gcc/libstdc++-v3/testsuite/util/testsuite_allocator.h
2012-11-10 12:27:22 -05:00

495 lines
13 KiB
C++

// -*- C++ -*-
// Testing allocator for the C++ library testsuite.
//
// Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
// Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING3. If not see
// <http://www.gnu.org/licenses/>.
//
// This file provides an test instrumentation allocator that can be
// used to verify allocation functionality of standard library
// containers. 2002.11.25 smw
#ifndef _GLIBCXX_TESTSUITE_ALLOCATOR_H
#define _GLIBCXX_TESTSUITE_ALLOCATOR_H
#include <tr1/unordered_map>
#include <bits/move.h>
#include <testsuite_hooks.h>
namespace __gnu_test
{
class tracker_allocator_counter
{
public:
typedef std::size_t size_type;
static void*
allocate(size_type blocksize)
{
void* p = ::operator new(blocksize);
allocationCount_ += blocksize;
return p;
}
static void
construct() { constructCount_++; }
static void
destroy() { destructCount_++; }
static void
deallocate(void* p, size_type blocksize)
{
::operator delete(p);
deallocationCount_ += blocksize;
}
static size_type
get_allocation_count() { return allocationCount_; }
static size_type
get_deallocation_count() { return deallocationCount_; }
static int
get_construct_count() { return constructCount_; }
static int
get_destruct_count() { return destructCount_; }
static void
reset()
{
allocationCount_ = 0;
deallocationCount_ = 0;
constructCount_ = 0;
destructCount_ = 0;
}
private:
static size_type allocationCount_;
static size_type deallocationCount_;
static int constructCount_;
static int destructCount_;
};
// A simple basic allocator that just forwards to the
// tracker_allocator_counter to fulfill memory requests. This class
// is templated on the target object type, but tracker isn't.
template<class T>
class tracker_allocator
{
private:
typedef tracker_allocator_counter counter_type;
public:
typedef T value_type;
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
template<class U> struct rebind { typedef tracker_allocator<U> other; };
pointer
address(reference value) const _GLIBCXX_NOEXCEPT
{ return std::__addressof(value); }
const_pointer
address(const_reference value) const _GLIBCXX_NOEXCEPT
{ return std::__addressof(value); }
tracker_allocator() _GLIBCXX_USE_NOEXCEPT
{ }
tracker_allocator(const tracker_allocator&) _GLIBCXX_USE_NOEXCEPT
{ }
template<class U>
tracker_allocator(const tracker_allocator<U>&) _GLIBCXX_USE_NOEXCEPT
{ }
~tracker_allocator() _GLIBCXX_USE_NOEXCEPT
{ }
size_type
max_size() const _GLIBCXX_USE_NOEXCEPT
{ return size_type(-1) / sizeof(T); }
pointer
allocate(size_type n, const void* = 0)
{ return static_cast<pointer>(counter_type::allocate(n * sizeof(T))); }
#if __cplusplus >= 201103L
template<typename U, typename... Args>
void
construct(U* p, Args&&... args)
{
::new((void *)p) U(std::forward<Args>(args)...);
counter_type::construct();
}
template<typename U>
void
destroy(U* p)
{
p->~U();
counter_type::destroy();
}
#else
void
construct(pointer p, const T& value)
{
::new ((void *)p) T(value);
counter_type::construct();
}
void
destroy(pointer p)
{
p->~T();
counter_type::destroy();
}
#endif
void
deallocate(pointer p, size_type num)
{ counter_type::deallocate(p, num * sizeof(T)); }
};
template<class T1, class T2>
bool
operator==(const tracker_allocator<T1>&,
const tracker_allocator<T2>&) throw()
{ return true; }
template<class T1, class T2>
bool
operator!=(const tracker_allocator<T1>&,
const tracker_allocator<T2>&) throw()
{ return false; }
bool
check_construct_destroy(const char* tag, int expected_c, int expected_d);
template<typename Alloc>
bool
check_deallocate_null()
{
// Let's not core here...
