61502ca837
* cgraph.c: Fix comment typos. * cgraph.h: Likewise. * cgraphunit.c: Likewise. * ipa-cp.c: Likewise. * ipa-inline.c: Likewise. * ipa-prop.c: Likewise. * ipa-pure-const.c: Likewise. * ipa-ref.c: Likewise. * ipa-reference.c: Likewise. From-SVN: r170052
2219 lines
68 KiB
C
2219 lines
68 KiB
C
/* Inlining decision heuristics.
|
|
Copyright (C) 2003, 2004, 2007, 2008, 2009, 2010
|
|
Free Software Foundation, Inc.
|
|
Contributed by Jan Hubicka
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
/* Inlining decision heuristics
|
|
|
|
We separate inlining decisions from the inliner itself and store it
|
|
inside callgraph as so called inline plan. Refer to cgraph.c
|
|
documentation about particular representation of inline plans in the
|
|
callgraph.
|
|
|
|
There are three major parts of this file:
|
|
|
|
cgraph_mark_inline_edge implementation
|
|
|
|
This function allows to mark given call inline and performs necessary
|
|
modifications of cgraph (production of the clones and updating overall
|
|
statistics)
|
|
|
|
inlining heuristics limits
|
|
|
|
These functions allow to check that particular inlining is allowed
|
|
by the limits specified by user (allowed function growth, overall unit
|
|
growth and so on).
|
|
|
|
inlining heuristics
|
|
|
|
This is implementation of IPA pass aiming to get as much of benefit
|
|
from inlining obeying the limits checked above.
|
|
|
|
The implementation of particular heuristics is separated from
|
|
the rest of code to make it easier to replace it with more complicated
|
|
implementation in the future. The rest of inlining code acts as a
|
|
library aimed to modify the callgraph and verify that the parameters
|
|
on code size growth fits.
|
|
|
|
To mark given call inline, use cgraph_mark_inline function, the
|
|
verification is performed by cgraph_default_inline_p and
|
|
cgraph_check_inline_limits.
|
|
|
|
The heuristics implements simple knapsack style algorithm ordering
|
|
all functions by their "profitability" (estimated by code size growth)
|
|
and inlining them in priority order.
|
|
|
|
cgraph_decide_inlining implements heuristics taking whole callgraph
|
|
into account, while cgraph_decide_inlining_incrementally considers
|
|
only one function at a time and is used by early inliner.
|
|
|
|
The inliner itself is split into several passes:
|
|
|
|
pass_inline_parameters
|
|
|
|
This pass computes local properties of functions that are used by inliner:
|
|
estimated function body size, whether function is inlinable at all and
|
|
stack frame consumption.
|
|
|
|
Before executing any of inliner passes, this local pass has to be applied
|
|
to each function in the callgraph (ie run as subpass of some earlier
|
|
IPA pass). The results are made out of date by any optimization applied
|
|
on the function body.
|
|
|
|
pass_early_inlining
|
|
|
|
Simple local inlining pass inlining callees into current function. This
|
|
pass makes no global whole compilation unit analysis and this when allowed
|
|
to do inlining expanding code size it might result in unbounded growth of
|
|
whole unit.
|
|
|
|
The pass is run during conversion into SSA form. Only functions already
|
|
converted into SSA form are inlined, so the conversion must happen in
|
|
topological order on the callgraph (that is maintained by pass manager).
|
|
The functions after inlining are early optimized so the early inliner sees
|
|
unoptimized function itself, but all considered callees are already
|
|
optimized allowing it to unfold abstraction penalty on C++ effectively and
|
|
cheaply.
|
|
|
|
pass_ipa_inline
|
|
|
|
This is the main pass implementing simple greedy algorithm to do inlining
|
|
of small functions that results in overall growth of compilation unit and
|
|
inlining of functions called once. The pass compute just so called inline
|
|
plan (representation of inlining to be done in callgraph) and unlike early
|
|
inlining it is not performing the inlining itself.
|
|
*/
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "tm.h"
|
|
#include "tree.h"
|
|
#include "tree-inline.h"
|
|
#include "langhooks.h"
|
|
#include "flags.h"
|
|
#include "cgraph.h"
|
|
#include "diagnostic.h"
|
|
#include "gimple-pretty-print.h"
|
|
#include "timevar.h"
|
|
#include "params.h"
|
|
#include "fibheap.h"
|
|
#include "intl.h"
|
|
#include "tree-pass.h"
|
|
#include "hashtab.h"
|
|
#include "coverage.h"
|
|
#include "ggc.h"
|
|
#include "tree-flow.h"
|
|
#include "rtl.h"
|
|
#include "ipa-prop.h"
|
|
#include "except.h"
|
|
|
|
#define MAX_TIME 1000000000
|
|
|
|
/* Mode incremental inliner operate on:
|
|
|
|
In ALWAYS_INLINE only functions marked
|
|
always_inline are inlined. This mode is used after detecting cycle during
|
|
flattening.
|
|
|
|
In SIZE mode, only functions that reduce function body size after inlining
|
|
are inlined, this is used during early inlining.
|
|
|
|
in ALL mode, everything is inlined. This is used during flattening. */
|
|
enum inlining_mode {
|
|
INLINE_NONE = 0,
|
|
INLINE_ALWAYS_INLINE,
|
|
INLINE_SIZE_NORECURSIVE,
|
|
INLINE_SIZE,
|
|
INLINE_ALL
|
|
};
|
|
|
|
static bool
|
|
cgraph_decide_inlining_incrementally (struct cgraph_node *, enum inlining_mode);
|
|
static void cgraph_flatten (struct cgraph_node *node);
|
|
|
|
|
|
/* Statistics we collect about inlining algorithm. */
|
|
static int ncalls_inlined;
|
|
static int nfunctions_inlined;
|
|
static int overall_size;
|
|
static gcov_type max_count, max_benefit;
|
|
|
|
/* Holders of ipa cgraph hooks: */
|
|
static struct cgraph_node_hook_list *function_insertion_hook_holder;
|
|
|
|
static inline struct inline_summary *
|
|
inline_summary (struct cgraph_node *node)
|
|
{
|
|
return &node->local.inline_summary;
|
|
}
|
|
|
|
/* Estimate self time of the function after inlining WHAT into TO. */
|
|
|
|
static int
|
|
cgraph_estimate_time_after_inlining (int frequency, struct cgraph_node *to,
|
|
struct cgraph_node *what)
|
|
{
|
|
gcov_type time = (((gcov_type)what->global.time
|
|
- inline_summary (what)->time_inlining_benefit)
|
|
* frequency + CGRAPH_FREQ_BASE / 2) / CGRAPH_FREQ_BASE
|
|
+ to->global.time;
|
|
if (time < 0)
|
|
time = 0;
|
|
if (time > MAX_TIME)
|
|
time = MAX_TIME;
|
|
return time;
|
|
}
|
|
|
|
/* Estimate self size of the function after inlining WHAT into TO. */
|
|
|
|
static inline int
|
|
cgraph_estimate_size_after_inlining (struct cgraph_node *to,
|
|
struct cgraph_node *what)
|
|
{
|
|
int size = ((what->global.size - inline_summary (what)->size_inlining_benefit)
|
|
+ to->global.size);
|
|
gcc_assert (size >= 0);
|
|
return size;
|
|
}
|
|
|
|
/* Scale frequency of NODE edges by FREQ_SCALE and increase loop nest
|
|
by NEST. */
|
|
|
|
static void
|
|
update_noncloned_frequencies (struct cgraph_node *node,
|
|
int freq_scale, int nest)
|
|
{
|
|
struct cgraph_edge *e;
|
|
|
|
/* We do not want to ignore high loop nest after freq drops to 0. */
|
|
if (!freq_scale)
|
|
freq_scale = 1;
|
|
for (e = node->callees; e; e = e->next_callee)
|
|
{
|
|
e->loop_nest += nest;
|
|
e->frequency = e->frequency * (gcov_type) freq_scale / CGRAPH_FREQ_BASE;
|
|
if (e->frequency > CGRAPH_FREQ_MAX)
|
|
e->frequency = CGRAPH_FREQ_MAX;
|
|
if (!e->inline_failed)
|
|
update_noncloned_frequencies (e->callee, freq_scale, nest);
|
|
}
|
|
}
|
|
|
|
/* E is expected to be an edge being inlined. Clone destination node of
|
|
the edge and redirect it to the new clone.
|
|
DUPLICATE is used for bookkeeping on whether we are actually creating new
|
|
clones or re-using node originally representing out-of-line function call.
|
|
*/
|
|
void
|
|
cgraph_clone_inlined_nodes (struct cgraph_edge *e, bool duplicate,
|
|
bool update_original)
|
|
{
|
|
HOST_WIDE_INT peak;
|
|
|
|
if (duplicate)
|
|
{
|
|
/* We may eliminate the need for out-of-line copy to be output.
|
|
In that case just go ahead and re-use it. */
|
|
if (!e->callee->callers->next_caller
|
|
/* Recursive inlining never wants the master clone to be overwritten. */
|
|
&& update_original
|
|
/* FIXME: When address is taken of DECL_EXTERNAL function we still can remove its
|
|
offline copy, but we would need to keep unanalyzed node in the callgraph so
|
|
references can point to it. */
|
|
&& !e->callee->address_taken
|
|
&& cgraph_can_remove_if_no_direct_calls_p (e->callee)
|
|
/* Inlining might enable more devirtualizing, so we want to remove
|
|
those only after all devirtualizable virtual calls are processed.
|
|
Lacking may edges in callgraph we just preserve them post
|
|
inlining. */
|
|
&& (!DECL_VIRTUAL_P (e->callee->decl)
|
|
|| (!DECL_COMDAT (e->callee->decl) && !DECL_EXTERNAL (e->callee->decl)))
|
|
/* Don't reuse if more than one function shares a comdat group.
