90ff44cfd6
gcc: * cfgloopanal.c (test_for_iteration): Use string concatentation on HOST_WIDE_INT_PRINT_* format specifier to collapse multiple function calls into one. * dbxout.c (dbxout_symbol): Likewise. * defaults.h (ASM_OUTPUT_SIZE_DIRECTIVE): Likewise. * dwarf2asm.c (dw2_asm_output_data_uleb128, dw2_asm_output_data_sleb128): Likewise. * genrecog.c (debug_decision_2): Likewise. * loop.c (emit_prefetch_instructions): Likewise. * print-rtl.c (print_rtx): Likewise. * print-tree.c (print_node_brief, print_node): Likewise. * ra-debug.c (dump_igraph, dump_graph_cost, dump_static_insn_cost): Likewise. * ra-rewrite.c (dump_cost): Likewise. * sdbout.c (PUT_SDB_INT_VAL, PUT_SDB_SIZE): Likewise. * sreal.c (dump_sreal): Likewise. * unroll.c (unroll_loop, precondition_loop_p): Likewise. * varasm.c (assemble_vtable_entry): Likewise. cp: * ptree.c (cxx_print_type, cxx_print_xnode): Use string concatentation on HOST_WIDE_INT_PRINT_* format specifier to collapse multiple function calls into one. * tree.c (debug_binfo): Likewise. java: * parse.y (print_int_node): Use string concatentation on HOST_WIDE_INT_PRINT_* format specifier to collapse multiple function calls into one. From-SVN: r66900
1126 lines
30 KiB
C
1126 lines
30 KiB
C
/* Natural loop analysis code for GNU compiler.
|
|
Copyright (C) 2002 Free Software Foundation, Inc.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 2, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING. If not, write to the Free
|
|
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
|
|
02111-1307, USA. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "tm.h"
|
|
#include "rtl.h"
|
|
#include "hard-reg-set.h"
|
|
#include "basic-block.h"
|
|
#include "cfgloop.h"
|
|
#include "expr.h"
|
|
#include "output.h"
|
|
|
|
struct unmark_altered_insn_data;
|
|
static void unmark_altered PARAMS ((rtx, rtx, regset));
|
|
static void blocks_invariant_registers PARAMS ((basic_block *, int, regset));
|
|
static void unmark_altered_insn PARAMS ((rtx, rtx, struct unmark_altered_insn_data *));
|
|
static void blocks_single_set_registers PARAMS ((basic_block *, int, rtx *));
|
|
static int invariant_rtx_wrto_regs_p_helper PARAMS ((rtx *, regset));
|
|
static bool invariant_rtx_wrto_regs_p PARAMS ((rtx, regset));
|
|
static rtx test_for_iteration PARAMS ((struct loop_desc *desc,
|
|
unsigned HOST_WIDE_INT));
|
|
static bool constant_iterations PARAMS ((struct loop_desc *,
|
|
unsigned HOST_WIDE_INT *,
|
|
bool *));
|
|
static bool simple_loop_exit_p PARAMS ((struct loops *, struct loop *,
|
|
edge, regset, rtx *,
|
|
struct loop_desc *));
|
|
static rtx variable_initial_value PARAMS ((rtx, regset, rtx, rtx *));
|
|
static rtx variable_initial_values PARAMS ((edge, rtx));
|
|
static bool simple_condition_p PARAMS ((struct loop *, rtx,
|
|
regset, struct loop_desc *));
|
|
static basic_block simple_increment PARAMS ((struct loops *, struct loop *,
|
|
rtx *, struct loop_desc *));
|
|
|
|
/* Checks whether BB is executed exactly once in each LOOP iteration. */
|
|
bool
|
|
just_once_each_iteration_p (loops, loop, bb)
|
|
struct loops *loops;
|
|
struct loop *loop;
|
|
basic_block bb;
|
|
{
|
|
/* It must be executed at least once each iteration. */
|
|
if (!dominated_by_p (loops->cfg.dom, loop->latch, bb))
|
|
return false;
|
|
|
|
/* And just once. */
|
|
if (bb->loop_father != loop)
|
|
return false;
|
|
|
|
/* But this was not enough. We might have some irreducible loop here. */
|
|
if (bb->flags & BB_IRREDUCIBLE_LOOP)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Unmarks modified registers; helper to blocks_invariant_registers. */
|
|
static void
|
|
unmark_altered (what, by, regs)
|
|
rtx what;
|
|
rtx by ATTRIBUTE_UNUSED;
|
|
regset regs;
|
|
{
|
|
if (GET_CODE (what) == SUBREG)
|
|
what = SUBREG_REG (what);
|
|
if (!REG_P (what))
|
|
return;
|
|
CLEAR_REGNO_REG_SET (regs, REGNO (what));
|
|
}
|
|
|
|
/* Marks registers that are invariant inside blocks BBS. */
|
|
static void
|
|
blocks_invariant_registers (bbs, nbbs, regs)
|
|
