gcc/gcc/real.c
Joseph Myers c65699efcc Implement C _FloatN, _FloatNx types.
ISO/IEC TS 18661-3:2015 defines C bindings to IEEE interchange and
extended types, in the form of _FloatN and _FloatNx type names with
corresponding fN/FN and fNx/FNx constant suffixes and FLTN_* / FLTNX_*
<float.h> macros.  This patch implements support for this feature in
GCC.

The _FloatN types, for N = 16, 32, 64 or >= 128 and a multiple of 32,
are types encoded according to the corresponding IEEE interchange
format (endianness unspecified; may use either the NaN conventions
recommended in IEEE 754-2008, or the MIPS NaN conventions, since the
choice of convention is only an IEEE recommendation, not a
requirement).  The _FloatNx types, for N = 32, 64 and 128, are IEEE
"extended" types: types extending a narrower format with range and
precision at least as big as those specified in IEEE 754 for each
extended type (and with unspecified representation, but still
following IEEE semantics for their values and operations - and with
the set of values being determined by the precision and the maximum
exponent, which means that while Intel "extended" is suitable for
_Float64x, m68k "extended" is not).  These types are always distinct
from and not compatible with each other and the standard floating
types float, double, long double; thus, double, _Float64 and _Float32x
may all have the same ABI, but they are three still distinct types.
The type names may be used with _Complex to construct corresponding
complex types (unlike __float128, which acts more like a typedef name
than a keyword - thus, this patch may be considered to fix PR
c/32187).  The new suffixes can be combined with GNU "i" and "j"
suffixes for constants of complex types (e.g. 1.0if128, 2.0f64i).

The set of types supported is implementation-defined.  In this GCC
patch, _Float32 is SFmode if that is suitable; _Float32x and _Float64
are DFmode if that is suitable; _Float128 is TFmode if that is
suitable; _Float64x is XFmode if that is suitable, and otherwise
TFmode if that is suitable.  There is a target hook to override the
choices if necessary.  "Suitable" means both conforming to the
requirements of that type, and supported as a scalar type including in
libgcc.  The ABI is whatever the back end does for scalars of that
mode (but note that _Float32 is passed without promotion in variable
arguments, unlike float).  All the existing issues with exceptions and
rounding modes for existing types apply equally to the new type names.

No GCC port supports a floating-point format suitable for _Float128x.
Although there is HFmode support for ARM and AArch64, use of that for
_Float16 is not enabled.  Supporting _Float16 would require additional
work on the excess precision aspects of TS 18661-3: there are new
values of FLT_EVAL_METHOD, which are not currently supported in GCC,
and FLT_EVAL_METHOD == 0 now means that operations and constants on
types narrower than float are evaluated to the range and precision of
float.  Implementing that, so that _Float16 gets evaluated with excess
range and precision, would involve changes to the excess precision
infrastructure so that the _Float16 case is enabled by default, unlike
the x87 case which is only enabled for -fexcess-precision=standard.
Other differences between _Float16 and __fp16 would also need to be
disentangled.

GCC has some prior support for nonstandard floating-point types in the
form of __float80 and __float128.  Where these were previously types
distinct from long double, they are made by this patch into aliases
for _Float64x / _Float128 if those types have the required properties.

In principle the set of possible _FloatN types is infinite.  This
patch hardcodes the four such types for N <= 128, but with as much
code as possible using loops over types to minimize the number of
places with such hardcoding.  I don't think it's likely any further
such types will be of use in future (or indeed that formats suitable
for _Float128x will actually be implemented).  There is a corner case
that all _FloatN, for N >= 128 and a multiple of 32, should be treated
as keywords even when the corresponding type is not supported; I
intend to deal with that in a followup patch.

Tests are added for various functionality of the new types, mostly
using type-generic headers.  The tests use dg-add-options to pass any
extra options needed to enable the types; this is wired up to use the
same options as for __float128 on powerpc to enable _Float128 and
_Float64x, and effective-target keywords for runtime support do the
same hardware test as for __float128 to make sure the VSX instructions
generated by those options are supported.  (Corresponding additions
would be needed for _Float16 on ARM as well if that were enabled with
-mfp16-format=ieee required to use it rather than unconditionally
available.  Of course, -mfp16-format=alternative enables use of a
format which is not compatible with the requirements of the _Float16
type.)

C++ note: no support for the new types or constant suffixes is added
for C++.  C++ decimal floating-point support was very different from
the C support, using class types, and the same may well apply to any
future C++ bindings for IEEE interchange and extended types.  There is
a case, however, for supporting at least *f128 constants in C++, so
that code using __float128 can use the newer style for constants
throughout rather than needing to use the older *q constants in C++.
Also, if built-in functions are added that may provide a way in which
the types could leak into C++ code.

Fortran note: the float128_type_node used in the Fortran front end is
renamed to gfc_float128_type_node, since the semantics are different:
in particular, if long double has binary128 format, then the new
language-independent float128_type_node is a distinct type that also
has binary128 format, but the Fortran node is expected to be NULL in
that case.  Likewise, Fortran's complex_float128_type_node is renamed
to gfc_complex_float128_type_node.

PowerPC note: the back end had an inconsistency that if TFmode was
binary128, *q constants were TFmode instead of KFmode but __float128
was KFmode.  This patch follows the same logic as for *q constants, so
that _Float128 prefers TFmode (and __float128 becomes an alias for
_Float128).

ARM note: __fp16 is promoted to double (by convert_arguments) when
passed without a prototype / in variable arguments.  But this is only
about the argument promotion; it is not handled as promoting in
c-common.c:self_promoting_args_p / c-typeck.c:c_type_promotes_to,
meaning that a K&R function definition for an argument of type __fp16
corresponds to a prototype with an argument of that type, not to one
with an argument of type double, whereas a float argument in a K&R
function definition corresponds to a double prototype argument - and
the same functions are also what's involved in making va_arg give a
warning and generate a call to abort when called with type float.
This is preserved by this patch, while arranging for _Float16 not to
be promoted when passed without a prototype / in variable arguments
(the promotion of float being considered a legacy feature, not applied
to any new types in C99 or later).

TS 18661-3 extends the set of decimal floating-point types similarly,
and adds new constant suffixes for the existing types, but this patch
does not do anything regarding that extension.

This patch does nothing regarding built-in functions, although
type-generic functions such as __builtin_isinf work for the new types
and associated tests are included.  There are at least two levels of
built-in function support possible for these types.  The minimal
level, implemented in
<https://gcc.gnu.org/ml/gcc-patches/2016-06/msg01702.html> (which
needs updating to use dg-add-options), adds built-in functions similar
to those x86 has for __float128: __builtin_inf* __builtin_huge_val*,
__builtin_nan*, __builtin_nans*, __builtin_fabs*, __builtin_copysign*.
That would be sufficient for glibc to use the *f128 names for built-in
functions by default with *q used only for backwards compatibility
when using older GCC versions.  That would also allow c_cpp_builtins's
flag_building_libgcc code, defining __LIBGCC_%s_FUNC_EXT__, to use
such suffixes rather than the present code hardcoding logic about
target-specific constant suffixes and how those relate to function
suffixes.

Full built-in function support would cover the full range of built-in
functions for existing floating-point types, adding variants for all
the new types, except for a few obsolescent functions and
non-type-generic variants of type-generic functions.  Some but not all
references to such functions in GCC use macros such as CASE_FLT_FN to
be type-generic; a fair amount of work would be needed to identify all
places to update.  Adding all those functions would enable
optimizations (for constant arguments and otherwise) for TS 18661-3
functions, but it would also substantially expand the enum listing
built-in functions (and we've had problems with the size of that enum
in the past), and increase the amount of built-in function
initialization to do - I don't know what the startup cost involved in
built-in function initialization is, but it would be something to
consider when adding such a large set of functions.

There are also a range of optimizations, in match.pd and elsewhere,
that only operate on the three standard floating-point types.  Ideally
those would be made generic to all floating-point types, but this
patch does nothing in that regard.  Special care would be needed
regarding making sure library functions to which calls are generated
actually exist.  For example, if sqrt is called on an argument of type
_Float32, and the result converted to _Float32, this is equivalent to
doing a square root operation directly on _Float32.  But if the user's
libm does not have the sqrtf32 function, or the name is not reserved
because __STDC_WANT_IEC_60559_TYPES_EXT__ was not defined before
including <math.h>, you can only do that optimization if you convert
to a call to sqrtf instead.

DECIMAL_DIG now relates to all supported floating-point formats, not
just float, double and long double; I've raised the question with WG14
of how this relates to the formula for DECIMAL_DIG in C11 not
considering this.  TS 18661-3 says it also covers non-arithmetic
formats only supported by library conversion functions; this patch
does not add any target hooks to allow for the case where there are
such formats wider than any supported for arithmetic types (where
e.g. libc supports conversions involving the binary128 representation,
but the _Float128 type is not supported).

GCC provides its own <tgmath.h> for some targets.  No attempt is made
to adapt this to handle the new types.

Nothing is done regarding debug info for the new types (see the
"Debugger support for __float128 type?" thread on gcc@, Sep/Oct 2015).

No __SIZEOF_*__ macros are added for the new types.

Nothing is done with do_warn_double_promotion.

Nothing is done to include the new types in those determining
max_align_t, although properly it should be sufficiently aligned for
any of those types.

The logic for usual arithmetic conversions in c_common_type relies on
TYPE_PRECISION for floating-point types, which is less than ideal
(doesn't necessarily correspond to whether one type's values are
subset of another); looking in more detail at the formats might be
better.  But since I included code in build_common_tree_nodes to work
around rs6000 KFmode having precision 113 not 128, I think it should
work.  Ideally one might have errors in generic code for the case
where the two types do not have one type's values a subset of the
other (which is undefined behavior).  But the only case where this can
actually occur is mixing IBM long double with binary128 on powerpc,
and rs6000_invalid_binary_op deals with that at present.  TS 18661-3
does not fully specify the type resulting from the usual arithmetic
conversions in the case where two _FloatNx types have the same set of
values; I arranged the code to prefer the greater value of N in that
case.

The __FP_FAST_FMA* macros are not extended to cover the new types,
since there are no corresponding built-in functions (if built-in
fmafN, fmafNx are added, the macros should be extended, and the new
macros documented).  Also, only a limited set of modes is handled in
mode_has_fma.

Diagnostics relating to the use of the new types with -pedantic do not
try to distinguish them from purely nonstandard types such as __int128
and constant suffixes such as *q.

If you use an unsupported _FloatN / _FloatNx type you get a warning
about the type defaulting to int after the warning about the type not
being supported.  That's less than ideal, but it's also a pre-existing
condition if you use __int128 on a 32-bit system where it's
unsupported.

Bootstrapped with no regressions on x86_64-pc-linux-gnu.  Other
back-end changes minimally tested by building cc1 for ia64-linux-gnu,
powerpc64le-linux-gnu, pdp11-none (the last failed for unrelated
reasons).

	PR c/32187
gcc:
	* tree-core.h (TI_COMPLEX_FLOAT16_TYPE)
	(TI_COMPLEX_FLOATN_NX_TYPE_FIRST, TI_COMPLEX_FLOAT32_TYPE)
	(TI_COMPLEX_FLOAT64_TYPE, TI_COMPLEX_FLOAT128_TYPE)
	(TI_COMPLEX_FLOAT32X_TYPE, TI_COMPLEX_FLOAT64X_TYPE)
	(TI_COMPLEX_FLOAT128X_TYPE, TI_FLOAT16_TYPE, TI_FLOATN_TYPE_FIRST)
	(TI_FLOATN_NX_TYPE_FIRST, TI_FLOAT32_TYPE, TI_FLOAT64_TYPE)
	(TI_FLOAT128_TYPE, TI_FLOATN_TYPE_LAST, TI_FLOAT32X_TYPE)
	(TI_FLOATNX_TYPE_FIRST, TI_FLOAT64X_TYPE, TI_FLOAT128X_TYPE)
	(TI_FLOATNX_TYPE_LAST, TI_FLOATN_NX_TYPE_LAST): New enum
	tree_index values.
	(NUM_FLOATN_TYPES, NUM_FLOATNX_TYPES, NUM_FLOATN_NX_TYPES): New
	macros.
	(struct floatn_type_info): New structure type.
	(floatn_nx_types): New variable declaration.
	* tree.h (FLOATN_TYPE_NODE, FLOATN_NX_TYPE_NODE)
	(FLOATNX_TYPE_NODE, float128_type_node, float64x_type_node)
	(COMPLEX_FLOATN_NX_TYPE_NODE): New macros.
	* tree.c (floatn_nx_types): New variable.
	(build_common_tree_nodes): Initialize _FloatN, _FloatNx and
	corresponding complex types.
	* target.def (floatn_mode): New hook.
	* targhooks.c: Include "real.h".
	(default_floatn_mode): New function.
	* targhooks.h (default_floatn_mode): New prototype.
	* doc/extend.texi (Floating Types): Document _FloatN and _FloatNx
	types.
	* doc/sourcebuild.texi (float@var{n}, float@var{n}x): Document new
	effective-target and dg-add-options keywords.
	(float@var{n}_runtime, float@var{n}x_runtime, floatn_nx_runtime):
	Document new effective-target keywords.
	* doc/tm.texi.in (TARGET_FLOATN_MODE): New @hook.
	* doc/tm.texi: Regenerate.
	* ginclude/float.h (LDBL_DECIMAL_DIG): Define to
	__LDBL_DECIMAL_DIG__, not __DECIMAL_DIG__.
	[__STDC_WANT_IEC_60559_TYPES_EXT__]: Define macros from TS
	18661-3.
	* real.h (struct real_format): Add field ieee_bits.
	* real.c (ieee_single_format, mips_single_format)
	(motorola_single_format, spu_single_format, ieee_double_format)
	(mips_double_format, motorola_double_format)
	(ieee_extended_motorola_format, ieee_extended_intel_96_format)
	(ieee_extended_intel_128_format)
	(ieee_extended_intel_96_round_53_format, ibm_extended_format)
	(mips_extended_format, ieee_quad_format, mips_quad_format)
	(vax_f_format, vax_d_format, vax_g_format, decimal_single_format)
	(decimal_double_format, decimal_quad_format, ieee_half_format)
	(arm_half_format, real_internal_format: Initialize ieee_bits
	field.
	* config/i386/i386.c (ix86_init_builtin_types): Do not initialize
	float128_type_node.  Set float80_type_node to float64x_type_node
	if appropriate and long_double_type_node not appropriate.
	* config/ia64/ia64.c (ia64_init_builtins): Likewise.
	* config/pdp11/pdp11.c (pdp11_f_format, pdp11_d_format):
	Initialize ieee_bits field.
	* config/rs6000/rs6000.c (TARGET_FLOATN_MODE): New macro.
	(rs6000_init_builtins): Set ieee128_float_type_node to
	float128_type_node.
	(rs6000_floatn_mode): New function.

gcc/c:
	* c-tree.h (cts_floatn_nx): New enum c_typespec_keyword value.
	(struct c_declspecs): Add field floatn_nx_idx.
	* c-decl.c (declspecs_add_type, finish_declspecs): Handle _FloatN
	and _FloatNx type specifiers.
	* c-parser.c (c_keyword_starts_typename, c_token_starts_declspecs)
	(c_parser_declspecs, c_parser_attribute_any_word)
	(c_parser_objc_selector): Use CASE_RID_FLOATN_NX.
	* c-typeck.c (c_common_type): Handle _FloatN and _FloatNx types.
	(convert_arguments): Avoid promoting _FloatN and _FloatNx types
	narrower than double.

gcc/c-family:
	* c-common.h (RID_FLOAT16, RID_FLOATN_NX_FIRST, RID_FLOAT32)
	(RID_FLOAT64, RID_FLOAT128, RID_FLOAT32X, RID_FLOAT64X)
	(RID_FLOAT128X): New enum rid values.
	(CASE_RID_FLOATN_NX): New macro.
	* c-common.c (c_common_reswords): Add _FloatN and _FloatNx
	keywords.
	(c_common_type_for_mode): Check for _FloatN and _FloatNx and
	corresponding complex types.
	(c_common_nodes_and_builtins): For non-C++, register _FloatN and
	_FloatNx and corresponding complex types.
	(keyword_begins_type_specifier): Use CASE_RID_FLOATN_NX.
	* c-cppbuiltin.c (builtin_define_float_constants): Check _FloatN
	and _FloatNx types for the widest type for determining
	DECIMAL_DIG.  Define __LDBL_DECIMAL_DIG__ as well as
	__DECIMAL_DIG__ for long double.  Handle FMA_SUFFIX being NULL.
	(c_cpp_builtins): Call builtin_define_float_constants for _FloatN
	and _FloatNx types.
	* c-lex.c (interpret_float): Handle _FloatN and _FloatNx
	constants.
	* c-pretty-print.c (pp_c_floating_constant): Handle _FloatN and
	_FloatNx types.

gcc/fortran:
	* trans-types.h (float128_type_node): Rename to
	gfc_float128_type_node.
	(complex_float128_type_node): Rename to
	gfc_complex_float128_type_node.
	* iso-c-binding.def, trans-intrinsic.c, trans-types.c: All users
	changed.