|
|
If the other function(s) are needed, we need to emit even
|
|
this function out of line. */
|
|
&& !e->callee->same_comdat_group
|
|
&& !cgraph_new_nodes)
|
|
{
|
|
gcc_assert (!e->callee->global.inlined_to);
|
|
if (e->callee->analyzed && !DECL_EXTERNAL (e->callee->decl))
|
|
{
|
|
overall_size -= e->callee->global.size;
|
|
nfunctions_inlined++;
|
|
}
|
|
duplicate = false;
|
|
e->callee->local.externally_visible = false;
|
|
update_noncloned_frequencies (e->callee, e->frequency, e->loop_nest);
|
|
}
|
|
else
|
|
{
|
|
struct cgraph_node *n;
|
|
n = cgraph_clone_node (e->callee, e->callee->decl,
|
|
e->count, e->frequency, e->loop_nest,
|
|
update_original, NULL);
|
|
cgraph_redirect_edge_callee (e, n);
|
|
}
|
|
}
|
|
|
|
if (e->caller->global.inlined_to)
|
|
e->callee->global.inlined_to = e->caller->global.inlined_to;
|
|
else
|
|
e->callee->global.inlined_to = e->caller;
|
|
e->callee->global.stack_frame_offset
|
|
= e->caller->global.stack_frame_offset
|
|
+ inline_summary (e->caller)->estimated_self_stack_size;
|
|
peak = e->callee->global.stack_frame_offset
|
|
+ inline_summary (e->callee)->estimated_self_stack_size;
|
|
if (e->callee->global.inlined_to->global.estimated_stack_size < peak)
|
|
e->callee->global.inlined_to->global.estimated_stack_size = peak;
|
|
cgraph_propagate_frequency (e->callee);
|
|
|
|
/* Recursively clone all bodies. */
|
|
for (e = e->callee->callees; e; e = e->next_callee)
|
|
if (!e->inline_failed)
|
|
cgraph_clone_inlined_nodes (e, duplicate, update_original);
|
|
}
|
|
|
|
/* Mark edge E as inlined and update callgraph accordingly. UPDATE_ORIGINAL
|
|
specify whether profile of original function should be updated. If any new
|
|
indirect edges are discovered in the process, add them to NEW_EDGES, unless
|
|
it is NULL. Return true iff any new callgraph edges were discovered as a
|
|
result of inlining. */
|
|
|
|
static bool
|
|
cgraph_mark_inline_edge (struct cgraph_edge *e, bool update_original,
|
|
VEC (cgraph_edge_p, heap) **new_edges)
|
|
{
|
|
int old_size = 0, new_size = 0;
|
|
struct cgraph_node *to = NULL, *what;
|
|
struct cgraph_edge *curr = e;
|
|
int freq;
|
|
|
|
/* Don't inline inlined edges. */
|
|
gcc_assert (e->inline_failed);
|
|
/* Don't even think of inlining inline clone. */
|
|
gcc_assert (!e->callee->global.inlined_to);
|
|
|
|
e->inline_failed = CIF_OK;
|
|
DECL_POSSIBLY_INLINED (e->callee->decl) = true;
|
|
|
|
cgraph_clone_inlined_nodes (e, true, update_original);
|
|
|
|
what = e->callee;
|
|
|
|
freq = e->frequency;
|
|
/* Now update size of caller and all functions caller is inlined into. */
|
|
for (;e && !e->inline_failed; e = e->caller->callers)
|
|
{
|
|
to = e->caller;
|
|
old_size = e->caller->global.size;
|
|
new_size = cgraph_estimate_size_after_inlining (to, what);
|
|
to->global.size = new_size;
|
|
to->global.time = cgraph_estimate_time_after_inlining (freq, to, what);
|
|
}
|
|
gcc_assert (what->global.inlined_to == to);
|
|
if (new_size > old_size)
|
|
overall_size += new_size - old_size;
|
|
ncalls_inlined++;
|
|
|
|
/* FIXME: We should remove the optimize check after we ensure we never run
|
|
IPA passes when not optimizing. */
|
|
if (flag_indirect_inlining && optimize)
|
|
return ipa_propagate_indirect_call_infos (curr, new_edges);
|
|
else
|
|
return false;
|
|
}
|
|
|
|
/* Estimate the growth caused by inlining NODE into all callees. */
|
|
|
|
static int
|
|
cgraph_estimate_growth (struct cgraph_node *node)
|
|
{
|
|
int growth = 0;
|
|
struct cgraph_edge *e;
|
|
bool self_recursive = false;
|
|
|
|
if (node->global.estimated_growth != INT_MIN)
|
|
return node->global.estimated_growth;
|
|
|
|
for (e = node->callers; e; e = e->next_caller)
|
|
{
|
|
if (e->caller == node)
|
|
self_recursive = true;
|
|
if (e->inline_failed)
|
|
growth += (cgraph_estimate_size_after_inlining (e->caller, node)
|
|
- e->caller->global.size);
|
|
}
|
|
|
|
/* ??? Wrong for non-trivially self recursive functions or cases where
|
|
we decide to not inline for different reasons, but it is not big deal
|
|
as in that case we will keep the body around, but we will also avoid
|
|
some inlining. */
|
|
if (cgraph_will_be_removed_from_program_if_no_direct_calls (node)
|
|
&& !DECL_EXTERNAL (node->decl) && !self_recursive)
|
|
growth -= node->global.size;
|
|
/* COMDAT functions are very often not shared across multiple units since they
|
|
come from various template instantiations. Take this into account. */
|
|
else if (DECL_COMDAT (node->decl) && !self_recursive
|
|
&& cgraph_can_remove_if_no_direct_calls_p (node))
|
|
growth -= (node->global.size
|
|
* (100 - PARAM_VALUE (PARAM_COMDAT_SHARING_PROBABILITY)) + 50) / 100;
|
|
|
|
node->global.estimated_growth = growth;
|
|
return growth;
|
|
}
|
|
|
|
/* Return false when inlining WHAT into TO is not good idea
|
|
as it would cause too large growth of function bodies.
|
|
When ONE_ONLY is true, assume that only one call site is going
|
|
to be inlined, otherwise figure out how many call sites in
|
|
TO calls WHAT and verify that all can be inlined.
|
|
*/
|
|
|
|
static bool
|
|
cgraph_check_inline_limits (struct cgraph_node *to, struct cgraph_node *what,
|
|
cgraph_inline_failed_t *reason)
|
|
{
|
|
int newsize;
|
|
int limit;
|
|
HOST_WIDE_INT stack_size_limit, inlined_stack;
|
|
|
|
if (to->global.inlined_to)
|
|
to = to->global.inlined_to;
|
|
|
|
/* When inlining large function body called once into small function,
|
|
take the inlined function as base for limiting the growth. */
|
|
if (inline_summary (to)->self_size > inline_summary(what)->self_size)
|
|
limit = inline_summary (to)->self_size;
|
|
else
|
|
limit = inline_summary (what)->self_size;
|
|
|
|
limit += limit * PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH) / 100;
|
|
|
|
/* Check the size after inlining against the function limits. But allow
|
|
the function to shrink if it went over the limits by forced inlining. */
|
|
newsize = cgraph_estimate_size_after_inlining (to, what);
|
|
if (newsize >= to->global.size
|
|
&& newsize > PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS)
|
|
&& newsize > limit)
|
|
{
|
|
if (reason)
|
|
*reason = CIF_LARGE_FUNCTION_GROWTH_LIMIT;
|
|
return false;
|
|
}
|
|
|
|
stack_size_limit = inline_summary (to)->estimated_self_stack_size;
|
|
|
|
stack_size_limit += stack_size_limit * PARAM_VALUE (PARAM_STACK_FRAME_GROWTH) / 100;
|
|
|
|
inlined_stack = (to->global.stack_frame_offset
|
|
+ inline_summary (to)->estimated_self_stack_size
|
|
+ what->global.estimated_stack_size);
|
|
if (inlined_stack > stack_size_limit
|
|
&& inlined_stack > PARAM_VALUE (PARAM_LARGE_STACK_FRAME))
|
|
{
|
|
if (reason)
|
|
*reason = CIF_LARGE_STACK_FRAME_GROWTH_LIMIT;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Return true when function N is small enough to be inlined. */
|
|
|
|
static bool
|
|
cgraph_default_inline_p (struct cgraph_node *n, cgraph_inline_failed_t *reason)
|
|
{
|
|
tree decl = n->decl;
|
|
|
|
if (n->local.disregard_inline_limits)
|
|
return true;
|
|
|
|
if (!flag_inline_small_functions && !DECL_DECLARED_INLINE_P (decl))
|
|
{
|
|
if (reason)
|
|
*reason = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
|
|
return false;
|
|
}
|
|
if (!n->analyzed)
|
|
{
|
|
if (reason)
|
|
*reason = CIF_BODY_NOT_AVAILABLE;
|
|
return false;
|
|
}
|
|
if (cgraph_function_body_availability (n) <= AVAIL_OVERWRITABLE)
|
|
{
|
|
if (reason)
|
|
*reason = CIF_OVERWRITABLE;
|
|
return false;
|
|
}
|
|
|
|
|
|
if (DECL_DECLARED_INLINE_P (decl))
|
|
{
|
|
if (n->global.size >= MAX_INLINE_INSNS_SINGLE)
|
|
{
|
|
if (reason)
|
|
*reason = CIF_MAX_INLINE_INSNS_SINGLE_LIMIT;
|
|
return false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (n->global.size >= MAX_INLINE_INSNS_AUTO)
|
|
{
|
|
if (reason)
|
|
*reason = CIF_MAX_INLINE_INSNS_AUTO_LIMIT;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Return true when inlining WHAT would create recursive inlining.
|
|
We call recursive inlining all cases where same function appears more than
|
|
once in the single recursion nest path in the inline graph. */
|
|
|
|
static inline bool
|
|
cgraph_recursive_inlining_p (struct cgraph_node *to,
|
|
struct cgraph_node *what,
|
|
cgraph_inline_failed_t *reason)
|
|
{
|
|
bool recursive;
|
|
if (to->global.inlined_to)
|
|
recursive = what->decl == to->global.inlined_to->decl;
|
|
else
|
|
recursive = what->decl == to->decl;
|
|
/* Marking recursive function inline has sane semantic and thus we should
|
|
not warn on it. */
|
|
if (recursive && reason)
|
|
*reason = (what->local.disregard_inline_limits
|
|
? CIF_RECURSIVE_INLINING : CIF_UNSPECIFIED);
|
|
return recursive;
|
|
}
|
|
|
|
/* A cost model driving the inlining heuristics in a way so the edges with
|
|
smallest badness are inlined first. After each inlining is performed
|
|
the costs of all caller edges of nodes affected are recomputed so the
|
|
metrics may accurately depend on values such as number of inlinable callers
|
|
of the function or function body size. */
|
|
|
|
static int
|
|
cgraph_edge_badness (struct cgraph_edge *edge, bool dump)
|
|
{
|
|
gcov_type badness;
|
|
int growth =
|
|
(cgraph_estimate_size_after_inlining (edge->caller, edge->callee)
|
|
- edge->caller->global.size);
|
|
|
|
if (edge->callee->local.disregard_inline_limits)
|
|
return INT_MIN;
|
|
|
|
if (dump)
|
|
{
|
|
fprintf (dump_file, " Badness calculation for %s -> %s\n",
|
|
cgraph_node_name (edge->caller),
|
|
cgraph_node_name (edge->callee));
|
|
fprintf (dump_file, " growth %i, time %i-%i, size %i-%i\n",
|
|
growth,
|
|
edge->callee->global.time,
|
|
inline_summary (edge->callee)->time_inlining_benefit,
|
|
edge->callee->global.size,
|
|
inline_summary (edge->callee)->size_inlining_benefit);
|
|
}
|
|
|
|
/* Always prefer inlining saving code size. */
|
|
if (growth <= 0)
|
|
{
|
|
badness = INT_MIN - growth;
|
|
if (dump)
|
|
fprintf (dump_file, " %i: Growth %i < 0\n", (int) badness,
|
|
growth);
|
|
}
|
|
|
|
/* When profiling is available, base priorities -(#calls / growth).