basic_block *bbs;
|
|
int nbbs;
|
|
regset regs;
|
|
{
|
|
rtx insn;
|
|
int i;
|
|
|
|
for (i = 0; i < max_reg_num (); i++)
|
|
SET_REGNO_REG_SET (regs, i);
|
|
for (i = 0; i < nbbs; i++)
|
|
for (insn = bbs[i]->head;
|
|
insn != NEXT_INSN (bbs[i]->end);
|
|
insn = NEXT_INSN (insn))
|
|
if (INSN_P (insn))
|
|
note_stores (PATTERN (insn),
|
|
(void (*) PARAMS ((rtx, rtx, void *))) unmark_altered,
|
|
regs);
|
|
}
|
|
|
|
/* Unmarks modified registers; helper to blocks_single_set_registers. */
|
|
struct unmark_altered_insn_data
|
|
{
|
|
rtx *regs;
|
|
rtx insn;
|
|
};
|
|
|
|
static void
|
|
unmark_altered_insn (what, by, data)
|
|
rtx what;
|
|
rtx by ATTRIBUTE_UNUSED;
|
|
struct unmark_altered_insn_data *data;
|
|
{
|
|
int rn;
|
|
|
|
if (GET_CODE (what) == SUBREG)
|
|
what = SUBREG_REG (what);
|
|
if (!REG_P (what))
|
|
return;
|
|
rn = REGNO (what);
|
|
if (data->regs[rn] == data->insn)
|
|
return;
|
|
data->regs[rn] = NULL;
|
|
}
|
|
|
|
/* Marks registers that have just single simple set in BBS; the relevant
|
|
insn is returned in REGS. */
|
|
static void
|
|
blocks_single_set_registers (bbs, nbbs, regs)
|
|
basic_block *bbs;
|
|
int nbbs;
|
|
rtx *regs;
|
|
{
|
|
rtx insn;
|
|
int i;
|
|
struct unmark_altered_insn_data data;
|
|
|
|
for (i = 0; i < max_reg_num (); i++)
|
|
regs[i] = NULL;
|
|
|
|
for (i = 0; i < nbbs; i++)
|
|
for (insn = bbs[i]->head;
|
|
insn != NEXT_INSN (bbs[i]->end);
|
|
insn = NEXT_INSN (insn))
|
|
{
|
|
rtx set = single_set (insn);
|
|
if (!set)
|
|
continue;
|
|
if (!REG_P (SET_DEST (set)))
|
|
continue;
|
|
regs[REGNO (SET_DEST (set))] = insn;
|
|
}
|
|
|
|
data.regs = regs;
|
|
for (i = 0; i < nbbs; i++)
|
|
for (insn = bbs[i]->head;
|
|
insn != NEXT_INSN (bbs[i]->end);
|
|
insn = NEXT_INSN (insn))
|
|
{
|
|
if (!INSN_P (insn))
|
|
continue;
|
|
data.insn = insn;
|
|
note_stores (PATTERN (insn),
|
|
(void (*) PARAMS ((rtx, rtx, void *))) unmark_altered_insn,
|
|
&data);
|
|
}
|
|
}
|
|
|
|
/* Helper for invariant_rtx_wrto_regs_p. */
|
|
static int
|
|
invariant_rtx_wrto_regs_p_helper (expr, invariant_regs)
|
|
rtx *expr;
|
|
regset invariant_regs;
|
|
{
|
|
switch (GET_CODE (*expr))
|
|
{
|
|
case CC0:
|
|
case PC:
|
|
case UNSPEC_VOLATILE:
|
|
return 1;
|
|
|
|
case CONST_INT:
|
|
case CONST_DOUBLE:
|
|
case CONST:
|
|
case SYMBOL_REF:
|
|
case LABEL_REF:
|
|
return 0;
|
|
|
|
case ASM_OPERANDS:
|
|
return MEM_VOLATILE_P (*expr);
|
|
|
|
case MEM:
|
|
/* If the memory is not constant, assume it is modified. If it is
|
|
constant, we still have to check the address. */
|
|
return !RTX_UNCHANGING_P (*expr);
|
|
|
|
case REG:
|
|
return !REGNO_REG_SET_P (invariant_regs, REGNO (*expr));
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Checks that EXPR is invariant provided that INVARIANT_REGS are invariant. */
|
|
static bool
|
|
invariant_rtx_wrto_regs_p (expr, invariant_regs)
|
|
rtx expr;
|
|
regset invariant_regs;
|
|
{
|
|
return !for_each_rtx (&expr, (rtx_function) invariant_rtx_wrto_regs_p_helper,
|
|
invariant_regs);
|
|
}
|
|
|
|
/* Checks whether CONDITION is a simple comparison in that one of operands
|
|
is register and the other one is invariant in the LOOP. Fills var, lim
|
|
and cond fields in DESC. */
|
|
static bool
|
|
simple_condition_p (loop, condition, invariant_regs, desc)
|
|
struct loop *loop ATTRIBUTE_UNUSED;
|
|
rtx condition;
|
|
regset invariant_regs;
|
|
struct loop_desc *desc;
|
|
{
|
|
rtx op0, op1;
|
|
|
|
/* Check condition. */
|
|
switch (GET_CODE (condition))
|
|
{
|
|
case EQ:
|
|
case NE:
|
|
case LE:
|
|
case LT:
|
|
case GE:
|
|
case GT:
|
|
case GEU:
|
|
case GTU:
|
|
case LEU:
|
|
case LTU:
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
/* Of integers or pointers. */
|
|
if (GET_MODE_CLASS (GET_MODE (XEXP (condition, 0))) != MODE_INT
|
|
&& GET_MODE_CLASS (GET_MODE (XEXP (condition, 0))) != MODE_PARTIAL_INT)
|
|
return false;
|
|
|
|
/* One of operands must be a simple register. */
|
|
op0 = XEXP (condition, 0);
|
|
op1 = XEXP (condition, 1);
|
|
|
|