Alloc a;
a.deallocate(0, 1);
a.deallocate(0, 10);
return true;
}
template<typename Alloc>
bool
check_allocate_max_size()
{
Alloc a;
try
{
a.allocate(a.max_size() + 1);
}
catch(std::bad_alloc&)
{
return true;
}
catch(...)
{
throw;
}
throw;
}
// A simple allocator which can be constructed endowed of a given
// "personality" (an integer), queried in operator== to simulate the
// behavior of realworld "unequal" allocators (i.e., not exploiting
// the provision in 20.1.5/4, first bullet). A global unordered_map,
// filled at allocation time with (pointer, personality) pairs, is
// then consulted to enforce the requirements in Table 32 about
// deallocation vs allocator equality. Note that this allocator is
// swappable, not assignable, consistently with Option 3 of DR 431
// (see N1599).
struct uneq_allocator_base
{
typedef std::tr1::unordered_map<void*, int> map_type;
// Avoid static initialization troubles and/or bad interactions
// with tests linking testsuite_allocator.o and playing globally
// with operator new/delete.
static map_type&
get_map()
{
static map_type alloc_map;
return alloc_map;
}
};
template<typename Tp>
class uneq_allocator
: private uneq_allocator_base
{
public:
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef Tp* pointer;
typedef const Tp* const_pointer;
typedef Tp& reference;
typedef const Tp& const_reference;
typedef Tp value_type;
#if __cplusplus >= 201103L
typedef std::true_type propagate_on_container_swap;
#endif
template<typename Tp1>
struct rebind
{ typedef uneq_allocator<Tp1> other; };
uneq_allocator() _GLIBCXX_USE_NOEXCEPT
: personality(0) { }
uneq_allocator(int person) _GLIBCXX_USE_NOEXCEPT
: personality(person) { }
template<typename Tp1>
uneq_allocator(const uneq_allocator<Tp1>& b) _GLIBCXX_USE_NOEXCEPT
: personality(b.get_personality()) { }
~uneq_allocator() _GLIBCXX_USE_NOEXCEPT
{ }
int get_personality() const { return personality; }
pointer
address(reference x) const _GLIBCXX_NOEXCEPT
{ return std::__addressof(x); }
const_pointer
address(const_reference x) const _GLIBCXX_NOEXCEPT
{ return std::__addressof(x); }
pointer
allocate(size_type n, const void* = 0)
{
if (__builtin_expect(n > this->max_size(), false))
std::__throw_bad_alloc();
pointer p = static_cast<Tp*>(::operator new(n * sizeof(Tp)));
try
{
get_map().insert(map_type::value_type(reinterpret_cast<void*>(p),
personality));
}
catch(...)
{
::operator delete(p);
__throw_exception_again;
}
return p;
}
void
deallocate(pointer p, size_type)
{
bool test __attribute__((unused)) = true;
VERIFY( p );
map_type::iterator it = get_map().find(reinterpret_cast<void*>(p));
VERIFY( it != get_map().end() );
// Enforce requirements in Table 32 about deallocation vs
// allocator equality.
VERIFY( it->second == personality );
get_map().erase(it);
::operator delete(p);
}
size_type
max_size() const _GLIBCXX_USE_NOEXCEPT
{ return size_type(-1) / sizeof(Tp); }
#if __cplusplus >= 201103L
template<typename U, typename... Args>
void
construct(U* p, Args&&... args)
{ ::new((void *)p) U(std::forward<Args>(args)...); }
template<typename U>
void
destroy(U* p) { p->~U(); }
// Not copy assignable...
uneq_allocator&
operator=(const uneq_allocator&) = delete;
#else
void
construct(pointer p, const Tp& val)
{ ::new((void *)p) Tp(val); }
void
destroy(pointer p) { p->~Tp(); }
private:
// Not assignable...