gcc/testsuite:
	* lib/target-supports.exp (check_effective_target_float16)
	(check_effective_target_float32, check_effective_target_float64)
	(check_effective_target_float128, check_effective_target_float32x)
	(check_effective_target_float64x)
	(check_effective_target_float128x)
	(check_effective_target_float16_runtime)
	(check_effective_target_float32_runtime)
	(check_effective_target_float64_runtime)
	(check_effective_target_float128_runtime)
	(check_effective_target_float32x_runtime)
	(check_effective_target_float64x_runtime)
	(check_effective_target_float128x_runtime)
	(check_effective_target_floatn_nx_runtime)
	(add_options_for_float16, add_options_for_float32)
	(add_options_for_float64, add_options_for_float128)
	(add_options_for_float32x, add_options_for_float64x)
	(add_options_for_float128x): New procedures.
	* gcc.dg/dfp/floatn.c, gcc.dg/float128-typeof.c,
	gcc.dg/float128x-typeof.c, gcc.dg/float16-typeof.c,
	gcc.dg/float32-typeof.c, gcc.dg/float32x-typeof.c,
	gcc.dg/float64-typeof.c, gcc.dg/float64x-typeof.c,
	gcc.dg/floatn-arithconv.c, gcc.dg/floatn-errs.c,
	gcc.dg/floatn-typeof.h, gcc.dg/torture/float128-basic.c,
	gcc.dg/torture/float128-complex.c,
	gcc.dg/torture/float128-floath.c, gcc.dg/torture/float128-tg.c,
	gcc.dg/torture/float128x-basic.c,
	gcc.dg/torture/float128x-complex.c,
	gcc.dg/torture/float128x-floath.c, gcc.dg/torture/float128x-tg.c,
	gcc.dg/torture/float16-basic.c, gcc.dg/torture/float16-complex.c,
	gcc.dg/torture/float16-floath.c, gcc.dg/torture/float16-tg.c,
	gcc.dg/torture/float32-basic.c, gcc.dg/torture/float32-complex.c,
	gcc.dg/torture/float32-floath.c, gcc.dg/torture/float32-tg.c,
	gcc.dg/torture/float32x-basic.c,
	gcc.dg/torture/float32x-complex.c,
	gcc.dg/torture/float32x-floath.c, gcc.dg/torture/float32x-tg.c,
	gcc.dg/torture/float64-basic.c, gcc.dg/torture/float64-complex.c,
	gcc.dg/torture/float64-floath.c, gcc.dg/torture/float64-tg.c,
	gcc.dg/torture/float64x-basic.c,
	gcc.dg/torture/float64x-complex.c,
	gcc.dg/torture/float64x-floath.c, gcc.dg/torture/float64x-tg.c,
	gcc.dg/torture/floatn-basic.h, gcc.dg/torture/floatn-complex.h,
	gcc.dg/torture/floatn-convert.c, gcc.dg/torture/floatn-floath.h,
	gcc.dg/torture/floatn-tg.h,
	gcc.dg/torture/fp-int-convert-float128-ieee-timode.c,
	gcc.dg/torture/fp-int-convert-float128-ieee.c,
	gcc.dg/torture/fp-int-convert-float128x-timode.c,
	gcc.dg/torture/fp-int-convert-float128x.c,
	gcc.dg/torture/fp-int-convert-float16-timode.c,
	gcc.dg/torture/fp-int-convert-float16.c,
	gcc.dg/torture/fp-int-convert-float32-timode.c,
	gcc.dg/torture/fp-int-convert-float32.c,
	gcc.dg/torture/fp-int-convert-float32x-timode.c,
	gcc.dg/torture/fp-int-convert-float32x.c,
	gcc.dg/torture/fp-int-convert-float64-timode.c,
	gcc.dg/torture/fp-int-convert-float64.c,
	gcc.dg/torture/fp-int-convert-float64x-timode.c,
	gcc.dg/torture/fp-int-convert-float64x.c: New tests.
	* gcc.dg/torture/fp-int-convert.h (TEST_I_F): Add argument for
	maximum exponent of floating-point type.  Use it in testing
	whether 0x8...0 fits in the floating-point type.  Always treat -1
	(signed 0xf...f) as fitting in the floating-point type.
	(M_OK1): New macro.
	* gcc.dg/torture/fp-int-convert-double.c,
	gcc.dg/torture/fp-int-convert-float.c,
	gcc.dg/torture/fp-int-convert-float128-timode.c,
	gcc.dg/torture/fp-int-convert-float128.c,
	gcc.dg/torture/fp-int-convert-float80-timode.c,
	gcc.dg/torture/fp-int-convert-float80.c,
	gcc.dg/torture/fp-int-convert-long-double.c,
	gcc.dg/torture/fp-int-convert-timode.c: Update calls to TEST_I_F.

libcpp:
	* include/cpplib.h (CPP_N_FLOATN, CPP_N_FLOATNX)
	(CPP_N_WIDTH_FLOATN_NX, CPP_FLOATN_SHIFT, CPP_FLOATN_MAX): New
	macros.
	* expr.c (interpret_float_suffix): Handle fN, fNx, FN and FNx
	suffixes.