/* One of operands must be invariant. */
|
|
if (invariant_rtx_wrto_regs_p (op0, invariant_regs))
|
|
{
|
|
/* And the other one must be a register. */
|
|
if (!REG_P (op1))
|
|
return false;
|
|
desc->var = op1;
|
|
desc->lim = op0;
|
|
|
|
desc->cond = swap_condition (GET_CODE (condition));
|
|
if (desc->cond == UNKNOWN)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/* Check the other operand. */
|
|
if (!invariant_rtx_wrto_regs_p (op1, invariant_regs))
|
|
return false;
|
|
if (!REG_P (op0))
|
|
return false;
|
|
|
|
desc->var = op0;
|
|
desc->lim = op1;
|
|
|
|
desc->cond = GET_CODE (condition);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Checks whether DESC->var is incremented/decremented exactly once each
|
|
iteration. Fills in DESC->stride and returns block in that DESC->var is
|
|
modified. */
|
|
static basic_block
|
|
simple_increment (loops, loop, simple_increment_regs, desc)
|
|
struct loops *loops;
|
|
struct loop *loop;
|
|
rtx *simple_increment_regs;
|
|
struct loop_desc *desc;
|
|
{
|
|
rtx mod_insn, set, set_src, set_add;
|
|
basic_block mod_bb;
|
|
|
|
/* Find insn that modifies var. */
|
|
mod_insn = simple_increment_regs[REGNO (desc->var)];
|
|
if (!mod_insn)
|
|
return NULL;
|
|
mod_bb = BLOCK_FOR_INSN (mod_insn);
|
|
|
|
/* Check that it is executed exactly once each iteration. */
|
|
if (!just_once_each_iteration_p (loops, loop, mod_bb))
|
|
return NULL;
|
|
|
|
/* mod_insn must be a simple increment/decrement. */
|
|
set = single_set (mod_insn);
|
|
if (!set)
|
|
abort ();
|
|
if (!rtx_equal_p (SET_DEST (set), desc->var))
|
|
abort ();
|
|
|
|
set_src = find_reg_equal_equiv_note (mod_insn);
|
|
if (!set_src)
|
|
set_src = SET_SRC (set);
|
|
if (GET_CODE (set_src) != PLUS)
|
|
return NULL;
|
|
if (!rtx_equal_p (XEXP (set_src, 0), desc->var))
|
|
return NULL;
|
|
|
|
/* Set desc->stride. */
|
|
set_add = XEXP (set_src, 1);
|
|
if (CONSTANT_P (set_add))
|
|
desc->stride = set_add;
|
|
else
|
|
return NULL;
|
|
|
|
return mod_bb;
|
|
}
|
|
|
|
/* Tries to find initial value of VAR in INSN. This value must be invariant
|
|
wrto INVARIANT_REGS. If SET_INSN is not NULL, insn in that var is set is
|
|
placed here. */
|
|
static rtx
|
|
variable_initial_value (insn, invariant_regs, var, set_insn)
|
|
rtx insn;
|
|
regset invariant_regs;
|
|
rtx var;
|
|
rtx *set_insn;
|
|
{
|
|
basic_block bb;
|
|
rtx set;
|
|
|
|
/* Go back through cfg. */
|
|
bb = BLOCK_FOR_INSN (insn);
|
|
while (1)
|
|
{
|
|
for (; insn != bb->head; insn = PREV_INSN (insn))
|
|
{
|
|
if (modified_between_p (var, PREV_INSN (insn), NEXT_INSN (insn)))
|
|
break;
|
|
if (INSN_P (insn))
|
|
note_stores (PATTERN (insn),
|
|
(void (*) PARAMS ((rtx, rtx, void *))) unmark_altered,
|
|
invariant_regs);
|
|
}
|
|
|
|
if (insn != bb->head)
|
|
{
|
|
/* We found place where var is set. */
|
|
rtx set_dest;
|
|
rtx val;
|
|
rtx note;
|
|
|
|
set = single_set (insn);
|
|
if (!set)
|
|
return NULL;
|
|
set_dest = SET_DEST (set);
|
|
if (!rtx_equal_p (set_dest, var))
|
|
return NULL;
|
|
|
|
note = find_reg_equal_equiv_note (insn);
|
|
if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
|
|
val = XEXP (note, 0);
|
|
else
|
|
val = SET_SRC (set);
|
|
if (!invariant_rtx_wrto_regs_p (val, invariant_regs))
|
|
return NULL;
|
|
|
|
if (set_insn)
|
|
*set_insn = insn;
|
|
return val;
|
|
}
|
|
|
|
|
|
if (bb->pred->pred_next || bb->pred->src == ENTRY_BLOCK_PTR)
|
|
return NULL;
|
|
|
|
bb = bb->pred->src;
|
|
insn = bb->end;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Returns list of definitions of initial value of VAR at Edge. */
|
|
static rtx
|
|
variable_initial_values (e, var)
|
|
edge e;
|
|
rtx var;
|
|
{
|
|
rtx set_insn, list;
|
|
regset invariant_regs;
|
|
regset_head invariant_regs_head;
|
|
int i;
|
|
|
|
invariant_regs = INITIALIZE_REG_SET (invariant_regs_head);
|
|
for (i = 0; i < max_reg_num (); i++)
|
|
SET_REGNO_REG_SET (invariant_regs, i);
|
|
|
|
list = alloc_EXPR_LIST (0, copy_rtx (var), NULL);
|
|
|
|
if (e->src == ENTRY_BLOCK_PTR)
|
|
return list;
|
|