|
|
So we optimize for overall number of "executed" inlined calls. */
|
|
else if (max_count)
|
|
{
|
|
badness =
|
|
((int)
|
|
((double) edge->count * INT_MIN / max_count / (max_benefit + 1)) *
|
|
(inline_summary (edge->callee)->time_inlining_benefit + 1)) / growth;
|
|
if (dump)
|
|
{
|
|
fprintf (dump_file,
|
|
" %i (relative %f): profile info. Relative count %f"
|
|
" * Relative benefit %f\n",
|
|
(int) badness, (double) badness / INT_MIN,
|
|
(double) edge->count / max_count,
|
|
(double) (inline_summary (edge->callee)->
|
|
time_inlining_benefit + 1) / (max_benefit + 1));
|
|
}
|
|
}
|
|
|
|
/* When function local profile is available, base priorities on
|
|
growth / frequency, so we optimize for overall frequency of inlined
|
|
calls. This is not too accurate since while the call might be frequent
|
|
within function, the function itself is infrequent.
|
|
|
|
Other objective to optimize for is number of different calls inlined.
|
|
We add the estimated growth after inlining all functions to bias the
|
|
priorities slightly in this direction (so fewer times called functions
|
|
of the same size gets priority). */
|
|
else if (flag_guess_branch_prob)
|
|
{
|
|
int div = edge->frequency * 100 / CGRAPH_FREQ_BASE + 1;
|
|
int benefitperc;
|
|
int growth_for_all;
|
|
badness = growth * 10000;
|
|
benefitperc =
|
|
MIN (100 * inline_summary (edge->callee)->time_inlining_benefit /
|
|
(edge->callee->global.time + 1) +1, 100);
|
|
div *= benefitperc;
|
|
|
|
|
|
/* Decrease badness if call is nested. */
|
|
/* Compress the range so we don't overflow. */
|
|
if (div > 10000)
|
|
div = 10000 + ceil_log2 (div) - 8;
|
|
if (div < 1)
|
|
div = 1;
|
|
if (badness > 0)
|
|
badness /= div;
|
|
growth_for_all = cgraph_estimate_growth (edge->callee);
|
|
badness += growth_for_all;
|
|
if (badness > INT_MAX)
|
|
badness = INT_MAX;
|
|
if (dump)
|
|
{
|
|
fprintf (dump_file,
|
|
" %i: guessed profile. frequency %i, overall growth %i,"
|
|
" benefit %i%%, divisor %i\n",
|
|
(int) badness, edge->frequency, growth_for_all, benefitperc, div);
|
|
}
|
|
}
|
|
/* When function local profile is not available or it does not give
|
|
useful information (ie frequency is zero), base the cost on
|
|
loop nest and overall size growth, so we optimize for overall number
|
|
of functions fully inlined in program. */
|
|
else
|
|
{
|
|
int nest = MIN (edge->loop_nest, 8);
|
|
badness = cgraph_estimate_growth (edge->callee) * 256;
|
|
|
|
/* Decrease badness if call is nested. */
|
|
if (badness > 0)
|
|
badness >>= nest;
|
|
else
|
|
{
|
|
badness <<= nest;
|
|
}
|
|
if (dump)
|
|
fprintf (dump_file, " %i: no profile. nest %i\n", (int) badness,
|
|
nest);
|
|
}
|
|
|
|
/* Ensure that we did not overflow in all the fixed point math above. */
|
|
gcc_assert (badness >= INT_MIN);
|
|
gcc_assert (badness <= INT_MAX - 1);
|
|
/* Make recursive inlining happen always after other inlining is done. */
|
|
if (cgraph_recursive_inlining_p (edge->caller, edge->callee, NULL))
|
|
return badness + 1;
|
|
else
|
|
return badness;
|
|
}
|
|
|
|
/* Recompute badness of EDGE and update its key in HEAP if needed. */
|
|
static void
|
|
update_edge_key (fibheap_t heap, struct cgraph_edge *edge)
|
|
{
|
|
int badness = cgraph_edge_badness (edge, false);
|
|
if (edge->aux)
|
|
{
|
|
fibnode_t n = (fibnode_t) edge->aux;
|
|
gcc_checking_assert (n->data == edge);
|
|
|
|
/* fibheap_replace_key only decrease the keys.
|
|
When we increase the key we do not update heap
|
|
and instead re-insert the element once it becomes
|
|
a minimum of heap. */
|
|
if (badness < n->key)
|
|
{
|
|
fibheap_replace_key (heap, n, badness);
|
|
gcc_checking_assert (n->key == badness);
|
|
}
|
|
}
|
|
else
|
|
edge->aux = fibheap_insert (heap, badness, edge);
|
|
}
|
|
|
|
/* Recompute heap nodes for each of caller edge. */
|
|
|
|
static void
|
|
update_caller_keys (fibheap_t heap, struct cgraph_node *node,
|
|
bitmap updated_nodes)
|
|
{
|
|
struct cgraph_edge *edge;
|
|
cgraph_inline_failed_t failed_reason;
|
|
|
|
if (!node->local.inlinable
|
|
|| cgraph_function_body_availability (node) <= AVAIL_OVERWRITABLE
|
|
|| node->global.inlined_to)
|
|
return;
|
|
if (!bitmap_set_bit (updated_nodes, node->uid))
|
|
return;
|
|
node->global.estimated_growth = INT_MIN;
|
|
|
|
/* See if there is something to do. */
|
|
for (edge = node->callers; edge; edge = edge->next_caller)
|
|
if (edge->inline_failed)
|
|
break;
|
|
if (!edge)
|
|
return;
|
|
/* Prune out edges we won't inline into anymore. */
|
|
if (!cgraph_default_inline_p (node, &failed_reason))
|
|
{
|
|
for (; edge; edge = edge->next_caller)
|
|
if (edge->aux)
|
|
{
|
|
fibheap_delete_node (heap, (fibnode_t) edge->aux);
|
|
edge->aux = NULL;
|
|
if (edge->inline_failed)
|
|
edge->inline_failed = failed_reason;
|
|
}
|
|
return;
|
|
}
|
|
|
|
for (; edge; edge = edge->next_caller)
|
|
if (edge->inline_failed)
|
|
update_edge_key (heap, edge);
|
|
}
|
|
|
|
/* Recompute heap nodes for each uninlined call.
|
|
This is used when we know that edge badnesses are going only to increase
|
|
(we introduced new call site) and thus all we need is to insert newly
|
|
created edges into heap. */
|
|
|
|
static void
|
|
update_callee_keys (fibheap_t heap, struct cgraph_node *node,
|
|
bitmap updated_nodes)
|
|
{
|
|
struct cgraph_edge *e = node->callees;
|
|
node->global.estimated_growth = INT_MIN;
|
|
|
|
if (!e)
|
|
return;
|
|
while (true)
|
|
if (!e->inline_failed && e->callee->callees)
|
|
e = e->callee->callees;
|
|
else
|
|
{
|
|
if (e->inline_failed
|
|
&& e->callee->local.inlinable
|
|
&& cgraph_function_body_availability (e->callee) >= AVAIL_AVAILABLE
|
|
&& !bitmap_bit_p (updated_nodes, e->callee->uid))
|
|
{
|
|
node->global.estimated_growth = INT_MIN;
|
|
/* If function becomes uninlinable, we need to remove it from the heap. */
|
|
if (!cgraph_default_inline_p (e->callee, &e->inline_failed))
|
|
update_caller_keys (heap, e->callee, updated_nodes);
|
|
else
|
|
/* Otherwise update just edge E. */
|
|
update_edge_key (heap, e);
|
|
}
|
|
if (e->next_callee)
|
|
e = e->next_callee;
|
|
else
|
|
{
|
|
do
|
|
{
|
|
if (e->caller == node)
|
|
return;
|
|
e = e->caller->callers;
|
|
}
|
|
while (!e->next_callee);
|
|
e = e->next_callee;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Recompute heap nodes for each of caller edges of each of callees.