From-SVN: r239625
2016-08-19 18:43:26 +01:00

5186 lines
114 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* real.c - software floating point emulation.
Copyright (C) 1993-2016 Free Software Foundation, Inc.
Contributed by Stephen L. Moshier (moshier@world.std.com).
Re-written by Richard Henderson <rth@redhat.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "tree.h"
#include "realmpfr.h"
#include "dfp.h"
/* The floating point model used internally is not exactly IEEE 754
compliant, and close to the description in the ISO C99 standard,
section 5.2.4.2.2 Characteristics of floating types.
Specifically
x = s * b^e * \sum_{k=1}^p f_k * b^{-k}
where
s = sign (+- 1)
b = base or radix, here always 2
e = exponent
p = precision (the number of base-b digits in the significand)
f_k = the digits of the significand.
We differ from typical IEEE 754 encodings in that the entire
significand is fractional. Normalized significands are in the
range [0.5, 1.0).
A requirement of the model is that P be larger than the largest
supported target floating-point type by at least 2 bits. This gives
us proper rounding when we truncate to the target type. In addition,
E must be large enough to hold the smallest supported denormal number
in a normalized form.
Both of these requirements are easily satisfied. The largest target
significand is 113 bits; we store at least 160. The smallest
denormal number fits in 17 exponent bits; we store 26. */
/* Used to classify two numbers simultaneously. */
#define CLASS2(A, B) ((A) << 2 | (B))
#if HOST_BITS_PER_LONG != 64 && HOST_BITS_PER_LONG != 32
#error "Some constant folding done by hand to avoid shift count warnings"
#endif
static void get_zero (REAL_VALUE_TYPE *, int);
static void get_canonical_qnan (REAL_VALUE_TYPE *, int);
static void get_canonical_snan (REAL_VALUE_TYPE *, int);
static void get_inf (REAL_VALUE_TYPE *, int);
static bool sticky_rshift_significand (REAL_VALUE_TYPE *,
const REAL_VALUE_TYPE *, unsigned int);
static void rshift_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
unsigned int);
static void lshift_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
unsigned int);
static void lshift_significand_1 (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
static bool add_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *,
const REAL_VALUE_TYPE *);
static bool sub_significands (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
const REAL_VALUE_TYPE *, int);
static void neg_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
static int cmp_significands (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
static int cmp_significand_0 (const REAL_VALUE_TYPE *);
static void set_significand_bit (REAL_VALUE_TYPE *, unsigned int);
static void clear_significand_bit (REAL_VALUE_TYPE *, unsigned int);
static bool test_significand_bit (REAL_VALUE_TYPE *, unsigned int);
static void clear_significand_below (REAL_VALUE_TYPE *, unsigned int);
static bool div_significands (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
const REAL_VALUE_TYPE *);
static void normalize (REAL_VALUE_TYPE *);
static bool do_add (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
const REAL_VALUE_TYPE *, int);
static bool do_multiply (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
const REAL_VALUE_TYPE *);
static bool do_divide (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
const REAL_VALUE_TYPE *);
static int do_compare (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *, int);
static void do_fix_trunc (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
static unsigned long rtd_divmod (REAL_VALUE_TYPE *, REAL_VALUE_TYPE *);
static void decimal_from_integer (REAL_VALUE_TYPE *);
static void decimal_integer_string (char *, const REAL_VALUE_TYPE *,
size_t);
static const REAL_VALUE_TYPE * ten_to_ptwo (int);
static const REAL_VALUE_TYPE * ten_to_mptwo (int);
static const REAL_VALUE_TYPE * real_digit (int);
static void times_pten (REAL_VALUE_TYPE *, int);
static void round_for_format (const struct real_format *, REAL_VALUE_TYPE *);
/* Initialize R with a positive zero. */
static inline void
get_zero (REAL_VALUE_TYPE *r, int sign)
{
memset (r, 0, sizeof (*r));
r->sign = sign;
}
/* Initialize R with the canonical quiet NaN. */
static inline void
get_canonical_qnan (REAL_VALUE_TYPE *r, int sign)
{
memset (r, 0, sizeof (*r));
r->cl = rvc_nan;
r->sign = sign;
r->canonical = 1;
}
static inline void
get_canonical_snan (REAL_VALUE_TYPE *r, int sign)
{
memset (r, 0, sizeof (*r));
r->cl = rvc_nan;
r->sign = sign;
r->signalling = 1;
r->canonical = 1;
}
static inline void
get_inf (REAL_VALUE_TYPE *r, int sign)
{
memset (r, 0, sizeof (*r));
r->cl = rvc_inf;
r->sign = sign;
}
/* Right-shift the significand of A by N bits; put the result in the
significand of R. If any one bits are shifted out, return true. */
static bool
sticky_rshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
unsigned int n)
{
unsigned long sticky = 0;
unsigned int i, ofs = 0;
if (n >= HOST_BITS_PER_LONG)
{
for (i = 0, ofs = n / HOST_BITS_PER_LONG; i < ofs; ++i)
sticky |= a->sig[i];
n &= HOST_BITS_PER_LONG - 1;
}
if (n != 0)
{
sticky |= a->sig[ofs] & (((unsigned long)1 << n) - 1);
for (i = 0; i < SIGSZ; ++i)
{
r->sig[i]
= (((ofs + i >= SIGSZ ? 0 : a->sig[ofs + i]) >> n)
| ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[ofs + i + 1])
<< (HOST_BITS_PER_LONG - n)));
}
}
else
{
for (i = 0; ofs + i < SIGSZ; ++i)
r->sig[i] = a->sig[ofs + i];
for (; i < SIGSZ; ++i)
r->sig[i] = 0;
}
return sticky != 0;
}
/* Right-shift the significand of A by N bits; put the result in the
significand of R. */
static void
rshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
unsigned int n)
{
unsigned int i, ofs = n / HOST_BITS_PER_LONG;
n &= HOST_BITS_PER_LONG - 1;
if (n != 0)
{
for (i = 0; i < SIGSZ; ++i)
{
r->sig[i]
= (((ofs + i >= SIGSZ ? 0 : a->sig[ofs + i]) >> n)
| ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[ofs + i + 1])
<< (HOST_BITS_PER_LONG - n)));
}
}
else
{
for (i = 0; ofs + i < SIGSZ; ++i)
r->sig[i] = a->sig[ofs + i];
for (; i < SIGSZ; ++i)
r->sig[i] = 0;
}
}
/* Left-shift the significand of A by N bits; put the result in the
significand of R. */
static void
lshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
unsigned int n)
{
unsigned int i, ofs = n / HOST_BITS_PER_LONG;
n &= HOST_BITS_PER_LONG - 1;
if (n == 0)
{
for (i = 0; ofs + i < SIGSZ; ++i)
r->sig[SIGSZ-1-i] = a->sig[SIGSZ-1-i-ofs];
for (; i < SIGSZ; ++i)
r->sig[SIGSZ-1-i] = 0;
}
else
for (i = 0; i < SIGSZ; ++i)
{
r->sig[SIGSZ-1-i]
= (((ofs + i >= SIGSZ ? 0 : a->sig[SIGSZ-1-i-ofs]) << n)
| ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[SIGSZ-1-i-ofs-1])
>> (HOST_BITS_PER_LONG - n)));
}
}
/* Likewise, but N is specialized to 1. */
static inline void
lshift_significand_1 (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
{
unsigned int i;
for (i = SIGSZ - 1; i > 0; --i)
r->sig[i] = (a->sig[i] << 1) | (a->sig[i-1] >> (HOST_BITS_PER_LONG - 1));
r->sig[0] = a->sig[0] << 1;
}
/* Add the significands of A and B, placing the result in R. Return
true if there was carry out of the most significant word. */
static inline bool
add_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
const REAL_VALUE_TYPE *b)
{
bool carry = false;
int i;
for (i = 0; i < SIGSZ; ++i)
{
unsigned long ai = a->sig[i];
unsigned long ri = ai + b->sig[i];
if (carry)
{
carry = ri < ai;
carry |= ++ri == 0;
}
else
carry = ri < ai;
r->sig[i] = ri;
}
return carry;
}
/* Subtract the significands of A and B, placing the result in R. CARRY is
true if there's a borrow incoming to the least significant word.
Return true if there was borrow out of the most significant word. */
static inline bool
sub_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
const REAL_VALUE_TYPE *b, int carry)
{
int i;
for (i = 0; i < SIGSZ; ++i)
{
unsigned long ai = a->sig[i];
unsigned long ri = ai - b->sig[i];
if (carry)
{
carry = ri > ai;
carry |= ~--ri == 0;
}
else
carry = ri > ai;
r->sig[i] = ri;
}
return carry;
}
/* Negate the significand A, placing the result in R. */
static inline void
neg_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
{
bool carry = true;
int i;
for (i = 0; i < SIGSZ; ++i)
{
unsigned long ri, ai = a->sig[i];
if (carry)
{
if (ai)
{
ri = -ai;
carry = false;
}
else
ri = ai;
}
else
ri = ~ai;
r->sig[i] = ri;
}
}
/* Compare significands. Return tri-state vs zero. */
static inline int
cmp_significands (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b)
{
int i;
for (i = SIGSZ - 1; i >= 0; --i)
{
unsigned long ai = a->sig[i];
unsigned long bi = b->sig[i];
if (ai > bi)
return 1;
if (ai < bi)
return -1;
}
return 0;
}
/* Return true if A is nonzero. */
static inline int
cmp_significand_0 (const REAL_VALUE_TYPE *a)
{
int i;
for (i = SIGSZ - 1; i >= 0; --i)
if (a->sig[i])
return 1;
return 0;
}
/* Set bit N of the significand of R. */
static inline void
set_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
{
r->sig[n / HOST_BITS_PER_LONG]
|= (unsigned long)1 << (n % HOST_BITS_PER_LONG);
}
/* Clear bit N of the significand of R. */
static inline void
clear_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
{
r->sig[n / HOST_BITS_PER_LONG]
&= ~((unsigned long)1 << (n % HOST_BITS_PER_LONG));
}
/* Test bit N of the significand of R. */
static inline bool
test_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
{
/* ??? Compiler bug here if we return this expression directly.
The conversion to bool strips the "&1" and we wind up testing
e.g. 2 != 0 -> true. Seen in gcc version 3.2 20020520. */
int t = (r->sig[n / HOST_BITS_PER_LONG] >> (n % HOST_BITS_PER_LONG)) & 1;
return t;
}
/* Clear bits 0..N-1 of the significand of R. */
static void
clear_significand_below (REAL_VALUE_TYPE *r, unsigned int n)
{
int i, w = n / HOST_BITS_PER_LONG;
for (i = 0; i < w; ++i)
r->sig[i] = 0;
r->sig[w] &= ~(((unsigned long)1 << (n % HOST_BITS_PER_LONG)) - 1);
}
/* Divide the significands of A and B, placing the result in R. Return
true if the division was inexact. */
static inline bool
div_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
const REAL_VALUE_TYPE *b)
{
REAL_VALUE_TYPE u;
int i, bit = SIGNIFICAND_BITS - 1;
unsigned long msb, inexact;
u = *a;
memset (r->sig, 0, sizeof (r->sig));
msb = 0;
goto start;
do
{
msb = u.sig[SIGSZ-1] & SIG_MSB;
lshift_significand_1 (&u, &u);
start:
if (msb || cmp_significands (&u, b) >= 0)
{
sub_significands (&u, &u, b, 0);
set_significand_bit (r, bit);
}
}
while (--bit >= 0);
for (i = 0, inexact = 0; i < SIGSZ; i++)
inexact |= u.sig[i];
return inexact != 0;
}
/* Adjust the exponent and significand of R such that the most
significant bit is set. We underflow to zero and overflow to
infinity here, without denormals. (The intermediate representation
exponent is large enough to handle target denormals normalized.) */
static void
normalize (REAL_VALUE_TYPE *r)
{
int shift = 0, exp;
int i, j;
if (r->decimal)
return;
/* Find the first word that is nonzero. */
for (i = SIGSZ - 1; i >= 0; i--)
if (r->sig[i] == 0)
shift += HOST_BITS_PER_LONG;
else
break;
/* Zero significand flushes to zero. */
if (i < 0)
{
r->cl = rvc_zero;
SET_REAL_EXP (r, 0);
return;
}
/* Find the first bit that is nonzero. */
for (j = 0; ; j++)
if (r->sig[i] & ((unsigned long)1 << (HOST_BITS_PER_LONG - 1 - j)))
break;
shift += j;
if (shift > 0)
{
exp = REAL_EXP (r) - shift;
if (exp > MAX_EXP)
get_inf (r, r->sign);
else if (exp < -MAX_EXP)
get_zero (r, r->sign);
else
{
SET_REAL_EXP (r, exp);
lshift_significand (r, r, shift);
}
}
}
/* Calculate R = A + (SUBTRACT_P ? -B : B). Return true if the
result may be inexact due to a loss of precision. */
static bool
do_add (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
const REAL_VALUE_TYPE *b, int subtract_p)
{
int dexp, sign, exp;
REAL_VALUE_TYPE t;
bool inexact = false;
/* Determine if we need to add or subtract. */
sign = a->sign;
subtract_p = (sign ^ b->sign) ^ subtract_p;
switch (CLASS2 (a->cl, b->cl))
{
case CLASS2 (rvc_zero, rvc_zero):
/* -0 + -0 = -0, -0 - +0 = -0; all other cases yield +0. */
get_zero (r, sign & !subtract_p);
return false;
case CLASS2 (rvc_zero, rvc_normal):
case CLASS2 (rvc_zero, rvc_inf):
case CLASS2 (rvc_zero, rvc_nan):
/* 0 + ANY = ANY. */
case CLASS2 (rvc_normal, rvc_nan):
case CLASS2 (rvc_inf, rvc_nan):
case CLASS2 (rvc_nan, rvc_nan):
/* ANY + NaN = NaN. */
case CLASS2 (rvc_normal, rvc_inf):
/* R + Inf = Inf. */
*r = *b;
/* Make resulting NaN value to be qNaN. The caller has the
responsibility to avoid the operation if flag_signaling_nans
is on. */
r->signalling = 0;
r->sign = sign ^ subtract_p;
return false;
case CLASS2 (rvc_normal, rvc_zero):
case CLASS2 (rvc_inf, rvc_zero):
case CLASS2 (rvc_nan, rvc_zero):
/* ANY + 0 = ANY. */
case CLASS2 (rvc_nan, rvc_normal):
case CLASS2 (rvc_nan, rvc_inf):
/* NaN + ANY = NaN. */
case CLASS2 (rvc_inf, rvc_normal):
/* Inf + R = Inf. */
*r = *a;
/* Make resulting NaN value to be qNaN. The caller has the
responsibility to avoid the operation if flag_signaling_nans
is on. */
r->signalling = 0;
return false;
case CLASS2 (rvc_inf, rvc_inf):
if (subtract_p)
/* Inf - Inf = NaN. */
get_canonical_qnan (r, 0);
else
/* Inf + Inf = Inf. */
*r = *a;
return false;
case CLASS2 (rvc_normal, rvc_normal):
break;
default:
gcc_unreachable ();
}
/* Swap the arguments such that A has the larger exponent. */
dexp = REAL_EXP (a) - REAL_EXP (b);
if (dexp < 0)
{
const REAL_VALUE_TYPE *t;
t = a, a = b, b = t;
dexp = -dexp;
sign ^= subtract_p;
}
exp = REAL_EXP (a);
/* If the exponents are not identical, we need to shift the
significand of B down. */
if (dexp > 0)
{
/* If the exponents are too far apart, the significands
do not overlap, which makes the subtraction a noop. */
if (dexp >= SIGNIFICAND_BITS)
{
*r = *a;
r->sign = sign;
return true;
}
inexact |= sticky_rshift_significand (&t, b, dexp);
b = &t;
}
if (subtract_p)
{
if (sub_significands (r, a, b, inexact))
{
/* We got a borrow out of the subtraction. That means that
A and B had the same exponent, and B had the larger
significand. We need to swap the sign and negate the
significand. */
sign ^= 1;
neg_significand (r, r);
}
}
else
{
if (add_significands (r, a, b))
{
/* We got carry out of the addition. This means we need to
shift the significand back down one bit and increase the
exponent. */
inexact |= sticky_rshift_significand (r, r, 1);
r->sig[SIGSZ-1] |= SIG_MSB;
if (++exp > MAX_EXP)
{
get_inf (r, sign);
return true;
}
}
}
r->cl = rvc_normal;
r->sign = sign;
SET_REAL_EXP (r, exp);
/* Zero out the remaining fields. */
r->signalling = 0;
r->canonical = 0;
r->decimal = 0;
/* Re-normalize the result. */
normalize (r);
/* Special case: if the subtraction results in zero, the result
is positive. */
if (r->cl == rvc_zero)
r->sign = 0;
else
r->sig[0] |= inexact;
return inexact;
}
/* Calculate R = A * B. Return true if the result may be inexact. */
static bool
do_multiply (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
const REAL_VALUE_TYPE *b)
{
REAL_VALUE_TYPE u, t, *rr;
unsigned int i, j, k;
int sign = a->sign ^ b->sign;
bool inexact = false;
switch (CLASS2 (a->cl, b->cl))
{
case CLASS2 (rvc_zero, rvc_zero):
case CLASS2 (rvc_zero, rvc_normal):
case CLASS2 (rvc_normal, rvc_zero):
/* +-0 * ANY = 0 with appropriate sign. */
get_zero (r, sign);
return false;
case CLASS2 (rvc_zero, rvc_nan):
case CLASS2 (rvc_normal, rvc_nan):
case CLASS2 (rvc_inf, rvc_nan):
case CLASS2 (rvc_nan, rvc_nan):
/* ANY * NaN = NaN. */
*r = *b;
/* Make resulting NaN value to be qNaN. The caller has the
responsibility to avoid the operation if flag_signaling_nans
is on. */
r->signalling = 0;
r->sign = sign;
return false;
case CLASS2 (rvc_nan, rvc_zero):
case CLASS2 (rvc_nan, rvc_normal):
case CLASS2 (rvc_nan, rvc_inf):
/* NaN * ANY = NaN. */
*r = *a;
/* Make resulting NaN value to be qNaN. The caller has the
responsibility to avoid the operation if flag_signaling_nans
is on. */
r->signalling = 0;
r->sign = sign;
return false;
case CLASS2 (rvc_zero, rvc_inf):
case CLASS2 (rvc_inf, rvc_zero):
/* 0 * Inf = NaN */
get_canonical_qnan (r, sign);
return false;
case CLASS2 (rvc_inf, rvc_inf):
case CLASS2 (rvc_normal, rvc_inf):
case CLASS2 (rvc_inf, rvc_normal):
/* Inf * Inf = Inf, R * Inf = Inf */
get_inf (r, sign);
return false;
case CLASS2 (rvc_normal, rvc_normal):
break;
default:
gcc_unreachable ();
}
if (r == a || r == b)
rr = &t;
else
rr = r;
get_zero (rr, 0);
/* Collect all the partial products. Since we don't have sure access
to a widening multiply, we split each long into two half-words.
Consider the long-hand form of a four half-word multiplication:
A B C D
* E F G H
--------------
DE DF DG DH
CE CF CG CH
BE BF BG BH
AE AF AG AH
We construct partial products of the widened half-word products
that are known to not overlap, e.g. DF+DH. Each such partial
product is given its proper exponent, which allows us to sum them
and obtain the finished product. */
for (i = 0; i < SIGSZ * 2; ++i)
{