|
|
set_insn = e->src->end;
|
|
while (REG_P (var)
|
|
&& (var = variable_initial_value (set_insn, invariant_regs, var, &set_insn)))
|
|
list = alloc_EXPR_LIST (0, copy_rtx (var), list);
|
|
|
|
FREE_REG_SET (invariant_regs);
|
|
return list;
|
|
}
|
|
|
|
/* Counts constant number of iterations of the loop described by DESC;
|
|
returns false if impossible. */
|
|
static bool
|
|
constant_iterations (desc, niter, may_be_zero)
|
|
struct loop_desc *desc;
|
|
unsigned HOST_WIDE_INT *niter;
|
|
bool *may_be_zero;
|
|
{
|
|
rtx test, expr;
|
|
rtx ainit, alim;
|
|
|
|
test = test_for_iteration (desc, 0);
|
|
if (test == const0_rtx)
|
|
{
|
|
*niter = 0;
|
|
*may_be_zero = false;
|
|
return true;
|
|
}
|
|
|
|
*may_be_zero = (test != const_true_rtx);
|
|
|
|
/* It would make a little sense to check every with every when we
|
|
know that all but the first alternative are simply registers. */
|
|
for (ainit = desc->var_alts; ainit; ainit = XEXP (ainit, 1))
|
|
{
|
|
alim = XEXP (desc->lim_alts, 0);
|
|
if (!(expr = count_loop_iterations (desc, XEXP (ainit, 0), alim)))
|
|
abort ();
|
|
if (GET_CODE (expr) == CONST_INT)
|
|
{
|
|
*niter = INTVAL (expr);
|
|
return true;
|
|
}
|
|
}
|
|
for (alim = XEXP (desc->lim_alts, 1); alim; alim = XEXP (alim, 1))
|
|
{
|
|
ainit = XEXP (desc->var_alts, 0);
|
|
if (!(expr = count_loop_iterations (desc, ainit, XEXP (alim, 0))))
|
|
abort ();
|
|
if (GET_CODE (expr) == CONST_INT)
|
|
{
|
|
*niter = INTVAL (expr);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Return RTX expression representing number of iterations of loop as bounded
|
|
by test described by DESC (in the case loop really has multiple exit
|
|
edges, fewer iterations may happen in the practice).
|
|
|
|
Return NULL if it is unknown. Additionally the value may be invalid for
|
|
paradoxical loop (lets define paradoxical loops as loops whose test is
|
|
failing at -1th iteration, for instance "for (i=5;i<1;i++);").
|
|
|
|
These cases needs to be either cared by copying the loop test in the front
|
|
of loop or keeping the test in first iteration of loop.
|
|
|
|
When INIT/LIM are set, they are used instead of var/lim of DESC. */
|
|
rtx
|
|
count_loop_iterations (desc, init, lim)
|
|
struct loop_desc *desc;
|
|
rtx init;
|
|
rtx lim;
|
|
{
|
|
enum rtx_code cond = desc->cond;
|
|
rtx stride = desc->stride;
|
|
rtx mod, exp;
|
|
|
|
/* Give up on floating point modes and friends. It can be possible to do
|
|
the job for constant loop bounds, but it is probably not worthwhile. */
|
|
if (!INTEGRAL_MODE_P (GET_MODE (desc->var)))
|
|
return NULL;
|
|
|
|
init = copy_rtx (init ? init : desc->var);
|
|
lim = copy_rtx (lim ? lim : desc->lim);
|
|
|
|
/* Ensure that we always handle the condition to stay inside loop. */
|
|
if (desc->neg)
|
|
cond = reverse_condition (cond);
|
|
|
|
/* Compute absolute value of the difference of initial and final value. */
|
|
if (INTVAL (stride) > 0)
|
|
{
|
|
/* Bypass nonsensical tests. */
|
|
if (cond == EQ || cond == GE || cond == GT || cond == GEU
|
|
|| cond == GTU)
|
|
return NULL;
|
|
exp = simplify_gen_binary (MINUS, GET_MODE (desc->var),
|
|
lim, init);
|
|
}
|
|
else
|
|
{
|
|
/* Bypass nonsensical tests. */
|
|
if (cond == EQ || cond == LE || cond == LT || cond == LEU
|
|
|| cond == LTU)
|
|
return NULL;
|
|
exp = simplify_gen_binary (MINUS, GET_MODE (desc->var),
|
|
init, lim);
|
|
stride = simplify_gen_unary (NEG, GET_MODE (desc->var),
|
|
stride, GET_MODE (desc->var));
|
|
}
|
|
|
|
/* Normalize difference so the value is always first examined
|
|
and later incremented. */
|
|
|
|
if (!desc->postincr)
|
|
exp = simplify_gen_binary (MINUS, GET_MODE (desc->var),
|
|
exp, stride);
|
|
|
|
/* Determine delta caused by exit condition. */
|
|
switch (cond)
|
|
{
|
|
case NE:
|
|
/* For NE tests, make sure that the iteration variable won't miss
|
|
the final value. If EXP mod STRIDE is not zero, then the
|
|
iteration variable will overflow before the loop exits, and we
|
|
can not calculate the number of iterations easily. */
