
|
|
return r;
|
|
}
|
|
else
|
|
{
|
|
e = e.next;
|
|
}
|
|
}
|
|
|
|
// At this point, we know we need to add a new entry.
|
|
if (++size > threshold)
|
|
{
|
|
rehash();
|
|
// Need a new hash value to suit the bigger table.
|
|
idx = hash(key);
|
|
}
|
|
|
|
e = new Entry(key, value);
|
|
|
|
e.next = buckets[idx];
|
|
buckets[idx] = e;
|
|
|
|
return null;
|
|
}
|
|
|
|
/**
|
|
* removes from the HashMap and returns the value which is mapped by the
|
|
* supplied key; if the key maps to nothing, then the HashMap remains unchanged,
|
|
* and <pre>null</pre> is returned
|
|
*
|
|
* @param key the key used to locate the value to remove from the HashMap
|
|
*/
|
|
public Object remove(Object key)
|
|
{
|
|
modCount++;
|
|
int idx = hash(key);
|
|
Entry e = buckets[idx];
|
|
Entry last = null;
|
|
|
|
while (e != null)
|
|
{
|
|
if (key == null ? e.key == null : key.equals(e.key))
|
|
{
|
|
if (last == null)
|
|
buckets[idx] = e.next;
|
|
else
|
|
last.next = e.next;
|
|
size--;
|
|
return e.value;
|
|
}
|
|
last = e;
|
|
e = e.next;
|
|
}
|
|
return null;
|
|
}
|
|
|
|
public void putAll(Map m)
|
|
{
|
|
int msize = m.size();
|
|
Iterator itr = m.entrySet().iterator();
|
|
|
|
for (int i=0; i < msize; i++)
|
|
{
|
|
Map.Entry e = (Map.Entry) itr.next();
|
|
// Optimize in case the Entry is one of our own.
|
|
if (e instanceof BasicMapEntry)
|
|
{
|
|
BasicMapEntry entry = (BasicMapEntry) e;
|
|
put(entry.key, entry.value);
|
|
}
|
|
else
|
|
{
|
|
put(e.getKey(), e.getValue());
|
|
}
|
|
}
|
|
}
|
|
|
|
public void clear()
|
|
{
|
|
modCount++;
|
|
for (int i=0; i < buckets.length; i++)
|
|
{
|
|
buckets[i] = null;
|
|
}
|
|
size = 0;
|
|
}
|
|
|
|
/**
|
|
* returns a shallow clone of this HashMap (i.e. the Map itself is cloned, but
|
|
* its contents are not)
|
|
*/
|
|
public Object clone()
|
|
{
|
|
HashMap copy = null;
|
|
try
|
|
{
|
|
copy = (HashMap) super.clone();
|
|
}
|
|
catch (CloneNotSupportedException x)
|
|
{
|
|
}
|
|
copy.buckets = new Entry[buckets.length];
|
|
|
|
for (int i=0; i < buckets.length; i++)
|
|
{
|
|
Entry e = buckets[i];
|
|
Entry last = null;
|
|
|
|
while (e != null)
|
|
{
|
|
if (last == null)
|
|
{
|
|
copy.buckets[i] = new Entry(e.key, e.value);
|
|
last = copy.buckets[i];
|
|
}
|
|
else
|
|
{
|
|
last.next = new Entry(e.key, e.value);
|
|
last = last.next;
|
|
}
|
|
e = e.next;
|
|
}
|
|
}
|
|
return copy;
|
|
}
|
|
|
|
/** returns a "set view" of this HashMap's keys */
|
|
public Set keySet()
|
|
{
|
|
// Create an AbstractSet with custom implementations of those methods that
|
|
// can be overriden easily and efficiently.
|
|
return new AbstractSet()
|
|
{
|
|
public int size()
|
|
{
|
|
return size;
|
|
}
|
|
|
|
public Iterator iterator()
|
|
{
|
|
return new HashIterator(HashIterator.KEYS);
|
|
}
|
|
|
|
public void clear()
|
|
{
|
|
HashMap.this.clear();
|
|
}
|
|
|
|
public boolean contains(Object o)
|
|
{
|
|
return HashMap.this.containsKey(o);
|
|
}
|
|
|
|
public boolean remove(Object o)
|
|
{
|
|
// Test against the size of the HashMap to determine if anything
|
|
// really got removed. This is neccessary because the return value of
|
|
// HashMap.remove() is ambiguous in the null case.