unsigned long ai = a->sig[i / 2];
if (i & 1)
ai >>= HOST_BITS_PER_LONG / 2;
else
ai &= ((unsigned long)1 << (HOST_BITS_PER_LONG / 2)) - 1;
if (ai == 0)
continue;
for (j = 0; j < 2; ++j)
{
int exp = (REAL_EXP (a) - (2*SIGSZ-1-i)*(HOST_BITS_PER_LONG/2)
+ (REAL_EXP (b) - (1-j)*(HOST_BITS_PER_LONG/2)));
if (exp > MAX_EXP)
{
get_inf (r, sign);
return true;
}
if (exp < -MAX_EXP)
{
/* Would underflow to zero, which we shouldn't bother adding. */
inexact = true;
continue;
}
memset (&u, 0, sizeof (u));
u.cl = rvc_normal;
SET_REAL_EXP (&u, exp);
for (k = j; k < SIGSZ * 2; k += 2)
{
unsigned long bi = b->sig[k / 2];
if (k & 1)
bi >>= HOST_BITS_PER_LONG / 2;
else
bi &= ((unsigned long)1 << (HOST_BITS_PER_LONG / 2)) - 1;
u.sig[k / 2] = ai * bi;
}
normalize (&u);
inexact |= do_add (rr, rr, &u, 0);
}
}
rr->sign = sign;
if (rr != r)
*r = t;
return inexact;
}
/* Calculate R = A / B. Return true if the result may be inexact. */
static bool
do_divide (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
const REAL_VALUE_TYPE *b)
{
int exp, sign = a->sign ^ b->sign;
REAL_VALUE_TYPE t, *rr;
bool inexact;
switch (CLASS2 (a->cl, b->cl))
{
case CLASS2 (rvc_zero, rvc_zero):
/* 0 / 0 = NaN. */
case CLASS2 (rvc_inf, rvc_inf):
/* Inf / Inf = NaN. */
get_canonical_qnan (r, sign);
return false;
case CLASS2 (rvc_zero, rvc_normal):
case CLASS2 (rvc_zero, rvc_inf):
/* 0 / ANY = 0. */
case CLASS2 (rvc_normal, rvc_inf):
/* R / Inf = 0. */
get_zero (r, sign);
return false;
case CLASS2 (rvc_normal, rvc_zero):
/* R / 0 = Inf. */
case CLASS2 (rvc_inf, rvc_zero):
/* Inf / 0 = Inf. */
get_inf (r, sign);
return false;
case CLASS2 (rvc_zero, rvc_nan):
case CLASS2 (rvc_normal, rvc_nan):
case CLASS2 (rvc_inf, rvc_nan):
case CLASS2 (rvc_nan, rvc_nan):
/* ANY / NaN = NaN. */
*r = *b;
/* Make resulting NaN value to be qNaN. The caller has the
responsibility to avoid the operation if flag_signaling_nans
is on. */
r->signalling = 0;
r->sign = sign;
return false;
case CLASS2 (rvc_nan, rvc_zero):
case CLASS2 (rvc_nan, rvc_normal):
case CLASS2 (rvc_nan, rvc_inf):
/* NaN / ANY = NaN. */
*r = *a;
/* Make resulting NaN value to be qNaN. The caller has the
responsibility to avoid the operation if flag_signaling_nans
is on. */
r->signalling = 0;
r->sign = sign;
return false;
case CLASS2 (rvc_inf, rvc_normal):
/* Inf / R = Inf. */
get_inf (r, sign);
return false;
case CLASS2 (rvc_normal, rvc_normal):
break;
default:
gcc_unreachable ();
}
if (r == a || r == b)
rr = &t;
else
rr = r;
/* Make sure all fields in the result are initialized. */
get_zero (rr, 0);
rr->cl = rvc_normal;
rr->sign = sign;
exp = REAL_EXP (a) - REAL_EXP (b) + 1;
if (exp > MAX_EXP)
{
get_inf (r, sign);
return true;
}
if (exp < -MAX_EXP)
{
get_zero (r, sign);
return true;
}
SET_REAL_EXP (rr, exp);
inexact = div_significands (rr, a, b);
/* Re-normalize the result. */
normalize (rr);
rr->sig[0] |= inexact;
if (rr != r)
*r = t;
return inexact;
}
/* Return a tri-state comparison of A vs B. Return NAN_RESULT if
one of the two operands is a NaN. */
static int
do_compare (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b,
int nan_result)
{
int ret;
switch (CLASS2 (a->cl, b->cl))
{
case CLASS2 (rvc_zero, rvc_zero):
/* Sign of zero doesn't matter for compares. */
return 0;
case CLASS2 (rvc_normal, rvc_zero):
/* Decimal float zero is special and uses rvc_normal, not rvc_zero. */
if (a->decimal)
return decimal_do_compare (a, b, nan_result);
/* Fall through. */
case CLASS2 (rvc_inf, rvc_zero):
case CLASS2 (rvc_inf, rvc_normal):
return (a->sign ? -1 : 1);
case CLASS2 (rvc_inf, rvc_inf):
return -a->sign - -b->sign;
case CLASS2 (rvc_zero, rvc_normal):
/* Decimal float zero is special and uses rvc_normal, not rvc_zero. */
if (b->decimal)
return decimal_do_compare (a, b, nan_result);
/* Fall through. */
case CLASS2 (rvc_zero, rvc_inf):
case CLASS2 (rvc_normal, rvc_inf):
return (b->sign ? 1 : -1);
case CLASS2 (rvc_zero, rvc_nan):
case CLASS2 (rvc_normal, rvc_nan):
case CLASS2 (rvc_inf, rvc_nan):
case CLASS2 (rvc_nan, rvc_nan):
case CLASS2 (rvc_nan, rvc_zero):
case CLASS2 (rvc_nan, rvc_normal):
case CLASS2 (rvc_nan, rvc_inf):
return nan_result;
case CLASS2 (rvc_normal, rvc_normal):
break;
default:
gcc_unreachable ();
}
if (a->sign != b->sign)
return -a->sign - -b->sign;
if (a->decimal || b->decimal)
return decimal_do_compare (a, b, nan_result);
if (REAL_EXP (a) > REAL_EXP (b))
ret = 1;
else if (REAL_EXP (a) < REAL_EXP (b))
ret = -1;
else
ret = cmp_significands (a, b);
return (a->sign ? -ret : ret);
}
/* Return A truncated to an integral value toward zero. */
static void
do_fix_trunc (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
{
*r = *a;
switch (r->cl)
{
case rvc_zero:
case rvc_inf:
case rvc_nan:
/* Make resulting NaN value to be qNaN. The caller has the
responsibility to avoid the operation if flag_signaling_nans
is on. */
r->signalling = 0;
break;
case rvc_normal:
if (r->decimal)
{
decimal_do_fix_trunc (r, a);
return;
}
if (REAL_EXP (r) <= 0)
get_zero (r, r->sign);
else if (REAL_EXP (r) < SIGNIFICAND_BITS)
clear_significand_below (r, SIGNIFICAND_BITS - REAL_EXP (r));
break;
default:
gcc_unreachable ();
}
}
/* Perform the binary or unary operation described by CODE.
For a unary operation, leave OP1 NULL. This function returns
true if the result may be inexact due to loss of precision. */
bool
real_arithmetic (REAL_VALUE_TYPE *r, int icode, const REAL_VALUE_TYPE *op0,
const REAL_VALUE_TYPE *op1)
{
enum tree_code code = (enum tree_code) icode;
if (op0->decimal || (op1 && op1->decimal))
return decimal_real_arithmetic (r, code, op0, op1);
switch (code)
{
case PLUS_EXPR:
/* Clear any padding areas in *r if it isn't equal to one of the
operands so that we can later do bitwise comparisons later on. */
if (r != op0 && r != op1)
memset (r, '\0', sizeof (*r));
return do_add (r, op0, op1, 0);
case MINUS_EXPR:
if (r != op0 && r != op1)
memset (r, '\0', sizeof (*r));
return do_add (r, op0, op1, 1);
case MULT_EXPR:
if (r != op0 && r != op1)
memset (r, '\0', sizeof (*r));
return do_multiply (r, op0, op1);
case RDIV_EXPR:
if (r != op0 && r != op1)
memset (r, '\0', sizeof (*r));
return do_divide (r, op0, op1);
case MIN_EXPR:
if (op1->cl == rvc_nan)
{
*r = *op1;
/* Make resulting NaN value to be qNaN. The caller has the
responsibility to avoid the operation if flag_signaling_nans
is on. */
r->signalling = 0;
}
else if (do_compare (op0, op1, -1) < 0)
*r = *op0;
else
*r = *op1;
break;
case MAX_EXPR:
if (op1->cl == rvc_nan)
{
*r = *op1;
/* Make resulting NaN value to be qNaN. The caller has the
responsibility to avoid the operation if flag_signaling_nans
is on. */
r->signalling = 0;
}
else if (do_compare (op0, op1, 1) < 0)
*r = *op1;
else
*r = *op0;
break;
case NEGATE_EXPR:
*r = *op0;
r->sign ^= 1;
break;
case ABS_EXPR:
*r = *op0;
r->sign = 0;
break;
case FIX_TRUNC_EXPR:
do_fix_trunc (r, op0);
break;
default:
gcc_unreachable ();
}
return false;
}
REAL_VALUE_TYPE
real_value_negate (const REAL_VALUE_TYPE *op0)
{
REAL_VALUE_TYPE r;
real_arithmetic (&r, NEGATE_EXPR, op0, NULL);
return r;
}
REAL_VALUE_TYPE
real_value_abs (const REAL_VALUE_TYPE *op0)
{
REAL_VALUE_TYPE r;
real_arithmetic (&r, ABS_EXPR, op0, NULL);
return r;
}
/* Return whether OP0 == OP1. */
bool
real_equal (const REAL_VALUE_TYPE *op0, const REAL_VALUE_TYPE *op1)
{
return do_compare (op0, op1, -1) == 0;
}
/* Return whether OP0 < OP1. */
bool
real_less (const REAL_VALUE_TYPE *op0, const REAL_VALUE_TYPE *op1)
{
return do_compare (op0, op1, 1) < 0;
}
bool
real_compare (int icode, const REAL_VALUE_TYPE *op0,
const REAL_VALUE_TYPE *op1)
{
enum tree_code code = (enum tree_code) icode;
switch (code)
{
case LT_EXPR:
return real_less (op0, op1);
case LE_EXPR:
return do_compare (op0, op1, 1) <= 0;
case GT_EXPR:
return do_compare (op0, op1, -1) > 0;
case GE_EXPR:
return do_compare (op0, op1, -1) >= 0;
case EQ_EXPR:
return real_equal (op0, op1);
case NE_EXPR:
return do_compare (op0, op1, -1) != 0;
case UNORDERED_EXPR:
return op0->cl == rvc_nan || op1->cl == rvc_nan;
case ORDERED_EXPR:
return op0->cl != rvc_nan && op1->cl != rvc_nan;
case UNLT_EXPR:
return do_compare (op0, op1, -1) < 0;
case UNLE_EXPR:
return do_compare (op0, op1, -1) <= 0;
case UNGT_EXPR:
return do_compare (op0, op1, 1) > 0;
case UNGE_EXPR:
return do_compare (op0, op1, 1) >= 0;
case UNEQ_EXPR:
return do_compare (op0, op1, 0) == 0;
case LTGT_EXPR:
return do_compare (op0, op1, 0) != 0;
default:
gcc_unreachable ();
}
}
/* Return floor log2(R). */
int
real_exponent (const REAL_VALUE_TYPE *r)
{
switch (r->cl)
{
case rvc_zero:
return 0;
case rvc_inf:
case rvc_nan:
return (unsigned int)-1 >> 1;
case rvc_normal:
return REAL_EXP (r);
default:
gcc_unreachable ();
}
}
/* R = OP0 * 2**EXP. */
void
real_ldexp (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *op0, int exp)
{
*r = *op0;
switch (r->cl)
{
case rvc_zero:
case rvc_inf:
case rvc_nan:
/* Make resulting NaN value to be qNaN. The caller has the
responsibility to avoid the operation if flag_signaling_nans
is on. */
r->signalling = 0;
break;
case rvc_normal:
exp += REAL_EXP (op0);
if (exp > MAX_EXP)
get_inf (r, r->sign);
else if (exp < -MAX_EXP)
get_zero (r, r->sign);
else
SET_REAL_EXP (r, exp);
break;
default:
gcc_unreachable ();
}
}
/* Determine whether a floating-point value X is infinite. */
bool
real_isinf (const REAL_VALUE_TYPE *r)
{
return (r->cl == rvc_inf);
}
/* Determine whether a floating-point value X is a NaN. */
bool
real_isnan (const REAL_VALUE_TYPE *r)
{
return (r->cl == rvc_nan);
}
/* Determine whether a floating-point value X is a signaling NaN. */
bool real_issignaling_nan (const REAL_VALUE_TYPE *r)
{
return real_isnan (r) && r->signalling;
}
/* Determine whether a floating-point value X is finite. */
bool
real_isfinite (const REAL_VALUE_TYPE *r)
{
return (r->cl != rvc_nan) && (r->cl != rvc_inf);
}
/* Determine whether a floating-point value X is negative. */
bool
real_isneg (const REAL_VALUE_TYPE *r)
{
return r->sign;
}
/* Determine whether a floating-point value X is minus zero. */
bool
real_isnegzero (const REAL_VALUE_TYPE *r)
{
return r->sign && r->cl == rvc_zero;
}
/* Compare two floating-point objects for bitwise identity. */
bool
real_identical (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b)
{
int i;
if (a->cl != b->cl)
return false;
if (a->sign != b->sign)
return false;
switch (a->cl)
{
case rvc_zero:
case rvc_inf:
return true;
case rvc_normal:
if (a->decimal != b->decimal)
return false;
if (REAL_EXP (a) != REAL_EXP (b))
return false;
break;
case rvc_nan:
if (a->signalling != b->signalling)
return false;
/* The significand is ignored for canonical NaNs. */
if (a->canonical || b->canonical)
return a->canonical == b->canonical;
break;
default:
gcc_unreachable ();
}
for (i = 0; i < SIGSZ; ++i)
if (a->sig[i] != b->sig[i])
return false;
return true;
}
/* Try to change R into its exact multiplicative inverse in format FMT.
Return true if successful. */
bool
exact_real_inverse (format_helper fmt, REAL_VALUE_TYPE *r)
{
const REAL_VALUE_TYPE *one = real_digit (1);
REAL_VALUE_TYPE u;
int i;
if (r->cl != rvc_normal)
return false;
/* Check for a power of two: all significand bits zero except the MSB. */
for (i = 0; i < SIGSZ-1; ++i)
if (r->sig[i] != 0)
return false;
if (r->sig[SIGSZ-1] != SIG_MSB)
return false;
/* Find the inverse and truncate to the required format. */
do_divide (&u, one, r);
real_convert (&u, fmt, &u);
/* The rounding may have overflowed. */
if (u.cl != rvc_normal)
return false;
for (i = 0; i < SIGSZ-1; ++i)
if (u.sig[i] != 0)
return false;
if (u.sig[SIGSZ-1] != SIG_MSB)
return false;
*r = u;
return true;
}
/* Return true if arithmetic on values in IMODE that were promoted
from values in TMODE is equivalent to direct arithmetic on values
in TMODE. */
bool
real_can_shorten_arithmetic (machine_mode imode, machine_mode tmode)
{
const struct real_format *tfmt, *ifmt;
tfmt = REAL_MODE_FORMAT (tmode);
ifmt = REAL_MODE_FORMAT (imode);
/* These conditions are conservative rather than trying to catch the
exact boundary conditions; the main case to allow is IEEE float
and double. */
return (ifmt->b == tfmt->b
&& ifmt->p > 2 * tfmt->p
&& ifmt->emin < 2 * tfmt->emin - tfmt->p - 2
&& ifmt->emin < tfmt->emin - tfmt->emax - tfmt->p - 2
&& ifmt->emax > 2 * tfmt->emax + 2
&& ifmt->emax > tfmt->emax - tfmt->emin + tfmt->p + 2
&& ifmt->round_towards_zero == tfmt->round_towards_zero
&& (ifmt->has_sign_dependent_rounding
== tfmt->has_sign_dependent_rounding)
&& ifmt->has_nans >= tfmt->has_nans
&& ifmt->has_inf >= tfmt->has_inf
&& ifmt->has_signed_zero >= tfmt->has_signed_zero
&& !MODE_COMPOSITE_P (tmode)
&& !MODE_COMPOSITE_P (imode));
}
/* Render R as an integer. */
HOST_WIDE_INT
real_to_integer (const REAL_VALUE_TYPE *r)
{
unsigned HOST_WIDE_INT i;
switch (r->cl)
{
case rvc_zero:
underflow:
return 0;
case rvc_inf:
case rvc_nan:
overflow:
i = HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1);
if (!r->sign)
i--;
return i;
case rvc_normal:
if (r->decimal)
return decimal_real_to_integer (r);
if (REAL_EXP (r) <= 0)
goto underflow;
/* Only force overflow for unsigned overflow. Signed overflow is
undefined, so it doesn't matter what we return, and some callers
expect to be able to use this routine for both signed and
unsigned conversions. */
if (REAL_EXP (r) > HOST_BITS_PER_WIDE_INT)
goto overflow;
if (HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG)
i = r->sig[SIGSZ-1];
else
{
gcc_assert (HOST_BITS_PER_WIDE_INT == 2 * HOST_BITS_PER_LONG);
i = r->sig[SIGSZ-1];
i = i << (HOST_BITS_PER_LONG - 1) << 1;
i |= r->sig[SIGSZ-2];
}
i >>= HOST_BITS_PER_WIDE_INT - REAL_EXP (r);
if (r->sign)
i = -i;
return i;
default:
gcc_unreachable ();
}
}
/* Likewise, but producing a wide-int of PRECISION. If the value cannot
be represented in precision, *FAIL is set to TRUE. */
wide_int
real_to_integer (const REAL_VALUE_TYPE *r, bool *fail, int precision)
{
HOST_WIDE_INT val[2 * WIDE_INT_MAX_ELTS];
int exp;
int words, w;
wide_int result;
switch (r->cl)
{
case rvc_zero:
underflow:
return wi::zero (precision);
case rvc_inf:
case rvc_nan:
overflow:
*fail = true;
if (r->sign)
return wi::set_bit_in_zero (precision - 1, precision);
else
return ~wi::set_bit_in_zero (precision - 1, precision);
case rvc_normal:
if (r->decimal)
return decimal_real_to_integer (r, fail, precision);
exp = REAL_EXP (r);
if (exp <= 0)
goto underflow;
/* Only force overflow for unsigned overflow. Signed overflow is
undefined, so it doesn't matter what we return, and some callers
expect to be able to use this routine for both signed and
unsigned conversions. */
if (exp > precision)
goto overflow;
/* Put the significand into a wide_int that has precision W, which
is the smallest HWI-multiple that has at least PRECISION bits.
This ensures that the top bit of the significand is in the
top bit of the wide_int. */
words = (precision + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
w = words * HOST_BITS_PER_WIDE_INT;
#if (HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG)
for (int i = 0; i < words; i++)
{
int j = SIGSZ - words + i;
val[i] = (j < 0) ? 0 : r->sig[j];
}
#else
gcc_assert (HOST_BITS_PER_WIDE_INT == 2 * HOST_BITS_PER_LONG);
for (int i = 0; i < words; i++)
{
int j = SIGSZ - (words * 2) + (i * 2);
if (j < 0)
val[i] = 0;
else
val[i] = r->sig[j];
j += 1;
if (j >= 0)
val[i] |= (unsigned HOST_WIDE_INT) r->sig[j] << HOST_BITS_PER_LONG;
}
#endif
/* Shift the value into place and truncate to the desired precision. */
result = wide_int::from_array (val, words, w);
result = wi::lrshift (result, w - exp);
result = wide_int::from (result, precision, UNSIGNED);
if (r->sign)
return -result;
else
return result;
default:
gcc_unreachable ();
}
}
/* A subroutine of real_to_decimal. Compute the quotient and remainder
of NUM / DEN. Return the quotient and place the remainder in NUM.
It is expected that NUM / DEN are close enough that the quotient is
small. */
static unsigned long
rtd_divmod (REAL_VALUE_TYPE *num, REAL_VALUE_TYPE *den)
{
unsigned long q, msb;
int expn = REAL_EXP (num), expd = REAL_EXP (den);
if (expn < expd)
return 0;
q = msb = 0;
goto start;
do
{
msb = num->sig[SIGSZ-1] & SIG_MSB;
q <<= 1;
lshift_significand_1 (num, num);
start:
if (msb || cmp_significands (num, den) >= 0)
{
sub_significands (num, num, den, 0);
q |= 1;
}
}
while (--expn >= expd);
SET_REAL_EXP (num, expd);
normalize (num);
return q;
}
/* Render R as a decimal floating point constant. Emit DIGITS significant
digits in the result, bounded by BUF_SIZE. If DIGITS is 0, choose the
maximum for the representation. If CROP_TRAILING_ZEROS, strip trailing
zeros. If MODE is VOIDmode, round to nearest value. Otherwise, round
to a string that, when parsed back in mode MODE, yields the same value. */
#define M_LOG10_2 0.30102999566398119521
void
real_to_decimal_for_mode (char *str, const REAL_VALUE_TYPE *r_orig,
size_t buf_size, size_t digits,
int crop_trailing_zeros, machine_mode mode)
{
const struct real_format *fmt = NULL;
const REAL_VALUE_TYPE *one, *ten;