|
|
if (stride != const1_rtx
|
|
&& (simplify_gen_binary (UMOD, GET_MODE (desc->var), exp, stride)
|
|
!= const0_rtx))
|
|
return NULL;
|
|
break;
|
|
case LT:
|
|
case GT:
|
|
case LTU:
|
|
case GTU:
|
|
break;
|
|
case LE:
|
|
case GE:
|
|
case LEU:
|
|
case GEU:
|
|
exp = simplify_gen_binary (PLUS, GET_MODE (desc->var),
|
|
exp, const1_rtx);
|
|
break;
|
|
default:
|
|
abort ();
|
|
}
|
|
|
|
if (stride != const1_rtx)
|
|
{
|
|
/* Number of iterations is now (EXP + STRIDE - 1 / STRIDE),
|
|
but we need to take care for overflows. */
|
|
|
|
mod = simplify_gen_binary (UMOD, GET_MODE (desc->var), exp, stride);
|
|
|
|
/* This is dirty trick. When we can't compute number of iterations
|
|
to be constant, we simply ignore the possible overflow, as
|
|
runtime unroller always use power of 2 amounts and does not
|
|
care about possible lost bits. */
|
|
|
|
if (GET_CODE (mod) != CONST_INT)
|
|
{
|
|
rtx stridem1 = simplify_gen_binary (PLUS, GET_MODE (desc->var),
|
|
stride, constm1_rtx);
|
|
exp = simplify_gen_binary (PLUS, GET_MODE (desc->var),
|
|
exp, stridem1);
|
|
exp = simplify_gen_binary (UDIV, GET_MODE (desc->var), exp, stride);
|
|
}
|
|
else
|
|
{
|
|
exp = simplify_gen_binary (UDIV, GET_MODE (desc->var), exp, stride);
|
|
if (mod != const0_rtx)
|
|
exp = simplify_gen_binary (PLUS, GET_MODE (desc->var),
|
|
exp, const1_rtx);
|
|
}
|
|
}
|
|
|
|
if (rtl_dump_file)
|
|
{
|
|
fprintf (rtl_dump_file, "; Number of iterations: ");
|
|
print_simple_rtl (rtl_dump_file, exp);
|
|
fprintf (rtl_dump_file, "\n");
|
|
}
|
|
|
|
return exp;
|
|
}
|
|
|
|
/* Return simplified RTX expression representing the value of test
|
|
described of DESC at given iteration of loop. */
|
|
|
|
static rtx
|
|
test_for_iteration (desc, iter)
|
|
struct loop_desc *desc;
|
|
unsigned HOST_WIDE_INT iter;
|
|
{
|
|
enum rtx_code cond = desc->cond;
|
|
rtx exp = XEXP (desc->var_alts, 0);
|
|
rtx addval;
|
|
|
|
/* Give up on floating point modes and friends. It can be possible to do
|
|
the job for constant loop bounds, but it is probably not worthwhile. */
|
|
if (!INTEGRAL_MODE_P (GET_MODE (desc->var)))
|
|
return NULL;
|
|
|
|
/* Ensure that we always handle the condition to stay inside loop. */
|
|
if (desc->neg)
|
|
cond = reverse_condition (cond);
|
|
|
|
/* Compute the value of induction variable. */
|
|
addval = simplify_gen_binary (MULT, GET_MODE (desc->var),
|
|
desc->stride,
|
|
gen_int_mode (desc->postincr
|
|
? iter : iter + 1,
|
|
GET_MODE (desc->var)));
|
|
exp = simplify_gen_binary (PLUS, GET_MODE (desc->var), exp, addval);
|
|
/* Test at given condition. */
|
|
exp = simplify_gen_relational (cond, SImode,
|
|
GET_MODE (desc->var), exp, desc->lim);
|
|
|
|
if (rtl_dump_file)
|
|
{
|
|
fprintf (rtl_dump_file, "; Conditional to continue loop at "
|
|
HOST_WIDE_INT_PRINT_UNSIGNED "th iteration: ", iter);
|
|
print_simple_rtl (rtl_dump_file, exp);
|
|
fprintf (rtl_dump_file, "\n");
|
|
}
|
|
return exp;
|
|
}
|
|
|
|
|
|
/* Tests whether exit at EXIT_EDGE from LOOP is simple. Returns simple loop
|
|
description joined to it in in DESC. INVARIANT_REGS and SINGLE_SET_REGS
|
|
are results of blocks_{invariant,single_set}_regs over BODY. */
|
|
static bool
|
|
simple_loop_exit_p (loops, loop, exit_edge, invariant_regs, single_set_regs, desc)
|
|
struct loops *loops;
|
|
struct loop *loop;
|
|
edge exit_edge;
|
|
struct loop_desc *desc;
|
|
regset invariant_regs;
|
|
rtx *single_set_regs;
|
|
{
|
|
basic_block mod_bb, exit_bb;
|
|
int fallthru_out;
|
|
rtx condition;
|
|
edge ei, e;
|
|
|
|
exit_bb = exit_edge->src;
|
|
|
|
fallthru_out = (exit_edge->flags & EDGE_FALLTHRU);
|
|
|
|
if (!exit_bb)
|
|
return false;
|
|
|
|
/* It must be tested (at least) once during any iteration. */
|
|
if (!dominated_by_p (loops->cfg.dom, loop->latch, exit_bb))
|
|
return false;
|
|
|
|
/* It must end in a simple conditional jump. */
|
|
if (!any_condjump_p (exit_bb->end))
|
|
return false;
|
|
|
|
ei = exit_bb->succ;
|
|
if (ei == exit_edge)
|
|
ei = ei->succ_next;
|
|
|
|
