117 lines
3.0 KiB
Plaintext
117 lines
3.0 KiB
Plaintext
`/* Helper function for repacking arrays.
|
|
Copyright 2003 Free Software Foundation, Inc.
|
|
Contributed by Paul Brook <paul@nowt.org>
|
|
|
|
This file is part of the GNU Fortran 95 runtime library (libgfortran).
|
|
|
|
Libgfor is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
Ligbfor is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with libgfortran; see the file COPYING.LIB. If not,
|
|
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
#include "config.h"
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
#include "libgfortran.h"'
|
|
include(iparm.m4)dnl
|
|
|
|
/* Allocates a block of memory with internal_malloc if the array needs
|
|
repacking. */
|
|
|
|
dnl Only the kind (ie size) is used to name the function.
|
|
rtype_name *
|
|
`internal_pack_'rtype_kind (rtype * source)
|
|
{
|
|
index_type count[GFC_MAX_DIMENSIONS - 1];
|
|
index_type extent[GFC_MAX_DIMENSIONS - 1];
|
|
index_type stride[GFC_MAX_DIMENSIONS - 1];
|
|
index_type stride0;
|
|
index_type dim;
|
|
index_type ssize;
|
|
const rtype_name *src;
|
|
rtype_name *dest;
|
|
rtype_name *destptr;
|
|
int n;
|
|
int packed;
|
|
|
|
if (source->dim[0].stride == 0)
|
|
{
|
|
source->dim[0].stride = 1;
|
|
return source->data;
|
|
}
|
|
|
|
dim = GFC_DESCRIPTOR_RANK (source);
|
|
ssize = 1;
|
|
packed = 1;
|
|
for (n = 0; n < dim; n++)
|
|
{
|
|
count[n] = 0;
|
|
stride[n] = source->dim[n].stride;
|
|
extent[n] = source->dim[n].ubound + 1 - source->dim[n].lbound;
|
|
if (extent[n] <= 0)
|
|
{
|
|
/* Do nothing. */
|
|
packed = 1;
|
|
break;
|
|
}
|
|
|
|
if (ssize != stride[n])
|
|
packed = 0;
|
|
|
|
ssize *= extent[n];
|
|
}
|
|
|
|
if (packed)
|
|
return source->data;
|
|
|
|
/* Allocate storage for the destination. */
|
|
destptr = (rtype_name *)internal_malloc_size (ssize * rtype_kind);
|
|
dest = destptr;
|
|
src = source->data;
|
|
stride0 = stride[0];
|
|
|
|
|
|
while (src)
|
|
{
|
|
/* Copy the data. */
|
|
*(dest++) = *src;
|
|
/* Advance to the next element. */
|
|
src += stride0;
|
|
count[0]++;
|
|
/* Advance to the next source element. */
|
|
n = 0;
|
|
while (count[n] == extent[n])
|
|
{
|
|
/* When we get to the end of a dimension, reset it and increment
|
|
the next dimension. */
|
|
count[n] = 0;
|
|
/* We could precalculate these products, but this is a less
|
|
frequently used path so proabably not worth it. */
|
|
src -= stride[n] * extent[n];
|
|
n++;
|
|
if (n == dim)
|
|
{
|
|
src = NULL;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
count[n]++;
|
|
src += stride[n];
|
|
}
|
|
}
|
|
}
|
|
return destptr;
|
|
}
|
|
|