REAL_VALUE_TYPE r, pten, u, v;
int dec_exp, cmp_one, digit;
size_t max_digits;
char *p, *first, *last;
bool sign;
bool round_up;
if (mode != VOIDmode)
{
fmt = REAL_MODE_FORMAT (mode);
gcc_assert (fmt);
}
r = *r_orig;
switch (r.cl)
{
case rvc_zero:
strcpy (str, (r.sign ? "-0.0" : "0.0"));
return;
case rvc_normal:
break;
case rvc_inf:
strcpy (str, (r.sign ? "-Inf" : "+Inf"));
return;
case rvc_nan:
/* ??? Print the significand as well, if not canonical? */
sprintf (str, "%c%cNaN", (r_orig->sign ? '-' : '+'),
(r_orig->signalling ? 'S' : 'Q'));
return;
default:
gcc_unreachable ();
}
if (r.decimal)
{
decimal_real_to_decimal (str, &r, buf_size, digits, crop_trailing_zeros);
return;
}
/* Bound the number of digits printed by the size of the representation. */
max_digits = SIGNIFICAND_BITS * M_LOG10_2;
if (digits == 0 || digits > max_digits)
digits = max_digits;
/* Estimate the decimal exponent, and compute the length of the string it
will print as. Be conservative and add one to account for possible
overflow or rounding error. */
dec_exp = REAL_EXP (&r) * M_LOG10_2;
for (max_digits = 1; dec_exp ; max_digits++)
dec_exp /= 10;
/* Bound the number of digits printed by the size of the output buffer. */
max_digits = buf_size - 1 - 1 - 2 - max_digits - 1;
gcc_assert (max_digits <= buf_size);
if (digits > max_digits)
digits = max_digits;
one = real_digit (1);
ten = ten_to_ptwo (0);
sign = r.sign;
r.sign = 0;
dec_exp = 0;
pten = *one;
cmp_one = do_compare (&r, one, 0);
if (cmp_one > 0)
{
int m;
/* Number is greater than one. Convert significand to an integer
and strip trailing decimal zeros. */
u = r;
SET_REAL_EXP (&u, SIGNIFICAND_BITS - 1);
/* Largest M, such that 10**2**M fits within SIGNIFICAND_BITS. */
m = floor_log2 (max_digits);
/* Iterate over the bits of the possible powers of 10 that might
be present in U and eliminate them. That is, if we find that
10**2**M divides U evenly, keep the division and increase
DEC_EXP by 2**M. */
do
{
REAL_VALUE_TYPE t;
do_divide (&t, &u, ten_to_ptwo (m));
do_fix_trunc (&v, &t);
if (cmp_significands (&v, &t) == 0)
{
u = t;
dec_exp += 1 << m;
}
}
while (--m >= 0);
/* Revert the scaling to integer that we performed earlier. */
SET_REAL_EXP (&u, REAL_EXP (&u) + REAL_EXP (&r)
- (SIGNIFICAND_BITS - 1));
r = u;
/* Find power of 10. Do this by dividing out 10**2**M when
this is larger than the current remainder. Fill PTEN with
the power of 10 that we compute. */
if (REAL_EXP (&r) > 0)
{
m = floor_log2 ((int)(REAL_EXP (&r) * M_LOG10_2)) + 1;
do
{
const REAL_VALUE_TYPE *ptentwo = ten_to_ptwo (m);
if (do_compare (&u, ptentwo, 0) >= 0)
{
do_divide (&u, &u, ptentwo);
do_multiply (&pten, &pten, ptentwo);
dec_exp += 1 << m;
}
}
while (--m >= 0);
}
else
/* We managed to divide off enough tens in the above reduction
loop that we've now got a negative exponent. Fall into the
less-than-one code to compute the proper value for PTEN. */
cmp_one = -1;
}
if (cmp_one < 0)
{
int m;
/* Number is less than one. Pad significand with leading
decimal zeros. */
v = r;
while (1)
{
/* Stop if we'd shift bits off the bottom. */
if (v.sig[0] & 7)
break;
do_multiply (&u, &v, ten);
/* Stop if we're now >= 1. */
if (REAL_EXP (&u) > 0)
break;
v = u;
dec_exp -= 1;
}
r = v;
/* Find power of 10. Do this by multiplying in P=10**2**M when
the current remainder is smaller than 1/P. Fill PTEN with the
power of 10 that we compute. */
m = floor_log2 ((int)(-REAL_EXP (&r) * M_LOG10_2)) + 1;
do
{
const REAL_VALUE_TYPE *ptentwo = ten_to_ptwo (m);
const REAL_VALUE_TYPE *ptenmtwo = ten_to_mptwo (m);
if (do_compare (&v, ptenmtwo, 0) <= 0)
{
do_multiply (&v, &v, ptentwo);
do_multiply (&pten, &pten, ptentwo);
dec_exp -= 1 << m;
}
}
while (--m >= 0);
/* Invert the positive power of 10 that we've collected so far. */
do_divide (&pten, one, &pten);
}
p = str;
if (sign)
*p++ = '-';
first = p++;
/* At this point, PTEN should contain the nearest power of 10 smaller
than R, such that this division produces the first digit.
Using a divide-step primitive that returns the complete integral
remainder avoids the rounding error that would be produced if
we were to use do_divide here and then simply multiply by 10 for
each subsequent digit. */
digit = rtd_divmod (&r, &pten);
/* Be prepared for error in that division via underflow ... */
if (digit == 0 && cmp_significand_0 (&r))
{
/* Multiply by 10 and try again. */
do_multiply (&r, &r, ten);
digit = rtd_divmod (&r, &pten);
dec_exp -= 1;
gcc_assert (digit != 0);
}
/* ... or overflow. */
if (digit == 10)
{
*p++ = '1';
if (--digits > 0)
*p++ = '0';
dec_exp += 1;
}
else
{
gcc_assert (digit <= 10);
*p++ = digit + '0';
}
/* Generate subsequent digits. */
while (--digits > 0)
{
do_multiply (&r, &r, ten);
digit = rtd_divmod (&r, &pten);
*p++ = digit + '0';
}
last = p;
/* Generate one more digit with which to do rounding. */
do_multiply (&r, &r, ten);
digit = rtd_divmod (&r, &pten);
/* Round the result. */
if (fmt && fmt->round_towards_zero)
{
/* If the format uses round towards zero when parsing the string
back in, we need to always round away from zero here. */
if (cmp_significand_0 (&r))
digit++;
round_up = digit > 0;
}
else
{
if (digit == 5)
{
/* Round to nearest. If R is nonzero there are additional
nonzero digits to be extracted. */
if (cmp_significand_0 (&r))
digit++;
/* Round to even. */
else if ((p[-1] - '0') & 1)
digit++;
}
round_up = digit > 5;
}
if (round_up)
{
while (p > first)
{
digit = *--p;
if (digit == '9')
*p = '0';
else
{
*p = digit + 1;
break;
}
}
/* Carry out of the first digit. This means we had all 9's and
now have all 0's. "Prepend" a 1 by overwriting the first 0. */
if (p == first)
{
first[1] = '1';
dec_exp++;
}
}
/* Insert the decimal point. */
first[0] = first[1];
first[1] = '.';
/* If requested, drop trailing zeros. Never crop past "1.0". */
if (crop_trailing_zeros)
while (last > first + 3 && last[-1] == '0')
last--;
/* Append the exponent. */
sprintf (last, "e%+d", dec_exp);
/* Verify that we can read the original value back in. */
if (flag_checking && mode != VOIDmode)
{
real_from_string (&r, str);
real_convert (&r, mode, &r);
gcc_assert (real_identical (&r, r_orig));
}
}
/* Likewise, except always uses round-to-nearest. */
void
real_to_decimal (char *str, const REAL_VALUE_TYPE *r_orig, size_t buf_size,
size_t digits, int crop_trailing_zeros)
{
real_to_decimal_for_mode (str, r_orig, buf_size,
digits, crop_trailing_zeros, VOIDmode);
}
/* Render R as a hexadecimal floating point constant. Emit DIGITS
significant digits in the result, bounded by BUF_SIZE. If DIGITS is 0,
choose the maximum for the representation. If CROP_TRAILING_ZEROS,
strip trailing zeros. */
void
real_to_hexadecimal (char *str, const REAL_VALUE_TYPE *r, size_t buf_size,
size_t digits, int crop_trailing_zeros)
{
int i, j, exp = REAL_EXP (r);
char *p, *first;
char exp_buf[16];
size_t max_digits;
switch (r->cl)
{
case rvc_zero:
exp = 0;
break;
case rvc_normal:
break;
case rvc_inf:
strcpy (str, (r->sign ? "-Inf" : "+Inf"));
return;
case rvc_nan:
/* ??? Print the significand as well, if not canonical? */
sprintf (str, "%c%cNaN", (r->sign ? '-' : '+'),
(r->signalling ? 'S' : 'Q'));
return;
default:
gcc_unreachable ();
}
if (r->decimal)
{
/* Hexadecimal format for decimal floats is not interesting. */
strcpy (str, "N/A");
return;
}
if (digits == 0)
digits = SIGNIFICAND_BITS / 4;
/* Bound the number of digits printed by the size of the output buffer. */
sprintf (exp_buf, "p%+d", exp);
max_digits = buf_size - strlen (exp_buf) - r->sign - 4 - 1;
gcc_assert (max_digits <= buf_size);
if (digits > max_digits)
digits = max_digits;
p = str;
if (r->sign)
*p++ = '-';
*p++ = '0';
*p++ = 'x';
*p++ = '0';
*p++ = '.';
first = p;
for (i = SIGSZ - 1; i >= 0; --i)
for (j = HOST_BITS_PER_LONG - 4; j >= 0; j -= 4)
{
*p++ = "0123456789abcdef"[(r->sig[i] >> j) & 15];
if (--digits == 0)
goto out;
}
out:
if (crop_trailing_zeros)
while (p > first + 1 && p[-1] == '0')
p--;
sprintf (p, "p%+d", exp);
}
/* Initialize R from a decimal or hexadecimal string. The string is
assumed to have been syntax checked already. Return -1 if the
value underflows, +1 if overflows, and 0 otherwise. */
int
real_from_string (REAL_VALUE_TYPE *r, const char *str)
{
int exp = 0;
bool sign = false;
get_zero (r, 0);
if (*str == '-')
{
sign = true;
str++;
}
else if (*str == '+')
str++;
if (!strncmp (str, "QNaN", 4))
{
get_canonical_qnan (r, sign);
return 0;
}
else if (!strncmp (str, "SNaN", 4))
{
get_canonical_snan (r, sign);
return 0;
}
else if (!strncmp (str, "Inf", 3))
{
get_inf (r, sign);
return 0;
}
if (str[0] == '0' && (str[1] == 'x' || str[1] == 'X'))
{
/* Hexadecimal floating point. */
int pos = SIGNIFICAND_BITS - 4, d;
str += 2;
while (*str == '0')
str++;
while (1)
{
d = hex_value (*str);
if (d == _hex_bad)
break;
if (pos >= 0)
{
r->sig[pos / HOST_BITS_PER_LONG]
|= (unsigned long) d << (pos % HOST_BITS_PER_LONG);
pos -= 4;
}
else if (d)
/* Ensure correct rounding by setting last bit if there is
a subsequent nonzero digit. */
r->sig[0] |= 1;
exp += 4;
str++;
}
if (*str == '.')
{
str++;
if (pos == SIGNIFICAND_BITS - 4)
{
while (*str == '0')
str++, exp -= 4;
}
while (1)
{
d = hex_value (*str);
if (d == _hex_bad)
break;
if (pos >= 0)
{
r->sig[pos / HOST_BITS_PER_LONG]
|= (unsigned long) d << (pos % HOST_BITS_PER_LONG);
pos -= 4;
}
else if (d)
/* Ensure correct rounding by setting last bit if there is
a subsequent nonzero digit. */
r->sig[0] |= 1;
str++;
}
}
/* If the mantissa is zero, ignore the exponent. */
if (!cmp_significand_0 (r))
goto is_a_zero;
if (*str == 'p' || *str == 'P')
{
bool exp_neg = false;
str++;
if (*str == '-')
{
exp_neg = true;
str++;
}
else if (*str == '+')
str++;
d = 0;
while (ISDIGIT (*str))
{
d *= 10;
d += *str - '0';
if (d > MAX_EXP)
{
/* Overflowed the exponent. */
if (exp_neg)
goto underflow;
else
goto overflow;
}
str++;
}
if (exp_neg)
d = -d;
exp += d;
}
r->cl = rvc_normal;
SET_REAL_EXP (r, exp);
normalize (r);
}
else
{
/* Decimal floating point. */
const char *cstr = str;
mpfr_t m;
bool inexact;
while (*cstr == '0')
cstr++;
if (*cstr == '.')
{
cstr++;
while (*cstr == '0')
cstr++;
}
/* If the mantissa is zero, ignore the exponent. */
if (!ISDIGIT (*cstr))
goto is_a_zero;
/* Nonzero value, possibly overflowing or underflowing. */
mpfr_init2 (m, SIGNIFICAND_BITS);
inexact = mpfr_strtofr (m, str, NULL, 10, GMP_RNDZ);
/* The result should never be a NaN, and because the rounding is
toward zero should never be an infinity. */
gcc_assert (!mpfr_nan_p (m) && !mpfr_inf_p (m));
if (mpfr_zero_p (m) || mpfr_get_exp (m) < -MAX_EXP + 4)
{
mpfr_clear (m);
goto underflow;
}
else if (mpfr_get_exp (m) > MAX_EXP - 4)
{
mpfr_clear (m);
goto overflow;
}
else
{
real_from_mpfr (r, m, NULL_TREE, GMP_RNDZ);
/* 1 to 3 bits may have been shifted off (with a sticky bit)
because the hex digits used in real_from_mpfr did not
start with a digit 8 to f, but the exponent bounds above
should have avoided underflow or overflow. */
gcc_assert (r->cl == rvc_normal);
/* Set a sticky bit if mpfr_strtofr was inexact. */
r->sig[0] |= inexact;
mpfr_clear (m);
}
}
r->sign = sign;
return 0;
is_a_zero:
get_zero (r, sign);
return 0;
underflow:
get_zero (r, sign);
return -1;
overflow:
get_inf (r, sign);
return 1;
}
/* Legacy. Similar, but return the result directly. */
REAL_VALUE_TYPE
real_from_string2 (const char *s, format_helper fmt)
{
REAL_VALUE_TYPE r;
real_from_string (&r, s);
if (fmt)
real_convert (&r, fmt, &r);
return r;
}
/* Initialize R from string S and desired format FMT. */
void
real_from_string3 (REAL_VALUE_TYPE *r, const char *s, format_helper fmt)
{
if (fmt.decimal_p ())
decimal_real_from_string (r, s);
else
real_from_string (r, s);
if (fmt)
real_convert (r, fmt, r);
}
/* Initialize R from the wide_int VAL_IN. Round it to format FMT if
FMT is nonnull. */
void
real_from_integer (REAL_VALUE_TYPE *r, format_helper fmt,
const wide_int_ref &val_in, signop sgn)
{
if (val_in == 0)
get_zero (r, 0);
else
{
unsigned int len = val_in.get_precision ();
int i, j, e = 0;
int maxbitlen = MAX_BITSIZE_MODE_ANY_INT + HOST_BITS_PER_WIDE_INT;
const unsigned int realmax = (SIGNIFICAND_BITS / HOST_BITS_PER_WIDE_INT
* HOST_BITS_PER_WIDE_INT);
memset (r, 0, sizeof (*r));
r->cl = rvc_normal;
r->sign = wi::neg_p (val_in, sgn);
/* We have to ensure we can negate the largest negative number. */
wide_int val = wide_int::from (val_in, maxbitlen, sgn);
if (r->sign)
val = -val;
/* Ensure a multiple of HOST_BITS_PER_WIDE_INT, ceiling, as elt
won't work with precisions that are not a multiple of
HOST_BITS_PER_WIDE_INT. */
len += HOST_BITS_PER_WIDE_INT - 1;
/* Ensure we can represent the largest negative number. */
len += 1;
len = len/HOST_BITS_PER_WIDE_INT * HOST_BITS_PER_WIDE_INT;
/* Cap the size to the size allowed by real.h. */
if (len > realmax)
{
HOST_WIDE_INT cnt_l_z;
cnt_l_z = wi::clz (val);
if (maxbitlen - cnt_l_z > realmax)
{
e = maxbitlen - cnt_l_z - realmax;
/* This value is too large, we must shift it right to
preserve all the bits we can, and then bump the
exponent up by that amount. */
val = wi::lrshift (val, e);
}
len = realmax;
}
/* Clear out top bits so elt will work with precisions that aren't
a multiple of HOST_BITS_PER_WIDE_INT. */
val = wide_int::from (val, len, sgn);
len = len / HOST_BITS_PER_WIDE_INT;
SET_REAL_EXP (r, len * HOST_BITS_PER_WIDE_INT + e);
j = SIGSZ - 1;
if (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT)
for (i = len - 1; i >= 0; i--)
{
r->sig[j--] = val.elt (i);
if (j < 0)
break;
}
else
{
gcc_assert (HOST_BITS_PER_LONG*2 == HOST_BITS_PER_WIDE_INT);
for (i = len - 1; i >= 0; i--)
{
HOST_WIDE_INT e = val.elt (i);
r->sig[j--] = e >> (HOST_BITS_PER_LONG - 1) >> 1;
if (j < 0)
break;
r->sig[j--] = e;
if (j < 0)
break;
}
}
normalize (r);
}
if (fmt.decimal_p ())
decimal_from_integer (r);
else if (fmt)
real_convert (r, fmt, r);
}
/* Render R, an integral value, as a floating point constant with no
specified exponent. */
static void
decimal_integer_string (char *str, const REAL_VALUE_TYPE *r_orig,
size_t buf_size)
{
int dec_exp, digit, digits;
REAL_VALUE_TYPE r, pten;
char *p;
bool sign;
r = *r_orig;
if (r.cl == rvc_zero)
{
strcpy (str, "0.");
return;
}
sign = r.sign;
r.sign = 0;
dec_exp = REAL_EXP (&r) * M_LOG10_2;
digits = dec_exp + 1;
gcc_assert ((digits + 2) < (int)buf_size);
pten = *real_digit (1);
times_pten (&pten, dec_exp);
p = str;
if (sign)
*p++ = '-';
digit = rtd_divmod (&r, &pten);
gcc_assert (digit >= 0 && digit <= 9);
*p++ = digit + '0';
while (--digits > 0)
{
times_pten (&r, 1);
digit = rtd_divmod (&r, &pten);
*p++ = digit + '0';
}
*p++ = '.';
*p++ = '\0';
}
/* Convert a real with an integral value to decimal float. */
static void
decimal_from_integer (REAL_VALUE_TYPE *r)
{
char str[256];
decimal_integer_string (str, r, sizeof (str) - 1);
decimal_real_from_string (r, str);
}
/* Returns 10**2**N. */
static const REAL_VALUE_TYPE *
ten_to_ptwo (int n)
{
static REAL_VALUE_TYPE tens[EXP_BITS];
gcc_assert (n >= 0);
gcc_assert (n < EXP_BITS);
if (tens[n].cl == rvc_zero)
{
if (n < (HOST_BITS_PER_WIDE_INT == 64 ? 5 : 4))
{
HOST_WIDE_INT t = 10;
int i;
for (i = 0; i < n; ++i)
t *= t;
real_from_integer (&tens[n], VOIDmode, t, UNSIGNED);
}
else
{
const REAL_VALUE_TYPE *t = ten_to_ptwo (n - 1);
do_multiply (&tens[n], t, t);
}
}
return &tens[n];
}
/* Returns 10**(-2**N). */
static const REAL_VALUE_TYPE *
ten_to_mptwo (int n)
{
static REAL_VALUE_TYPE tens[EXP_BITS];
gcc_assert (n >= 0);
gcc_assert (n < EXP_BITS);
if (tens[n].cl == rvc_zero)
do_divide (&tens[n], real_digit (1), ten_to_ptwo (n));
return &tens[n];
}
/* Returns N. */
static const REAL_VALUE_TYPE *
real_digit (int n)
{
static REAL_VALUE_TYPE num[10];
gcc_assert (n >= 0);
gcc_assert (n <= 9);
if (n > 0 && num[n].cl == rvc_zero)
real_from_integer (&num[n], VOIDmode, n, UNSIGNED);
return &num[n];
}
/* Multiply R by 10**EXP. */
static void
times_pten (REAL_VALUE_TYPE *r, int exp)
{
REAL_VALUE_TYPE pten, *rr;
bool negative = (exp < 0);
int i;
if (negative)
{
exp = -exp;
pten = *real_digit (1);
rr = &pten;
}
else
rr = r;
for (i = 0; exp > 0; ++i, exp >>= 1)
if (exp & 1)
do_multiply (rr, rr, ten_to_ptwo (i));
if (negative)
do_divide (r, r, &pten);
}
/* Returns the special REAL_VALUE_TYPE corresponding to 'e'. */
const REAL_VALUE_TYPE *
dconst_e_ptr (void)
{
static REAL_VALUE_TYPE value;
/* Initialize mathematical constants for constant folding builtins.
These constants need to be given to at least 160 bits precision. */
if (value.cl == rvc_zero)
{
mpfr_t m;
mpfr_init2 (m, SIGNIFICAND_BITS);
mpfr_set_ui (m, 1, GMP_RNDN);
mpfr_exp (m, m, GMP_RNDN);
real_from_mpfr (&value, m, NULL_TREE, GMP_RNDN);
mpfr_clear (m);
}
return &value;
}
/* Returns a cached REAL_VALUE_TYPE corresponding to 1/n, for various n. */
#define CACHED_FRACTION(NAME, N) \
const REAL_VALUE_TYPE * \
NAME (void) \
{ \
static REAL_VALUE_TYPE value; \
\
/* Initialize mathematical constants for constant folding builtins. \
These constants need to be given to at least 160 bits \
precision. */ \