desc->out_edge = exit_edge;
|
|
desc->in_edge = ei;
|
|
|
|
/* Condition must be a simple comparison in that one of operands
|
|
is register and the other one is invariant. */
|
|
if (!(condition = get_condition (exit_bb->end, NULL)))
|
|
return false;
|
|
|
|
if (!simple_condition_p (loop, condition, invariant_regs, desc))
|
|
return false;
|
|
|
|
/* Var must be simply incremented or decremented in exactly one insn that
|
|
is executed just once every iteration. */
|
|
if (!(mod_bb = simple_increment (loops, loop, single_set_regs, desc)))
|
|
return false;
|
|
|
|
/* OK, it is simple loop. Now just fill in remaining info. */
|
|
desc->postincr = !dominated_by_p (loops->cfg.dom, exit_bb, mod_bb);
|
|
desc->neg = !fallthru_out;
|
|
|
|
/* Find initial value of var and alternative values for lim. */
|
|
e = loop_preheader_edge (loop);
|
|
desc->var_alts = variable_initial_values (e, desc->var);
|
|
desc->lim_alts = variable_initial_values (e, desc->lim);
|
|
|
|
/* Number of iterations. */
|
|
if (!count_loop_iterations (desc, NULL, NULL))
|
|
return false;
|
|
desc->const_iter =
|
|
constant_iterations (desc, &desc->niter, &desc->may_be_zero);
|
|
return true;
|
|
}
|
|
|
|
/* Tests whether LOOP is simple for loop. Returns simple loop description
|
|
in DESC. */
|
|
bool
|
|
simple_loop_p (loops, loop, desc)
|
|
struct loops *loops;
|
|
struct loop *loop;
|
|
struct loop_desc *desc;
|
|
{
|
|
unsigned i;
|
|
basic_block *body;
|
|
edge e;
|
|
struct loop_desc act;
|
|
bool any = false;
|
|
regset invariant_regs;
|
|
regset_head invariant_regs_head;
|
|
rtx *single_set_regs;
|
|
int n_branches;
|
|
|
|
body = get_loop_body (loop);
|
|
|
|
invariant_regs = INITIALIZE_REG_SET (invariant_regs_head);
|
|
single_set_regs = xmalloc (max_reg_num () * sizeof (rtx));
|
|
|
|
blocks_invariant_registers (body, loop->num_nodes, invariant_regs);
|
|
blocks_single_set_registers (body, loop->num_nodes, single_set_regs);
|
|
|
|
n_branches = 0;
|
|
for (i = 0; i < loop->num_nodes; i++)
|
|
{
|
|
for (e = body[i]->succ; e; e = e->succ_next)
|
|
if (!flow_bb_inside_loop_p (loop, e->dest)
|
|
&& simple_loop_exit_p (loops, loop, e,
|
|
invariant_regs, single_set_regs, &act))
|
|
{
|
|
/* Prefer constant iterations; the less the better. */
|
|
if (!any)
|
|
any = true;
|
|
else if (!act.const_iter
|
|
|| (desc->const_iter && act.niter >= desc->niter))
|
|
continue;
|
|
*desc = act;
|
|
}
|
|
|
|
if (body[i]->succ && body[i]->succ->succ_next)
|
|
n_branches++;
|
|
}
|
|
desc->n_branches = n_branches;
|
|
|
|
if (rtl_dump_file && any)
|
|
{
|
|
fprintf (rtl_dump_file, "; Simple loop %i\n", loop->num);
|
|
if (desc->postincr)
|
|
fprintf (rtl_dump_file,
|
|
"; does postincrement after loop exit condition\n");
|
|
|
|
fprintf (rtl_dump_file, "; Induction variable:");
|
|
print_simple_rtl (rtl_dump_file, desc->var);
|
|
fputc ('\n', rtl_dump_file);
|
|
|
|
fprintf (rtl_dump_file, "; Initial values:");
|
|
print_simple_rtl (rtl_dump_file, desc->var_alts);
|
|
fputc ('\n', rtl_dump_file);
|
|
|
|
fprintf (rtl_dump_file, "; Stride:");
|
|
print_simple_rtl (rtl_dump_file, desc->stride);
|
|
fputc ('\n', rtl_dump_file);
|
|
|
|
fprintf (rtl_dump_file, "; Compared with:");
|
|
print_simple_rtl (rtl_dump_file, desc->lim);
|
|
fputc ('\n', rtl_dump_file);
|
|
|
|
fprintf (rtl_dump_file, "; Alternative values:");
|
|
print_simple_rtl (rtl_dump_file, desc->lim_alts);
|
|
fputc ('\n', rtl_dump_file);
|
|
|
|
fprintf (rtl_dump_file, "; Exit condition:");
|
|
if (desc->neg)
|
|
fprintf (rtl_dump_file, "(negated)");
|
|
fprintf (rtl_dump_file, "%s\n", GET_RTX_NAME (desc->cond));
|
|
|
|
fprintf (rtl_dump_file, "; Number of branches:");
|
|
fprintf (rtl_dump_file, "%d\n", desc->n_branches);
|
|
|
|
fputc ('\n', rtl_dump_file);
|
|
}
|
|
|
|
free (body);
|
|
FREE_REG_SET (invariant_regs);
|
|
free (single_set_regs);
|
|
return any;
|
|
}
|
|
|
|
/* Marks blocks and edges that are part of non-recognized loops; i.e. we
|
|
throw away all latch edges and mark blocks inside any remaining cycle.