|
|
Walk recursively into all inline clones. */
|
|
|
|
static void
|
|
update_all_callee_keys (fibheap_t heap, struct cgraph_node *node,
|
|
bitmap updated_nodes)
|
|
{
|
|
struct cgraph_edge *e = node->callees;
|
|
node->global.estimated_growth = INT_MIN;
|
|
|
|
if (!e)
|
|
return;
|
|
while (true)
|
|
if (!e->inline_failed && e->callee->callees)
|
|
e = e->callee->callees;
|
|
else
|
|
{
|
|
if (e->inline_failed)
|
|
update_caller_keys (heap, e->callee, updated_nodes);
|
|
if (e->next_callee)
|
|
e = e->next_callee;
|
|
else
|
|
{
|
|
do
|
|
{
|
|
if (e->caller == node)
|
|
return;
|
|
e = e->caller->callers;
|
|
}
|
|
while (!e->next_callee);
|
|
e = e->next_callee;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Enqueue all recursive calls from NODE into priority queue depending on
|
|
how likely we want to recursively inline the call. */
|
|
|
|
static void
|
|
lookup_recursive_calls (struct cgraph_node *node, struct cgraph_node *where,
|
|
fibheap_t heap)
|
|
{
|
|
static int priority;
|
|
struct cgraph_edge *e;
|
|
for (e = where->callees; e; e = e->next_callee)
|
|
if (e->callee == node)
|
|
{
|
|
/* When profile feedback is available, prioritize by expected number
|
|
of calls. Without profile feedback we maintain simple queue
|
|
to order candidates via recursive depths. */
|
|
fibheap_insert (heap,
|
|
!max_count ? priority++
|
|
: -(e->count / ((max_count + (1<<24) - 1) / (1<<24))),
|
|
e);
|
|
}
|
|
for (e = where->callees; e; e = e->next_callee)
|
|
if (!e->inline_failed)
|
|
lookup_recursive_calls (node, e->callee, heap);
|
|
}
|
|
|
|
/* Decide on recursive inlining: in the case function has recursive calls,
|
|
inline until body size reaches given argument. If any new indirect edges
|
|
are discovered in the process, add them to *NEW_EDGES, unless NEW_EDGES
|
|
is NULL. */
|
|
|
|
static bool
|
|
cgraph_decide_recursive_inlining (struct cgraph_node *node,
|
|
VEC (cgraph_edge_p, heap) **new_edges)
|
|
{
|
|
int limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO);
|
|
int max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH_AUTO);
|
|
int probability = PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY);
|
|
fibheap_t heap;
|
|
struct cgraph_edge *e;
|
|
struct cgraph_node *master_clone, *next;
|
|
int depth = 0;
|
|
int n = 0;
|
|
|
|
/* It does not make sense to recursively inline always-inline functions
|
|
as we are going to sorry() on the remaining calls anyway. */
|
|
if (node->local.disregard_inline_limits
|
|
&& lookup_attribute ("always_inline", DECL_ATTRIBUTES (node->decl)))
|
|
return false;
|
|
|
|
if (optimize_function_for_size_p (DECL_STRUCT_FUNCTION (node->decl))
|
|
|| (!flag_inline_functions && !DECL_DECLARED_INLINE_P (node->decl)))
|
|
return false;
|
|
|
|
if (DECL_DECLARED_INLINE_P (node->decl))
|
|
{
|
|
limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE);
|
|
max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH);
|
|
}
|
|
|
|
/* Make sure that function is small enough to be considered for inlining. */
|
|
if (!max_depth
|
|
|| cgraph_estimate_size_after_inlining (node, node) >= limit)
|
|
return false;
|
|
heap = fibheap_new ();
|
|
lookup_recursive_calls (node, node, heap);
|
|
if (fibheap_empty (heap))
|
|
{
|
|
fibheap_delete (heap);
|
|
return false;
|
|
}
|
|
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
" Performing recursive inlining on %s\n",
|
|
cgraph_node_name (node));
|
|
|
|
/* We need original clone to copy around. */
|
|
master_clone = cgraph_clone_node (node, node->decl,
|
|
node->count, CGRAPH_FREQ_BASE, 1,
|
|
false, NULL);
|
|
for (e = master_clone->callees; e; e = e->next_callee)
|
|
if (!e->inline_failed)
|
|
cgraph_clone_inlined_nodes (e, true, false);
|
|
|
|
/* Do the inlining and update list of recursive call during process. */
|
|
while (!fibheap_empty (heap)
|
|
&& (cgraph_estimate_size_after_inlining (node, master_clone)
|
|
<= limit))
|
|
{
|
|
struct cgraph_edge *curr
|
|
= (struct cgraph_edge *) fibheap_extract_min (heap);
|
|
struct cgraph_node *cnode;
|
|
|
|
depth = 1;
|
|
for (cnode = curr->caller;
|
|
cnode->global.inlined_to; cnode = cnode->callers->caller)
|
|
if (node->decl == curr->callee->decl)
|
|
depth++;
|
|
if (depth > max_depth)
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
" maximal depth reached\n");
|
|
continue;
|
|
}
|
|
|
|
if (max_count)
|
|
{
|
|
if (!cgraph_maybe_hot_edge_p (curr))
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, " Not inlining cold call\n");
|
|
continue;
|
|
}
|
|
if (curr->count * 100 / node->count < probability)
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
" Probability of edge is too small\n");
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file,
|
|
" Inlining call of depth %i", depth);
|
|
if (node->count)
|
|
{
|
|
fprintf (dump_file, " called approx. %.2f times per call",
|
|
(double)curr->count / node->count);
|
|
}
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
cgraph_redirect_edge_callee (curr, master_clone);
|
|
cgraph_mark_inline_edge (curr, false, new_edges);
|
|
lookup_recursive_calls (node, curr->callee, heap);
|
|
n++;
|
|
}
|
|
if (!fibheap_empty (heap) && dump_file)
|
|
fprintf (dump_file, " Recursive inlining growth limit met.\n");
|
|
|
|
fibheap_delete (heap);
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
"\n Inlined %i times, body grown from size %i to %i, time %i to %i\n", n,
|
|
master_clone->global.size, node->global.size,
|
|
master_clone->global.time, node->global.time);
|
|
|
|
/* Remove master clone we used for inlining. We rely that clones inlined
|
|
into master clone gets queued just before master clone so we don't
|
|
need recursion. */
|
|
for (node = cgraph_nodes; node != master_clone;
|
|
node = next)
|
|
{
|
|
next = node->next;
|
|
if (node->global.inlined_to == master_clone)
|
|
cgraph_remove_node (node);
|
|
}
|
|
cgraph_remove_node (master_clone);
|
|
/* FIXME: Recursive inlining actually reduces number of calls of the
|
|
function. At this place we should probably walk the function and
|
|
inline clones and compensate the counts accordingly. This probably
|
|
doesn't matter much in practice. */
|
|
return n > 0;
|
|
}
|
|
|
|
/* Set inline_failed for all callers of given function to REASON. */
|
|
|
|
static void
|
|
cgraph_set_inline_failed (struct cgraph_node *node,
|
|
cgraph_inline_failed_t reason)
|
|
{
|
|
struct cgraph_edge *e;
|
|
|
|
if (dump_file)
|
|
fprintf (dump_file, "Inlining failed: %s\n",
|
|
cgraph_inline_failed_string (reason));
|
|
for (e = node->callers; e; e = e->next_caller)
|
|
if (e->inline_failed)
|
|
e->inline_failed = reason;
|
|
}
|
|
|
|
/* Given whole compilation unit estimate of INSNS, compute how large we can
|
|
allow the unit to grow. */
|
|
static int
|
|
compute_max_insns (int insns)
|
|
{
|
|
int max_insns = insns;
|
|
if (max_insns < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
|
|
max_insns = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);
|
|
|
|
return ((HOST_WIDEST_INT) max_insns
|
|
* (100 + PARAM_VALUE (PARAM_INLINE_UNIT_GROWTH)) / 100);
|
|
}
|
|
|
|
/* Compute badness of all edges in NEW_EDGES and add them to the HEAP. */
|
|
static void
|
|
add_new_edges_to_heap (fibheap_t heap, VEC (cgraph_edge_p, heap) *new_edges)
|
|
{
|
|
while (VEC_length (cgraph_edge_p, new_edges) > 0)
|
|
{
|
|
struct cgraph_edge *edge = VEC_pop (cgraph_edge_p, new_edges);
|
|
|
|
gcc_assert (!edge->aux);
|
|
if (edge->callee->local.inlinable
|
|
&& edge->inline_failed
|
|
&& cgraph_default_inline_p (edge->callee, &edge->inline_failed))
|
|
edge->aux = fibheap_insert (heap, cgraph_edge_badness (edge, false), edge);
|
|
}
|
|
}
|
|
|
|
|
|
/* We use greedy algorithm for inlining of small functions:
|
|
All inline candidates are put into prioritized heap based on estimated
|
|
growth of the overall number of instructions and then update the estimates.
|
|
|
|
INLINED and INLINED_CALLEES are just pointers to arrays large enough
|
|
to be passed to cgraph_inlined_into and cgraph_inlined_callees. */
|
|
|
|
static void
|
|
cgraph_decide_inlining_of_small_functions (void)
|
|
{
|
|
struct cgraph_node *node;
|
|
struct cgraph_edge *edge;
|
|
cgraph_inline_failed_t failed_reason;
|
|
fibheap_t heap = fibheap_new ();
|
|
bitmap updated_nodes = BITMAP_ALLOC (NULL);
|
|
int min_size, max_size;
|
|
VEC (cgraph_edge_p, heap) *new_indirect_edges = NULL;
|
|
|
|
if (flag_indirect_inlining)
|
|
new_indirect_edges = VEC_alloc (cgraph_edge_p, heap, 8);
|
|
|
|
if (dump_file)
|
|
fprintf (dump_file, "\nDeciding on smaller functions:\n");
|
|
|
|
/* Put all inline candidates into the heap. */
|
|
|
|
for (node = cgraph_nodes; node; node = node->next)
|
|
{
|
|
if (!node->local.inlinable || !node->callers)
|
|
continue;
|
|
if (dump_file)
|
|
fprintf (dump_file, "Considering inline candidate %s.\n", cgraph_node_name (node));
|
|
|
|
node->global.estimated_growth = INT_MIN;
|
|
if (!cgraph_default_inline_p (node, &failed_reason))
|
|
{
|
|
cgraph_set_inline_failed (node, failed_reason);
|
|
continue;
|
|
}
|
|
|
|
for (edge = node->callers; edge; edge = edge->next_caller)
|
|
if (edge->inline_failed)
|
|
{
|
|
gcc_assert (!edge->aux);
|
|
edge->aux = fibheap_insert (heap, cgraph_edge_badness (edge, false), edge);
|
|
}
|
|
}
|
|
|
|
max_size = compute_max_insns (overall_size);
|
|
min_size = overall_size;
|
|
|
|
while (overall_size <= max_size
|
|
&& !fibheap_empty (heap))
|
|
{
|
|
int old_size = overall_size;
|
|
struct cgraph_node *where, *callee;
|
|
int badness = fibheap_min_key (heap);
|
|
int current_badness;
|
|
int growth;
|
|
cgraph_inline_failed_t not_good = CIF_OK;
|
|
|
|
edge = (struct cgraph_edge *) fibheap_extract_min (heap);
|
|
gcc_assert (edge->aux);
|
|
edge->aux = NULL;
|
|
if (!edge->inline_failed)
|
|
continue;
|
|
|
|
/* When updating the edge costs, we only decrease badness in the keys.
|
|
When the badness increase, we keep the heap as it is and re-insert
|
|
key now. */
|
|
current_badness = cgraph_edge_badness (edge, false);
|
|
gcc_assert (current_badness >= badness);
|
|
if (current_badness != badness)
|
|
{
|
|
edge->aux = fibheap_insert (heap, current_badness, edge);
|
|
continue;
|
|
}
|
|
|
|
callee = edge->callee;
|
|
|
|
growth = (cgraph_estimate_size_after_inlining (edge->caller, edge->callee)
|
|
- edge->caller->global.size);
|
|
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file,
|
|
"\nConsidering %s with %i size\n",
|
|
cgraph_node_name (edge->callee),
|
|
edge->callee->global.size);
|
|
fprintf (dump_file,
|
|
" to be inlined into %s in %s:%i\n"
|
|
" Estimated growth after inlined into all callees is %+i insns.\n"
|
|
" Estimated badness is %i, frequency %.2f.\n",
|
|
cgraph_node_name (edge->caller),
|
|
flag_wpa ? "unknown"
|
|
: gimple_filename ((const_gimple) edge->call_stmt),
|
|
flag_wpa ? -1 : gimple_lineno ((const_gimple) edge->call_stmt),
|
|
cgraph_estimate_growth (edge->callee),
|
|
badness,
|
|
edge->frequency / (double)CGRAPH_FREQ_BASE);
|
|
if (edge->count)
|
|
fprintf (dump_file," Called "HOST_WIDEST_INT_PRINT_DEC"x\n", edge->count);
|
|
if (dump_flags & TDF_DETAILS)
|
|
cgraph_edge_badness (edge, true);
|
|
}
|
|
|
|
/* When not having profile info ready we don't weight by any way the
|
|
position of call in procedure itself. This means if call of
|
|
function A from function B seems profitable to inline, the recursive
|
|
call of function A in inline copy of A in B will look profitable too
|
|
and we end up inlining until reaching maximal function growth. This
|
|
is not good idea so prohibit the recursive inlining.