if (value.cl == rvc_zero) \
real_arithmetic (&value, RDIV_EXPR, &dconst1, real_digit (N)); \
return &value; \
}
CACHED_FRACTION (dconst_third_ptr, 3)
CACHED_FRACTION (dconst_quarter_ptr, 4)
CACHED_FRACTION (dconst_sixth_ptr, 6)
CACHED_FRACTION (dconst_ninth_ptr, 9)
/* Returns the special REAL_VALUE_TYPE corresponding to sqrt(2). */
const REAL_VALUE_TYPE *
dconst_sqrt2_ptr (void)
{
static REAL_VALUE_TYPE value;
/* Initialize mathematical constants for constant folding builtins.
These constants need to be given to at least 160 bits precision. */
if (value.cl == rvc_zero)
{
mpfr_t m;
mpfr_init2 (m, SIGNIFICAND_BITS);
mpfr_sqrt_ui (m, 2, GMP_RNDN);
real_from_mpfr (&value, m, NULL_TREE, GMP_RNDN);
mpfr_clear (m);
}
return &value;
}
/* Fills R with +Inf. */
void
real_inf (REAL_VALUE_TYPE *r)
{
get_inf (r, 0);
}
/* Fills R with a NaN whose significand is described by STR. If QUIET,
we force a QNaN, else we force an SNaN. The string, if not empty,
is parsed as a number and placed in the significand. Return true
if the string was successfully parsed. */
bool
real_nan (REAL_VALUE_TYPE *r, const char *str, int quiet,
format_helper fmt)
{
if (*str == 0)
{
if (quiet)
get_canonical_qnan (r, 0);
else
get_canonical_snan (r, 0);
}
else
{
int base = 10, d;
memset (r, 0, sizeof (*r));
r->cl = rvc_nan;
/* Parse akin to strtol into the significand of R. */
while (ISSPACE (*str))
str++;
if (*str == '-')
str++;
else if (*str == '+')
str++;
if (*str == '0')
{
str++;
if (*str == 'x' || *str == 'X')
{
base = 16;
str++;
}
else
base = 8;
}
while ((d = hex_value (*str)) < base)
{
REAL_VALUE_TYPE u;
switch (base)
{
case 8:
lshift_significand (r, r, 3);
break;
case 16:
lshift_significand (r, r, 4);
break;
case 10:
lshift_significand_1 (&u, r);
lshift_significand (r, r, 3);
add_significands (r, r, &u);
break;
default:
gcc_unreachable ();
}
get_zero (&u, 0);
u.sig[0] = d;
add_significands (r, r, &u);
str++;
}
/* Must have consumed the entire string for success. */
if (*str != 0)
return false;
/* Shift the significand into place such that the bits
are in the most significant bits for the format. */
lshift_significand (r, r, SIGNIFICAND_BITS - fmt->pnan);
/* Our MSB is always unset for NaNs. */
r->sig[SIGSZ-1] &= ~SIG_MSB;
/* Force quiet or signaling NaN. */
r->signalling = !quiet;
}
return true;
}
/* Fills R with the largest finite value representable in mode MODE.
If SIGN is nonzero, R is set to the most negative finite value. */
void
real_maxval (REAL_VALUE_TYPE *r, int sign, machine_mode mode)
{
const struct real_format *fmt;
int np2;
fmt = REAL_MODE_FORMAT (mode);
gcc_assert (fmt);
memset (r, 0, sizeof (*r));
if (fmt->b == 10)
decimal_real_maxval (r, sign, mode);
else
{
r->cl = rvc_normal;
r->sign = sign;
SET_REAL_EXP (r, fmt->emax);
np2 = SIGNIFICAND_BITS - fmt->p;
memset (r->sig, -1, SIGSZ * sizeof (unsigned long));
clear_significand_below (r, np2);
if (fmt->pnan < fmt->p)
/* This is an IBM extended double format made up of two IEEE
doubles. The value of the long double is the sum of the
values of the two parts. The most significant part is
required to be the value of the long double rounded to the
nearest double. Rounding means we need a slightly smaller
value for LDBL_MAX. */
clear_significand_bit (r, SIGNIFICAND_BITS - fmt->pnan - 1);
}
}
/* Fills R with 2**N. */
void
real_2expN (REAL_VALUE_TYPE *r, int n, format_helper fmt)
{
memset (r, 0, sizeof (*r));
n++;
if (n > MAX_EXP)
r->cl = rvc_inf;
else if (n < -MAX_EXP)
;
else
{
r->cl = rvc_normal;
SET_REAL_EXP (r, n);
r->sig[SIGSZ-1] = SIG_MSB;
}
if (fmt.decimal_p ())
decimal_real_convert (r, fmt, r);
}
static void
round_for_format (const struct real_format *fmt, REAL_VALUE_TYPE *r)
{
int p2, np2, i, w;
int emin2m1, emax2;
bool round_up = false;
if (r->decimal)
{
if (fmt->b == 10)
{
decimal_round_for_format (fmt, r);
return;
}
/* FIXME. We can come here via fp_easy_constant
(e.g. -O0 on '_Decimal32 x = 1.0 + 2.0dd'), but have not
investigated whether this convert needs to be here, or
something else is missing. */
decimal_real_convert (r, REAL_MODE_FORMAT (DFmode), r);
}
p2 = fmt->p;
emin2m1 = fmt->emin - 1;
emax2 = fmt->emax;
np2 = SIGNIFICAND_BITS - p2;
switch (r->cl)
{
underflow:
get_zero (r, r->sign);
/* FALLTHRU */
case rvc_zero:
if (!fmt->has_signed_zero)
r->sign = 0;
return;
overflow:
get_inf (r, r->sign);
case rvc_inf:
return;
case rvc_nan:
clear_significand_below (r, np2);
return;
case rvc_normal:
break;
default:
gcc_unreachable ();
}
/* Check the range of the exponent. If we're out of range,
either underflow or overflow. */
if (REAL_EXP (r) > emax2)
goto overflow;
else if (REAL_EXP (r) <= emin2m1)
{
int diff;
if (!fmt->has_denorm)
{
/* Don't underflow completely until we've had a chance to round. */
if (REAL_EXP (r) < emin2m1)
goto underflow;
}
else
{
diff = emin2m1 - REAL_EXP (r) + 1;
if (diff > p2)
goto underflow;
/* De-normalize the significand. */
r->sig[0] |= sticky_rshift_significand (r, r, diff);
SET_REAL_EXP (r, REAL_EXP (r) + diff);
}
}
if (!fmt->round_towards_zero)
{
/* There are P2 true significand bits, followed by one guard bit,
followed by one sticky bit, followed by stuff. Fold nonzero
stuff into the sticky bit. */
unsigned long sticky;
bool guard, lsb;
sticky = 0;
for (i = 0, w = (np2 - 1) / HOST_BITS_PER_LONG; i < w; ++i)
sticky |= r->sig[i];
sticky |= r->sig[w]
& (((unsigned long)1 << ((np2 - 1) % HOST_BITS_PER_LONG)) - 1);
guard = test_significand_bit (r, np2 - 1);
lsb = test_significand_bit (r, np2);
/* Round to even. */
round_up = guard && (sticky || lsb);
}
if (round_up)
{
REAL_VALUE_TYPE u;
get_zero (&u, 0);
set_significand_bit (&u, np2);
if (add_significands (r, r, &u))
{
/* Overflow. Means the significand had been all ones, and
is now all zeros. Need to increase the exponent, and
possibly re-normalize it. */
SET_REAL_EXP (r, REAL_EXP (r) + 1);
if (REAL_EXP (r) > emax2)
goto overflow;
r->sig[SIGSZ-1] = SIG_MSB;
}
}
/* Catch underflow that we deferred until after rounding. */
if (REAL_EXP (r) <= emin2m1)
goto underflow;
/* Clear out trailing garbage. */
clear_significand_below (r, np2);
}
/* Extend or truncate to a new format. */
void
real_convert (REAL_VALUE_TYPE *r, format_helper fmt,
const REAL_VALUE_TYPE *a)
{
*r = *a;
if (a->decimal || fmt->b == 10)
decimal_real_convert (r, fmt, a);
round_for_format (fmt, r);
/* Make resulting NaN value to be qNaN. The caller has the
responsibility to avoid the operation if flag_signaling_nans
is on. */
if (r->cl == rvc_nan)
r->signalling = 0;
/* round_for_format de-normalizes denormals. Undo just that part. */
if (r->cl == rvc_normal)
normalize (r);
}
/* Legacy. Likewise, except return the struct directly. */
REAL_VALUE_TYPE
real_value_truncate (format_helper fmt, REAL_VALUE_TYPE a)
{
REAL_VALUE_TYPE r;
real_convert (&r, fmt, &a);
return r;
}
/* Return true if truncating to FMT is exact. */
bool
exact_real_truncate (format_helper fmt, const REAL_VALUE_TYPE *a)
{
REAL_VALUE_TYPE t;
int emin2m1;
/* Don't allow conversion to denormals. */
emin2m1 = fmt->emin - 1;
if (REAL_EXP (a) <= emin2m1)
return false;
/* After conversion to the new format, the value must be identical. */
real_convert (&t, fmt, a);
return real_identical (&t, a);
}
/* Write R to the given target format. Place the words of the result
in target word order in BUF. There are always 32 bits in each
long, no matter the size of the host long.
Legacy: return word 0 for implementing REAL_VALUE_TO_TARGET_SINGLE. */
long
real_to_target (long *buf, const REAL_VALUE_TYPE *r_orig,
format_helper fmt)
{
REAL_VALUE_TYPE r;
long buf1;
r = *r_orig;
round_for_format (fmt, &r);
if (!buf)
buf = &buf1;
(*fmt->encode) (fmt, buf, &r);
return *buf;
}
/* Read R from the given target format. Read the words of the result
in target word order in BUF. There are always 32 bits in each
long, no matter the size of the host long. */
void
real_from_target (REAL_VALUE_TYPE *r, const long *buf, format_helper fmt)
{
(*fmt->decode) (fmt, r, buf);
}
/* Return the number of bits of the largest binary value that the
significand of FMT will hold. */
/* ??? Legacy. Should get access to real_format directly. */
int
significand_size (format_helper fmt)
{
if (fmt == NULL)
return 0;
if (fmt->b == 10)
{
/* Return the size in bits of the largest binary value that can be
held by the decimal coefficient for this format. This is one more
than the number of bits required to hold the largest coefficient
of this format. */
double log2_10 = 3.3219281;
return fmt->p * log2_10;
}
return fmt->p;
}
/* Return a hash value for the given real value. */
/* ??? The "unsigned int" return value is intended to be hashval_t,
but I didn't want to pull hashtab.h into real.h. */
unsigned int
real_hash (const REAL_VALUE_TYPE *r)
{
unsigned int h;
size_t i;
h = r->cl | (r->sign << 2);
switch (r->cl)
{
case rvc_zero:
case rvc_inf:
return h;
case rvc_normal:
h |= REAL_EXP (r) << 3;
break;
case rvc_nan:
if (r->signalling)
h ^= (unsigned int)-1;
if (r->canonical)
return h;
break;
default:
gcc_unreachable ();
}
if (sizeof (unsigned long) > sizeof (unsigned int))
for (i = 0; i < SIGSZ; ++i)
{
unsigned long s = r->sig[i];
h ^= s ^ (s >> (HOST_BITS_PER_LONG / 2));
}
else
for (i = 0; i < SIGSZ; ++i)
h ^= r->sig[i];
return h;
}
/* IEEE single-precision format. */
static void encode_ieee_single (const struct real_format *fmt,
long *, const REAL_VALUE_TYPE *);
static void decode_ieee_single (const struct real_format *,
REAL_VALUE_TYPE *, const long *);
static void
encode_ieee_single (const struct real_format *fmt, long *buf,
const REAL_VALUE_TYPE *r)
{
unsigned long image, sig, exp;
unsigned long sign = r->sign;
bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
image = sign << 31;
sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0x7fffff;
switch (r->cl)
{
case rvc_zero:
break;
case rvc_inf:
if (fmt->has_inf)
image |= 255 << 23;
else
image |= 0x7fffffff;
break;
case rvc_nan:
if (fmt->has_nans)
{
if (r->canonical)
sig = (fmt->canonical_nan_lsbs_set ? (1 << 22) - 1 : 0);
if (r->signalling == fmt->qnan_msb_set)
sig &= ~(1 << 22);
else
sig |= 1 << 22;
if (sig == 0)
sig = 1 << 21;
image |= 255 << 23;
image |= sig;
}
else
image |= 0x7fffffff;
break;
case rvc_normal:
/* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
whereas the intermediate representation is 0.F x 2**exp.
Which means we're off by one. */
if (denormal)
exp = 0;
else
exp = REAL_EXP (r) + 127 - 1;
image |= exp << 23;
image |= sig;
break;
default:
gcc_unreachable ();
}
buf[0] = image;
}
static void
decode_ieee_single (const struct real_format *fmt, REAL_VALUE_TYPE *r,
const long *buf)
{
unsigned long image = buf[0] & 0xffffffff;
bool sign = (image >> 31) & 1;
int exp = (image >> 23) & 0xff;
memset (r, 0, sizeof (*r));
image <<= HOST_BITS_PER_LONG - 24;
image &= ~SIG_MSB;
if (exp == 0)
{
if (image && fmt->has_denorm)
{
r->cl = rvc_normal;
r->sign = sign;
SET_REAL_EXP (r, -126);
r->sig[SIGSZ-1] = image << 1;
normalize (r);
}
else if (fmt->has_signed_zero)
r->sign = sign;
}
else if (exp == 255 && (fmt->has_nans || fmt->has_inf))
{
if (image)
{
r->cl = rvc_nan;
r->sign = sign;
r->signalling = (((image >> (HOST_BITS_PER_LONG - 2)) & 1)
^ fmt->qnan_msb_set);
r->sig[SIGSZ-1] = image;
}
else
{
r->cl = rvc_inf;
r->sign = sign;
}
}
else
{
r->cl = rvc_normal;
r->sign = sign;
SET_REAL_EXP (r, exp - 127 + 1);
r->sig[SIGSZ-1] = image | SIG_MSB;
}
}
const struct real_format ieee_single_format =
{
encode_ieee_single,
decode_ieee_single,
2,
24,
24,
-125,
128,
31,
31,
32,
false,
true,
true,
true,
true,
true,
true,
false,
"ieee_single"
};
const struct real_format mips_single_format =
{
encode_ieee_single,
decode_ieee_single,
2,
24,
24,
-125,
128,
31,
31,
32,
false,
true,
true,
true,
true,
true,
false,
true,
"mips_single"
};
const struct real_format motorola_single_format =
{
encode_ieee_single,
decode_ieee_single,
2,
24,
24,
-125,
128,
31,
31,
32,
false,
true,
true,
true,
true,
true,
true,
true,
"motorola_single"
};
/* SPU Single Precision (Extended-Range Mode) format is the same as IEEE
single precision with the following differences:
- Infinities are not supported. Instead MAX_FLOAT or MIN_FLOAT
are generated.
- NaNs are not supported.
- The range of non-zero numbers in binary is
(001)[1.]000...000 to (255)[1.]111...111.
- Denormals can be represented, but are treated as +0.0 when
used as an operand and are never generated as a result.
- -0.0 can be represented, but a zero result is always +0.0.
- the only supported rounding mode is trunction (towards zero). */
const struct real_format spu_single_format =
{
encode_ieee_single,
decode_ieee_single,
2,
24,
24,
-125,
129,
31,
31,
0,
true,
false,
false,
false,
true,
true,
false,
false,
"spu_single"
};
/* IEEE double-precision format. */
static void encode_ieee_double (const struct real_format *fmt,
long *, const REAL_VALUE_TYPE *);
static void decode_ieee_double (const struct real_format *,
REAL_VALUE_TYPE *, const long *);
static void
encode_ieee_double (const struct real_format *fmt, long *buf,
const REAL_VALUE_TYPE *r)
{
unsigned long image_lo, image_hi, sig_lo, sig_hi, exp;
bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
image_hi = r->sign << 31;
image_lo = 0;
if (HOST_BITS_PER_LONG == 64)
{
sig_hi = r->sig[SIGSZ-1];
sig_lo = (sig_hi >> (64 - 53)) & 0xffffffff;
sig_hi = (sig_hi >> (64 - 53 + 1) >> 31) & 0xfffff;
}
else
{
sig_hi = r->sig[SIGSZ-1];
sig_lo = r->sig[SIGSZ-2];
sig_lo = (sig_hi << 21) | (sig_lo >> 11);
sig_hi = (sig_hi >> 11) & 0xfffff;
}
switch (r->cl)
{
case rvc_zero:
break;
case rvc_inf:
if (fmt->has_inf)
image_hi |= 2047 << 20;
else
{
image_hi |= 0x7fffffff;
image_lo = 0xffffffff;
}
break;
case rvc_nan:
if (fmt->has_nans)
{
if (r->canonical)
{
if (fmt->canonical_nan_lsbs_set)
{
sig_hi = (1 << 19) - 1;
sig_lo = 0xffffffff;
}
else
{
sig_hi = 0;
sig_lo = 0;
}
}
if (r->signalling == fmt->qnan_msb_set)
sig_hi &= ~(1 << 19);
else
sig_hi |= 1 << 19;
if (sig_hi == 0 && sig_lo == 0)
sig_hi = 1 << 18;
image_hi |= 2047 << 20;
image_hi |= sig_hi;
image_lo = sig_lo;
}
else
{
image_hi |= 0x7fffffff;
image_lo = 0xffffffff;
}
break;
case rvc_normal:
/* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
whereas the intermediate representation is 0.F x 2**exp.
Which means we're off by one. */
if (denormal)
exp = 0;
else
exp = REAL_EXP (r) + 1023 - 1;
image_hi |= exp << 20;
image_hi |= sig_hi;
image_lo = sig_lo;
break;
default:
gcc_unreachable ();
}
if (FLOAT_WORDS_BIG_ENDIAN)
buf[0] = image_hi, buf[1] = image_lo;
else
buf[0] = image_lo, buf[1] = image_hi;
}
static void
decode_ieee_double (const struct real_format *fmt, REAL_VALUE_TYPE *r,
const long *buf)
{
unsigned long image_hi, image_lo;
bool sign;
int exp;
if (FLOAT_WORDS_BIG_ENDIAN)
image_hi = buf[0], image_lo = buf[1];
else
image_lo = buf[0], image_hi = buf[1];
image_lo &= 0xffffffff;
image_hi &= 0xffffffff;
sign = (image_hi >> 31) & 1;
exp = (image_hi >> 20) & 0x7ff;
memset (r, 0, sizeof (*r));
image_hi <<= 32 - 21;
image_hi |= image_lo >> 21;
image_hi &= 0x7fffffff;
image_lo <<= 32 - 21;
if (exp == 0)
{
if ((image_hi || image_lo) && fmt->has_denorm)
{
r->cl = rvc_normal;
r->sign = sign;
SET_REAL_EXP (r, -1022);
if (HOST_BITS_PER_LONG == 32)
{
image_hi = (image_hi << 1) | (image_lo >> 31);
image_lo <<= 1;
r->sig[SIGSZ-1] = image_hi;
r->sig[SIGSZ-2] = image_lo;
}
else
{
image_hi = (image_hi << 31 << 2) | (image_lo << 1);
r->sig[SIGSZ-1] = image_hi;
}
normalize (r);
}
else if (fmt->has_signed_zero)
r->sign = sign;
}
else if (exp == 2047 && (fmt->has_nans || fmt->has_inf))
{
if (image_hi || image_lo)
{
r->cl = rvc_nan;
r->sign = sign;
r->signalling = ((image_hi >> 30) & 1) ^ fmt->qnan_msb_set;
if (HOST_BITS_PER_LONG == 32)
{
r->sig[SIGSZ-1] = image_hi;
r->sig[SIGSZ-2] = image_lo;
}
else
r->sig[SIGSZ-1] = (image_hi << 31 << 1) | image_lo;
}
else
{
r->cl = rvc_inf;
r->sign = sign;
}
}
else
{
r->cl = rvc_normal;
r->sign = sign;
SET_REAL_EXP (r, exp - 1023 + 1);
if (HOST_BITS_PER_LONG == 32)
{
r->sig[SIGSZ-1] = image_hi | SIG_MSB;
r->sig[SIGSZ-2] = image_lo;
}
else
r->sig[SIGSZ-1] = (image_hi << 31 << 1) | image_lo | SIG_MSB;
}
}
const struct real_format ieee_double_format =
{
encode_ieee_double,
decode_ieee_double,
2,
53,
53,
-1021,
1024,
63,
63,
64,
false,
true,
true,
true,
true,
true,
true,
false,
"ieee_double"
};
const struct real_format mips_double_format =
{
encode_ieee_double,
decode_ieee_double,
2,
53,
53,
-1021,
1024,
63,
63,
64,
false,
true,
true,
true,
true,
true,
false,
true,
"mips_double"
};
const struct real_format motorola_double_format =
{
encode_ieee_double,
decode_ieee_double,
2,
53,
53,
-1021,
1024,
63,
63,
64,
false,
true,
true,
true,
true,
true,
true,
true,
"motorola_double"
};
/* IEEE extended real format. This comes in three flavors: Intel's as
a 12 byte image, Intel's as a 16 byte image, and Motorola's. Intel
12- and 16-byte images may be big- or little endian; Motorola's is
always big endian. */
/* Helper subroutine which converts from the internal format to the