|
|
int oldsize = size;
|
|
HashMap.this.remove(o);
|
|
return (oldsize != size);
|
|
}
|
|
};
|
|
}
|
|
|
|
/** Returns a "collection view" (or "bag view") of this HashMap's values. */
|
|
public Collection values()
|
|
{
|
|
// We don't bother overriding many of the optional methods, as doing so
|
|
// wouldn't provide any significant performance advantage.
|
|
return new AbstractCollection()
|
|
{
|
|
public int size()
|
|
{
|
|
return size;
|
|
}
|
|
|
|
public Iterator iterator()
|
|
{
|
|
return new HashIterator(HashIterator.VALUES);
|
|
}
|
|
|
|
public void clear()
|
|
{
|
|
HashMap.this.clear();
|
|
}
|
|
};
|
|
}
|
|
|
|
/** Returns a "set view" of this HashMap's entries. */
|
|
public Set entrySet()
|
|
{
|
|
// Create an AbstractSet with custom implementations of those methods that
|
|
// can be overriden easily and efficiently.
|
|
return new AbstractSet()
|
|
{
|
|
public int size()
|
|
{
|
|
return size;
|
|
}
|
|
|
|
public Iterator iterator()
|
|
{
|
|
return new HashIterator(HashIterator.ENTRIES);
|
|
}
|
|
|
|
public void clear()
|
|
{
|
|
HashMap.this.clear();
|
|
}
|
|
|
|
public boolean contains(Object o)
|
|
{
|
|
if (!(o instanceof Map.Entry))
|
|
return false;
|
|
Map.Entry me = (Map.Entry) o;
|
|
Entry e = getEntry(me);
|
|
return (e != null);
|
|
}
|
|
|
|
public boolean remove(Object o)
|
|
{
|
|
if (!(o instanceof Map.Entry))
|
|
return false;
|
|
Map.Entry me = (Map.Entry) o;
|
|
Entry e = getEntry(me);
|
|
if (e != null)
|
|
{
|
|
HashMap.this.remove(e.key);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
};
|
|
}
|
|
|
|
/** Return an index in the buckets array for `key' based on its hashCode() */
|
|
private int hash(Object key)
|
|
{
|
|
if (key == null)
|
|
return 0;
|
|
else
|
|
return Math.abs(key.hashCode() % buckets.length);
|
|
}
|
|
|
|
/** Return an Entry who's key and value equal the supplied Map.Entry.
|
|
* This is used by entrySet's contains() and remove() methods. They can't
|
|
* use contains(key) and remove(key) directly because that would result
|
|
* in entries with the same key but a different value being matched. */
|
|
private Entry getEntry(Map.Entry me)
|
|
{
|
|
int idx = hash(me.getKey());
|
|
Entry e = buckets[idx];
|
|
while (e != null)
|
|
{
|
|
if (e.equals(me))
|
|
return e;
|
|
e = e.next;
|
|
}
|
|
return null;
|
|
}
|
|
|
|
/**
|
|
* increases the size of the HashMap and rehashes all keys to new array
|
|
* indices; this is called when the addition of a new value would cause
|
|
* size() > threshold. Note that the existing Entry objects are reused in
|
|
* the new hash table.
|
|
*/
|
|
private void rehash()
|
|
{
|
|
Entry[] oldBuckets = buckets;
|
|
|
|
int newcapacity = (buckets.length * 2) + 1;
|
|
threshold = (int) (newcapacity * loadFactor);
|
|
buckets = new Entry[newcapacity];
|
|
|
|
for (int i = 0; i < oldBuckets.length; i++)
|
|
{
|
|
Entry e = oldBuckets[i];
|
|
while (e != null)
|
|
{
|
|
int idx = hash(e.key);
|
|
Entry dest = buckets[idx];
|
|
|
|
if (dest != null)
|
|
{
|
|
while (dest.next != null)
|
|
dest = dest.next;
|
|
dest.next = e;
|
|
}
|
|
else
|
|
{
|
|
buckets[idx] = e;
|
|
}
|
|
|
|
Entry next = e.next;
|
|
e.next = null;
|
|
e = next;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Serializes this object to the given stream.
|
|
* @serialdata the <i>capacity</i>(int) that is the length of the
|
|
* bucket array, the <i>size</i>(int) of the hash map are emitted
|
|
* first. They are followed by size entries, each consisting of
|
|
* a key (Object) and a value (Object).