|
|
|
|
??? When the frequencies are taken into account we might not need this
|
|
restriction.
|
|
|
|
We need to be careful here, in some testcases, e.g. directives.c in
|
|
libcpp, we can estimate self recursive function to have negative growth
|
|
for inlining completely.
|
|
*/
|
|
if (!edge->count)
|
|
{
|
|
where = edge->caller;
|
|
while (where->global.inlined_to)
|
|
{
|
|
if (where->decl == edge->callee->decl)
|
|
break;
|
|
where = where->callers->caller;
|
|
}
|
|
if (where->global.inlined_to)
|
|
{
|
|
edge->inline_failed
|
|
= (edge->callee->local.disregard_inline_limits
|
|
? CIF_RECURSIVE_INLINING : CIF_UNSPECIFIED);
|
|
if (dump_file)
|
|
fprintf (dump_file, " inline_failed:Recursive inlining performed only for function itself.\n");
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (edge->callee->local.disregard_inline_limits)
|
|
;
|
|
else if (!cgraph_maybe_hot_edge_p (edge))
|
|
not_good = CIF_UNLIKELY_CALL;
|
|
else if (!flag_inline_functions
|
|
&& !DECL_DECLARED_INLINE_P (edge->callee->decl))
|
|
not_good = CIF_NOT_DECLARED_INLINED;
|
|
else if (optimize_function_for_size_p (DECL_STRUCT_FUNCTION(edge->caller->decl)))
|
|
not_good = CIF_OPTIMIZING_FOR_SIZE;
|
|
if (not_good && growth > 0 && cgraph_estimate_growth (edge->callee) > 0)
|
|
{
|
|
if (!cgraph_recursive_inlining_p (edge->caller, edge->callee,
|
|
&edge->inline_failed))
|
|
{
|
|
edge->inline_failed = not_good;
|
|
if (dump_file)
|
|
fprintf (dump_file, " inline_failed:%s.\n",
|
|
cgraph_inline_failed_string (edge->inline_failed));
|
|
}
|
|
continue;
|
|
}
|
|
if (!cgraph_default_inline_p (edge->callee, &edge->inline_failed))
|
|
{
|
|
if (!cgraph_recursive_inlining_p (edge->caller, edge->callee,
|
|
&edge->inline_failed))
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, " inline_failed:%s.\n",
|
|
cgraph_inline_failed_string (edge->inline_failed));
|
|
}
|
|
continue;
|
|
}
|
|
if (!tree_can_inline_p (edge)
|
|
|| edge->call_stmt_cannot_inline_p)
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, " inline_failed:%s.\n",
|
|
cgraph_inline_failed_string (edge->inline_failed));
|
|
continue;
|
|
}
|
|
if (cgraph_recursive_inlining_p (edge->caller, edge->callee,
|
|
&edge->inline_failed))
|
|
{
|
|
where = edge->caller;
|
|
if (where->global.inlined_to)
|
|
where = where->global.inlined_to;
|
|
if (!cgraph_decide_recursive_inlining (where,
|
|
flag_indirect_inlining
|
|
? &new_indirect_edges : NULL))
|
|
continue;
|
|
if (flag_indirect_inlining)
|
|
add_new_edges_to_heap (heap, new_indirect_edges);
|
|
update_all_callee_keys (heap, where, updated_nodes);
|
|
}
|
|
else
|
|
{
|
|
struct cgraph_node *callee;
|
|
if (!cgraph_check_inline_limits (edge->caller, edge->callee,
|
|
&edge->inline_failed))
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, " Not inlining into %s:%s.\n",
|
|
cgraph_node_name (edge->caller),
|
|
cgraph_inline_failed_string (edge->inline_failed));
|
|
continue;
|
|
}
|
|
callee = edge->callee;
|
|
gcc_checking_assert (!callee->global.inlined_to);
|
|
cgraph_mark_inline_edge (edge, true, &new_indirect_edges);
|
|
if (flag_indirect_inlining)
|
|
add_new_edges_to_heap (heap, new_indirect_edges);
|
|
|
|
/* We inlined last offline copy to the body. This might lead
|
|
to callees of function having fewer call sites and thus they
|
|
may need updating. */
|
|
if (callee->global.inlined_to)
|
|
update_all_callee_keys (heap, callee, updated_nodes);
|
|
else
|
|
update_callee_keys (heap, edge->callee, updated_nodes);
|
|
}
|
|
where = edge->caller;
|
|
if (where->global.inlined_to)
|
|
where = where->global.inlined_to;
|
|
|
|
/* Our profitability metric can depend on local properties
|
|
such as number of inlinable calls and size of the function body.
|
|
After inlining these properties might change for the function we
|
|
inlined into (since it's body size changed) and for the functions
|
|
called by function we inlined (since number of it inlinable callers
|
|
might change). */
|
|
update_caller_keys (heap, where, updated_nodes);
|
|
|
|
/* We removed one call of the function we just inlined. If offline
|
|
copy is still needed, be sure to update the keys. */
|
|
if (callee != where && !callee->global.inlined_to)
|
|
update_caller_keys (heap, callee, updated_nodes);
|
|
bitmap_clear (updated_nodes);
|
|
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file,
|
|
" Inlined into %s which now has size %i and self time %i,"
|
|
"net change of %+i.\n",
|
|
cgraph_node_name (edge->caller),
|
|
edge->caller->global.time,
|
|
edge->caller->global.size,
|
|
overall_size - old_size);
|
|
}
|
|
if (min_size > overall_size)
|
|
{
|
|
min_size = overall_size;
|
|
max_size = compute_max_insns (min_size);
|
|
|
|
if (dump_file)
|
|
fprintf (dump_file, "New minimal size reached: %i\n", min_size);
|
|
}
|
|
}
|
|
while (!fibheap_empty (heap))
|
|
{
|
|
int badness = fibheap_min_key (heap);
|
|
|
|
edge = (struct cgraph_edge *) fibheap_extract_min (heap);
|
|
gcc_assert (edge->aux);
|
|
edge->aux = NULL;
|
|
if (!edge->inline_failed)
|
|
continue;
|
|
#ifdef ENABLE_CHECKING
|
|
gcc_assert (cgraph_edge_badness (edge, false) >= badness);
|
|
#endif
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file,
|
|
"\nSkipping %s with %i size\n",
|
|
cgraph_node_name (edge->callee),
|
|
edge->callee->global.size);
|
|
fprintf (dump_file,
|
|
" called by %s in %s:%i\n"
|
|
" Estimated growth after inlined into all callees is %+i insns.\n"
|
|
" Estimated badness is %i, frequency %.2f.\n",
|
|
cgraph_node_name (edge->caller),
|
|
flag_wpa ? "unknown"
|
|
: gimple_filename ((const_gimple) edge->call_stmt),
|
|
flag_wpa ? -1 : gimple_lineno ((const_gimple) edge->call_stmt),
|
|
cgraph_estimate_growth (edge->callee),
|
|
badness,
|
|
edge->frequency / (double)CGRAPH_FREQ_BASE);
|
|
if (edge->count)
|
|
fprintf (dump_file," Called "HOST_WIDEST_INT_PRINT_DEC"x\n", edge->count);
|
|
if (dump_flags & TDF_DETAILS)
|
|
cgraph_edge_badness (edge, true);
|
|
}
|
|
if (!edge->callee->local.disregard_inline_limits && edge->inline_failed
|
|
&& !cgraph_recursive_inlining_p (edge->caller, edge->callee,
|
|
&edge->inline_failed))
|
|
edge->inline_failed = CIF_INLINE_UNIT_GROWTH_LIMIT;
|
|
}
|
|
|
|
if (new_indirect_edges)
|
|
VEC_free (cgraph_edge_p, heap, new_indirect_edges);
|
|
fibheap_delete (heap);
|
|
BITMAP_FREE (updated_nodes);
|
|
}
|
|
|
|
/* Flatten NODE from the IPA inliner. */
|
|
|
|
static void
|
|
cgraph_flatten (struct cgraph_node *node)
|
|
{
|
|
struct cgraph_edge *e;
|
|
|
|
/* We shouldn't be called recursively when we are being processed. */
|
|
gcc_assert (node->aux == NULL);
|
|
|
|
node->aux = (void *)(size_t) INLINE_ALL;
|
|
|
|
for (e = node->callees; e; e = e->next_callee)
|
|
{
|
|
struct cgraph_node *orig_callee;
|
|
|
|
if (e->call_stmt_cannot_inline_p)
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, "Not inlining: %s",
|
|
cgraph_inline_failed_string (e->inline_failed));
|
|
continue;
|
|
}
|
|
|
|
if (!e->callee->analyzed)
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
"Not inlining: Function body not available.\n");
|
|
continue;
|
|
}
|
|
|
|
/* We've hit cycle? It is time to give up. */
|
|
if (e->callee->aux)
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
"Not inlining %s into %s to avoid cycle.\n",
|
|
cgraph_node_name (e->callee),
|
|
cgraph_node_name (e->caller));
|
|
e->inline_failed = CIF_RECURSIVE_INLINING;
|
|
continue;
|
|
}
|
|
|
|
/* When the edge is already inlined, we just need to recurse into
|
|
it in order to fully flatten the leaves. */
|
|
if (!e->inline_failed)
|
|
{
|
|
cgraph_flatten (e->callee);
|
|
continue;
|
|
}
|
|
|
|
if (cgraph_recursive_inlining_p (node, e->callee, &e->inline_failed))
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, "Not inlining: recursive call.\n");
|
|
continue;
|
|
}
|
|
|
|
if (!tree_can_inline_p (e))
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, "Not inlining: %s",
|
|
cgraph_inline_failed_string (e->inline_failed));
|
|
continue;
|
|
}
|
|
|
|
if (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (node->decl))
|
|
!= gimple_in_ssa_p (DECL_STRUCT_FUNCTION (e->callee->decl)))
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, "Not inlining: SSA form does not match.\n");
|
|
continue;
|
|
}
|
|
|
|
/* Inline the edge and flatten the inline clone. Avoid
|
|
recursing through the original node if the node was cloned. */
|
|
if (dump_file)
|
|
fprintf (dump_file, " Inlining %s into %s.\n",
|
|
cgraph_node_name (e->callee),
|
|
cgraph_node_name (e->caller));
|
|
orig_callee = e->callee;
|
|
cgraph_mark_inline_edge (e, true, NULL);