|
|
Everything is a bit complicated due to fact we do not want to do this
|
|
for parts of cycles that only "pass" through some loop -- i.e. for
|
|
each cycle, we want to mark blocks that belong directly to innermost
|
|
loop containing the whole cycle. */
|
|
void
|
|
mark_irreducible_loops (loops)
|
|
struct loops *loops;
|
|
{
|
|
int *dfs_in, *closed, *mr, *mri, *n_edges, *stack;
|
|
unsigned i;
|
|
edge **edges, e;
|
|
edge *estack;
|
|
basic_block act;
|
|
int stack_top, tick, depth;
|
|
struct loop *cloop;
|
|
|
|
/* Reset the flags. */
|
|
FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
|
|
{
|
|
act->flags &= ~BB_IRREDUCIBLE_LOOP;
|
|
for (e = act->succ; e; e = e->succ_next)
|
|
e->flags &= ~EDGE_IRREDUCIBLE_LOOP;
|
|
}
|
|
|
|
/* The first last_basic_block + 1 entries are for real blocks (including
|
|
entry); then we have loops->num - 1 fake blocks for loops to that we
|
|
assign edges leading from loops (fake loop 0 is not interesting). */
|
|
dfs_in = xmalloc ((last_basic_block + loops->num) * sizeof (int));
|
|
closed = xmalloc ((last_basic_block + loops->num) * sizeof (int));
|
|
mr = xmalloc ((last_basic_block + loops->num) * sizeof (int));
|
|
mri = xmalloc ((last_basic_block + loops->num) * sizeof (int));
|
|
n_edges = xmalloc ((last_basic_block + loops->num) * sizeof (int));
|
|
edges = xmalloc ((last_basic_block + loops->num) * sizeof (edge *));
|
|
stack = xmalloc ((n_basic_blocks + loops->num) * sizeof (int));
|
|
estack = xmalloc ((n_basic_blocks + loops->num) * sizeof (edge));
|
|
|
|
/* Create the edge lists. */
|
|
for (i = 0; i < last_basic_block + loops->num; i++)
|
|
n_edges[i] = 0;
|
|
FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
|
|
for (e = act->succ; e; e = e->succ_next)
|
|
{
|
|
/* Ignore edges to exit. */
|
|
if (e->dest == EXIT_BLOCK_PTR)
|
|
continue;
|
|
/* And latch edges. */
|
|
if (e->dest->loop_father->header == e->dest
|
|
&& e->dest->loop_father->latch == act)
|
|
continue;
|
|
/* Edges inside a single loop should be left where they are. Edges
|
|
to subloop headers should lead to representative of the subloop,
|
|
but from the same place. */
|
|
if (act->loop_father == e->dest->loop_father
|
|
|| act->loop_father == e->dest->loop_father->outer)
|
|
{
|
|
n_edges[act->index + 1]++;
|
|
continue;
|
|
}
|
|
/* Edges exiting loops remain. They should lead from representative
|
|
of the son of nearest common ancestor of the loops in that
|
|
act lays. */
|
|
depth = find_common_loop (act->loop_father, e->dest->loop_father)->depth + 1;
|
|
if (depth == act->loop_father->depth)
|
|
cloop = act->loop_father;
|
|
else
|
|
cloop = act->loop_father->pred[depth];
|
|
n_edges[cloop->num + last_basic_block]++;
|
|
}
|
|
|
|
for (i = 0; i < last_basic_block + loops->num; i++)
|
|
{
|
|
edges[i] = xmalloc (n_edges[i] * sizeof (edge));
|
|
n_edges[i] = 0;
|
|
}
|
|
|
|
FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
|
|
for (e = act->succ; e; e = e->succ_next)
|
|
{
|
|
if (e->dest == EXIT_BLOCK_PTR)
|
|
continue;
|
|
if (e->dest->loop_father->header == e->dest
|
|
&& e->dest->loop_father->latch == act)
|
|
continue;
|
|
if (act->loop_father == e->dest->loop_father
|
|
|| act->loop_father == e->dest->loop_father->outer)
|
|
{
|
|
edges[act->index + 1][n_edges[act->index + 1]++] = e;
|
|
continue;
|
|
}
|
|
depth = find_common_loop (act->loop_father, e->dest->loop_father)->depth + 1;
|
|
if (depth == act->loop_father->depth)
|
|
cloop = act->loop_father;
|
|
else
|
|
cloop = act->loop_father->pred[depth];
|
|
i = cloop->num + last_basic_block;
|
|
edges[i][n_edges[i]++] = e;
|
|
}
|
|
|
|
/* Compute dfs numbering, starting from loop headers, and mark found
|
|
loops.*/
|
|
tick = 0;
|
|
for (i = 0; i < last_basic_block + loops->num; i++)
|
|
{
|
|
dfs_in[i] = -1;
|
|
closed[i] = 0;
|
|
mr[i] = last_basic_block + loops->num;
|
|
mri[i] = -1;
|
|
}
|
|
|
|
stack_top = 0;
|
|
for (i = 0; i < loops->num; i++)
|
|
if (loops->parray[i])
|
|
{
|
|
stack[stack_top] = loops->parray[i]->header->index + 1;
|
|
estack[stack_top] = NULL;
|
|
stack_top++;
|
|
}