12-byte little-endian Intel format. Functions below adjust this
for the other possible formats. */
static void
encode_ieee_extended (const struct real_format *fmt, long *buf,
const REAL_VALUE_TYPE *r)
{
unsigned long image_hi, sig_hi, sig_lo;
bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
image_hi = r->sign << 15;
sig_hi = sig_lo = 0;
switch (r->cl)
{
case rvc_zero:
break;
case rvc_inf:
if (fmt->has_inf)
{
image_hi |= 32767;
/* Intel requires the explicit integer bit to be set, otherwise
it considers the value a "pseudo-infinity". Motorola docs
say it doesn't care. */
sig_hi = 0x80000000;
}
else
{
image_hi |= 32767;
sig_lo = sig_hi = 0xffffffff;
}
break;
case rvc_nan:
if (fmt->has_nans)
{
image_hi |= 32767;
if (r->canonical)
{
if (fmt->canonical_nan_lsbs_set)
{
sig_hi = (1 << 30) - 1;
sig_lo = 0xffffffff;
}
}
else if (HOST_BITS_PER_LONG == 32)
{
sig_hi = r->sig[SIGSZ-1];
sig_lo = r->sig[SIGSZ-2];
}
else
{
sig_lo = r->sig[SIGSZ-1];
sig_hi = sig_lo >> 31 >> 1;
sig_lo &= 0xffffffff;
}
if (r->signalling == fmt->qnan_msb_set)
sig_hi &= ~(1 << 30);
else
sig_hi |= 1 << 30;
if ((sig_hi & 0x7fffffff) == 0 && sig_lo == 0)
sig_hi = 1 << 29;
/* Intel requires the explicit integer bit to be set, otherwise
it considers the value a "pseudo-nan". Motorola docs say it
doesn't care. */
sig_hi |= 0x80000000;
}
else
{
image_hi |= 32767;
sig_lo = sig_hi = 0xffffffff;
}
break;
case rvc_normal:
{
int exp = REAL_EXP (r);
/* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
whereas the intermediate representation is 0.F x 2**exp.
Which means we're off by one.
Except for Motorola, which consider exp=0 and explicit
integer bit set to continue to be normalized. In theory
this discrepancy has been taken care of by the difference
in fmt->emin in round_for_format. */
if (denormal)
exp = 0;
else
{
exp += 16383 - 1;
gcc_assert (exp >= 0);
}
image_hi |= exp;
if (HOST_BITS_PER_LONG == 32)
{
sig_hi = r->sig[SIGSZ-1];
sig_lo = r->sig[SIGSZ-2];
}
else
{
sig_lo = r->sig[SIGSZ-1];
sig_hi = sig_lo >> 31 >> 1;
sig_lo &= 0xffffffff;
}
}
break;
default:
gcc_unreachable ();
}
buf[0] = sig_lo, buf[1] = sig_hi, buf[2] = image_hi;
}
/* Convert from the internal format to the 12-byte Motorola format
for an IEEE extended real. */
static void
encode_ieee_extended_motorola (const struct real_format *fmt, long *buf,
const REAL_VALUE_TYPE *r)
{
long intermed[3];
encode_ieee_extended (fmt, intermed, r);
if (r->cl == rvc_inf)
/* For infinity clear the explicit integer bit again, so that the
format matches the canonical infinity generated by the FPU. */
intermed[1] = 0;
/* Motorola chips are assumed always to be big-endian. Also, the
padding in a Motorola extended real goes between the exponent and
the mantissa. At this point the mantissa is entirely within
elements 0 and 1 of intermed, and the exponent entirely within
element 2, so all we have to do is swap the order around, and
shift element 2 left 16 bits. */
buf[0] = intermed[2] << 16;
buf[1] = intermed[1];
buf[2] = intermed[0];
}
/* Convert from the internal format to the 12-byte Intel format for
an IEEE extended real. */
static void
encode_ieee_extended_intel_96 (const struct real_format *fmt, long *buf,
const REAL_VALUE_TYPE *r)
{
if (FLOAT_WORDS_BIG_ENDIAN)
{
/* All the padding in an Intel-format extended real goes at the high
end, which in this case is after the mantissa, not the exponent.
Therefore we must shift everything down 16 bits. */
long intermed[3];
encode_ieee_extended (fmt, intermed, r);
buf[0] = ((intermed[2] << 16) | ((unsigned long)(intermed[1] & 0xFFFF0000) >> 16));
buf[1] = ((intermed[1] << 16) | ((unsigned long)(intermed[0] & 0xFFFF0000) >> 16));
buf[2] = (intermed[0] << 16);
}
else
/* encode_ieee_extended produces what we want directly. */
encode_ieee_extended (fmt, buf, r);
}
/* Convert from the internal format to the 16-byte Intel format for
an IEEE extended real. */
static void
encode_ieee_extended_intel_128 (const struct real_format *fmt, long *buf,
const REAL_VALUE_TYPE *r)
{
/* All the padding in an Intel-format extended real goes at the high end. */
encode_ieee_extended_intel_96 (fmt, buf, r);
buf[3] = 0;
}
/* As above, we have a helper function which converts from 12-byte
little-endian Intel format to internal format. Functions below
adjust for the other possible formats. */
static void
decode_ieee_extended (const struct real_format *fmt, REAL_VALUE_TYPE *r,
const long *buf)
{
unsigned long image_hi, sig_hi, sig_lo;
bool sign;
int exp;
sig_lo = buf[0], sig_hi = buf[1], image_hi = buf[2];
sig_lo &= 0xffffffff;
sig_hi &= 0xffffffff;
image_hi &= 0xffffffff;
sign = (image_hi >> 15) & 1;
exp = image_hi & 0x7fff;
memset (r, 0, sizeof (*r));
if (exp == 0)
{
if ((sig_hi || sig_lo) && fmt->has_denorm)
{
r->cl = rvc_normal;
r->sign = sign;
/* When the IEEE format contains a hidden bit, we know that
it's zero at this point, and so shift up the significand
and decrease the exponent to match. In this case, Motorola
defines the explicit integer bit to be valid, so we don't
know whether the msb is set or not. */
SET_REAL_EXP (r, fmt->emin);
if (HOST_BITS_PER_LONG == 32)
{
r->sig[SIGSZ-1] = sig_hi;
r->sig[SIGSZ-2] = sig_lo;
}
else
r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
normalize (r);
}
else if (fmt->has_signed_zero)
r->sign = sign;
}
else if (exp == 32767 && (fmt->has_nans || fmt->has_inf))
{
/* See above re "pseudo-infinities" and "pseudo-nans".
Short summary is that the MSB will likely always be
set, and that we don't care about it. */
sig_hi &= 0x7fffffff;
if (sig_hi || sig_lo)
{
r->cl = rvc_nan;
r->sign = sign;
r->signalling = ((sig_hi >> 30) & 1) ^ fmt->qnan_msb_set;
if (HOST_BITS_PER_LONG == 32)
{
r->sig[SIGSZ-1] = sig_hi;
r->sig[SIGSZ-2] = sig_lo;
}
else
r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
}
else
{
r->cl = rvc_inf;
r->sign = sign;
}
}
else
{
r->cl = rvc_normal;
r->sign = sign;
SET_REAL_EXP (r, exp - 16383 + 1);
if (HOST_BITS_PER_LONG == 32)
{
r->sig[SIGSZ-1] = sig_hi;
r->sig[SIGSZ-2] = sig_lo;
}
else
r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
}
}
/* Convert from the internal format to the 12-byte Motorola format
for an IEEE extended real. */
static void
decode_ieee_extended_motorola (const struct real_format *fmt, REAL_VALUE_TYPE *r,
const long *buf)
{
long intermed[3];
/* Motorola chips are assumed always to be big-endian. Also, the
padding in a Motorola extended real goes between the exponent and
the mantissa; remove it. */
intermed[0] = buf[2];
intermed[1] = buf[1];
intermed[2] = (unsigned long)buf[0] >> 16;
decode_ieee_extended (fmt, r, intermed);
}
/* Convert from the internal format to the 12-byte Intel format for
an IEEE extended real. */
static void
decode_ieee_extended_intel_96 (const struct real_format *fmt, REAL_VALUE_TYPE *r,
const long *buf)
{
if (FLOAT_WORDS_BIG_ENDIAN)
{
/* All the padding in an Intel-format extended real goes at the high
end, which in this case is after the mantissa, not the exponent.
Therefore we must shift everything up 16 bits. */
long intermed[3];
intermed[0] = (((unsigned long)buf[2] >> 16) | (buf[1] << 16));
intermed[1] = (((unsigned long)buf[1] >> 16) | (buf[0] << 16));
intermed[2] = ((unsigned long)buf[0] >> 16);
decode_ieee_extended (fmt, r, intermed);
}
else
/* decode_ieee_extended produces what we want directly. */
decode_ieee_extended (fmt, r, buf);
}
/* Convert from the internal format to the 16-byte Intel format for
an IEEE extended real. */
static void
decode_ieee_extended_intel_128 (const struct real_format *fmt, REAL_VALUE_TYPE *r,
const long *buf)
{
/* All the padding in an Intel-format extended real goes at the high end. */
decode_ieee_extended_intel_96 (fmt, r, buf);
}
const struct real_format ieee_extended_motorola_format =
{
encode_ieee_extended_motorola,
decode_ieee_extended_motorola,
2,
64,
64,
-16382,
16384,
95,
95,
0,
false,
true,
true,
true,
true,
true,
true,
true,
"ieee_extended_motorola"
};
const struct real_format ieee_extended_intel_96_format =
{
encode_ieee_extended_intel_96,
decode_ieee_extended_intel_96,
2,
64,
64,
-16381,
16384,
79,
79,
65,
false,
true,
true,
true,
true,
true,
true,
false,
"ieee_extended_intel_96"
};
const struct real_format ieee_extended_intel_128_format =
{
encode_ieee_extended_intel_128,
decode_ieee_extended_intel_128,
2,
64,
64,
-16381,
16384,
79,
79,
65,
false,
true,
true,
true,
true,
true,
true,
false,
"ieee_extended_intel_128"
};
/* The following caters to i386 systems that set the rounding precision
to 53 bits instead of 64, e.g. FreeBSD. */
const struct real_format ieee_extended_intel_96_round_53_format =
{
encode_ieee_extended_intel_96,
decode_ieee_extended_intel_96,
2,
53,
53,
-16381,
16384,
79,
79,
33,
false,
true,
true,
true,
true,
true,
true,
false,
"ieee_extended_intel_96_round_53"
};
/* IBM 128-bit extended precision format: a pair of IEEE double precision
numbers whose sum is equal to the extended precision value. The number
with greater magnitude is first. This format has the same magnitude
range as an IEEE double precision value, but effectively 106 bits of
significand precision. Infinity and NaN are represented by their IEEE
double precision value stored in the first number, the second number is
+0.0 or -0.0 for Infinity and don't-care for NaN. */
static void encode_ibm_extended (const struct real_format *fmt,
long *, const REAL_VALUE_TYPE *);
static void decode_ibm_extended (const struct real_format *,
REAL_VALUE_TYPE *, const long *);
static void
encode_ibm_extended (const struct real_format *fmt, long *buf,
const REAL_VALUE_TYPE *r)
{
REAL_VALUE_TYPE u, normr, v;
const struct real_format *base_fmt;
base_fmt = fmt->qnan_msb_set ? &ieee_double_format : &mips_double_format;
/* Renormalize R before doing any arithmetic on it. */
normr = *r;
if (normr.cl == rvc_normal)
normalize (&normr);
/* u = IEEE double precision portion of significand. */
u = normr;
round_for_format (base_fmt, &u);
encode_ieee_double (base_fmt, &buf[0], &u);
if (u.cl == rvc_normal)
{
do_add (&v, &normr, &u, 1);
/* Call round_for_format since we might need to denormalize. */
round_for_format (base_fmt, &v);
encode_ieee_double (base_fmt, &buf[2], &v);
}
else
{
/* Inf, NaN, 0 are all representable as doubles, so the
least-significant part can be 0.0. */
buf[2] = 0;
buf[3] = 0;
}
}
static void
decode_ibm_extended (const struct real_format *fmt ATTRIBUTE_UNUSED, REAL_VALUE_TYPE *r,
const long *buf)
{
REAL_VALUE_TYPE u, v;
const struct real_format *base_fmt;
base_fmt = fmt->qnan_msb_set ? &ieee_double_format : &mips_double_format;
decode_ieee_double (base_fmt, &u, &buf[0]);
if (u.cl != rvc_zero && u.cl != rvc_inf && u.cl != rvc_nan)
{
decode_ieee_double (base_fmt, &v, &buf[2]);
do_add (r, &u, &v, 0);
}
else
*r = u;
}
const struct real_format ibm_extended_format =
{
encode_ibm_extended,
decode_ibm_extended,
2,
53 + 53,
53,
-1021 + 53,
1024,
127,
-1,
0,
false,
true,
true,
true,
true,
true,
true,
false,
"ibm_extended"
};
const struct real_format mips_extended_format =
{
encode_ibm_extended,
decode_ibm_extended,
2,
53 + 53,
53,
-1021 + 53,
1024,
127,
-1,
0,
false,
true,
true,
true,
true,
true,
false,
true,
"mips_extended"
};
/* IEEE quad precision format. */
static void encode_ieee_quad (const struct real_format *fmt,
long *, const REAL_VALUE_TYPE *);
static void decode_ieee_quad (const struct real_format *,
REAL_VALUE_TYPE *, const long *);
static void
encode_ieee_quad (const struct real_format *fmt, long *buf,
const REAL_VALUE_TYPE *r)
{
unsigned long image3, image2, image1, image0, exp;
bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
REAL_VALUE_TYPE u;
image3 = r->sign << 31;
image2 = 0;
image1 = 0;
image0 = 0;
rshift_significand (&u, r, SIGNIFICAND_BITS - 113);
switch (r->cl)
{
case rvc_zero:
break;
case rvc_inf:
if (fmt->has_inf)
image3 |= 32767 << 16;
else
{
image3 |= 0x7fffffff;
image2 = 0xffffffff;
image1 = 0xffffffff;
image0 = 0xffffffff;
}
break;
case rvc_nan:
if (fmt->has_nans)
{
image3 |= 32767 << 16;
if (r->canonical)
{
if (fmt->canonical_nan_lsbs_set)
{
image3 |= 0x7fff;
image2 = image1 = image0 = 0xffffffff;
}
}
else if (HOST_BITS_PER_LONG == 32)
{
image0 = u.sig[0];
image1 = u.sig[1];
image2 = u.sig[2];
image3 |= u.sig[3] & 0xffff;
}
else
{
image0 = u.sig[0];
image1 = image0 >> 31 >> 1;
image2 = u.sig[1];
image3 |= (image2 >> 31 >> 1) & 0xffff;
image0 &= 0xffffffff;
image2 &= 0xffffffff;
}
if (r->signalling == fmt->qnan_msb_set)
image3 &= ~0x8000;
else
image3 |= 0x8000;
if (((image3 & 0xffff) | image2 | image1 | image0) == 0)
image3 |= 0x4000;
}
else
{
image3 |= 0x7fffffff;
image2 = 0xffffffff;
image1 = 0xffffffff;
image0 = 0xffffffff;
}
break;
case rvc_normal:
/* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
whereas the intermediate representation is 0.F x 2**exp.
Which means we're off by one. */
if (denormal)
exp = 0;
else
exp = REAL_EXP (r) + 16383 - 1;
image3 |= exp << 16;
if (HOST_BITS_PER_LONG == 32)
{
image0 = u.sig[0];
image1 = u.sig[1];
image2 = u.sig[2];
image3 |= u.sig[3] & 0xffff;
}
else
{
image0 = u.sig[0];
image1 = image0 >> 31 >> 1;
image2 = u.sig[1];
image3 |= (image2 >> 31 >> 1) & 0xffff;
image0 &= 0xffffffff;
image2 &= 0xffffffff;
}
break;
default:
gcc_unreachable ();
}
if (FLOAT_WORDS_BIG_ENDIAN)
{
buf[0] = image3;
buf[1] = image2;
buf[2] = image1;
buf[3] = image0;
}
else
{
buf[0] = image0;
buf[1] = image1;
buf[2] = image2;
buf[3] = image3;
}
}
static void
decode_ieee_quad (const struct real_format *fmt, REAL_VALUE_TYPE *r,
const long *buf)
{
unsigned long image3, image2, image1, image0;
bool sign;
int exp;
if (FLOAT_WORDS_BIG_ENDIAN)
{
image3 = buf[0];
image2 = buf[1];
image1 = buf[2];
image0 = buf[3];
}
else
{
image0 = buf[0];
image1 = buf[1];
image2 = buf[2];
image3 = buf[3];
}
image0 &= 0xffffffff;
image1 &= 0xffffffff;
image2 &= 0xffffffff;
sign = (image3 >> 31) & 1;
exp = (image3 >> 16) & 0x7fff;
image3 &= 0xffff;
memset (r, 0, sizeof (*r));
if (exp == 0)
{
if ((image3 | image2 | image1 | image0) && fmt->has_denorm)
{
r->cl = rvc_normal;
r->sign = sign;
SET_REAL_EXP (r, -16382 + (SIGNIFICAND_BITS - 112));
if (HOST_BITS_PER_LONG == 32)
{
r->sig[0] = image0;
r->sig[1] = image1;
r->sig[2] = image2;
r->sig[3] = image3;
}
else
{
r->sig[0] = (image1 << 31 << 1) | image0;
r->sig[1] = (image3 << 31 << 1) | image2;
}
normalize (r);
}
else if (fmt->has_signed_zero)
r->sign = sign;
}
else if (exp == 32767 && (fmt->has_nans || fmt->has_inf))
{
if (image3 | image2 | image1 | image0)
{
r->cl = rvc_nan;
r->sign = sign;
r->signalling = ((image3 >> 15) & 1) ^ fmt->qnan_msb_set;
if (HOST_BITS_PER_LONG == 32)
{
r->sig[0] = image0;
r->sig[1] = image1;
r->sig[2] = image2;
r->sig[3] = image3;
}
else
{
r->sig[0] = (image1 << 31 << 1) | image0;
r->sig[1] = (image3 << 31 << 1) | image2;
}
lshift_significand (r, r, SIGNIFICAND_BITS - 113);
}
else
{
r->cl = rvc_inf;
r->sign = sign;
}
}
else
{
r->cl = rvc_normal;
r->sign = sign;
SET_REAL_EXP (r, exp - 16383 + 1);
if (HOST_BITS_PER_LONG == 32)
{
r->sig[0] = image0;
r->sig[1] = image1;
r->sig[2] = image2;
r->sig[3] = image3;
}
else
{
r->sig[0] = (image1 << 31 << 1) | image0;
r->sig[1] = (image3 << 31 << 1) | image2;
}
lshift_significand (r, r, SIGNIFICAND_BITS - 113);
r->sig[SIGSZ-1] |= SIG_MSB;
}
}
const struct real_format ieee_quad_format =
{
encode_ieee_quad,
decode_ieee_quad,
2,
113,
113,
-16381,
16384,
127,
127,
128,
false,
true,
true,
true,
true,
true,
true,
false,
"ieee_quad"
};
const struct real_format mips_quad_format =
{
encode_ieee_quad,
decode_ieee_quad,
2,
113,
113,
-16381,
16384,
127,
127,
128,
false,
true,
true,
true,
true,
true,
false,
true,
"mips_quad"
};
/* Descriptions of VAX floating point formats can be found beginning at
http://h71000.www7.hp.com/doc/73FINAL/4515/4515pro_013.html#f_floating_point_format
The thing to remember is that they're almost IEEE, except for word
order, exponent bias, and the lack of infinities, nans, and denormals.
We don't implement the H_floating format here, simply because neither
the VAX or Alpha ports use it. */
static void encode_vax_f (const struct real_format *fmt,
long *, const REAL_VALUE_TYPE *);
static void decode_vax_f (const struct real_format *,
REAL_VALUE_TYPE *, const long *);
static void encode_vax_d (const struct real_format *fmt,
long *, const REAL_VALUE_TYPE *);
static void decode_vax_d (const struct real_format *,
REAL_VALUE_TYPE *, const long *);
static void encode_vax_g (const struct real_format *fmt,
long *, const REAL_VALUE_TYPE *);
static void decode_vax_g (const struct real_format *,
REAL_VALUE_TYPE *, const long *);
static void
encode_vax_f (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
const REAL_VALUE_TYPE *r)
{
unsigned long sign, exp, sig, image;
sign = r->sign << 15;
switch (r->cl)
{
case rvc_zero:
image = 0;
break;
case rvc_inf:
case rvc_nan:
image = 0xffff7fff | sign;
break;
case rvc_normal:
sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0x7fffff;
exp = REAL_EXP (r) + 128;
image = (sig << 16) & 0xffff0000;
image |= sign;
image |= exp << 7;
image |= sig >> 16;