|
|
if (e->callee != orig_callee)
|
|
orig_callee->aux = (void *)(size_t) INLINE_ALL;
|
|
cgraph_flatten (e->callee);
|
|
if (e->callee != orig_callee)
|
|
orig_callee->aux = NULL;
|
|
}
|
|
|
|
node->aux = NULL;
|
|
}
|
|
|
|
/* Decide on the inlining. We do so in the topological order to avoid
|
|
expenses on updating data structures. */
|
|
|
|
static unsigned int
|
|
cgraph_decide_inlining (void)
|
|
{
|
|
struct cgraph_node *node;
|
|
int nnodes;
|
|
struct cgraph_node **order =
|
|
XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
|
|
int old_size = 0;
|
|
int i;
|
|
int initial_size = 0;
|
|
|
|
cgraph_remove_function_insertion_hook (function_insertion_hook_holder);
|
|
if (in_lto_p && flag_indirect_inlining)
|
|
ipa_update_after_lto_read ();
|
|
if (flag_indirect_inlining)
|
|
ipa_create_all_structures_for_iinln ();
|
|
|
|
max_count = 0;
|
|
max_benefit = 0;
|
|
for (node = cgraph_nodes; node; node = node->next)
|
|
if (node->analyzed)
|
|
{
|
|
struct cgraph_edge *e;
|
|
|
|
gcc_assert (inline_summary (node)->self_size == node->global.size);
|
|
if (!DECL_EXTERNAL (node->decl))
|
|
initial_size += node->global.size;
|
|
for (e = node->callees; e; e = e->next_callee)
|
|
if (max_count < e->count)
|
|
max_count = e->count;
|
|
if (max_benefit < inline_summary (node)->time_inlining_benefit)
|
|
max_benefit = inline_summary (node)->time_inlining_benefit;
|
|
}
|
|
gcc_assert (in_lto_p
|
|
|| !max_count
|
|
|| (profile_info && flag_branch_probabilities));
|
|
overall_size = initial_size;
|
|
|
|
nnodes = cgraph_postorder (order);
|
|
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
"\nDeciding on inlining. Starting with size %i.\n",
|
|
initial_size);
|
|
|
|
for (node = cgraph_nodes; node; node = node->next)
|
|
node->aux = 0;
|
|
|
|
if (dump_file)
|
|
fprintf (dump_file, "\nFlattening functions:\n");
|
|
|
|
/* In the first pass handle functions to be flattened. Do this with
|
|
a priority so none of our later choices will make this impossible. */
|
|
for (i = nnodes - 1; i >= 0; i--)
|
|
{
|
|
node = order[i];
|
|
|
|
/* Handle nodes to be flattened, but don't update overall unit
|
|
size. Calling the incremental inliner here is lame,
|
|
a simple worklist should be enough. What should be left
|
|
here from the early inliner (if it runs) is cyclic cases.
|
|
Ideally when processing callees we stop inlining at the
|
|
entry of cycles, possibly cloning that entry point and
|
|
try to flatten itself turning it into a self-recursive
|
|
function. */
|
|
if (lookup_attribute ("flatten",
|
|
DECL_ATTRIBUTES (node->decl)) != NULL)
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
"Flattening %s\n", cgraph_node_name (node));
|
|
cgraph_flatten (node);
|
|
}
|
|
}
|
|
|
|
cgraph_decide_inlining_of_small_functions ();
|
|
|
|
if (flag_inline_functions_called_once)
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, "\nDeciding on functions called once:\n");
|
|
|
|
/* And finally decide what functions are called once. */
|
|
for (i = nnodes - 1; i >= 0; i--)
|
|
{
|
|
node = order[i];
|
|
|
|
if (node->callers
|
|
&& !node->callers->next_caller
|
|
&& !node->global.inlined_to
|
|
&& cgraph_will_be_removed_from_program_if_no_direct_calls (node)
|
|
&& node->local.inlinable
|
|
&& cgraph_function_body_availability (node) >= AVAIL_AVAILABLE
|
|
&& node->callers->inline_failed
|
|
&& node->callers->caller != node
|
|
&& node->callers->caller->global.inlined_to != node
|
|
&& !node->callers->call_stmt_cannot_inline_p
|
|
&& !DECL_EXTERNAL (node->decl))
|
|
{
|
|
cgraph_inline_failed_t reason;
|
|
old_size = overall_size;
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file,
|
|
"\nConsidering %s size %i.\n",
|
|
cgraph_node_name (node), node->global.size);
|
|
fprintf (dump_file,
|
|
" Called once from %s %i insns.\n",
|
|
cgraph_node_name (node->callers->caller),
|
|
node->callers->caller->global.size);
|
|
}
|
|
|
|
if (cgraph_check_inline_limits (node->callers->caller, node,
|
|
&reason))
|
|
{
|
|
struct cgraph_node *caller = node->callers->caller;
|
|
cgraph_mark_inline_edge (node->callers, true, NULL);
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
" Inlined into %s which now has %i size"
|
|
" for a net change of %+i size.\n",
|
|
cgraph_node_name (caller),
|
|
caller->global.size,
|
|
overall_size - old_size);
|
|
}
|
|
else
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
" Not inlining: %s.\n",
|
|
cgraph_inline_failed_string (reason));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Free ipa-prop structures if they are no longer needed. */
|
|
if (flag_indirect_inlining)
|
|
ipa_free_all_structures_after_iinln ();
|
|
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
"\nInlined %i calls, eliminated %i functions, "
|
|
"size %i turned to %i size.\n\n",
|
|
ncalls_inlined, nfunctions_inlined, initial_size,
|
|
overall_size);
|
|
free (order);
|
|
return 0;
|
|
}
|
|
|
|
/* Return true when N is leaf function. Accept cheap builtins
|
|
in leaf functions. */
|
|
|
|
static bool
|
|
leaf_node_p (struct cgraph_node *n)
|
|
{
|
|
struct cgraph_edge *e;
|
|
for (e = n->callees; e; e = e->next_callee)
|
|
if (!is_inexpensive_builtin (e->callee->decl))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/* Decide on the inlining. We do so in the topological order to avoid
|
|
expenses on updating data structures. */
|
|
|
|
static bool
|
|
cgraph_decide_inlining_incrementally (struct cgraph_node *node,
|
|
enum inlining_mode mode)
|
|
{
|
|
struct cgraph_edge *e;
|
|
bool inlined = false;
|
|
cgraph_inline_failed_t failed_reason;
|
|
|
|
#ifdef ENABLE_CHECKING
|
|
verify_cgraph_node (node);
|
|
#endif
|
|
|
|
if (mode != INLINE_ALWAYS_INLINE && mode != INLINE_SIZE_NORECURSIVE
|
|
&& lookup_attribute ("flatten", DECL_ATTRIBUTES (node->decl)) != NULL)
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, "Incrementally flattening %s\n",
|
|
cgraph_node_name (node));
|
|
mode = INLINE_ALL;
|
|
}
|
|
|
|
/* First of all look for always inline functions. */
|
|
if (mode != INLINE_SIZE_NORECURSIVE)
|
|
for (e = node->callees; e; e = e->next_callee)
|
|
{
|
|
if (!e->callee->local.disregard_inline_limits
|
|
&& (mode != INLINE_ALL || !e->callee->local.inlinable))
|
|
continue;
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
"Considering to always inline inline candidate %s.\n",
|
|
cgraph_node_name (e->callee));
|
|
if (cgraph_recursive_inlining_p (node, e->callee, &e->inline_failed))
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, "Not inlining: recursive call.\n");
|
|
continue;
|
|
}
|
|
if (!tree_can_inline_p (e)
|
|
|| e->call_stmt_cannot_inline_p)
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
"Not inlining: %s",
|
|
cgraph_inline_failed_string (e->inline_failed));
|
|
continue;
|
|
}
|
|
if (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (node->decl))
|
|
!= gimple_in_ssa_p (DECL_STRUCT_FUNCTION (e->callee->decl)))
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, "Not inlining: SSA form does not match.\n");
|
|
continue;
|
|
}
|
|
if (!e->callee->analyzed)
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
"Not inlining: Function body no longer available.\n");
|
|
continue;
|
|
}
|
|
|
|
if (dump_file)
|
|
fprintf (dump_file, " Inlining %s into %s.\n",
|
|
cgraph_node_name (e->callee),
|
|
cgraph_node_name (e->caller));
|
|
cgraph_mark_inline_edge (e, true, NULL);
|
|
inlined = true;
|
|
}
|
|
|
|
/* Now do the automatic inlining. */
|
|
if (mode != INLINE_ALL && mode != INLINE_ALWAYS_INLINE
|
|
/* Never inline regular functions into always-inline functions
|
|
during incremental inlining. */
|
|
&& !node->local.disregard_inline_limits)
|
|
{
|
|
for (e = node->callees; e; e = e->next_callee)
|
|
{
|
|
int allowed_growth = 0;
|
|
if (!e->callee->local.inlinable
|
|
|| !e->inline_failed
|
|
|| e->callee->local.disregard_inline_limits)
|
|
continue;
|
|
if (dump_file)
|
|
fprintf (dump_file, "Considering inline candidate %s.\n",
|
|
cgraph_node_name (e->callee));
|
|
if (cgraph_recursive_inlining_p (node, e->callee, &e->inline_failed))
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, "Not inlining: recursive call.\n");
|
|
continue;
|
|
}
|
|
if (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (node->decl))
|
|
!= gimple_in_ssa_p (DECL_STRUCT_FUNCTION (e->callee->decl)))
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
"Not inlining: SSA form does not match.\n");
|
|
continue;
|
|
}
|
|
|
|
if (cgraph_maybe_hot_edge_p (e) && leaf_node_p (e->callee)
|
|
&& optimize_function_for_speed_p (cfun))
|
|
allowed_growth = PARAM_VALUE (PARAM_EARLY_INLINING_INSNS);