|
|
|
|
while (stack_top)
|
|
{
|
|
int idx, sidx;
|
|
|
|
idx = stack[stack_top - 1];
|
|
if (dfs_in[idx] < 0)
|
|
dfs_in[idx] = tick++;
|
|
|
|
while (n_edges[idx])
|
|
{
|
|
e = edges[idx][--n_edges[idx]];
|
|
sidx = e->dest->loop_father->header == e->dest
|
|
? e->dest->loop_father->num + last_basic_block
|
|
: e->dest->index + 1;
|
|
if (closed[sidx])
|
|
{
|
|
if (!closed[mri[sidx]])
|
|
{
|
|
if (mr[sidx] < mr[idx])
|
|
{
|
|
mr[idx] = mr[sidx];
|
|
mri[idx] = mri[sidx];
|
|
}
|
|
|
|
if (mr[sidx] <= dfs_in[idx])
|
|
e->flags |= EDGE_IRREDUCIBLE_LOOP;
|
|
}
|
|
continue;
|
|
}
|
|
if (dfs_in[sidx] < 0)
|
|
{
|
|
stack[stack_top] = sidx;
|
|
estack[stack_top] = e;
|
|
stack_top++;
|
|
goto next;
|
|
}
|
|
if (dfs_in[sidx] < mr[idx])
|
|
{
|
|
mr[idx] = dfs_in[sidx];
|
|
mri[idx] = sidx;
|
|
}
|
|
e->flags |= EDGE_IRREDUCIBLE_LOOP;
|
|
}
|
|
|
|
/* Return back. */
|
|
closed[idx] = 1;
|
|
e = estack[stack_top - 1];
|
|
stack_top--;
|
|
if (e)
|
|
{
|
|
/* Propagate information back. */
|
|
sidx = stack[stack_top - 1];
|
|
if (mr[sidx] > mr[idx])
|
|
{
|
|
mr[sidx] = mr[idx];
|
|
mri[sidx] = mri[idx];
|
|
}
|
|
if (mr[idx] <= dfs_in[sidx])
|
|
e->flags |= EDGE_IRREDUCIBLE_LOOP;
|
|
}
|
|
/* Mark the block if relevant. */
|
|
if (idx && idx <= last_basic_block && mr[idx] <= dfs_in[idx])
|
|
BASIC_BLOCK (idx - 1)->flags |= BB_IRREDUCIBLE_LOOP;
|
|
next:;
|
|
}
|
|
|
|
free (stack);
|
|
free (estack);
|
|
free (dfs_in);
|
|
free (closed);
|
|
free (mr);
|
|
free (mri);
|
|
for (i = 0; i < last_basic_block + loops->num; i++)
|
|
free (edges[i]);
|
|
free (edges);
|
|
free (n_edges);
|
|
loops->state |= LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS;
|
|
}
|
|
|
|
/* Counts number of insns inside LOOP. */
|
|
int
|
|
num_loop_insns (loop)
|
|
struct loop *loop;
|
|
{
|
|
basic_block *bbs, bb;
|
|
unsigned i, ninsns = 0;
|
|
rtx insn;
|
|
|
|
bbs = get_loop_body (loop);
|
|
for (i = 0; i < loop->num_nodes; i++)
|
|
{
|
|
bb = bbs[i];
|
|
ninsns++;
|
|
for (insn = bb->head; insn != bb->end; insn = NEXT_INSN (insn))
|
|
if (INSN_P (insn))
|
|
ninsns++;
|
|
}
|
|
free(bbs);
|
|
|
|
return ninsns;
|
|
}
|
|
|
|
/* Counts number of insns executed on average per iteration LOOP. */
|
|
int
|
|
average_num_loop_insns (loop)
|
|
struct loop *loop;
|
|
{
|
|
basic_block *bbs, bb;
|
|
unsigned i, binsns, ninsns, ratio;
|
|
rtx insn;
|
|
|
|
ninsns = 0;
|
|
bbs = get_loop_body (loop);
|
|
for (i = 0; i < loop->num_nodes; i++)
|
|
{
|
|
bb = bbs[i];
|
|
|
|
binsns = 1;
|
|
for (insn = bb->head; insn != bb->end; insn = NEXT_INSN (insn))
|
|
if (INSN_P (insn))
|
|
binsns++;
|
|
|
|
ratio = loop->header->frequency == 0
|
|
? BB_FREQ_MAX
|
|
: (bb->frequency * BB_FREQ_MAX) / loop->header->frequency;
|
|
ninsns += binsns * ratio;
|
|
}
|
|
free(bbs);
|
|
|
|
ninsns /= BB_FREQ_MAX;
|
|
if (!ninsns)
|
|
ninsns = 1; /* To avoid division by zero. */
|
|
|
|
return ninsns;
|
|
}
|
|
|
|
/* Returns expected number of LOOP iterations.
|
|
Compute upper bound on number of iterations in case they do not fit integer
|
|
to help loop peeling heuristics. Use exact counts if at all possible. */
|
|
unsigned
|
|
expected_loop_iterations (loop)
|
|
const struct loop *loop;
|
|
{
|
|
edge e;
|
|
|
|
if (loop->header->count)
|
|
{
|
|
gcov_type count_in, count_latch, expected;
|
|
|
|
count_in = 0;
|
|
count_latch = 0;
|
|
|
|
for (e = loop->header->pred; e; e = e->pred_next)
|
|
if (e->src == loop->latch)
|
|
count_latch = e->count;
|
|
else
|
|
count_in += e->count;
|
|
|
|
if (count_in == 0)
|
|
return 0;
|
|
|
|
expected = (count_latch + count_in - 1) / count_in;
|
|
|
|
/* Avoid overflows. */
|
|
return (expected > REG_BR_PROB_BASE ? REG_BR_PROB_BASE : expected);
|
|
}
|
|
else
|
|
{
|
|
int freq_in, freq_latch;
|
|
|
|
freq_in = 0;
|
|
freq_latch = 0;
|
|
|
|
for (e = loop->header->pred; e; e = e->pred_next)
|
|
if (e->src == loop->latch)
|
|
freq_latch = EDGE_FREQUENCY (e);
|
|
else
|
|
freq_in += EDGE_FREQUENCY (e);
|
|
|
|
if (freq_in == 0)
|
|
return 0;
|
|
|
|
return (freq_latch + freq_in - 1) / freq_in;
|
|
}
|
|
}
|