uneq_allocator&
operator=(const uneq_allocator&);
#endif
private:
// ... yet swappable!
friend inline void
swap(uneq_allocator& a, uneq_allocator& b)
{ std::swap(a.personality, b.personality); }
template<typename Tp1>
friend inline bool
operator==(const uneq_allocator& a, const uneq_allocator<Tp1>& b)
{ return a.personality == b.personality; }
template<typename Tp1>
friend inline bool
operator!=(const uneq_allocator& a, const uneq_allocator<Tp1>& b)
{ return !(a == b); }
int personality;
};
#if __cplusplus >= 201103L
// An uneq_allocator which can be used to test allocator propagation.
template<typename Tp, bool Propagate>
class propagating_allocator : public uneq_allocator<Tp>
{
typedef uneq_allocator<Tp> base_alloc;
base_alloc& base() { return *this; }
const base_alloc& base() const { return *this; }
void swap_base(base_alloc& b) { swap(b, this->base()); }
typedef std::integral_constant<bool, Propagate> trait_type;
public:
// default allocator_traits::rebind_alloc would select
// uneq_allocator::rebind so we must define rebind here
template<typename Up>
struct rebind { typedef propagating_allocator<Up, Propagate> other; };
propagating_allocator(int i) noexcept
: base_alloc(i)
{ }
template<typename Up>
propagating_allocator(const propagating_allocator<Up, Propagate>& a)
noexcept
: base_alloc(a)
{ }
propagating_allocator() noexcept = default;
propagating_allocator(const propagating_allocator&) noexcept = default;
propagating_allocator&
operator=(const propagating_allocator& a) noexcept
{
static_assert(Propagate, "assigning propagating_allocator<T, true>");
propagating_allocator(a).swap_base(*this);
return *this;
}
template<bool P2>
propagating_allocator&
operator=(const propagating_allocator<Tp, P2>& a) noexcept
{
static_assert(P2, "assigning propagating_allocator<T, true>");
propagating_allocator(a).swap_base(*this);
return *this;
}
// postcondition: a.get_personality() == 0
propagating_allocator(propagating_allocator&& a) noexcept
: base_alloc()
{ swap_base(a); }
// postcondition: a.get_personality() == 0
propagating_allocator&
operator=(propagating_allocator&& a) noexcept
{
propagating_allocator(std::move(a)).swap_base(*this);
return *this;
}
typedef trait_type propagate_on_container_copy_assignment;
typedef trait_type propagate_on_container_move_assignment;
typedef trait_type propagate_on_container_swap;
propagating_allocator select_on_container_copy_construction() const
{ return Propagate ? *this : propagating_allocator(); }
};
// Class template supporting the minimal interface that satisfies the
// Allocator requirements, from example in [allocator.requirements]
template <class Tp>
struct SimpleAllocator
{
typedef Tp value_type;
SimpleAllocator() { }
template <class T>
SimpleAllocator(const SimpleAllocator<T>& other) { }
Tp *allocate(std::size_t n)
{ return std::allocator<Tp>().allocate(n); }
void deallocate(Tp *p, std::size_t n)
{ std::allocator<Tp>().deallocate(p, n); }
};
template <class T, class U>
bool operator==(const SimpleAllocator<T>&, const SimpleAllocator<U>&)
{ return true; }
template <class T, class U>
bool operator!=(const SimpleAllocator<T>&, const SimpleAllocator<U>&)
{ return false; }
#endif
template<typename Tp>
struct ExplicitConsAlloc : std::allocator<Tp>
{
ExplicitConsAlloc() { }
template<typename Up>
explicit
ExplicitConsAlloc(const ExplicitConsAlloc<Up>&) { }
template<typename Up>
struct rebind
{ typedef ExplicitConsAlloc<Up> other; };
};
} // namespace __gnu_test
#endif // _GLIBCXX_TESTSUITE_ALLOCATOR_H