|
|
|
|
/* When the function body would grow and inlining the function
|
|
won't eliminate the need for offline copy of the function,
|
|
don't inline. */
|
|
if (((mode == INLINE_SIZE || mode == INLINE_SIZE_NORECURSIVE)
|
|
|| (!flag_inline_functions
|
|
&& !DECL_DECLARED_INLINE_P (e->callee->decl)))
|
|
&& (cgraph_estimate_size_after_inlining (e->caller, e->callee)
|
|
> e->caller->global.size + allowed_growth)
|
|
&& cgraph_estimate_growth (e->callee) > allowed_growth)
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
"Not inlining: code size would grow by %i.\n",
|
|
cgraph_estimate_size_after_inlining (e->caller,
|
|
e->callee)
|
|
- e->caller->global.size);
|
|
continue;
|
|
}
|
|
if (e->call_stmt_cannot_inline_p
|
|
|| !tree_can_inline_p (e))
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
"Not inlining: call site not inlinable.\n");
|
|
continue;
|
|
}
|
|
if (!e->callee->analyzed)
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
"Not inlining: Function body no longer available.\n");
|
|
continue;
|
|
}
|
|
if (!cgraph_check_inline_limits (node, e->callee, &e->inline_failed))
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, "Not inlining: %s.\n",
|
|
cgraph_inline_failed_string (e->inline_failed));
|
|
continue;
|
|
}
|
|
if (cgraph_default_inline_p (e->callee, &failed_reason))
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, " Inlining %s into %s.\n",
|
|
cgraph_node_name (e->callee),
|
|
cgraph_node_name (e->caller));
|
|
cgraph_mark_inline_edge (e, true, NULL);
|
|
inlined = true;
|
|
}
|
|
}
|
|
}
|
|
return inlined;
|
|
}
|
|
|
|
/* Because inlining might remove no-longer reachable nodes, we need to
|
|
keep the array visible to garbage collector to avoid reading collected
|
|
out nodes. */
|
|
static int nnodes;
|
|
static GTY ((length ("nnodes"))) struct cgraph_node **order;
|
|
|
|
/* Do inlining of small functions. Doing so early helps profiling and other
|
|
passes to be somewhat more effective and avoids some code duplication in
|
|
later real inlining pass for testcases with very many function calls. */
|
|
static unsigned int
|
|
cgraph_early_inlining (void)
|
|
{
|
|
struct cgraph_node *node = cgraph_node (current_function_decl);
|
|
unsigned int todo = 0;
|
|
int iterations = 0;
|
|
|
|
if (seen_error ())
|
|
return 0;
|
|
|
|
if (!optimize
|
|
|| flag_no_inline
|
|
|| !flag_early_inlining)
|
|
{
|
|
/* When not optimizing or not inlining inline only always-inline
|
|
functions. */
|
|
cgraph_decide_inlining_incrementally (node, INLINE_ALWAYS_INLINE);
|
|
timevar_push (TV_INTEGRATION);
|
|
todo |= optimize_inline_calls (current_function_decl);
|
|
timevar_pop (TV_INTEGRATION);
|
|
}
|
|
else
|
|
{
|
|
if (lookup_attribute ("flatten",
|
|
DECL_ATTRIBUTES (node->decl)) != NULL)
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
"Flattening %s\n", cgraph_node_name (node));
|
|
cgraph_flatten (node);
|
|
timevar_push (TV_INTEGRATION);
|
|
todo |= optimize_inline_calls (current_function_decl);
|
|
timevar_pop (TV_INTEGRATION);
|
|
}
|
|
/* We iterate incremental inlining to get trivial cases of indirect
|
|
inlining. */
|
|
while (iterations < PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS)
|
|
&& cgraph_decide_inlining_incrementally (node,
|
|
iterations
|
|
? INLINE_SIZE_NORECURSIVE
|
|
: INLINE_SIZE))
|
|
{
|
|
timevar_push (TV_INTEGRATION);
|
|
todo |= optimize_inline_calls (current_function_decl);
|
|
iterations++;
|
|
timevar_pop (TV_INTEGRATION);
|
|
}
|
|
if (dump_file)
|
|
fprintf (dump_file, "Iterations: %i\n", iterations);
|
|
}
|
|
|
|
cfun->always_inline_functions_inlined = true;
|
|
|
|
return todo;
|
|
}
|
|
|
|
struct gimple_opt_pass pass_early_inline =
|
|
{
|
|
{
|
|
GIMPLE_PASS,
|
|
"einline", /* name */
|
|
NULL, /* gate */
|
|
cgraph_early_inlining, /* execute */
|
|
NULL, /* sub */
|
|
NULL, /* next */
|
|
0, /* static_pass_number */
|
|
TV_INLINE_HEURISTICS, /* tv_id */
|
|
0, /* properties_required */
|
|
0, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
0, /* todo_flags_start */
|
|
TODO_dump_func /* todo_flags_finish */
|
|
}
|
|
};
|
|
|
|
|
|
/* See if statement might disappear after inlining.
|
|
0 - means not eliminated
|
|
1 - half of statements goes away
|
|
2 - for sure it is eliminated.
|
|
We are not terribly sophisticated, basically looking for simple abstraction
|
|
penalty wrappers. */
|
|
|
|
static int
|
|
eliminated_by_inlining_prob (gimple stmt)
|
|
{
|
|
enum gimple_code code = gimple_code (stmt);
|
|
switch (code)
|
|
{
|
|
case GIMPLE_RETURN:
|
|
return 2;
|
|
case GIMPLE_ASSIGN:
|
|
if (gimple_num_ops (stmt) != 2)
|
|
return 0;
|
|
|
|
/* Casts of parameters, loads from parameters passed by reference
|
|
and stores to return value or parameters are often free after
|
|
inlining dua to SRA and further combining.
|
|
Assume that half of statements goes away. */
|
|
if (gimple_assign_rhs_code (stmt) == CONVERT_EXPR
|
|
|| gimple_assign_rhs_code (stmt) == NOP_EXPR
|
|
|| gimple_assign_rhs_code (stmt) == VIEW_CONVERT_EXPR
|
|
|| gimple_assign_rhs_class (stmt) == GIMPLE_SINGLE_RHS)
|
|
{
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
|
tree lhs = gimple_assign_lhs (stmt);
|
|
tree inner_rhs = rhs;
|
|
tree inner_lhs = lhs;
|
|
bool rhs_free = false;
|
|
bool lhs_free = false;
|
|
|
|
while (handled_component_p (inner_lhs)
|
|
|| TREE_CODE (inner_lhs) == MEM_REF)
|
|
inner_lhs = TREE_OPERAND (inner_lhs, 0);
|
|
while (handled_component_p (inner_rhs)
|
|
|| TREE_CODE (inner_rhs) == ADDR_EXPR
|
|
|| TREE_CODE (inner_rhs) == MEM_REF)
|
|
inner_rhs = TREE_OPERAND (inner_rhs, 0);
|
|
|
|
|
|
if (TREE_CODE (inner_rhs) == PARM_DECL
|
|
|| (TREE_CODE (inner_rhs) == SSA_NAME
|
|
&& SSA_NAME_IS_DEFAULT_DEF (inner_rhs)
|
|
&& TREE_CODE (SSA_NAME_VAR (inner_rhs)) == PARM_DECL))
|
|
rhs_free = true;
|
|
if (rhs_free && is_gimple_reg (lhs))
|
|
lhs_free = true;
|
|
if (((TREE_CODE (inner_lhs) == PARM_DECL
|
|
|| (TREE_CODE (inner_lhs) == SSA_NAME
|
|
&& SSA_NAME_IS_DEFAULT_DEF (inner_lhs)
|
|
&& TREE_CODE (SSA_NAME_VAR (inner_lhs)) == PARM_DECL))
|
|
&& inner_lhs != lhs)
|
|
|| TREE_CODE (inner_lhs) == RESULT_DECL
|
|
|| (TREE_CODE (inner_lhs) == SSA_NAME
|
|
&& TREE_CODE (SSA_NAME_VAR (inner_lhs)) == RESULT_DECL))
|
|
lhs_free = true;
|
|
if (lhs_free
|
|
&& (is_gimple_reg (rhs) || is_gimple_min_invariant (rhs)))
|
|
rhs_free = true;
|
|
if (lhs_free && rhs_free)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Compute function body size parameters for NODE. */
|
|
|
|
static void
|
|
estimate_function_body_sizes (struct cgraph_node *node)
|
|
{
|
|
gcov_type time = 0;
|
|
gcov_type time_inlining_benefit = 0;
|
|
/* Estimate static overhead for function prologue/epilogue and alignment. */
|
|
int size = 2;
|
|
/* Benefits are scaled by probability of elimination that is in range
|
|
<0,2>. */
|
|
int size_inlining_benefit = 2 * 2;
|
|
basic_block bb;
|
|
gimple_stmt_iterator bsi;
|
|
struct function *my_function = DECL_STRUCT_FUNCTION (node->decl);
|
|
tree arg;
|
|
int freq;
|
|
tree funtype = TREE_TYPE (node->decl);
|
|
|
|
if (dump_file)
|
|
fprintf (dump_file, "Analyzing function body size: %s\n",
|
|
cgraph_node_name (node));
|
|
|
|
gcc_assert (my_function && my_function->cfg);
|
|
FOR_EACH_BB_FN (bb, my_function)
|
|
{
|
|
freq = compute_call_stmt_bb_frequency (node->decl, bb);
|
|
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
|
{
|
|
gimple stmt = gsi_stmt (bsi);
|
|
int this_size = estimate_num_insns (stmt, &eni_size_weights);
|
|
int this_time = estimate_num_insns (stmt, &eni_time_weights);
|
|
int prob;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, " freq:%6i size:%3i time:%3i ",
|
|
freq, this_size, this_time);
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
|
}
|
|
this_time *= freq;
|
|
time += this_time;
|
|
size += this_size;
|
|
prob = eliminated_by_inlining_prob (stmt);
|
|
if (prob == 1 && dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, " 50%% will be eliminated by inlining\n");
|
|
if (prob == 2 && dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, " will eliminated by inlining\n");
|
|
size_inlining_benefit += this_size * prob;
|
|
time_inlining_benefit += this_time * prob;
|
|
gcc_assert (time >= 0);
|
|
gcc_assert (size >= 0);
|
|
}
|
|
}
|
|
time = (time + CGRAPH_FREQ_BASE / 2) / CGRAPH_FREQ_BASE;
|
|
time_inlining_benefit = ((time_inlining_benefit + CGRAPH_FREQ_BASE)
|
|
/ (CGRAPH_FREQ_BASE * 2));
|
|
size_inlining_benefit = (size_inlining_benefit + 1) / 2;
|
|
if (dump_file)
|
|
fprintf (dump_file, "Overall function body time: %i-%i size: %i-%i\n",
|
|