|
|
*/
|
|
private void writeObject(ObjectOutputStream s) throws IOException
|
|
{
|
|
// the threshold and loadFactor fields
|
|
s.defaultWriteObject();
|
|
|
|
s.writeInt(buckets.length);
|
|
s.writeInt(size);
|
|
Iterator it = entrySet().iterator();
|
|
while (it.hasNext())
|
|
{
|
|
Map.Entry entry = (Map.Entry) it.next();
|
|
s.writeObject(entry.getKey());
|
|
s.writeObject(entry.getValue());
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Deserializes this object from the given stream.
|
|
* @serialdata the <i>capacity</i>(int) that is the length of the
|
|
* bucket array, the <i>size</i>(int) of the hash map are emitted
|
|
* first. They are followed by size entries, each consisting of
|
|
* a key (Object) and a value (Object).
|
|
*/
|
|
private void readObject(ObjectInputStream s)
|
|
throws IOException, ClassNotFoundException
|
|
{
|
|
// the threshold and loadFactor fields
|
|
s.defaultReadObject();
|
|
|
|
int capacity = s.readInt();
|
|
int len = s.readInt();
|
|
size = 0;
|
|
modCount = 0;
|
|
buckets = new Entry[capacity];
|
|
|
|
for (int i = 0; i < len; i++)
|
|
{
|
|
Object key = s.readObject();
|
|
Object value = s.readObject();
|
|
put(key, value);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Iterate over HashMap's entries.
|
|
* This implementation is parameterized to give a sequential view of
|
|
* keys, values, or entries.
|
|
*
|
|
* @author Jon Zeppieri
|
|
* @version $Revision: 1.4 $
|
|
* @modified $Id: HashMap.java,v 1.4 2000/12/21 02:00:15 bryce Exp $
|
|
*/
|
|
class HashIterator implements Iterator
|
|
{
|
|
static final int KEYS = 0,
|
|
VALUES = 1,
|
|
ENTRIES = 2;
|
|
|
|
// the type of this Iterator: KEYS, VALUES, or ENTRIES.
|
|
int type;
|
|
// the number of modifications to the backing Hashtable that we know about.
|
|
int knownMod;
|
|
// The total number of elements returned by next(). Used to determine if
|
|
// there are more elements remaining.
|
|
int count;
|
|
// Current index in the physical hash table.
|
|
int idx;
|
|
// The last Entry returned by a next() call.
|
|
Entry last;
|
|
// The next entry that should be returned by next(). It is set to something
|
|
// if we're iterating through a bucket that contains multiple linked
|
|
// entries. It is null if next() needs to find a new bucket.
|
|
Entry next;
|
|
|
|
/* construct a new HashtableIterator with the supllied type:
|
|
KEYS, VALUES, or ENTRIES */
|
|
HashIterator(int type)
|
|
{
|
|
this.type = type;
|
|
knownMod = HashMap.this.modCount;
|
|
count = 0;
|
|
idx = buckets.length;
|
|
}
|
|
|
|
/** returns true if the Iterator has more elements */
|
|
public boolean hasNext()
|
|
{
|
|
if (knownMod != HashMap.this.modCount)
|
|
throw new ConcurrentModificationException();
|
|
return count < size;
|
|
}
|
|
|
|
/** returns the next element in the Iterator's sequential view */
|
|
public Object next()
|
|
{
|
|
if (knownMod != HashMap.this.modCount)
|
|
throw new ConcurrentModificationException();
|
|
if (count == size)
|
|
throw new NoSuchElementException();
|
|
count++;
|
|
Entry e = null;
|
|
if (next != null)
|
|
e = next;
|
|
|
|
while (e == null)
|
|
{
|
|
e = buckets[--idx];
|
|
}
|
|
|
|
next = e.next;
|
|
last = e;
|
|
if (type == VALUES)
|
|
return e.value;
|
|
else if (type == KEYS)
|
|
return e.key;
|
|
return e;
|
|
}
|
|
|
|
/**
|
|
* removes from the backing HashMap the last element which was fetched with the
|
|
* <pre>next()</pre> method
|
|
*/
|
|
public void remove()
|
|
{
|
|
if (knownMod != HashMap.this.modCount)
|
|
throw new ConcurrentModificationException();
|
|
if (last == null)
|
|
{
|
|
throw new IllegalStateException();
|
|
}
|
|
else
|
|
{
|
|
HashMap.this.remove(last.key);
|
|
knownMod++;
|
|
count--;
|
|
last = null;
|
|
}
|
|
}
|
|
}
|
|
}
|