break;
default:
gcc_unreachable ();
}
buf[0] = image;
}
static void
decode_vax_f (const struct real_format *fmt ATTRIBUTE_UNUSED,
REAL_VALUE_TYPE *r, const long *buf)
{
unsigned long image = buf[0] & 0xffffffff;
int exp = (image >> 7) & 0xff;
memset (r, 0, sizeof (*r));
if (exp != 0)
{
r->cl = rvc_normal;
r->sign = (image >> 15) & 1;
SET_REAL_EXP (r, exp - 128);
image = ((image & 0x7f) << 16) | ((image >> 16) & 0xffff);
r->sig[SIGSZ-1] = (image << (HOST_BITS_PER_LONG - 24)) | SIG_MSB;
}
}
static void
encode_vax_d (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
const REAL_VALUE_TYPE *r)
{
unsigned long image0, image1, sign = r->sign << 15;
switch (r->cl)
{
case rvc_zero:
image0 = image1 = 0;
break;
case rvc_inf:
case rvc_nan:
image0 = 0xffff7fff | sign;
image1 = 0xffffffff;
break;
case rvc_normal:
/* Extract the significand into straight hi:lo. */
if (HOST_BITS_PER_LONG == 64)
{
image0 = r->sig[SIGSZ-1];
image1 = (image0 >> (64 - 56)) & 0xffffffff;
image0 = (image0 >> (64 - 56 + 1) >> 31) & 0x7fffff;
}
else
{
image0 = r->sig[SIGSZ-1];
image1 = r->sig[SIGSZ-2];
image1 = (image0 << 24) | (image1 >> 8);
image0 = (image0 >> 8) & 0xffffff;
}
/* Rearrange the half-words of the significand to match the
external format. */
image0 = ((image0 << 16) | (image0 >> 16)) & 0xffff007f;
image1 = ((image1 << 16) | (image1 >> 16)) & 0xffffffff;
/* Add the sign and exponent. */
image0 |= sign;
image0 |= (REAL_EXP (r) + 128) << 7;
break;
default:
gcc_unreachable ();
}
if (FLOAT_WORDS_BIG_ENDIAN)
buf[0] = image1, buf[1] = image0;
else
buf[0] = image0, buf[1] = image1;
}
static void
decode_vax_d (const struct real_format *fmt ATTRIBUTE_UNUSED,
REAL_VALUE_TYPE *r, const long *buf)
{
unsigned long image0, image1;
int exp;
if (FLOAT_WORDS_BIG_ENDIAN)
image1 = buf[0], image0 = buf[1];
else
image0 = buf[0], image1 = buf[1];
image0 &= 0xffffffff;
image1 &= 0xffffffff;
exp = (image0 >> 7) & 0xff;
memset (r, 0, sizeof (*r));
if (exp != 0)
{
r->cl = rvc_normal;
r->sign = (image0 >> 15) & 1;
SET_REAL_EXP (r, exp - 128);
/* Rearrange the half-words of the external format into
proper ascending order. */
image0 = ((image0 & 0x7f) << 16) | ((image0 >> 16) & 0xffff);
image1 = ((image1 & 0xffff) << 16) | ((image1 >> 16) & 0xffff);
if (HOST_BITS_PER_LONG == 64)
{
image0 = (image0 << 31 << 1) | image1;
image0 <<= 64 - 56;
image0 |= SIG_MSB;
r->sig[SIGSZ-1] = image0;
}
else
{
r->sig[SIGSZ-1] = image0;
r->sig[SIGSZ-2] = image1;
lshift_significand (r, r, 2*HOST_BITS_PER_LONG - 56);
r->sig[SIGSZ-1] |= SIG_MSB;
}
}
}
static void
encode_vax_g (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
const REAL_VALUE_TYPE *r)
{
unsigned long image0, image1, sign = r->sign << 15;
switch (r->cl)
{
case rvc_zero:
image0 = image1 = 0;
break;
case rvc_inf:
case rvc_nan:
image0 = 0xffff7fff | sign;
image1 = 0xffffffff;
break;
case rvc_normal:
/* Extract the significand into straight hi:lo. */
if (HOST_BITS_PER_LONG == 64)
{
image0 = r->sig[SIGSZ-1];
image1 = (image0 >> (64 - 53)) & 0xffffffff;
image0 = (image0 >> (64 - 53 + 1) >> 31) & 0xfffff;
}
else
{
image0 = r->sig[SIGSZ-1];
image1 = r->sig[SIGSZ-2];
image1 = (image0 << 21) | (image1 >> 11);
image0 = (image0 >> 11) & 0xfffff;
}
/* Rearrange the half-words of the significand to match the
external format. */
image0 = ((image0 << 16) | (image0 >> 16)) & 0xffff000f;
image1 = ((image1 << 16) | (image1 >> 16)) & 0xffffffff;
/* Add the sign and exponent. */
image0 |= sign;
image0 |= (REAL_EXP (r) + 1024) << 4;
break;
default:
gcc_unreachable ();
}
if (FLOAT_WORDS_BIG_ENDIAN)
buf[0] = image1, buf[1] = image0;
else
buf[0] = image0, buf[1] = image1;
}
static void
decode_vax_g (const struct real_format *fmt ATTRIBUTE_UNUSED,
REAL_VALUE_TYPE *r, const long *buf)
{
unsigned long image0, image1;
int exp;
if (FLOAT_WORDS_BIG_ENDIAN)
image1 = buf[0], image0 = buf[1];
else
image0 = buf[0], image1 = buf[1];
image0 &= 0xffffffff;
image1 &= 0xffffffff;
exp = (image0 >> 4) & 0x7ff;
memset (r, 0, sizeof (*r));
if (exp != 0)
{
r->cl = rvc_normal;
r->sign = (image0 >> 15) & 1;
SET_REAL_EXP (r, exp - 1024);
/* Rearrange the half-words of the external format into
proper ascending order. */
image0 = ((image0 & 0xf) << 16) | ((image0 >> 16) & 0xffff);
image1 = ((image1 & 0xffff) << 16) | ((image1 >> 16) & 0xffff);
if (HOST_BITS_PER_LONG == 64)
{
image0 = (image0 << 31 << 1) | image1;
image0 <<= 64 - 53;
image0 |= SIG_MSB;
r->sig[SIGSZ-1] = image0;
}
else
{
r->sig[SIGSZ-1] = image0;
r->sig[SIGSZ-2] = image1;
lshift_significand (r, r, 64 - 53);
r->sig[SIGSZ-1] |= SIG_MSB;
}
}
}
const struct real_format vax_f_format =
{
encode_vax_f,
decode_vax_f,
2,
24,
24,
-127,
127,
15,
15,
0,
false,
false,
false,
false,
false,
false,
false,
false,
"vax_f"
};
const struct real_format vax_d_format =
{
encode_vax_d,
decode_vax_d,
2,
56,
56,
-127,
127,
15,
15,
0,
false,
false,
false,
false,
false,
false,
false,
false,
"vax_d"
};
const struct real_format vax_g_format =
{
encode_vax_g,
decode_vax_g,
2,
53,
53,
-1023,
1023,
15,
15,
0,
false,
false,
false,
false,
false,
false,
false,
false,
"vax_g"
};
/* Encode real R into a single precision DFP value in BUF. */
static void
encode_decimal_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
long *buf ATTRIBUTE_UNUSED,
const REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED)
{
encode_decimal32 (fmt, buf, r);
}
/* Decode a single precision DFP value in BUF into a real R. */
static void
decode_decimal_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED,
const long *buf ATTRIBUTE_UNUSED)
{
decode_decimal32 (fmt, r, buf);
}
/* Encode real R into a double precision DFP value in BUF. */
static void
encode_decimal_double (const struct real_format *fmt ATTRIBUTE_UNUSED,
long *buf ATTRIBUTE_UNUSED,
const REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED)
{
encode_decimal64 (fmt, buf, r);
}
/* Decode a double precision DFP value in BUF into a real R. */
static void
decode_decimal_double (const struct real_format *fmt ATTRIBUTE_UNUSED,
REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED,
const long *buf ATTRIBUTE_UNUSED)
{
decode_decimal64 (fmt, r, buf);
}
/* Encode real R into a quad precision DFP value in BUF. */
static void
encode_decimal_quad (const struct real_format *fmt ATTRIBUTE_UNUSED,
long *buf ATTRIBUTE_UNUSED,
const REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED)
{
encode_decimal128 (fmt, buf, r);
}
/* Decode a quad precision DFP value in BUF into a real R. */
static void
decode_decimal_quad (const struct real_format *fmt ATTRIBUTE_UNUSED,
REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED,
const long *buf ATTRIBUTE_UNUSED)
{
decode_decimal128 (fmt, r, buf);
}
/* Single precision decimal floating point (IEEE 754). */
const struct real_format decimal_single_format =
{
encode_decimal_single,
decode_decimal_single,
10,
7,
7,
-94,
97,
31,
31,
32,
false,
true,
true,
true,
true,
true,
true,
false,
"decimal_single"
};
/* Double precision decimal floating point (IEEE 754). */
const struct real_format decimal_double_format =
{
encode_decimal_double,
decode_decimal_double,
10,
16,
16,
-382,
385,
63,
63,
64,
false,
true,
true,
true,
true,
true,
true,
false,
"decimal_double"
};
/* Quad precision decimal floating point (IEEE 754). */
const struct real_format decimal_quad_format =
{
encode_decimal_quad,
decode_decimal_quad,
10,
34,
34,
-6142,
6145,
127,
127,
128,
false,
true,
true,
true,
true,
true,
true,
false,
"decimal_quad"
};
/* Encode half-precision floats. This routine is used both for the IEEE
ARM alternative encodings. */
static void
encode_ieee_half (const struct real_format *fmt, long *buf,
const REAL_VALUE_TYPE *r)
{
unsigned long image, sig, exp;
unsigned long sign = r->sign;
bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
image = sign << 15;
sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 11)) & 0x3ff;
switch (r->cl)
{
case rvc_zero:
break;
case rvc_inf:
if (fmt->has_inf)
image |= 31 << 10;
else
image |= 0x7fff;
break;
case rvc_nan:
if (fmt->has_nans)
{
if (r->canonical)
sig = (fmt->canonical_nan_lsbs_set ? (1 << 9) - 1 : 0);
if (r->signalling == fmt->qnan_msb_set)
sig &= ~(1 << 9);
else
sig |= 1 << 9;
if (sig == 0)
sig = 1 << 8;
image |= 31 << 10;
image |= sig;
}
else
image |= 0x3ff;
break;
case rvc_normal:
/* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
whereas the intermediate representation is 0.F x 2**exp.
Which means we're off by one. */
if (denormal)
exp = 0;
else
exp = REAL_EXP (r) + 15 - 1;
image |= exp << 10;
image |= sig;
break;
default:
gcc_unreachable ();
}
buf[0] = image;
}
/* Decode half-precision floats. This routine is used both for the IEEE
ARM alternative encodings. */
static void
decode_ieee_half (const struct real_format *fmt, REAL_VALUE_TYPE *r,
const long *buf)
{
unsigned long image = buf[0] & 0xffff;
bool sign = (image >> 15) & 1;
int exp = (image >> 10) & 0x1f;
memset (r, 0, sizeof (*r));
image <<= HOST_BITS_PER_LONG - 11;
image &= ~SIG_MSB;
if (exp == 0)
{
if (image && fmt->has_denorm)
{
r->cl = rvc_normal;
r->sign = sign;
SET_REAL_EXP (r, -14);
r->sig[SIGSZ-1] = image << 1;
normalize (r);
}
else if (fmt->has_signed_zero)
r->sign = sign;
}
else if (exp == 31 && (fmt->has_nans || fmt->has_inf))
{
if (image)
{
r->cl = rvc_nan;
r->sign = sign;
r->signalling = (((image >> (HOST_BITS_PER_LONG - 2)) & 1)
^ fmt->qnan_msb_set);
r->sig[SIGSZ-1] = image;
}
else
{
r->cl = rvc_inf;
r->sign = sign;
}
}
else
{
r->cl = rvc_normal;
r->sign = sign;
SET_REAL_EXP (r, exp - 15 + 1);
r->sig[SIGSZ-1] = image | SIG_MSB;
}
}
/* Half-precision format, as specified in IEEE 754R. */
const struct real_format ieee_half_format =
{
encode_ieee_half,
decode_ieee_half,
2,
11,
11,
-13,
16,
15,
15,
16,
false,
true,
true,
true,
true,
true,
true,
false,
"ieee_half"
};
/* ARM's alternative half-precision format, similar to IEEE but with
no reserved exponent value for NaNs and infinities; rather, it just
extends the range of exponents by one. */
const struct real_format arm_half_format =
{
encode_ieee_half,
decode_ieee_half,
2,
11,
11,
-13,
17,
15,
15,
0,
false,
true,
false,
false,
true,
true,
false,
false,
"arm_half"
};
/* A synthetic "format" for internal arithmetic. It's the size of the
internal significand minus the two bits needed for proper rounding.
The encode and decode routines exist only to satisfy our paranoia
harness. */
static void encode_internal (const struct real_format *fmt,
long *, const REAL_VALUE_TYPE *);
static void decode_internal (const struct real_format *,
REAL_VALUE_TYPE *, const long *);
static void
encode_internal (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
const REAL_VALUE_TYPE *r)
{
memcpy (buf, r, sizeof (*r));
}
static void
decode_internal (const struct real_format *fmt ATTRIBUTE_UNUSED,
REAL_VALUE_TYPE *r, const long *buf)
{
memcpy (r, buf, sizeof (*r));
}
const struct real_format real_internal_format =
{
encode_internal,
decode_internal,
2,
SIGNIFICAND_BITS - 2,
SIGNIFICAND_BITS - 2,
-MAX_EXP,
MAX_EXP,
-1,
-1,
0,
false,
false,
true,
true,
false,
true,
true,
false,
"real_internal"
};
/* Calculate X raised to the integer exponent N in format FMT and store
the result in R. Return true if the result may be inexact due to
loss of precision. The algorithm is the classic "left-to-right binary
method" described in section 4.6.3 of Donald Knuth's "Seminumerical
Algorithms", "The Art of Computer Programming", Volume 2. */
bool
real_powi (REAL_VALUE_TYPE *r, format_helper fmt,
const REAL_VALUE_TYPE *x, HOST_WIDE_INT n)
{
unsigned HOST_WIDE_INT bit;
REAL_VALUE_TYPE t;
bool inexact = false;
bool init = false;
bool neg;
int i;
if (n == 0)
{
*r = dconst1;
return false;
}
else if (n < 0)
{
/* Don't worry about overflow, from now on n is unsigned. */
neg = true;
n = -n;
}
else
neg = false;
t = *x;
bit = HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1);
for (i = 0; i < HOST_BITS_PER_WIDE_INT; i++)
{
if (init)
{
inexact |= do_multiply (&t, &t, &t);
if (n & bit)
inexact |= do_multiply (&t, &t, x);
}
else if (n & bit)
init = true;
bit >>= 1;
}
if (neg)
inexact |= do_divide (&t, &dconst1, &t);
real_convert (r, fmt, &t);
return inexact;
}
/* Round X to the nearest integer not larger in absolute value, i.e.
towards zero, placing the result in R in format FMT. */
void
real_trunc (REAL_VALUE_TYPE *r, format_helper fmt,
const REAL_VALUE_TYPE *x)
{
do_fix_trunc (r, x);
if (fmt)
real_convert (r, fmt, r);
}
/* Round X to the largest integer not greater in value, i.e. round
down, placing the result in R in format FMT. */
void
real_floor (REAL_VALUE_TYPE *r, format_helper fmt,
const REAL_VALUE_TYPE *x)
{
REAL_VALUE_TYPE t;
do_fix_trunc (&t, x);
if (! real_identical (&t, x) && x->sign)
do_add (&t, &t, &dconstm1, 0);
if (fmt)
real_convert (r, fmt, &t);
else
*r = t;
}
/* Round X to the smallest integer not less then argument, i.e. round
up, placing the result in R in format FMT. */
void
real_ceil (REAL_VALUE_TYPE *r, format_helper fmt,
const REAL_VALUE_TYPE *x)
{
REAL_VALUE_TYPE t;
do_fix_trunc (&t, x);
if (! real_identical (&t, x) && ! x->sign)
do_add (&t, &t, &dconst1, 0);
if (fmt)
real_convert (r, fmt, &t);
else
*r = t;
}
/* Round X to the nearest integer, but round halfway cases away from
zero. */
void
real_round (REAL_VALUE_TYPE *r, format_helper fmt,
const REAL_VALUE_TYPE *x)
{
do_add (r, x, &dconsthalf, x->sign);
do_fix_trunc (r, r);
if (fmt)
real_convert (r, fmt, r);
}
/* Set the sign of R to the sign of X. */
void
real_copysign (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *x)
{
r->sign = x->sign;
}
/* Check whether the real constant value given is an integer.
Returns false for signaling NaN. */
bool
real_isinteger (const REAL_VALUE_TYPE *c, format_helper fmt)
{
REAL_VALUE_TYPE cint;
real_trunc (&cint, fmt, c);
return real_identical (c, &cint);
}
/* Check whether C is an integer that fits in a HOST_WIDE_INT,
storing it in *INT_OUT if so. */
bool
real_isinteger (const REAL_VALUE_TYPE *c, HOST_WIDE_INT *int_out)
{
REAL_VALUE_TYPE cint;
HOST_WIDE_INT n = real_to_integer (c);
real_from_integer (&cint, VOIDmode, n, SIGNED);
if (real_identical (c, &cint))
{
*int_out = n;
return true;
}
return false;
}
/* Write into BUF the maximum representable finite floating-point
number, (1 - b**-p) * b**emax for a given FP format FMT as a hex
float string. LEN is the size of BUF, and the buffer must be large
enough to contain the resulting string. */
void
get_max_float (const struct real_format *fmt, char *buf, size_t len)
{
int i, n;
char *p;
strcpy (buf, "0x0.");
n = fmt->p;
for (i = 0, p = buf + 4; i + 3 < n; i += 4)
*p++ = 'f';
if (i < n)
*p++ = "08ce"[n - i];
sprintf (p, "p%d", fmt->emax);
if (fmt->pnan < fmt->p)
{
/* This is an IBM extended double format made up of two IEEE
doubles. The value of the long double is the sum of the
values of the two parts. The most significant part is
required to be the value of the long double rounded to the
nearest double. Rounding means we need a slightly smaller
value for LDBL_MAX. */
buf[4 + fmt->pnan / 4] = "7bde"[fmt->pnan % 4];
}
gcc_assert (strlen (buf) < len);
}
/* True if mode M has a NaN representation and
the treatment of NaN operands is important. */
bool
HONOR_NANS (machine_mode m)
{
return MODE_HAS_NANS (m) && !flag_finite_math_only;
}
bool
HONOR_NANS (const_tree t)
{
return HONOR_NANS (element_mode (t));
}
bool
HONOR_NANS (const_rtx x)
{
return HONOR_NANS (GET_MODE (x));
}
/* Like HONOR_NANs, but true if we honor signaling NaNs (or sNaNs). */
bool
HONOR_SNANS (machine_mode m)
{
return flag_signaling_nans && HONOR_NANS (m);
}
bool
HONOR_SNANS (const_tree t)
{
return HONOR_SNANS (element_mode (t));
}
bool
HONOR_SNANS (const_rtx x)
{
return HONOR_SNANS (GET_MODE (x));
}
/* As for HONOR_NANS, but true if the mode can represent infinity and
the treatment of infinite values is important. */
bool
HONOR_INFINITIES (machine_mode m)
{
return MODE_HAS_INFINITIES (m) && !flag_finite_math_only;
}
bool
HONOR_INFINITIES (const_tree t)
{
return HONOR_INFINITIES (element_mode (t));
}
bool
HONOR_INFINITIES (const_rtx x)
{
return HONOR_INFINITIES (GET_MODE (x));
}
/* Like HONOR_NANS, but true if the given mode distinguishes between
positive and negative zero, and the sign of zero is important. */
bool
HONOR_SIGNED_ZEROS (machine_mode m)
{
return MODE_HAS_SIGNED_ZEROS (m) && flag_signed_zeros;
}
bool
HONOR_SIGNED_ZEROS (const_tree t)
{
return HONOR_SIGNED_ZEROS (element_mode (t));
}
bool
HONOR_SIGNED_ZEROS (const_rtx x)
{
return HONOR_SIGNED_ZEROS (GET_MODE (x));
}
/* Like HONOR_NANS, but true if given mode supports sign-dependent rounding,
and the rounding mode is important. */
bool
HONOR_SIGN_DEPENDENT_ROUNDING (machine_mode m)
{
return MODE_HAS_SIGN_DEPENDENT_ROUNDING (m) && flag_rounding_math;
}
bool
HONOR_SIGN_DEPENDENT_ROUNDING (const_tree t)
{
return HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (t));
}
bool
HONOR_SIGN_DEPENDENT_ROUNDING (const_rtx x)
{
return HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (x));
}