(int)time, (int)time_inlining_benefit,
|
|
size, size_inlining_benefit);
|
|
time_inlining_benefit += eni_time_weights.call_cost;
|
|
size_inlining_benefit += eni_size_weights.call_cost;
|
|
if (!VOID_TYPE_P (TREE_TYPE (funtype)))
|
|
{
|
|
int cost = estimate_move_cost (TREE_TYPE (funtype));
|
|
time_inlining_benefit += cost;
|
|
size_inlining_benefit += cost;
|
|
}
|
|
for (arg = DECL_ARGUMENTS (node->decl); arg; arg = DECL_CHAIN (arg))
|
|
if (!VOID_TYPE_P (TREE_TYPE (arg)))
|
|
{
|
|
int cost = estimate_move_cost (TREE_TYPE (arg));
|
|
time_inlining_benefit += cost;
|
|
size_inlining_benefit += cost;
|
|
}
|
|
if (time_inlining_benefit > MAX_TIME)
|
|
time_inlining_benefit = MAX_TIME;
|
|
if (time > MAX_TIME)
|
|
time = MAX_TIME;
|
|
inline_summary (node)->self_time = time;
|
|
inline_summary (node)->self_size = size;
|
|
if (dump_file)
|
|
fprintf (dump_file, "With function call overhead time: %i-%i size: %i-%i\n",
|
|
(int)time, (int)time_inlining_benefit,
|
|
size, size_inlining_benefit);
|
|
inline_summary (node)->time_inlining_benefit = time_inlining_benefit;
|
|
inline_summary (node)->size_inlining_benefit = size_inlining_benefit;
|
|
}
|
|
|
|
/* Compute parameters of functions used by inliner. */
|
|
unsigned int
|
|
compute_inline_parameters (struct cgraph_node *node)
|
|
{
|
|
HOST_WIDE_INT self_stack_size;
|
|
|
|
gcc_assert (!node->global.inlined_to);
|
|
|
|
/* Estimate the stack size for the function. But not at -O0
|
|
because estimated_stack_frame_size is a quadratic problem. */
|
|
self_stack_size = optimize ? estimated_stack_frame_size (node->decl) : 0;
|
|
inline_summary (node)->estimated_self_stack_size = self_stack_size;
|
|
node->global.estimated_stack_size = self_stack_size;
|
|
node->global.stack_frame_offset = 0;
|
|
|
|
/* Can this function be inlined at all? */
|
|
node->local.inlinable = tree_inlinable_function_p (node->decl);
|
|
|
|
/* Inlinable functions always can change signature. */
|
|
if (node->local.inlinable)
|
|
node->local.can_change_signature = true;
|
|
else
|
|
{
|
|
struct cgraph_edge *e;
|
|
|
|
/* Functions calling builtin_apply can not change signature. */
|
|
for (e = node->callees; e; e = e->next_callee)
|
|
if (DECL_BUILT_IN (e->callee->decl)
|
|
&& DECL_BUILT_IN_CLASS (e->callee->decl) == BUILT_IN_NORMAL
|
|
&& DECL_FUNCTION_CODE (e->callee->decl) == BUILT_IN_APPLY_ARGS)
|
|
break;
|
|
node->local.can_change_signature = !e;
|
|
}
|
|
if (node->local.inlinable && !node->local.disregard_inline_limits)
|
|
node->local.disregard_inline_limits
|
|
= DECL_DISREGARD_INLINE_LIMITS (node->decl);
|
|
estimate_function_body_sizes (node);
|
|
/* Inlining characteristics are maintained by the cgraph_mark_inline. */
|
|
node->global.time = inline_summary (node)->self_time;
|
|
node->global.size = inline_summary (node)->self_size;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Compute parameters of functions used by inliner using
|
|
current_function_decl. */
|
|
static unsigned int
|
|
compute_inline_parameters_for_current (void)
|
|
{
|
|
compute_inline_parameters (cgraph_node (current_function_decl));
|
|
return 0;
|
|
}
|
|
|
|
struct gimple_opt_pass pass_inline_parameters =
|
|
{
|
|
{
|
|
GIMPLE_PASS,
|
|
"inline_param", /* name */
|
|
NULL, /* gate */
|
|
compute_inline_parameters_for_current,/* execute */
|
|
NULL, /* sub */
|
|
NULL, /* next */
|
|
0, /* static_pass_number */
|
|
TV_INLINE_HEURISTICS, /* tv_id */
|
|
0, /* properties_required */
|
|
0, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
0, /* todo_flags_start */
|
|
0 /* todo_flags_finish */
|
|
}
|
|
};
|
|
|
|
/* This function performs intraprocedural analysis in NODE that is required to
|
|
inline indirect calls. */
|
|
static void
|
|
inline_indirect_intraprocedural_analysis (struct cgraph_node *node)
|
|
{
|
|
ipa_analyze_node (node);
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
ipa_print_node_params (dump_file, node);
|
|
ipa_print_node_jump_functions (dump_file, node);
|
|
}
|
|
}
|
|
|
|
/* Note function body size. */
|
|
static void
|
|
analyze_function (struct cgraph_node *node)
|
|
{
|
|
push_cfun (DECL_STRUCT_FUNCTION (node->decl));
|
|
current_function_decl = node->decl;
|
|
|
|
compute_inline_parameters (node);
|
|
/* FIXME: We should remove the optimize check after we ensure we never run
|
|
IPA passes when not optimizing. */
|
|
if (flag_indirect_inlining && optimize)
|
|
inline_indirect_intraprocedural_analysis (node);
|
|
|
|
current_function_decl = NULL;
|
|
pop_cfun ();
|
|
}
|
|
|
|
/* Called when new function is inserted to callgraph late. */
|
|
static void
|
|
add_new_function (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
|
|
{
|
|
analyze_function (node);
|
|
}
|
|
|
|
/* Note function body size. */
|
|
static void
|
|
inline_generate_summary (void)
|
|
{
|
|
struct cgraph_node *node;
|
|
|
|
function_insertion_hook_holder =
|
|
cgraph_add_function_insertion_hook (&add_new_function, NULL);
|
|
|
|
if (flag_indirect_inlining)
|
|
{
|
|
ipa_register_cgraph_hooks ();
|
|
ipa_check_create_node_params ();
|
|
ipa_check_create_edge_args ();
|
|
}
|
|
|
|
for (node = cgraph_nodes; node; node = node->next)
|
|
if (node->analyzed)
|
|
analyze_function (node);
|
|
|
|
return;
|
|
}
|
|
|
|
/* Apply inline plan to function. */
|
|
static unsigned int
|
|
inline_transform (struct cgraph_node *node)
|
|
{
|
|
unsigned int todo = 0;
|
|
struct cgraph_edge *e;
|
|
bool inline_p = false;
|
|
|
|
/* FIXME: Currently the pass manager is adding inline transform more than once to some
|
|
clones. This needs revisiting after WPA cleanups. */
|
|
if (cfun->after_inlining)
|
|
return 0;
|
|
|
|
/* We might need the body of this function so that we can expand
|
|
it inline somewhere else. */
|
|
if (cgraph_preserve_function_body_p (node->decl))
|
|
save_inline_function_body (node);
|
|
|
|
for (e = node->callees; e; e = e->next_callee)
|
|
{
|
|
cgraph_redirect_edge_call_stmt_to_callee (e);
|
|
if (!e->inline_failed || warn_inline)
|
|
inline_p = true;
|
|
}
|
|
|
|
if (inline_p)
|
|
{
|
|
timevar_push (TV_INTEGRATION);
|
|
todo = optimize_inline_calls (current_function_decl);
|
|
timevar_pop (TV_INTEGRATION);
|
|
}
|
|
cfun->always_inline_functions_inlined = true;
|
|
cfun->after_inlining = true;
|
|
return todo | execute_fixup_cfg ();
|
|
}
|
|
|
|
/* Read inline summary. Jump functions are shared among ipa-cp
|
|
and inliner, so when ipa-cp is active, we don't need to write them
|
|
twice. */
|
|
|
|
static void
|
|
inline_read_summary (void)
|
|
{
|
|
if (flag_indirect_inlining)
|
|
{
|
|
ipa_register_cgraph_hooks ();
|
|
if (!flag_ipa_cp)
|
|
ipa_prop_read_jump_functions ();
|
|
}
|
|
function_insertion_hook_holder =
|
|
cgraph_add_function_insertion_hook (&add_new_function, NULL);
|
|
}
|
|
|
|
/* Write inline summary for node in SET.
|
|
Jump functions are shared among ipa-cp and inliner, so when ipa-cp is
|
|
active, we don't need to write them twice. */
|
|
|
|
static void
|
|
inline_write_summary (cgraph_node_set set,
|
|
varpool_node_set vset ATTRIBUTE_UNUSED)
|
|
{
|
|
if (flag_indirect_inlining && !flag_ipa_cp)
|
|
ipa_prop_write_jump_functions (set);
|
|
}
|
|
|
|
/* When to run IPA inlining. Inlining of always-inline functions
|
|
happens during early inlining. */
|
|
|
|
static bool
|
|
gate_cgraph_decide_inlining (void)
|
|
{
|
|
/* ??? We'd like to skip this if not optimizing or not inlining as
|
|
all always-inline functions have been processed by early
|
|
inlining already. But this at least breaks EH with C++ as
|
|
we need to unconditionally run fixup_cfg even at -O0.
|
|
So leave it on unconditionally for now. */
|
|
return 1;
|
|
}
|
|
|
|
struct ipa_opt_pass_d pass_ipa_inline =
|
|
{
|
|
{
|
|
IPA_PASS,
|
|
"inline", /* name */
|
|
gate_cgraph_decide_inlining, /* gate */
|
|
cgraph_decide_inlining, /* execute */
|
|
NULL, /* sub */
|
|
NULL, /* next */
|
|
0, /* static_pass_number */
|
|
TV_INLINE_HEURISTICS, /* tv_id */
|
|
0, /* properties_required */
|
|
0, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
TODO_remove_functions, /* todo_flags_finish */
|
|
TODO_dump_cgraph | TODO_dump_func
|
|
| TODO_remove_functions | TODO_ggc_collect /* todo_flags_finish */
|
|
},
|
|
inline_generate_summary, /* generate_summary */
|
|
inline_write_summary, /* write_summary */
|
|
inline_read_summary, /* read_summary */
|
|
NULL, /* write_optimization_summary */
|
|
NULL, /* read_optimization_summary */
|
|
NULL, /* stmt_fixup */
|
|
0, /* TODOs */
|
|
inline_transform, /* function_transform */
|
|
NULL, /* variable_transform */
|
|
};
|
|
|
|
|
|
#include "gt-ipa-inline.h"
|